5. SYMMETRIES AND ASYMMETRIES IN HUNGARIAN

5.1. Introduction

This chapter discusses clusters of subject-object symmetries and asymmetries in Hungarian and their consequences for its phrase structure and the theory of UG.

É. Kiss (1987a: 36, 44) claims that subject-object asymmetries do not occur in Hungarian. According to É. Kiss, subject and object have the same distribution and they are identically affected by syntactic operations. Therefore, É. Kiss assigns a flat structure to the propositional part of the Hungarian sentence (cf. 1.2.(1)):

(1) S -> V X^a*

This structure expresses the claim that there is no VP in Hungarian.

I agree with É. Kiss (1987a) that in Hungarian a number of subject-object symmetries show up where asymmetries appear in English. However, I do not think that these symmetries should lead to the postulation of a non-configurational phrase structure. At least, empirical evidence points rather in a different direction. As I will demonstrate below, the presence of subject-object asymmetries in Hungarian is empirically well-motivated (cf. section 5.3.). Incidentally, some of these subject-object asymmetries are even reported by É. Kiss (1987a) herself. In the light of this, I will assume that its phrase structure is hierarchical, configurational. This hypothesis is the null-hypothesis (cf. discussion in section 1.2.). The question arises, then, how subject-object symmetries in Hungarian are to be accounted for? My attempt to solve this puzzle will be rather modest. The reason for this is that some of these phenomena are badly understood at the present state of research and require further study. In section 5.2. and 5.3., I will catalogue subject-object symmetries and subject-object asymmetries. This will be done in terms of the modules discussed in chapter one. In section 5.4., I will evaluate the facts bearing on subject-object symmetries and asymmetries.

The subject-object asymmetries provide empirical evidence for the following two claims about the phrase structure of Hungarian:
(2) a. The Hungarian phrase structure is configurational
b. The phrase structure meets the principle of binary branching

A corollary of (2) is that Hungarian has VP. Consequently, the arguments of the verb are ordered in a strict hierarchy:

(3) External argument (subject) > internal argument 1 (object) > internal argument 2 (indirect object, arguments with lexical case)

If these statements are correct, then there is no rationale for relaxing X'-theory, government theory or the Projection Principle which would allow a phrase structure of the type in (1).

Concerning the analysis of subject-object symmetries, I will proceed as follows. Two classes of subject-object symmetries will be distinguished.

(I) Subject-object symmetries which also appear in unambiguously configurational languages, like Germanic and Romance languages. These symmetries pose the following problem. How are subject-object symmetries derived in languages with a hierarchical structure?

(II) Subject-object symmetries which are also attested in established configurational languages such as Dutch or Frisian, but have a somewhat different shape in Hungarian. It seems reasonable to relate them to a specific property of the syntax of Hungarian.

As a working hypothesis, I will relate the symmetries in (I) to general principles of UG which can account for subject-object symmetries in other configurational languages as well. The symmetries in (II) call for a more language-particular approach involving specific properties of Hungarian syntax such as the recursive CP (cf. 2.2.3.(1)).

5.2. Symmetries in Hungarian

This section discusses the subject-object symmetries in Hungarian. I will heavily rely on É. Kiss (1987a), which contains a detailed examination of symmetries in Hungarian. These phenomena appear in the following modules: X'-theory (cf. section 5.2.1.), θ-theory (cf. section 5.2.2.), binding theory (cf. section 5.2.3.), Wh-module (cf. section 5.2.4.), and quantification theory (cf. section 5.2.5.).

5.2.1. X'-Theory

The most direct evidence for a VP-constituent generated by the rules of X'-theory comes from operations which do not affect the internal constituency of verb and object. É. Kiss (1987a) argues that the reverse of this statement holds as well. According to É. Kiss, if any rule does not involve the internal constituency of verb and object in a particular grammar, then the VP is missing from that grammar. É. Kiss discusses two cases which bear on this issue, including the distribution of sentence adverbs (cf. section 5.2.1.1.), and the absence of VP-rules (cf. section 5.2.1.2.). Note, however, that a priori there is no reason to follow this line of argumentation. Trace theory and adjunction can easily account for discontinuities between the verb and its objects (cf. section 5.4.2.).
5.2.1.1. The Distribution of Sentence Adverbs

Chomsky and Lasnik (1977) note that verb-object adjacency is required in English. Therefore, the following string is ungrammatical:

(1) *[vp V - Adv - NP]

A consequence of this is that adverbs which are immediately dominated by IP, like sentence adverbs, adverbs of time and place, and adverbs of manner cannot stand between the verb and object but may appear, however, between the verb and the subject in some cases (cf. Jackendoff 1972, Stowell 1981, among others). This is exemplified in the following pairs:

(2) a. John probably saw Mary
 b. *John saw probably Mary

The Hungarian counterparts of these sentences are all grammatical:

(4) a. János valószínűleg látra Marit
 b. János látra valószínűleg Marit

Adverbs of place or time may likewise occur between verb and object:

(6) a. Mari elolvasta tegnap a könyvet
 b. Mari elolvasta otthon a könyvet

These sentences show that restriction (1) on the word order of English is not operative in Hungarian. Consequently, the distribution of (sentence) adverbs does not distinguish the combination verb plus object from verb plus subject in Hungarian.

It could be concluded from this subject-object symmetry that Hungarian is a non-configurational language. However, subject-object symmetries involving the distribution of sentence adverbs turn up in established configurational languages as well. Koster (1986) demonstrates that Dutch is such a case. Therefore, it cannot be a decisive argument with respect to the constituency of VP. In section 5.4.2., I will re-

(1) An apparent exception to this generalization is ‘Heavy NP Shift’ exemplified by the following pair:

(i) a. John saw the woman that he loved very often
 b. John saw very often the woman that he loved

Note that it is possible to move the italicized heavy NP object to the right in (ib). As a result, this NP and the verb are no longer adjacent. Chomsky (1982) provides evidence that Heavy NP Shift is a syntactic rule which leaves a trace. The trace may then satisfy verb-object adjacency.

(2) Horváth (1986a: 22) argues that the distribution of sentence adverbs supports the assumptions of a VP and a basic SVO-order in Hungarian. According to Horváth, sentence adverbs may occur between the subject and the verb but not between the object and the verb. However, the empirical evidence provided by Horváth is not convincing. Horváth presents only examples (p. 23-25, (15)-(17)) in which the adverbs have the shape of quantifiers. These categories in Hungarian prefer a position to the left of the verb (cf. 2.1.(28b)). Hence, the ungrammaticality of the string [V - Adv(+Q)-Obj] is due to independent reasons.
turn to the question why the distribution of sentence adverbs in some configurational languages does not provide direct evidence for a VP-node?

5.2.1.2. Absence of VP-rules.

According to É. Kiss (1987a), direct evidence for a VP in a particular grammar comes from rules taking this constituent as their target. É. Kiss discusses two rules which single out the VP in English but are absent from Hungarian, namely, (I) VP-preposing, and (II) idiom interpretation. Let us first consider VP-preposing.

(I) É. Kiss (1987a, 30) observes that Hungarian has no operation resembling VP-preposing:

\[(7) \quad \text{*János megigérte hogy átnegy a vizsgán} \]
\[\text{John promised-AGR3sg that pass-AGR3sg the exam-SUPER} \]
\[\text{és átnenni a vizsgán fog} \]
\[\text{and pass-INFI the exam-SUPER will-AGR3sg} \]
\[\text{‘John promised to pass the exam, and pass the exam he will.’} \]
\[\text{(É. Kiss 1987a: 30)}\]

In English, the VP-phrase pass the exam may be topicalized in the second conjunct of this sentence, unlike in its Hungarian equivalent.

É. Kiss concludes from this that Hungarian lacks a VP. However, there are at least two reasons to be careful with conclusions based on examples like (7). Firstly, VP-rules which may provide direct evidence for the VP do also apply in Hungarian (cf. section 5.4.2.). These rules turn up only in a specific syntactic context, for example, with Left Dislocation. Further, VP-constituency tests, such as “VP-gapping”, “VP-deletion” or “VP-reduction”, are not very reliable (cf. section 5.4.2.). This conclusion emerges from a cross-linguistic examination. Hence, it is unmotivated to derive far-reaching consequences from these tests for the syntactic structure of a particular language.

(II) Several authors (for example, Chomsky 1981, Aoun and Sportiche 1981, and Marantz 1984, among others) argue that the structure of idioms serves as a diagnostic for VP-constituency. English has a strong preference to choose the subject rather than the object as the free argument in idiom frames. In Hungarian, on the other hand, not only the internal arguments and the verb may form a fixed part of an idiom but also the external argument and the verb.

Consider first the following idiomatic expression in which the nominative subject is the freely substitutable argument:

\[(8) \quad \begin{align*}
\text{a. Ő éli világát} & \\
\text{he live-AGR3sg world-npAGR3sg-ACC} & \\
\text{‘He lives a merry life.’} & \\
\text{b. Ő beszél (bele) a világba} & \\
\text{he speak-AGR3sg into the world-ILL} & \\
\text{‘He talks through one’s hat.’} & \\
\text{c. Ő nem esett fejére} & \\
\text{he not fell-AGR3sg head-npAGR3sg-SUBL} & \\
\text{‘He won’t let himself be fooled.’} & \\
\end{align*}\]
The following idiomatic expression contain two free arguments. The nominative variable is accompanied by either an accusative, dative, instrumental, or sublative argument:

(9)

a. ő szidja őt mint a bokrot
 he scold-AGR3sg him as the bush-ACC
 'He scolds him roundly.'

b. ő ellátra neki a baját
 he treat-AGR3sg he-DAT the trouble-npAGR3sg-ACC
 'He will fix him.'

c. ő bolondját járatja vele
 he fool-npAGR3sg-ACC go-CAUS-AGR3sg he-INSTR
 'He sends him on a fool's errand.'

d. ő kivette a hálóját rá
 he cast-AGR3sg the net-npAGR3sg-ACC he-SUBL
 'He cast his net on him.'

É. Kiss (1987a: 30-31) presents the following examples in which the accusative object is the freely substitutable argument:

(10)

a. Az isten aldja meg őt
 the god bless-AGR3sg perf him
 'God bless him.'

b. Az ördög vigye el őt
 the devil take-IMP-AGR3sg away him
 'The devil take him.'

c. A fene egye meg Őt
 the plague eat-IMP-AGR3sg up him
 'Plague on him.'

d. Ásó, kapa válassza el Őket!
 spade, hoe separate-AGR3sg away them
 'Only spade and hoe ('death') separate them.'

e. Veszik/viszik azt mint a cukrot
 buy-AGR3sg/take-AGR3sg it-ACC like the sugar-ACC
 'People buy/take it like sugar.'

f. Őt már nem lehet eladni
 him already not possible sell-INFI
 (lit. 'It is not possible to sell him anymore.')
 'He speaks a certain language fairly well.'

g. Akkor lássam Őt amikor a hátam közepét
 then see-IMP-AGR1sg him when the back-npAGR1sg
 middle-npAGR3sg-ACC
 'I should see him when I see the middle of my back.'

h. Kenyérre lehetne kennis Őt
 bread-SUBL can-COND-AGR3sg smear-INFI him
 (lit. 'One could spread him on bread.')
 'He is so meek.'
(11) a. Neki beszélhet az üristén
 he-DAT speak-POT-AGR3sg the lord even
 (lit. 'Even the Lord might speak to him.')
 'It is no use speaking to him.'

b. Az ördög sugta neki
 the devil whispered-AGR3sg-def he-DAT
 'The devil suggested it to him.'

c. Neki hiányzik egy kereke
 he-DAT miss-AGR3sg a wheel-npAGR3sg
 (lit. 'He has a missing wheel.')
 'He is crazy.'

d. Örá rájött a bolondóra
 he-SUBL came-AGR3sg the houot-of-madness
 'A fit of madness is upon him.'

e. Az ég roggyon rá
 the heaven fall-IMP-AGR3sg he-SUBL
 'Heaven fell on him.'

f. Nincs benne kőszénét
 he-DAT miss-AGR3sg a wheel-npAGR3sg
 (lit. 'He has a missing wheel.')
 'He is crazy.'

g. Isten örizzzen
 isn't it-INESS thank-ACe God save-IMP-AGRlsg he-ABL
 (lit. 'There isn't any thank in it.')
 'God save me from it.'

(E. Kiss 1987a: 31-32)

In many instances, an idiom may also contain two or more non-subject free arguments:

(12) a. Azt harapófogóval kell kihúzni belőle
 it-ACC pincers-INSTR must out-drag-INFI he-ELAT
 'It must be dragged out of him with pincers.'

b. Az isten is neki teremtette
 she-ACe the god even he-DAT created-AGR3sg
 'God even created her for him.'

(E. Kiss 1987a: 31-32)

A preliminary descriptive generalization which captures the formation of these idiom frames may be formulated as follows:

(13) An idiom frame may consist of any combination of a verb and its arguments

The behavior of the dative possessor NP within idioms demonstrates that the notion argument is indeed relevant for the formation of idioms. This NP in Hunga-

(3) Kenesei (1985e) observes that idioms in Hungarian display two linear orders. They have either a [VM-V] or a [V- NP] order:

(i) a. A fiú lépre ment
 the boy trap-SUBL went
 'The boy became a victim of someone's trickery.'

b. Ez a vizsgázó kívágra a rezet
 this the examinee out-cut the share-ACC
 'This examinee did his best.'

(Kenesei 1985e: 337)

Kenesei observes further that scrambling of the constituents in these idioms 'reconstructs' the original compositional meaning:

(ii) a. Lepre a fiú ment
 A the boy trap-SUBL went
 'The boy fell into the trap.'

b. ?Lepre ez a vizsgázó vágta ki
 ?A the boy the share-ACC cut
 'This examinee had his share.'

Suppose, now, that a string can only be assigned an idiomatic interpretation if and only if it is categorically complete and the constituents in that string are in neutral order. Under these assumptions, the above differences support the hypothesis that in (i) lépre ment forms a V-constituent with the neutral (VM -V) order, and in (ii) the idiom frame is a VP with the neutral SVO-order,
rian may be freely scrambled around in the sentence (cf. section 3.1.), although it is not an argument of the verb. The following sentences show that the dative possessor NP may be the freely replaceable argument in an idiom but may not belong to the fixed part of an idiom frame:

(14) a. Neki leesett az álla
 he-DAT fell-AGR3sg the jaw-npAGR3sg
 'His jaw fell.'

b. Neki bekötötték a fejét
 she-DAT up-tied-AGR3pl the head-npAGR3sg-ACC
 'She has got married.'

c. Neki kinyílik a bicska a zsebében
 he-DAT open-AGR3sg the pocket-knife the pocket-npAGR3sg-INESS
 'He gets angry.'

É. Kiss (1987a) makes two assumptions concerning idiom formation. First, it takes place at D-structure. Second, the syntactic structure of idioms is a precise reflection of the syntactic relations at D-structure. According to É. Kiss, this implies that the subject and the other complements of the verb do not differ in hierarchical prominence.

It seems to me, however, that at the present state of research no far-reaching conclusions for syntactic structure should be based on idioms. Too little is known about idioms and their status within a theory of UG. It is unclear at what level of representation idiom formation applies. For example, if the nominative possessor NP is in its NP-internal D-structure position, no idiomatic reading is possible. Compare the counterpart of (14a):

(15) Leesett az (0) álla
 fell-AGR3sg the he jaw-npAGR3sg
 'His jaw fell.'

This sentence has only a literal reading, unlike (14a).

Note now that a conflict arises between the assumption that idioms are formed at D-structure (cf. Chomsky 1981, Marantz 1984) and Szabolcsi's (1981a; 1984) hypothesis that the dative possessor NP leaves its possessive NP by movement. Under Szabolcsi's analysis, the idiom interpretation in (14a) would only be available at S-structure. A way out of this conflict would certainly be not to allow idiom formation both at D-structure and S-structure. In section 5.4.2., I will return to the structure of idiom frames arguing that they do not support a non-configurational approach to Hungarian syntax.

5.2.2. 6-Theory

I noted in section 3.2.2. that the thematic content of the VP determines the 6-selection of the subject. Compare the following examples:

(1) a. János eszi a levest
 John eats the soup-ACC
 'John is eating the soup.'

b. Az unalom eszi Jánost
 the boredom eats John-ACC
 'Boredom is eating John.'
 (É. Kiss 1987 a: 244)
In the presence of an agent subject like in (1a) and (2a) the object of the Hungarian verbs eszik 'eat', and öl 'kill' can only be interpreted as the theme or patient of the action denoted by the verb. However, in the presence of a cause subject such as in (1b)-(1e) and (2b), the object may receive an experiencer role.

É. Kiss (1987a: 244) regards these selectional symmetries between subject and object as evidence for a non-configurational phrase structure. I will demonstrate, however, that such symmetries appear also in uncontroversial configurational languages, like English (cf. section 5.4.2.6.). Therefore, assigning Hungarian a non-configurational structure on the basis of this is rather misleading.

5.2.3. Binding Theory

É. Kiss (1981c; 1982b; 1987a; 1987c) observes that in some instances of pronominal noncoreference subject-object symmetries show up in Hungarian where subject-object asymmetries appear in English. In the literature, the following principles have been formulated to cover this phenomenon:

(1) a. Pronominal Noncoreference: A pronominal may not c-command its antecedent (Reinhart 1983: 18)
 b. Binding Principle C: An R-expression (a category that is referentially independent, for example names, Wh-phrases) is free (Chomsky 1981: 188)

In a language in which subject and object occupy asymmetric structural positions different coreference possibilities hold between a pronominal object and an R-expression embedded under the subject, and between a pronominal subject and an R-expression embedded under the object. According to these rules, in the former case coreference should be possible (cf. (2a), (3a)), whereas in the latter case a coreferential reading is blocked because the R-expression is c-commanded by the pronominal (cf. (2b), (3b)):

(2) a. John's mother loves him
 b. *He loves John's mother

(3) a. *Whose mother loves him
 b. *Whose mother does he love t

In order to predict the grammaticality pattern exemplified in (3) the rules in (1) have to apply before Wh-movement takes place. Alternatively, 'reconstruction' of the whose-phrase to its D-structure position could be carried out before these rules are checked.
The Hungarian equivalents of the sentences in (2) and (3) are all ungrammatical under a coreferential reading between the pronoun and the R-expression:

(4) a. *János anyja szereti (őt)
 John mother-npAGR3sg love-AGR3sg him
 'John's mother loves him.'

b. *(Ő) szereti János anyját
 he love-AGR3sg John mother-npAGR3sg-ACC
 *'He loves John's mother.'

(5) a. *((Ő) szereti János anyja
 him love-AGR3sg John mother-npAGR3sg
 'He loves John's mother.'

b. *János anyját szereti (ő)
 John mother-npAGR3sg-ACC love-AGR3sg he

(6) a. *Kinék az anyja szereti (őt)
 whose-DAT the mother-npAGR3sg love-AGR3sg him
 'Whose mother loves him?'

b. *Kinék az anyját szereti (ő)
 whose the mother-npAGR3sg-ACC love-AGR3sg he
 *'Whose mother does he love?'

(7) a. *(Ő) kinek az anyja szereti
 him whose-DAT the mother-npAGR3sg love-AGR3sg

b. *((Ő) kinek az anyját szereti
 he whose-DAT the mother-npAGR3sg-ACC love-AGR3sg

The sentences in (4) and (6) exemplify the Hungarian counterparts of the sentences in (2) and (3). Scrambling of the constituents in these sentences does not affect pronominal noncoreference, the sentences in (5) and (7) are the scrambled variants of (4) and (5). So subject-object symmetry occurs with pronominal noncoreference in Hungarian, as distinct from English. The sentences (4a) and (6a) are ungrammatical under a coreferential reading in Hungarian but their counterparts in English are grammatical.

É. Kiss (1987a: 207; 1987c: 40) explains this symmetry in Hungarian by applying the rules in (1) to a flat sentence structure (cf. 5.1.(1)) in which the subject and object are in a mutual c-command relation. In section 5.4.2.7., I will present some other facts on pronominal noncoreference displaying subject-object asymmetries rather than subject-object symmetries. This suggests that a different approach is required with respect to the paradigm in (4)-(7) without necessarily giving up a configurational analysis of Hungarian.

5.2.4. Wh-Module

With Wh-movement in Hungarian three types of subject-object symmetries have been observed involving (i) absence of superiority effects, (ii) the lack of that-trace effects, and (iii) Wh-movement out of possessive NPs. Let us first discuss the absence of superiority effects in Hungarian.

(4) This does not differ under pro-drop. So, these sentences should be added to the cases discussed in 4.2.4.1.(l) which support the claim that pro is present when an overt pronoun is omitted.
5.2.4.1. Absence of Superiority effects

É. Kiss (1982b; 1987a; 1987c) notes that Hungarian lacks superiority effects (cf. Chomsky 1973) with multiple Wh-questions. In English, the Wh-phrase that is structurally superior to other Wh-phrases in the multiple question will occupy the Spec of CP position, whereas the other Wh-phrases must remain in their D-structure positions:

The Hungarian counterparts of these questions may be equally grammatical:

(2) a. Ki mit mondott b. Mit ki mondott
 who-ACC said-AGR3sg what-ACC who said-AGR3sg
 'Who said what?' 'Who said what?'
 'For which x, x a person, 'For which y, y a statement,'
 for which y, y a statement, x said y' for which x, x a person, x said y'

Although no superiority effects arise in Hungarian, the meaning associated with the different orders is not the same. The leftmost Wh-phrase has wide scope. This is in accordance the universal condition on scope-interpretation 2.2.(19).

É. Kiss concludes from the absence of superiority effects that subject and object occupy structurally parallel positions, i.e., neither of them is structurally superior to the other. An alternative to this explanation, within a configurational framework of Hungarian, would be to formulate this difference between English and Hungarian in terms of the availability of preverbal positions for Wh-phrases (cf. section 5.4.3.1.).

5.2.4.2. Anti-that-Trace Effect

Chomsky and Lasnik (1977) observe that long Wh-movement in English is restricted by the so-called that-trace effect. Subject Wh-phrases may undergo long Wh-movement only if the complementizer that is omitted (cf. (3a)). This requirement does not have to be obeyed when an object Wh-phrase is extracted (cf. (3b)):

(3) a. Who do you think (*that) t saw Bill b. Who do you think (that) Bill saw t

É. Kiss (1981a) and Horvath (1981) note that the that-trace effect does not appear in Hungarian. Consider the Hungarian counterparts of these sentences:

(4) a. Kit gondolsz *(bogy) t láttat Vili
 who-ACC think-AGR-2sg that saw-AGR3sg Bill-ACC
 'Who do you think saw Bill?'
 b. Kit gondolsz *(bogy) Vili láttott t
 who-ACC think-AGR-2sg that Bill saw-AGR3sg
 'Who do you think that Bill saw?'

The complementizer bogy ‘that’ is obligatorily present with both extraction from the embedded subject and embedded object position. Thus, we find an anti-that-trace effect in Hungarian.

(5) For the syntax and semantics of multiple questions in Hungarian see also Ackerman (1981), E. Kiss (1986; 1987a; 1987c), Kenesei (1986b) and Szabolcsi (1986).
É. Kiss (1987a) argues that this effect can be covered for if the subject and the object are both immediately dominated by the same maximal major category, namely S. The ECP is satisfied under this assumption because the verb properly governs both the subject and the object. However, the violation of *that*-trace effects is also attested in a number of established configurational languages, like Dutch (cf. Koopman 1982, and Koster 1986; 1987: ch.4), Frisian (Jarich Hoekstra, personal communication), Bavarian (a dialect of German, cf. Bayer 1984), Icelandic (cf. Plat-zack 1987) or Swedish (cf. Engdahl 1984). So, a priori there is no reason to assume that the occurrence of anti-*that*-trace effects in Hungarian provides evidence for a VP-less phrase structure. In section 5.4.2.3., I will present an analysis of these phenomena within a configurational approach to Hungarian.

5.2.4.3. Wh-movement from Possessive NPs

Wh-possessor NPs in Hungarian must occur in the dative case and they must be scrambled out of their possessive NPs (cf. section 2.1.). Szabolcsi (1984) observes that these Wh-possessor NPs may be extracted both from an accusative possessive NP (cf. (5a)) and a nominative possessive NP (cf. (5b)):

(5) a. *Kinek* ismertétek [NP a t vendégét]
 who-DAT knew-AGR2pl the guest-npAGR3sg-ACC
 'Whose guest did you know?'

 b. *Kinek* alszik [NP a t vendége]
 who-DAT sleep-AGR3sg the guest-npAGR3sg
 'Whose guest is sleeping?'
 (Szabolcsi 1984: 92)

É. Kiss (1987c) notes that an extracted dative possessor NP may also participate in long Wh-movement:

(6) a. *Melyik színésznőnek* gondolja János hogy Péter megtalálta [NP a t fényképét]
 which actress-DAT think-AGR3sg John that Peter found the photo-npAGR3sg-ACC
 'Which actress does John think that Peter found the photo of?'

 b. *Melyik színésznőnek* gondolja János hogy [NP a t fénykép] meglett
 which actress-DAT think-AGR3sg John that the photo-npAGR3sg up-turned
 'Which actress does John think that the photo of was found?'

É. Kiss (1987c), and Szabolcsi (1984) argue that these subject-object symmetries indicate that the subject and object are in similar structural positions with respect to the verb. Wh-movement from the possessive NP leaves a trace which must be pro-

(6) The ECP states that empty categories like Wh-traces must be properly governed. The definition of proper government consists usually of two conjunctive subcomponents. Consider, for example, Koopman (1982):

 (i) β properly governs α iff β governs α

 a) $\beta = X^0$

 b) β is an NP coindexed with α
properly governed in agreement with Chomsky's (1981) ECP (see fn. 6 for a definition of the ECP). According to É. Kiss and Szabolcsi, the ECP can only be satisfied if the verb, a proper governor, governs both the subject and object. Hence, they conclude that the structure of the Hungarian clause is non-configurational.

In section 5.4.2.4., I will analyse these subject-object symmetries with Wh-movement from possessive NPs within a configurational framework. Our analysis will heavily rely on the fact that such NPs contain an escape hatch for dative possessor raising. Hence, the paradigms above do not necessarily provide an argument for a non-configurational analysis of Hungarian.

5.2.5. Quantification Theory

É. Kiss (1987a: 29) presents an argument based on the distribution of universal quantifiers with Topicalization in favor of her phrase structure of Hungarian syntax 1.2.(1), here repeated for convenience as (1):

\[
\begin{array}{c}
S'' \\
\text{Topic} \quad S' \\
\text{Focus} \quad S \\
V \quad X^* \quad X^*
\end{array}
\]

É. Kiss sets up the following line of argumentation. Topicalization is known to be incompatible with universal quantification. Therefore, if there are both sentence-initial subjects and objects in a language, and if sentence-initial subjects can be universally quantified, but sentence-initial objects cannot, then it may be concluded that sentence-initial objects are located under a topic node different from the subject position. É. Kiss, however, claims that, unlike for example in Italian, universally quantified subjects and objects display a completely parallel distribution. Compare the following sentences:

(2) a. Mindenki megette az ebédet \\
b. Mindent megevett János
everyone ate-AGR3sg the lunch-ACC ‘Everyone ate the lunch.’

(3) a. *Mindenki ette meg az ebédet \\
b. *Mindent evert meg János
everyone ate-AGR3sg up the lunch-ACC ‘John ate everything.’

(4) a. *Mindenki az ebédet megette lunch-ACC ate-AGR3sg
b. *Mindent János megevett everything-ACC John ate-AGR3sg

(5) a. Az ebédet megette mindenki b. János megevett mindent
the lunch-ACC ate-AGR3sg everyone John ate-AGR3sg everything-ACC

According to É. Kiss, this paradigm implies that sentence-initial quantifiers in Hungarian are in the same position.

So, a subject-object symmetry shows up with the Topicalization of universal quantifiers in Hungarian. É. Kiss explains this fact by assuming that Topicalization
moves the subject and the object to the Topic position. These instances of move-\(\alpha \) are allowed in structure (1), because both the subject and the object are properly governed by the verb. I will argue in section 5.4.3.2., however, that this phenomenon is due to the fact that the CP is recursive within CP (cf. 2.2.3.(1)). As a result, subject-object symmetries with the Topicalization of universal quantifiers may arise within a configurational phrase structure of Hungarian.

5.3. Asymmetries in Hungarian

This section discusses subject-object asymmetries in Hungarian. Subject-object asymmetries occur in the following modules of the grammar, involving Lexicon (cf. section 5.3.1.), X'-theory (cf. section 5.3.2.), \(\theta \)-theory (cf. section 5.3.3.), binding theory (cf. section 5.3.4.), Case theory (cf. section 5.3.5.), control theory (cf. section 5.3.6.), Wh-module (cf. section 5.3.7.) and quantification theory (cf. section 5.3.8.).

5.3.1. Lexicon

In chapter three, I argued that lexical phenomena in Hungarian such as transitivity alternations or compositional \(\theta \)-assignment depend on the universal status of the subject-object dichotomy in phrase structure. Hence, they are instances of subject-object asymmetries in Hungarian. Furthermore, I demonstrated that the formation of transitivity alternations, which involve Middle Verbs, Unaccusatives, Ergatives, Inchoatives, Passives, Raising Predicates, and Experiencer Verbs, is mediated by suffixes. In this section, I will examine two other suffix-mediated transitivity alternations, including reflexivization, and reciprocalization (cf. section 5.3.1.1.). It will turn out that these phenomena affect only the accusative argument of a transitive verb. Next, I will investigate noun-incorporation in Hungarian. I will conclude that only underlying non-subject arguments may be incorporated (cf. section 5.3.1.2.).

5.3.1.1. Reflexivization and Reciprocalization

In Hungarian several verbal suffixes may trigger reflexivization and reciprocalization. The suffixes with this property have an \(-ik\) ending: \(-ódík/ődík\), \(-ózik/őzik\), \(-ódzik/ődzik\), \(-ódik/ődík/ődík\), \(-ózik/ezik/őzik\), \(-kódik/kedik/kódík\), \(-kózik/kózik/közık\) (cf. Károly 1982). Some of these suffixes participate also in passive morphology with the properties in 3.3.(10). According to Komlósy (1985), it is hard to predict which verb allows suffixation by which of these suffixes or which of the verbs will have a reflexive, reciprocal, or frequentative reading.

Let us consider the following examples with Reflexivization:

\[
\begin{align*}
\text{John shave-AGR3sg Peter-ACC & John shave-AGR3sg himself-ACC & John shave-REFL-AGR3sg} \\
\text{‘John shaves Peter.’ & ‘John shaves himself.’ & ‘John shaves himself.’} \\
\text{Kómlosy 1985: 72}
\end{align*}
\]
These examples display sentences with the verbs *borotvál* 'shave' and *mos* 'wash'. As may be observed from the (a)-sentences, these verbs are transitive verbs of the agent-theme class and are associated with a NOM-ACC case frame. The (b)-sentences represent the analytic variant of reflexivization formed with the reflexive pronoun *maga* 'himself/herself' (cf. section 5.3.4.1. for a discussion of this construction). This pronoun is associated with the accusative argument of the verb which bears the theme role. The (c)-sentences exemplify the synthetic alternant of reflexivization.

Attachment of the reflexive morphology (REFL) has two consequences. Firstly, the accusative argument is deleted from the case frame of the verb. Secondly, following Marantz (1984), I suppose that reflexive morphology absorbs the theme role associated with these transitive verbs. Note that under this analysis no violation of the Projection Principle occurs.

Let us turn to a discussion of reciprocalization. Komlósy points out that adding reciprocal morphology (REC) to a transitive verb has the same effects as the attachment of reflexive morphology. The only difference is that in some cases the deletion of the accusative argument is counterbalanced by the occurrence of an optional instrumental argument. Compare:

(3) a. A fiúk verik a lányokat
 the boys beat-AGR3pl the girls-ACC
 'The boys are beating the girls.'
 b. A fiúk verekendnek (egymással)
 the boys beat-REC-AGR3pl each other-INSTR
 'The boys are fighting (with each other).'

(4) a. A gyerekek kergetik a macskákat
 the children chase-AGR3pl the cats-ACC
 'The children are chasing the cats.'
 b. A gyerekek kergetőznek (?egymással)
 the children chase-REC-AGR3pl each other-INSTR
 'The children are chasing about.'
 (Komlósy 1985: 73)

In (3) and (4), we find sentences with the Hungarian transitive verbs *ver* 'beat' and *kerget* 'chase'. I will assume that the theme role is absorbed by the reciprocal suffix. This avoids a violation of the Projection Principle.

Summarizing, suffix-mediated Reflexivization and Reciprocalization in Hungarian affect only the accusative argument of a transitive verb of the agent-theme semantic class. Hence, these transitivity alternations display a subject-object asymmetry.
5.3.1.2. Noun-Incorporation

Several authors (see, Ackerman 1984, Horvath 1986a, Komlósy 1985, Szabolcsi 1986e) have observed that Hungarian exhibits Noun-Incorporation. In order to examine the syntactic properties of this phenomenon consider the following sentences:

(5) a. Mari (*a/egy) könyvet olvas
Mary the/a book-ACC read-AGR3sg
'Mary is book-reading.'
b. Péter (*a/egy) fát vág
Peter the/a wood-ACC cut-AGR3sg
'Peter is wood-cutting.'
c. János (*az/egy) eleget tesz az igéretnek
John the/a enough-ACC make-AGR3sg the promise-DAT
'John fulfills the promise.'
d. János (*a/egy) fejbe veri magát
John the/a head-ILL beat-AGR3sg himself-ACC
'John hits himself to the head.'
e. Mari (*a/egy) számon tartja a költségeket
Mary the/a track-SUPER keep-AGR3sg the expenses-ACC
'Mary keeps track of the expenses.'

These sentences illustrate the following properties of Noun-Incorporation:

(6) a. The incorporated noun cannot be modified by an article
b. The construction receives a generic, indefinite, sometimes an idiomatic interpretation
c. The incorporated noun is preferably left-adjacent to a finite verb
d. Any argument of the verb, except the nominative one, may be incorporated

In the studies referred to above, it has been argued that incorporated nouns occupy the VM-position (cf. the sections 2.2. and 4.4.2. for a discussion of this position). This accounts, then, for the properties (6a)-(6c) of this construction. VMs may only be X*-categories. Therefore, they may not be modified by an article. VM and V form a V'-constituent which may have a non-compositional meaning. Finally, VMs occur left-adjacent to a finite verb in their neutral order.

VMs may be and sometimes must be postposed, for example, when another constituent of the sentence is focussed. Compare the counterparts of (5) with a focussed NP:

(7) a. MARI olvas könyvet
'It is Mary who is book-reading.'

b. PÉTER vág fát
'It is Peter who is wood-cutting.'
c. JÁNOS tesz eleget az igéretnek
'It is John who fulfills the promise.'
d. JÁNOS veri fejbe magát
'It is John who hits himself to the head.'
e. MARI tartja számon a költségeket
'It is Mary who keeps track of the expenses.'

One could argue that we are not facing noun-incorporation but something else. However, if a non-finite alternant of the verbs in (5) and (7) is chosen, like an infinitive or a deverbal noun, the noun is “sucked in” by the verbal form.

The infinitive is formed by adding the suffix -ni (INFI) to the verbal stem (cf. (8)), and the deverbal noun by adding the suffix -és/dés (NOMI) (cf. (9)):
These examples show that infinitives and nouns are more tightly connected with VMs than finite verbs. Probably, this dichotomy is related to V-movement in finite clauses (cf. chapter two).

Putting this problem aside for further research, consider again property (6d) of Noun-Incorporation, here repeated as (10):

(10) Any argument of the verb, except the nominative one, may be incorporated

Noun-Incorporation provides another instance of a subject-object asymmetry. In fact, any direct argument of the verb may be incorporated except the nominative one.

There is, however, an apparent class of counterexamples to this generalization, that is, some incorporated nouns show up in the nominative. We saw already some instances of this in (9a)-(9c). The incorporated noun with deverbal nominalization is in the nominative. The following sentences display a similar phenomenon:

(11) a. (*A) lehetőség nyílik b. (**Az) alkalmadó dik
 the possibility open-AGR3sg the opportunity arise-AGR3sg
 'There opens a possibility.' 'An opportunity arises.'

From an examination of the verbs allowing incorporation of a nominatively marked argument, it appears that they are passivizers. Deverbal nominalization with the suffix -és/ás follows the pattern of passivization (cf. 3.3.3.(II)). Hence, the incorporated nominative in (9a)-(9c) is the underlying object. The verbs in (11) belong to the class of Unaccusatives in Hungarian. These verbs are intransitive with an under-
lying object (cf. section 3.3.2.). This yields the following generalization on Noun-Incorporation:

(12) Only underlying internal arguments may be incorporated in Hungarian

This generalization is in correspondence with Baker (1983; 1988) who observes that cross-linguistically only underlying objects can be incorporated.

Summarizing, Noun-Incorporation displays another instance of a subject-object asymmetry. Only internal arguments of the verb be incorporated.

5.3.2. X'-Theory

It is hard to provide direct evidence in Hungarian for a VP-constituent in finite sentences (cf. section 5.2.1.2.). Tests which bear on this, like VP-deletion, are lacking in Hungarian. However, it appears that evidence for the constituency of the VP can more easily be found within the context of non-finite clauses. In this section, I will investigate the structure of infinitive complements selected by auxiliaries (cf. section 2.2.2.).

Such complements appear with a subtype of subject control verbs (cf. section 5.3.6.1 for these verbs), like *kell* ‘have to’ and *akar* ‘want’. Let us first consider the properties of the constructions with *kell*:

(1) a. Jánosnak látni(a) kell Marit
 John-DAT see-INFI-AGR3sg must Mary-ACC
 ‘John must see Mary.’

b. Jánosnak találkozni(a) kell Marival
 John-DAT meet-INFI-AGR3sg must Mary-INSTR
 ‘John must meet Mary.’

c. Jánosnak el kell menni(e)
 John-DAT away must go-INFI-AGR3sg
 ‘John must go away.’

(i) In neutral order the infinitive is left-adjacent to *kell*. Furthermore, *kell* receives no stress.

(ii) *Kell* may only be inflected for tense. For example, the past variant of the present form of *kell* is *kellett* ‘had to’. Hence, it lacks a fully specified I[+AGR].

(iii) *Kell* assigns its direct argument a lexical dative case. The reason for the absence of the nominative on this argument is presumably due to the fact that I is not specified for AGR. If the nominative case is assigned by I, it must fully be specified in finite sentences (cf. Case-assignment rule 3.2.(7a)).

(iv) The infinitive may optionally agree in person and number with the dative marked NP.

(v) Consider the finite counterparts of the infinite complements in (1a) and (1b):

(2) a. János látja Marit
 John see-AGR3sg Mary-ACC
 ‘John sees Mary.’

b. János találkozik Marival
 John meet-AGR3sg Mary-INSTR
 ‘John meets Mary.’

The internal arguments are accusatively and instrumentally marked in these sentences. They remain unaffected by the formation of the infinite construction.
Auxiliaries trigger Aux-splitting in neutral sentences when they select an infinitive which is itself modified by a VM (cf. section 2.2.2.). In (1c), for example, the prefix el ‘away’ of the infinitive elmenni ‘to go away’ is separated from the infinitive by an intervening modal auxiliary.

Let us turn to the properties of infinitive constructions with akar. Compare the following sentences:

(3) a. János hitni akarja/*aj Marit
John see-INFI want-AGR3sg-def/ indef Mary-ACC
‘John wants to see Mary.’

b. János talalkozni akar Marival
John meet-INFI want-AGR3sg Mary-INSTR
‘John wants to meet Mary.’

c. Én látni akacsiak téged
I see-INFI want-AGR1sg2sg you-ACC
‘I want to see you.’
d. János el akar menni
John away want-AGR3sg go-INFI
‘John wants to go away.’

(i) Word order in neutral sentences of the akar-type is identical to the kell-type. The infinitive is left-adjacent to akar, which is unstressed.

(ii) Contrary to kell, akar may be inflected both for tense and agreement. This means that its I is fully specified. Therefore, the subject complement of akar appears in the nominative case.

(iii) Akar agrees with the object complement of the infinitive. This complement is definite in (3a), because it is a proper name (cf. 4.2.3)). Therefore, akar displays definite conjugation in this sentence. This agreement phenomenon can also be observed from (3c).

The verbal suffix -lak reflects that the verb agrees with a first person singular nominative subject and a second person accusative object (cf. section 4.2.4.2.). It is easy to see that the accusative object of the infinitive in this sentence agrees with akar.

(iv) As was also the case with the kell-type, the internal arguments of the infinitive complements selected by akar are identical to the internal arguments of their finite counterparts. Observe from a comparison between the pairs ((3a), (3b)) and ((4a), (4b)) that the internal arguments of both the finite and non-finite alternants are in the accusative and instrumental.

(v) Just as kell, akar triggers Aux-splitting. Akar intervenes between an infinitive and its VM in a sentence with neutral order. In (3d), the infinitive elmenni ‘to go away’ which consists of the prefix el ‘away’ and the infinitive menni ‘to go’ is split by akar.

These properties involving the neutral order of infinitives, obligatory subject-control, Aux-splitting, and object agreement suggest that auxiliaries induce ‘restructuring’ effects. In chapter two, I noted that this is a consequence of the application of V-raising in such constructions.

Szabolcsi (1983a) argues that the obligatory subject-control with these auxiliaries is due to the absorption of the external argument of the infinitive complement, i.e. big PRO in Chomsky (1981). Note, however, that its internal arguments remain unaffected by an application of V-raising. This implies that these arguments are structurally closer to the infinitives in their X'-projection than the external arguments of these verbs. In conclusion, the structure of infinitival complements displays a subject-object asymmetry.
5.3.3. θ-Theory

Subject-object asymmetries provided by θ-theory involve selectional restrictions on θ-assignment. I noted in section 3.2.2. that the θ-role of the subject is affected by the choice of the object but that the choice of the subject does not affect θ-assignment to the object.

5.3.4. Binding Theory

In section 5.2.3., I discussed some Binding Principle C symmetries. Here I will examine some subject-object asymmetries in the domain of binding theory.

Studies on coreference draw a distinction between the coreferential and the bound variable reading of a pronoun. The following pair illustrates this distinction:

(1) a. John loves his mother
 b. Everyone loves his mother

In (1a), the pronoun *his* can be understood as being coreferential with the referring expression *John*, i.e., a pronoun can pick up its reference from another NP in the sentence. In (1b), on the other hand, the pronoun has a quantifier expression as its antecedent, and receives an interpretation analogous to the bound variables of logicians.

In the linguistic literature much effort has been devoted to the proper formulation of the conditions on the coreferential and bound variable interpretations of pronouns (see, Chomsky 1981, Evans 1980, Haik 1984, Higginbotham 1983a, Koopman and Sportiche 1982, and Reinhart 1983, among others). What all these studies have in common is that the bound variable interpretation of a pronoun obeys a stricter condition than mere coreference. Compare for example the rules in Reinhart (1983):8

(2) a. A non-pronominal NP must be interpreted as non-coreferential with any NP that c-commands it (Reinhart 1983: 136)
 b. Quantified NPs and Wh-traces can have anaphoric relations only with pronouns in their c-command domain (Reinhart 1983: 137)

Insights provided by these rules have been translated into the Binding Principles (cf. Chomsky 1981: 188):

(3) a. Binding Principle A: An anaphor (a category that lacks independent reference, and thus includes reflexives, reciprocals) is bound in its governing category
 b. Binding Principle B: A pronominal (a category that may be referentially independent or may depend upon an antecedent for its reference, and thus includes the class of pronouns) is free in its governing category
 c. Binding Principle C: An R-expression (a category that is referentially independent, and includes all other NP types, for example names) is free

These principles are well-formedness conditions on structures which contain coindexing relations. The indexing device of binding theory is one of free-indexing.

8 Reinhart gives the following definition of c-command:

(i) Node A c(constructual)-commands node B iff the branching node most immediately dominating A also dominates B.
(3) makes clear that it distinguishes three lexical primitives including anaphors, pronominals, and R-expressions.

Binding Principle A accounts for the coreferential interpretation in the following cases. The sentence is the governing category for the reflexive pronoun *himself* and reciprocal pronoun *each other*:

(4) a. John *saw* himself b. The boys *saw* each other

Disjoint reference in the following examples is captured by Binding Principle B (cf. (5a)-(5b)) and Binding Principle C (cf. (5c)-(5d)). Again, the sentence is the governing category for pronouns and names in object position:

According to Reinhart, anaphors with quantified antecedents and with anaphors have in common that the anaphora interpretation involves in both cases its translation as a bound variable. Observe from the comparison of (2b) and (3a) that the structural condition restricting the interpretation of anaphors is the same as the one restricting the interpretation of bound variables.

However, anaphors also have the peculiar grammatical property specified in (3a), namely, that they must be bound in a local domain. This cannot be reduced to the bound anaphora rule and thus has to be captured separately.

To summarize, earlier studies report the following properties of binding relations. (i) The structural conditions restricting coreferential and bound variable interpretation obey some version of c-command (see, fn.8 for a definition). (ii) The rule determining a bound variable interpretation of pronouns is a stricter condition than the rule allowing coreferential interpretation. (iii) Anaphors are subject to the same structural restrictions as bound pronouns. They have to be c-commanded by their antecedent. (iv) Reinhart (1983) restricts the coreferential interpretation of pronominals and names by the same condition (cf. (2b)). By doing so, Reinhart claims that on the level of sentence-syntax no significant difference between these two categories exist. In Chomsky (1981), on the other hand, pronominals and names are considered to be different syntactically as is suggested by the separate formulation of Binding Principles B and C.

Binding relations involve asymmetries which are accounted for in structural terms. Therefore, if in a particular language subject-object asymmetries with binding phenomena arise and if the principles in (2), or (3) have a universal status, then that language has a hierarchical, configurational structure.

In this section, I will discuss the following binding phenomena in Hungarian, including reflexive binding (cf. section 5.3.4.1), the binding of names (cf. section 5.3.4.2.), the distribution of bound pronouns (cf. section 5.3.4.3.) and switch reference (cf. section 5.3.4.5).

5.3.4.1. Reflexive Binding

Reflexive binding has been discussed extensively in É. Kiss (1981c). É. Kiss notes that the antecedent-anaphor relation is subject to a case-hierarchy which has the following shape:
(6) NOM > ACC > DAT > INSTR > LEXICAL CASE

According to É. Kiss (1981c: 192), the binder must precede the anaphor in this hierarchy.

Let us consider some examples with the binding of the lexical anaphor maga 'himself/herself'.

In accordance with (6), a nominative NP can be the antecedent of an anaphor in every arbitrary case, but not vice versa:

(7) a. János szereti magát
 John loves himself-ACC
 'John loves himself.'

c. János könyvet vesz magának
 John book-ACC buys himself-DAT
 'John buys a book for himself.'

e. János hisz magában
 John believes himself-INBSS
 'John believes in himself.'

g. János számít magára
 John counts himself-SUBL
 'John counts on himself.'

b. *Jánost szereti maga
 John-ACC loves himself

d. *Jánosnak könyvet vesz maga
 John-DAT book-ACC buys himself

f. *Jánosban hisz maga
 John-INESS believes himself

h. *Jánosra számít maga
 John-SUBL counts himself

An accusative NP may be the antecedent of an anaphor with dative, instrumental, or a lexical case, but not vice versa:

(8) a. Jánost dicsértem magának
 John-ACC praised-AGR1sg himself-DAT
 'I praised John to himself.'

d. *Jánosnak dicsértem magát
 John-DAT praised-AGR1sg himself-ACC

c. Jánost megmutattam magának a tükrőben
 John-ACC showed-AGR1sg himself-DAT the mirror-INESS
 'I showed John to himself in the mirror.'

e. Jánost szembesítettem magával
 John-ACC confronted-AGR1sg himself-INSTR
 'I confronted John with himself.'

f. *Jánossal szembesítettem magát
 John-INSTR confronted-AGR1sg himself-ACC

g. Jánost sokat faggattam magáról
 John-ACC much interrogated-AGR1sg himself-DELAT
 'I interrogated John a lot about himself.'

h. *Jánosról sokat faggattam magát
 John-DELAT much interrogated-AGR1sg himself-ACC

A dative NP can be the antecedent of an anaphor with instrumental or lexical case:
An instrumental binder can be the antecedent of an anaphor with lexical case, but not vice versa:

(10) a. *Jánossal vitatkoztam magáról
 'I argued with John about himself.'
 b. *János szereti magának
 'John loves himself.'

É. Kiss also notes that prominence of the accusative argument over the dative argument is less clear than the other grades of the hierarchy (cf. (8a) versus (8b), and (8c) versus (8d)). Furthermore, É. Kiss observes that this hierarchy is clearer if instead of the reflexive anaphor *maga the reciprocal anaphor *egymás 'each other' is used (see, É. Kiss 1981c: 192).

Scrambling does not affect reflexive binding. Compare, for example, the scrambled counterparts of (7a) and (7b):

(11) a. Magát szereti János
 'John's mother loves John.'
 b. *Jánost szereti maga
 'John loves John's mother.'

The above paradigms show that Hungarian displays not only subject-object asymmetries in a narrow sense but also asymmetries with all other arguments of the verb. In section 5.4.1., I will return to the position of (6) in the theory of UG. I will argue that it has no theoretical status. For now it is sufficient to note that the arguments of the verb obey a strict hierarchy with reflexive binding which is captured adequately by this descriptive rule.

5.3.4.2. The Binding of Names

I reported that a subject-object symmetry arises with pronominal noncoreference in Hungarian (cf. section 5.2.3.). However, Marácz (1986a) observes that if the pronoun in 5.2.3.(4) is replaced by another name a subject-object asymmetry occurs. This asymmetry is subsumed by Binding Principle C:

(12) a. János anyja szereti Jánost
 'John's mother loves John.'
 b. *János szereti János anyját
 'John loves John's mother.'
The coreference relation between two names in Hungarian displays the same distribution as in their English counterparts. The question arises whether this subject-object asymmetry carries over to the other arguments of the verb, as was the case with Binding Principle A phenomena. The sentences below exemplify that a non-embedded nominative name may not be coreferential with another name embedded in an NP with any other case. A non-nominative name, on the other hand, may always be coreferential with a name embedded in a nominative NP:

(13) a. *János könyvet vesz János anyjának
 John book-ACC buys John mother-npAGR3sg-DAT
 *'John buys a book for John's mother.'

b. János anyja könyvet vesz Jánosnak
 John mother-npAGR3sg book-ACC buys John-DAT
 'John's mother buys a book for John.'

c. *János hisz János anyjában
 John believes John mother-npAGR3sg-INESS
 *'John believes in John's mother.'

d. János anyja hisz Jánosban
 John mother-npAGR3sg believes John-INESS
 'John's mother believes in John.'

e. *János számít János anyjára
 John counts John mother-npAGR3sg-SUBL
 *'John counts on John's mother.'

f. János anyja számít Jánosra
 John mother-npAGR3sg counts John-SUBL
 'John's mother counts on John.'

Observe, furthermore, that a non-embedded accusative name may not be coreferential with or may hardly be interpreted as coreferential with another name embedded in an NP with dative, instrumental, or a lexical case. However, a name assigned dative, instrumental, or a lexical case may always be coreferential with a name embedded in an accusative NP:

(14) a. ?János dicsérttem János anyjának
 John-ACC praised-AGR1sg John mother-npAGR3sg-DAT
 *'I praised John to John's mother.'

b. János anyját dicsérttem Jánosnak
 John mother-npAGR3sg-ACC praised-AGR1sg John-DAT
 'I praised John's mother to John.'

c. ?János megmutattam János anyjának a tükrőben
 John-ACC showed-AGR1sg John mother-npAGR3sg-DAT the mirror-INESS
 *'I showed John to John's mother in the mirror.'

d. János anyját megmutattam Jánosnak a tükrőben
 John mother-npAGR3sg-ACC showed-AGR1sg John-DAT the mirror-INESS
 'I showed John's mother to John in the mirror.'

e. *János szembesítettem János anyjával
 John-ACC confronted-AGR1sg John mother-npAGR3sg-INSTR
 *'I confronted John with John's mother.'

f. János anyját szembesítettem Jánossal
 John mother-npAGR3sg-ACC confronted-AGR1sg John-INSTR
 'I confronted John's mother with John.'
The following sentences exemplify that a non-embedded dative name may not be coreferential with another name embedded in an NP marked instrumental, or with a lexical case, whereas a name with instrumental, or a lexical case may always be coreferential with a name embedded in a dative NP:

(15) a. *Jánosnak minding baja van János anyjával
John-DAT always problem is John mother-npAGR3sg-INSTR
*I John has always problems with John’s mother.’
b. János anyjának minding baja van Jánossal
John mother-npAGR3sg-DAT always problem is John-INSTR
‘John’s mother has always problems with John.’
c. *Jánosnak sokat beszélttem János anyjáról
John-DAT a lot spoke-AGR1sg John mother-npAGR3sg-DELAT
‘I spoke a lot to John about John’s mother.’
d. János anyjának sokat beszélttem Jánosről
John mother-npAGR3sg-DAT a lot spoke-AGR1sg John-DELAT
‘I spoke to John’s mother a lot about John.’

The following pair shows that a non-embedded instrumental name may not be coreferential with another name embedded in an NP with lexical case, whereas a name assigned an instrumental case may always be coreferential with a name embedded in an NP bearing lexical case:

(16) a. *Jánossal vitatkoztam János anyjáról
John-INSTR argued-AGR1sg John mother-npAGR3sg-DELAT
‘I argued with John about John’s mother.’
b. János anyjával vitatkoztam Jánosről
John mother-npAGR3sg-INSTR argued-AGR1sg John-DELAT
‘I argued with John’s mother about John.’

Binding Principle C phenomena are sometimes affected by factors such as linear order, depth of embedding and so on. Let us consider whether these phenomena in Hungarian interfere with (i) the structure of the possessive NP, (ii) linear order or (iii) the depth of embedding.

(i) Binding Principle C effects also appear in the following paradigm which Anna Szabolcsi (personal communication) brought to my attention:

(17) a. *Mari csak Mari biciklijet látta
Mary only Mary bike-npAGR3sg-ACC saw
‘Mary saw only Mary’s bike.’
b. *Mari csak Marinákat a biciklijet láttat
Mary only Mary-DAT the bike-npAGR3sg-ACC saw
‘Mary saw the bike.’
c. *Mari csak Marinákat láttat a biciklijet
Mary only Mary-DAT saw the bike-npAGR3sg-ACC
(18) a. *Marit csak Mari biciklije birja el
 Mary-ACC only Mary bike-npAGR3sg is able to carry
 'Only Mary's bike is able to carry Mary.'

 b. *Marit csak Marinak a biciklije birja el
 Mary-ACC only Mary the bike-npAGR3sg is able to carry
 c. *Marit csak Marinak birja el a biciklije
 Mary-ACC only Mary-DAT is able to carry the bike-npAGR3sg

In these sentences which involve the variants of the possessive NP in Hungarian
a pair of names is intended to be coreferential.

Szabolcsi (1981a; 1984) argues that the possessor NP can appear both in the
nominative and the dative, but only the dative one may be separated from its noun-
possessed (cf. also section 2.1.(II)). In case the non-embedded name is in the nomi-
native no coreferential reading between the names is possible, independently of the fact
whether the possessor name is in construction with its noun-possessed (cf. (17a) and
(17b)) or separated from it (cf. (17c)). If, on the other hand, the non-embedded name
is in the accusative it may be coreferential with the possessor name. However a core-
ferential reading is allowed in these cases only when the possessor name is embedded
in a nominative possessive NP (cf. (18a) and (18b)) but not when it is separated from
its noun-possessed (cf. (18c)).

This paradigm thus displays another subject-object asymmetry with the corefe-
rentiality between a pair of names. Furthermore, it supports the hypothesis that the
dative possessor in the (c)-sentences but not in the (b)-sentences has escaped from its
possessive NP, otherwise a Binding Principle C violation could not occur.

(ii) Compare the scrambled variants of the sentences in (12):

(19) a. Jánost szereti János anyja
 John-ACC loves John mother-npAGR3sg

 b. *János anyját szereti János.
 John mother-npAGR3sg-ACC loves John

This demonstrates that Binding Principle C effects with a pair of names are im-
une to the effects of scrambling just like Binding Principle A effects.

(iii) The following sentences exemplify that the depth of embedding is not rele-
vant for Binding Principle C effects with a pair of names:

(20) a. *János megrudta [NP azt a ténnyt [cp hogy János beteg lesz]]
 John perf-knew that-ACC the fact-ACC that John ill becomes
 *John got to know the fact that John would become ill.'

 b. *[NP Azt a ténnyt [cp hogy János beteg lesz]] megrudta János
 that-ACC the fact-ACC that John ill becomes perf-knew John

 c. Jánost zavarta [NP az a ténnyt [cp hogy János beteg lett]]
 John-ACC disturbed that the fact that John ill became
 *John was disturbed by the fact that John became ill.'

 d. [NP Az a ténnyt [cp hogy János beteg lett]] zavarta János
 that the fact that John ill became disturbed John-ACC

In these sentences, the name in the possessive NPs of (12) is embedded a maxi-
mal projection deeper. The embedded clauses in (20) are complex NPs. However, the
possibility of coreference is not affected by the depth of embedding, nor by scrambling in this case.

Summarizing, the paradigms in this section demonstrate that subject-object asymmetries show up involving coreference between a pair of names. Speaking in terms of the descriptive hierarchy (6), a name \(A \) may only be coreferential with name \(B \), if and only if \(B \) is embedded in an NP which takes prominence over \(A \) in this hierarchy. If these asymmetries can be accounted for by making reference to Binding Principle C, then it follows that the phrase structure of Hungarian must have a hierarchical structure.

5.3.4.3. The Distribution of Bound Pronouns

In this section, I will examine some aspects of the syntax of **bound pronouns** in Hungarian. Consider, again Reinhart's (1983) rule (1b) for their distribution, here repeated as (21):

\[
\text{(21) Quantified NPs and Wh-traces can have anaphoric relations only with pronouns in their c-command domain (Reinhart 1983: 137)}
\]

The blocking of a bound variable interpretation of pronouns has been referred to in the literature as ‘Weak Crossover’ (WCO) (cf. Wasow 1972). WCO-effects arise in English in case a quantified NP is in object position and the bound pronoun is embedded in a subject phrase. An example of this is the ungrammaticality of the following sentence:

\[
\text{(22) *His mother loves everyone}
\]

These effects in Hungarian have been noted first in Horvath (1981, 210). Marácz (1985a) observes that pronouns do not allow a bound variable interpretation when the pronoun precedes an accusative quantified antecedent, which may be a Wh-phrase, a universal quantifier, or a focussed NP, and which is at the same time embedded in a nominative NP.10

(10) Marácz (1985a; 1988a) argues that Horvath (1986) cannot account for the contrast between (23) and (24) involving the presence or absence of WCO-effects. The ungrammaticality of the cases in (23) comes as expected under Horvath’s SVO-hypothesis of Hungarian. These ungrammatical constructions can be accounted for in terms of the absence of the c-command relation between the trace of the object quantifier and the pronoun in the nominative NP. The grammaticality of the sentences in (24), on the other hand, is unexpec ted. Horvath assumes that the subject in these cases undergoes Subject Postposing, an adjunction to the VP. This should, however, not affect the c-command relation between the object trace and the pronoun embedded in the possessive NP.
(23) a. *Az anyja kit szeret
 the mother-npAGR3sg who-ACC loves
 *Who does his mother love?
b. *Az anyja mindenkit szeret
 the mother-npAGR3sg everyone-ACC loves
 *His mother loves everyone.'c. *Az anyja VILIT szereti
 the mother-npAGR3sg Bill-ACC loves
 *His mother loves BILL.'

(24) a. Kit szeret az anyja
 who-ACC loves the mother-npAGR3sg
b. Mindenkit szeret az anyja
 everyone-ACC loves the mother-npAGR3sg
c. VILIT szereti az anyja
 Bill-ACC loves the mother-npAGR3sg

(25) a. Ki szereti az anyját
 who loves the mother-npAGR3sg-ACC
 'Who loves his mother?'
b. Mindenki szereti az anyját
 everyone loves the mother-npAGR3sg-ACC
 'Everyone loves his mother.'c. VILL szereti az anyját
 Bill loves the mother-npAGR3sg-ACC
 'BILL loves his mother.'

(26) a. Az anyját ki szereti
 the mother-npAGR3sg-ACC who loves
b. Az anyját mindenki szereti
 the mother-npAGR3sg-ACC everyone loves
c. az anyját VILL szereti
 the mother-npAGR3sg-ACC Bill loves

Before investigating this paradigm in detail, let us first discuss the realization of personal pronouns in possessive NPs.

The realization of overt pronouns in possessive NPs is optional (cf. section 4.4.2.1.). The overt personal pronoun is used for reasons of emphasis only, and indicates disjoint reference for most speakers:

(27) a. Az ő anyja
 the he mother-npAGR3sg
 'HIS/HER mother' or 'It is his/her mother...'
b. Mari láttá az ő*si/ʃ anyját
 Mary saw the she mother-npAGR3sg-ACC
 'Mary saw her mother.'

In the unmarked case, the pronoun must remain non-overt. According to Szabolcsi (1984), this means that pro-drop applies in possessive NPs. The agreement marker in the possessive NP (npAGR) is able to license the occurrence of a small pro in the position of the possessor NP (cf. also chapter seven).

Wh-phrases and focussed NPs must appear in the preverbal Focus position in Hungarian (cf. 2.1.(28c)). The sentences in (23) display a WCO-effect. The non-
overt pronoun embedded in a nominative possessive NP may not be interpreted as a bound variable. This effect disappears if the nominative possessive NP is scrambled to the right of the verb (cf. (24)). The sentences in (25) and (26) show that no WCO-effects occur in case the binder, i.e. the quantified NP, is in the nominative.

From this it follows that the distribution of bound pronouns yields a subject-object asymmetry. This observation falsifies É. Kiss’ (1981c; 1982b; 1987a; and 1987c) claim that WCO-effects are lacking in Hungarian. The source of this claim is probably the fact that É. Kiss cites only examples of the type in (24) and (25) (cf. É. Kiss 1987a: 208-209), that is, with the binder preceding the bindee.

The question arises whether this subject-object asymmetry appears also with subcategorized arguments of the verb other than the nominative-accusative ones. This turns out to be the case, as the sentences below will exemplify.

With the help of the hierarchy in (6), we formulate the following descriptive rule for the distribution of bound pronouns in Hungarian. A pronoun embedded in a possessive NP may not be interpreted as a bound variable when the possessive NP precedes the quantified NP linearly and is at the same time higher in hierarchy (6). This covers the examples in (28)-(34).

In the following examples, the universal quantifier mindenki ‘everyone’ is the quantified antecedent. Another quantifier, however, would make no difference with respect to grammaticality judgements. Compare:

(28) a. *Az pro anyja mindenkinek könyvet vesz
 the mother-npAGR3sg everyone-DAT book-ACC buys
 *‘His mother buys a book for everyone.’
 b. Mindenkinek könyvet vesz az pro anyja
 everyone-DAT book-ACC buys the mother-npAGR3sg
 c. Mindenki könyvet vesz az pro anyjánaki
 everyone book-ACC buys the mother-npAGR3sg-DAT
 ‘Everyone buys a book for his mother.’
 d. Az pro anyjának mindenki könyvet vesz
 the mother-npAGR3sg-DAT everyone book-ACC buys
 ‘Everyone buys a book for his mother.’

(29) a. *Az pro anyja mindenkiben hisz
 the mother-npAGR3sg everyone-INESS believes
 *‘His mother believes in everyone.’
 b. Mindenkiben hisz az pro anyja
 everyone-INESS believes the mother-npAGR3sg
 c. Mindenki hisz az pro anyjánaban
 everyone believes the mother-npAGR3sg-INESS
 ‘Everyone believes in his mother.’
 d. Az pro anyjánban mindenki hisz
 the mother-npAGR3sg-INESS everyone believes

(11) Keneseti (1989) notes a counterexample to this descriptive generalization. According to Keneseti, WCO-effects vanish with verbs like zavar ‘disturb’. Note that such verbs belong to the class of experience verbs. However, verbs of the agent-theme class like in (23) represent the unmarked case (cf. section 3.3.4.).
(30) a. *Az pro anyját mindenkinek dicsérttem
 the mother-npAGR3sg-ACC everyone-DAT praised-AGR1sg
 *'I praised his mother to everyone.'
b. Mindenkinek dicsérttem az pro anyját
everyone-DAT praised-AGR1sg the mother-npAGR3sg-ACC
c. Mindenkit dicsérttem az pro anyjának
everyone-ACC praised-AGR1sg the mother-npAGR3sg-DAT
 'I praised everyone to his mother.'
d. Az pro anyjának mindenkit dicsérttem
 the mother-npAGR3sg-DAT everyone-ACC praised-AGR1sg

(31) a. *Az pro anyját mindenkivel szembesítettem
 the mother-npAGR3sg-ACC everyone-INSTR confronted-AGR1sg
 *'I confronted his mother with everyone.'
b. Mindenkivel szembesítettem az pro anyját
everyone-INSTR confronted-AGR1sg the mother-npAGR3sg-ACC
c. Mindenkit szembesítettem az pro anyjával
everyone-ACC confronted-AGR1sg the mother-npAGR3sg-INSTR
 'I confronted everyone with his mother.'
d. Az pro anyjával mindenkit szembesítettem
 the mother-npAGR3sg-INSTR everyone-ACC confronted-AGR1sg

(32) a. *Az pro anyját mindenkivül sokat faggattam
 the mother-npAGR3sg-ACC everyone-DELAT a lot interrogated-AGR1sg
 *'I interrogated his mother a lot about everyone.'
b. Mindenkivül sokat faggattam az pro anyját
everyone-DELAT a lot interrogated-AGR1sg the mother-npAGR3sg-ACC
c. Mindenkit sokat faggattam az pro anyjáról
 everyone-ACC a lot interrogated-AGR1sg the mother-npAGR3sg-DELAT
 'I interrogated everyone a lot about his mother.'
d. Az pro anyjáról mindenkit sokat faggattam
 the mother-npAGR3sg-DELAT everyone-ACC a lot interrogated-AGR1sg

(33) a. *Az pro anyjának mindenkivül sokat beszéltem
 the mother-npAGR3sg-DAT everyone-DELAT a lot spoke-AGR1sg
 *'I spoke a lot to his mother about everyone.'
b. Mindenkivül sokat beszéltem az pro anyjának
 everyone-DELAT a lot spoke-AGR1sg the mother-npAGR3sg-DAT
c. Mindenkinak sokat beszéltem az pro anyjáról
 everyone-DAT a lot spoke-AGR1sg the mother-npAGR3sg-DELAT
 'I spoke to everyone a lot about his mother.'
d. Az pro anyjáról mindenkinak sokat beszéltem
 the mother-npAGR3sg-DELAT everyone-DAT a lot spoke-AGR1sg
It is obvious from this paradigm that the distribution of bound pronouns yields asymmetries involving all direct arguments of the verb.

Having settled this, let us investigate whether the distribution of bound pronouns may be affected by varying in (23)-(26) (i) the structural configuration or (ii) the linear order.

(i) The crucial difference between these sentences and their counterparts to be presented below is that the bound pronoun is embedded one maximal projection deeper, namely, in an embedded clause with a lexical head. Such clauses are complex NPs.

We expect that a pronoun in an embedded clause may be interpreted as a bound variable except when this clause is in the nominative and precedes the binder, a quantified NP. This is, however, not the case. A pronoun in such a configuration may always be interpreted as a bound variable:

(35) a. [NP Az a tény [cp hogy (ő) szélhámos] kit idegesített that the fact that he fraud who-ACC got nervous `Who got nervous from the fact that he was a fraud?'
b. Kit idegesített [NP az a tény [cp hogy (ő) szélhámos]] who-ACC got nervous that the fact that he fraud
c. Ki állította [NP azt a ténny [cp hogy (ő) szélhámos]] who stated that-ACC the fact-ACC that he fraud
 `Who stated that be was a fraud?'
d. [NP Azt a ténny [cp hogy (ő) szélhámos]] ki állította that-ACC the fact-ACC that he fraud who stated
 (Marácz 1985a: 134)

The same is illustrated by embedding the bound pronoun in a relative clause, as Anna Szabolcsi (personal communication) has pointed out to me. A relative clause is a complex NP as well. Compare:

(36) a. [NP A professzor [cp akitől (ők) matematikát tanultak]] minden diákok szeretett the professor who-ABL they mathematics-ACC learnt every student-ACC liked
 `The professor who they took mathematics from liked every student.'
b. Minden diákok szeretett [NP a professzor [cp akitől (ők) matematikát tanultak]]
 every student-ACC liked the professor who-ABL they mathematics-ACC learnt
c. Minden diákok szerette [NP a professzor [cp akitől matematikát tanultak]]
 every student liked the professor who-ABL mathematics-ACC learnt
 `Every student liked the professor who they took mathematics from.'
d. [NP A professzor [cp akitől (ők) matematikát tanultak minden diákok szerette]]
 the professor-ACC who-ABL they mathematics-ACC learnt every student liked
Observe from the comparison between (23a)-(23c) on the one hand and (35a) and (36a) on the other hand that the WCO-effect disappears when the bound pronoun is more deeply embedded. According to Anna Szabolcsi (personal communication), the reason for this is that embedded clauses are so “heavy” that in initial position they can only be produced with the intonation characteristic for Left Dislocation. Szabolcsi suggests therefore that this difference is due to the fact that the former phrases are in neutral position, whereas the latter are left-dislocated. Recall that a left-dislocated constituent is adjoined to the sentence (cf. section 4.3.).

The following sentences indicate that Szabolcsi’s suggestion may be on the right track. The WCO-effect also vanishes in (23a)-(23c) when the possessive NP is left-dislocated:

(37) a. Az pro anyja, kit szeret
the mother-npAGR3sg she who-ACC loves
‘As for his mother, who does she love.’
b. Az pro anyja, mindenkit szeret
the mother-npAGR3sg she everyone-ACC loves
‘As for his mother, she loves everyone.’
c. Az pro anyja, VILIT szereti
the mother-npAGR3sg she Bill-ACC loves
‘As for his mother, she loves BILL.’

A more complicated case with the distribution of bound pronouns has been examined in Szabolcsi (1986a).

Szabolcsi notes that the subject-object asymmetry with this phenomenon also occurs when the pronoun is embedded in a quantified possessive NP:

(38) a. *Minden pro fia, MARIT szereti
every son-npAGR3sg Mary-ACC loves
‘For every son of x’s, it is x=Mary that he loves’
b. MARIT szereti minden pro fia
Mary-ACC loves every son-npAGR3sg
(c. MARI szereti minden pro fiát
Mary loves every son-npAGR3sg-ACC
‘For every son of x’s, it is x=Mary that loves them’
d. Minden pro fiát MARI szereti
every son-npAGR3sg-ACC Mary loves

This paradigm exemplifies that a pronoun in a quantified NP may only be bound if that NP does not precede the binder and is higher on hierarchy (6) than the binder12.

In the sentences discussed so far, the binder has been in the preverbal field. Let us consider whether the distribution of bound pronouns is affected by scrambling the quantified NP into the postverbal field, that is, to the right of the verb.

(ii) With Wh-phrases and focussed NPs this is not allowed, because they have to stick to the Focus position. (This position is left-adjacent to the verb (cf. 2.1.(28c)).

12 See Szabolcsi (1986a) and Kenesei (1989) for further discussion of bound pronouns in quantified possessive NPs.
However, some quantified NPs, like (narrow scope) universal and existential quantifiers, may appear postverbally. A bound variable interpretation of the pronoun is not possible in the scrambled alternants of (23)-(26):

\[
\begin{align*}
(39) & \quad \text{a. } * \text{Az pro anyja szeret mindenkit/valakit} \\
& \quad \text{the mother-npAGR3sg loves everyone-ACC/someone-ACC} \\
& \quad *\text{His mother loves everyone/someone.}' \\
& \quad \text{b. *Szereti az pro anyja mindenkit/valakit} \\
& \quad \text{loves the mother-npAGR3sg everyone-ACC/someone-ACC} \\
& \quad \text{c. *Szereti mindenkit/valakit az pro anyja} \\
& \quad \text{loves everyone-ACC/someone-ACC the mother-npAGR3sg}
\end{align*}
\]

\[
\begin{align*}
(40) & \quad \text{a. } * \text{Az pro anyját szereti mindenki/valaki} \\
& \quad \text{the mother-npAGR3sg-ACC loves everyone/someone} \\
& \quad *\text{Everyone/someone loves his mother.}' \\
& \quad \text{b. *Szereti az pro anyját mindenki/valaki} \\
& \quad \text{loves the mother-npAGR3sg-ACC everyone/someone} \\
& \quad \text{c. *Szereti mindenki/valaki az pro anyját} \\
& \quad \text{loves everyone/someone the mother-npAGR3sg-ACC}
\end{align*}
\]

These paradigms are not in correspondence with the descriptive rule on the distribution of bound pronouns, namely, that a pronoun may not be interpreted as a bound variable if and only if the possessive NP in which the pronoun is embedded precedes the binder and is higher in case-hierarchy (6) than the binder of the pronoun. It appears that when a quantifier appears postverbally, it may never bind a pronoun.

I would like to suggest, however, that the bound variable interpretation of pronouns in these sentences is ungrammatical for independent reasons. Usually quantifiers appear preverbally (cf. 2.1.(28f)). They may appear postverbally only under specific conditions. For example, when a postverbal quantifier is in the scope of a preverbal one. Therefore, if the possessive NP is focussed in (39a) and (40a), again a subject-object asymmetry with bound pronouns shows up:

\[
\begin{align*}
(41) & \quad \text{a. } * \text{AZ pro ANYJA szeret mindenki/valaki} \\
& \quad \text{the mother-npAGR3sg loves everyone/someone} \\
& \quad *\text{It is his mother who loves everyone/someone.}' \\
& \quad \text{b. AZ pro ANYJÁT szereti mindenki/valaki} \\
& \quad \text{the mother-npAGR3sg-ACC loves everyone/someone} \\
& \quad *\text{It is his mother who everyone/someone loves.}'
\end{align*}
\]

Recapitulating, in this section some subject-object asymmetries in the distribution of bound pronouns in Hungarian have been discussed. These phenomena indicate that its phrase structure has a hierarchical structure, otherwise they can not be accounted for in terms of the universal condition on the distribution of bound pronouns in (21): A quantifier must c-command its bound pronoun.

5.3.4.4. Summary

Let us now summarize the discussion on binding theory so far. In (5.3.4.1.)-(5.3.4.3.), the following subject-object asymmetries have been observed. (i) Binding
Principle A asymmetries with reflexive and reciprocal pronouns. (ii) Binding Principle C asymmetries with a pair of names and (iii) asymmetries with the distribution of bound pronouns. These dichotomies between subject and object are not restricted to the nominative and accusative arguments of the verb but they also involve the other direct arguments of the verb. In line with theories on binding, I assume that these asymmetries can be accounted for in terms of structural conditions. These conditions must be interpreted on a syntactic structure with a hierarchical ordering. Hence, these binding asymmetries support the claim that Hungarian is a configurational language.

Furthermore, Hungarian also testifies to some generalizations in the domain of binding theory which have been made in connection with other languages. (i) Both the reflexive anaphor and the bound pronoun obey a stricter condition than the coreferential reading of a name. The former must be bound by a more prominent argument, whereas the latter must be free, and (ii) a pronominal and a name have distinct syntactic properties. The binding relation between a pair (pronoun, name) may yield a symmetry. However, such a relation between a pair (name, name) yields always an asymmetry (cf. 5.2.3.(4) versus (12)). This dichotomy supports Chomsky’s (1981) view that pronominals and names are distinct lexical primitives which have to be accounted for by separate principles.

5.3.4.5. Switch Reference

 Hungarian displays a switch reference system (cf. Pléh 1980; 1981a; 1981b and Pléh and Radics 1978). Although this phenomenon does not strictly belong to sentence syntax, it involves an interesting restriction. Compare the following example from English first:

(42) The boy noticed the man. He walked up to him.

In this sentence, it is impossible to decide without knowledge of the world which pronoun in the second part is coreferential to which lexical NP in the first one.

In Hungarian, however, this type of referentiality has been grammaticalized. To illustrate, consider the following sentences:

(43) a. A fiú meglátta a bácsit. (Ö) a.cz odament bozzad
 'The boy noticed the man. He up-walked to him.'

b. A fiú meglátta a bácsit. Az odament bozzad
 'The boy noticed the man. That up-walked to him.'

(Pleh and Radics 1978: 93)

This pair illustrates the following two points. First, only the nominatively marked pronoun may switch between a (non-overt) personal pronoun and a demonstrative pronoun. Second, the different choice of pronoun yields ‘switch reference’. When the personal pronoun (he, she) is chosen (cf. (43a)), we have the proximate reading, i.e. the pronoun refers to the nominative antecedent. On the other hand, when

(13) See Finer (1985) for a cross-linguistic study of switch reference.
the demonstrative pronoun *az* ‘that’ is used, we get the obviative reading, i.e. the pronoun refers to the accusative antecedent in (43b). Pléh and Radics point out that the demonstrative pronoun may refer to any non-nominative argument of the verb. The following sentences exemplify this.

In (44) and (45) the object of the verb is an allative argument, while in (46) the object is assigned delative case by the verb:

(44) a. *Pista* odament Ferihezj, (Ö)i/*j nem akarta észrevenni (ötj)
 ‘Steve went up to Frank. He (=Steve) didn’t want to notice him.’
 b. *Pista* odament Ferihezj, Az*i/j nem akarta észrevenni (ötj)
 ‘Steve went up to Frank. That (=Frank) didn’t want to notice him.’

(Pléh and Radics 1978: 96)

(45) a. *A postási bement a házmesterhezj.* (Ö)i/*j odaadta neki; a kulcsot
 ‘The postman went into the caretaker’s. He (=the postman) gave him the key.’
 b. *A postási bement a házmesterhezj.* Az*i/j odaadta neki; a kulcsot
 ‘The postman went into the caretaker’s. That (=the caretaker) gave him the key.’

(Pléh and Radics 1978: 95)

(46) a. *A munkás; már sokat hallott az új igazgatórólj,* de most (Ö)i/*j találkozott velej
 ‘The worker had heard a lot about the new manager, but now he met
 először
 he-INSTR the first time
 ‘The worker had heard a lot about the new manager, but now he (=the wor­
 ker) met him for the first time.’
 b. *A munkás; már sokat hallott az új igazgatórólj,* de most az*i/j találkozott velej
 először
 ‘The worker had heard a lot about the new manager, but now that (=the new
 manager) met him for the first time.’

(Pléh and Radics 1978: 98)

Switch Reference emphasizes in two ways that the nominative argument is more prominent than the other arguments of the verb. First, the switch between the personal pronoun and demonstrative pronoun may affect only the nominative argument. The other cases do not participate in this switch. Only the personal variant may corefer to an accusative (cf. (43)), allative (cf. (44)), allative (cf. (45)), or a delative NP (cf. (46)). Hence, use of the corresponding demonstrative pronouns *ahhoz* ‘that-ALL’ in (43), *azt* ‘that-ACC’ in (44), *annak* ‘that-DAT’ in (45), or *azzal* ‘that-INSTR’ in (46) yields an ungrammatical result. Second, the nominative personal pronoun may refer to any argument in the preceding sentence, contrary to the demonstrative pronoun, which may refer to any argument provided that it is not the nominative.

The following rule covers Switch Reference in Hungarian:

(47) The nominative personal pronoun *ő* is coreferential with a nominative argument,
 whereas the nominative demonstrative pronoun *az* is coreferential with a non-
 nominative argument

(14) Warlpiri exhibits a phenomenon which is quite similar to Switch Reference in Hungarian. Simpson and Bresnan (1983) note that in constructions with obligatory control only the subject argument is accessible to binding by an argument from another domain, and that the distinction between subject versus non-subject controller is made by means of person marking suffixes which are attached to the infinitivals.
Pléh and Radics (1978) report that, as in English, Switch Reference in Hungarian may also interact with knowledge of the world, pragmatic factors, grade of activity, linear order, agency, or number specification, and so on. Pléh (1982) discusses two construction types in which exactly the reverse of what is predicted by this rule occurs, involving (i) constructions with *experiencer verbs* or (ii) with the *existential verb*.

(i) Experiencer verbs select an experiencer and a theme argument which are associated with the dative and nominative case, respectively (cf. section 3.3.4.). If the first sentence contains an experiencer verb, the personal pronoun in the second sentence is coreferential with the dative argument (cf. (48a)), and its demonstrative variant is coreferential with the nominative argument (cf. (48b)):

(iii) A similar exception to the above rule appears with the existential verb *van* 'be'. *Van* selects a dative and a nominative argument (cf. Szabolcsi 1981a, and De Groot 1983b for an analysis of existential clauses with *van*):

The solution of this puzzle is that neither experiencer verbs nor the existential verb do select an agent. If we assume that rule (47) is conditioned by *agency* as well, then it is clear why constructions with experiencer verbs or with the existential verb constitute an exception to it.

Pléh observes furthermore that linear order may overrule (47) as well. If the nominative antecedent of the first part is in sentence-final position, native-speakers tend to interpret the demonstrative pronoun *az* as coreferential with it. This tendency is even stronger in the case of constructions with experiencer verbs or with the existential verb.

In sum, Switch Reference displays a subject-non-subject opposition captured by rule (47). However, it becomes visible only if the conditions on agency and linear order do not intervene.

5.3.5. Case Theory

This section examines subject-object asymmetries which are related to *Case theory*, including the different *conjugations* of the Hungarian verb (cf. section 5.3.5.1.), the distribution of small *pro* (cf. section 5.3.5.2.) and the syntax of *ACI-verbs* in Hungarian (cf. section 5.3.5.3.).
5.3.5.1. The Conjugational Patterns of the Hungarian Verb

Subject-object asymmetries with the conjugation of the Hungarian verb involve (I) the definite and indefinite conjugation, and (II) the verbal suffix -lak.

(I) The verb may appear with two different conjugational patterns, namely, the definite and the indefinite conjugation (cf. section 4.2.1.). The descriptive rule 4.2.(2) captures the distribution of these patterns, here repeated as (1):

(1) The definite paradigm is triggered in case the accusative object of the verb is definite, otherwise the indefinite paradigm is triggered.

The following minimal pair is an example of (1):

(2) a. Látok egy lányt
see-AGR1sg-indef a girl-ACC
'I see a girl.'

b. Látom a lányt
see-AGR1sg-def the girl-ACC
'I see the girl.'

The definite accusative NP a lányt (cf. (2b)) triggers the definite conjugation, whereas its indefinite counterpart egy lányt (cf. (2a)) appears with the indefinite conjugation.

Compare, now, the conjugational patterns of an intransitive verb (cf. (3a) and (3b)) with the conjugational paradigms of a transitive verb subcategorizing for an NP with a lexical case (cf. (3c) and (3d)):

(3) a. Egy lány fut-φ
a girl run-AGR3sg-indef
'A girl is running.'

c. Beszélünk egy lánnal
speak-AGR1sg-indef a girl-INSTR
'I am speaking with a girl.'

b. A lány fut-φ
the girl run-AGR3sg-indef
'The girl is running.'

d. Beszélünk a lánnal
speak-AGR1sg-indef the girl-INSTR
'I am speaking with the girl.'

In (3a) and (3b), the conjugational pattern of the agentive intransitive verb fut is indefinite, whatever the definiteness feature of its nominative subject is. Thus, the definiteness of a nominative argument of an intransitive verb does not affect the choice of conjugational pattern. The transitive verb beszél 'speak' which is associated with a NOM-INSTR case frame occurs with the indefinite conjugation in (3c) and (3d), although in (3d) its instrumental argument is definite. Obviously, an object argument other than the accusative, i.e. the instrumental in (3c) and (3d), does not affect the conjugational pattern of the verb. Hence, we conclude that the accusative case is a necessary condition for the definite conjugation, besides definiteness.

The question arises whether rule (1) is sensitive to D-structure grammatical functions. Inchoative verbs illustrate that this is not the case but that this rule is sensitive to surface structure case. Recall that these verbs select a D-structure object which ends up as the nominatively marked subject at surface structure (cf. section 3.3.2.). If the indefinite/definite alternation were sensitive to D-structure grammatical functions, then the inchoative verb eltörök 'break' would display the definite conjugation.

(15) Unaccusative verbs are not suitable for illustrating the fact that the indefinite/definite pattern of the verb is not sensitive to the D-structure object. A number of these verbs allow only indefinite arguments (cf. Szabolcsi 1986f for a discussion of the definiteness effect in Hungarian).
when it appears with a definite NP. In sentence (4b), the object NP *az üveg* 'the glass' is definite. Note, however, that *eltörik* may only be conjugated indefinitely:

(4) a. Egy üveg eltörött-∅/*-t-e
glass break-past-AGR3sg-indef/def
'A glass broke.'

b. Az üveg eltörött-∅/*-t-e
the glass break-past-AGR3sg-indef/def
'The glass broke.'

In conclusion, the subject and the object do not have the same distribution with respect to the conjugational patterns of the Hungarian verb. The indefinite/definite alternation of the verbal conjugation singles out the accusative argument of the verb. This argument is distinct from the other arguments in that it may trigger, when definite, the definite conjugation. So, this dichotomy is rooted in Case theory.

(11) Another instance in which Case theory interacts with the conjugation of the Hungarian verb is in the case of the verbal suffix *-lak*. The question to which conjugational pattern, i.e. the indefinite or definite one, this suffix belongs is a matter of debate.

Lotz (1976) argues that *-lak* falls within the indefinite paradigm. This suffix may only be attached to transitive verbs which appear with NOM-ACC case frame. It reflects that the nominative NP is first person singular, and the accusative NP is second person singular or plural person.

Consider, for example, the difference in grammaticality between the verb *lát* 'see' (cf. (5a)) which is associated with a NOM-ACC case frame and the verb *találkoz* 'meet' (cf. (5b)) which is associated with a NOM-INSTR case frame when they are conjugated with *lak*:

(5) a. (Én) látlak
 (téged/titeket)
 I see-AGR1sg2sg/pl you(sg)-ACC/you(pl)-ACC
 'I see you.'

b. *(Én) találkozlak
 (téged/titeket)
 I meet-AGR1sg2sg/pl you(sg)-ACC/you(pl)-ACC
 'I meet you.'

From a comparison between (5a) and (5b), it follows that verbal suffixation with this suffix is only allowed by transitive verbs which appear with a nominative and accusative complement.

5.3.5.2. The Distribution of Small pro

The presence of empty categories in the syntactic representation is guaranteed by an interplay of the Projection Principle and the θ-criterion (cf. Chomsky 1986a: 84). The licensing of small *pro* is determined by two sorts of conditions, a structural one and a contextual one (cf. section 4.2.4.2.).

The first type of constraint is related to government. Small *pro* is sanctioned if it is related to a governor which has enough 'strength'. These governors are, for example,

(16) *Eltörik* is monadic when it is inflected with the passivizer *-ik*. This suffix is spelled out, however, only in the third person singular present tense (cf. section 5.3.2.).
X0-categories which assign a structural Case (cf. Rizzi 1986). The second condition may be fulfilled only by Infl if it is specified with rich AGR.

The pro-module is relevant in the present context, because it yields subject-object asymmetries. Consider again the distribution of pro in Hungarian 4.2.(34), here repeated as (6):

\[(6) \text{The Distribution of pro in Hungarian}\]

\[(6a) \text{Nominative personal pronouns may be dropped in all persons and numbers}\]

\[(6b) \text{Accusative personal pronouns may be dropped only in case they are singular. First and second person pronouns may be dropped with the indefinite conjugation. Third person pronouns may be dropped only with the definite conjugation}\]

\[(6c) \text{Personal pronouns with lexical case may not be dropped}\]

I discussed in section 4.2. the following dichotomies with pro-drop, (I) nominative and accusative pronouns may be omitted, unlike pronouns with lexical case, and (II) pro-drop with accusative pronouns is conditioned by plurality and definiteness features. So, in (I) we have an opposition between nominative/accusative and lexical case, and in (II) we have an opposition between nominative and accusative. Let us consider first (I).

(I) Recall that the the first opposition has been captured by condition 4.2.(35), here repeated as (7):

\[(7) \text{Pronouns in Hungarian may only be dropped if they are assigned structural Case}\]

This condition on pro-drop is formulated in terms of Case theory. The opposition between nominative/accusative Case and lexical case coincides with the opposition between structural Case and θ-case (cf. section 3.2.1.). In theories on Case-assignment (cf. Chomsky 1981 or Kayne 1984) it is assumed that each type of Case is associated with a governor holding a separate structural position. From this it follows that structural Case is assigned to a different position than θ-case. In section 5.4.1., I will argue that structural Case-assigners are structurally more prominent than non-structural Case-assigners.

(II) Another distributional subject-object asymmetry with pro-drop shows up with nominative and accusative pronouns. Observe from (6) that this phenomenon with accusative pronouns is more restricted than pro-drop with nominative pronouns. Accusative pronouns may only be dropped when they are singular. I argued that this difference is due to the status of personal pronouns in discourse and the existence of discourse hierarchies (cf. section 4.2.4.2.). Although this opposition does not provide direct evidence for the hierarchical organization of Hungarian phrase structure, it provides at least some circumstantial evidence. The dichotomy between nominative and accusative pronouns indicates that the nominative argument and accusative argument represent separate primitives in the grammar. In that sense it is a real subject-object asymmetry.

5.3.5.3. ACI-Verbs

Verbs of perception like see, and hear and verbs of propositional attitude such as consider, and believe may select an Accusativus-cum-Infinitivo (ACI). Compare:
(8)

Chomsky (1981) attributes the following properties to these constructions.

(i) The clausal complement may be realized as an embedded infinitive, sometimes in the form of a so-called ‘naked’ infinitive as in (8a) (cf. Higginbotham 1982), and (ii) these clausal complements are transparent for government and Case_assignment of a higher verb. According to Chomsky, the latter property is due to the deletion of the CP.

It is a problem that there is no suitable Case_assigner in the embedded clause present for its subject. If nothing happened these sentences would be ruled out as a Case Filter violation (cf. 3.3.(5)). However, the subject of the embedded clause is assigned structural accusative Case ‘exceptionally’ by the matrix verb. This is clear from the fact that the personal pronoun in the subject position appears in its accusative form.

Marantz (1984) and Hale and Keyser (1985) argue that the embedded subject receives a compositional \(\Theta \)-role from the embedded VP. Therefore, this subject receives its Case-features from a different governor than its \(\Theta \)-role. A crucial assumption is that the structural subject position is outside the VP.

Let us turn to the Hungarian equivalents of the sentences in (8):

(9)

Consider first (9a) which exemplifies an ACI-complement selected by a perception verb. Observe that although word order is ‘free’, this complement has exactly the same properties as its English counterpart. (i) ACI-complements are selected by a perception verb, and (ii) their subject appears in the accusative case. This suggests an analysis along the lines sketched for the English ACI-complement.

The following minimal pair provides some evidence for this:

(10)

(17) É. Kiss (1987a: 62) claims that Hungarian does not display ACI-constructions. According to É. Kiss, this provides support for the assumption that Case assignment is thematically based. However, it will be argued below that Hungarian does display these constructions and that they have similar properties as their counterparts in English.
In (10a), the perception verb selects a full clausal complement. Embedded clauses introduced by the complementizer hogy are CPs in Hungarian, and a matrix verb subcategorizing for a CP assigns its Case-features to the 'dummy' demonstrative pronoun az 'that' (cf. section 4.5.1). The subject is assigned nominative Case in its embedded clause.

In (10b), on the other hand, the clausal complement is an ACI. Recall, furthermore, that the suffix -lak agrees with the nominative argument first person and the accusative argument second person of a transitive verb (cf. section 5.3.5.1. (III)). Observe now that this suffix on the matrix verb agrees with the accusative NP téged which is the subject of the ACI-complement. Obviously, the NP which is assigned the structural accusative Case in the domain of the verb may trigger verbal agreement on that verb.

This demonstrates that the subject of an ACI-complement is accessible for the higher verb. Hence, in sentence (10b) clausal-reduction from CP to IP must have applied which makes the embedded subject accessible for structural Case-assignment by the higher verb. Consequently, the embedded subject agrees with the verbal suffix -lak on the higher verb. Hence, the syntax of ACI-complements in Hungarian provides evidence for a subject-predicate partitioning of the sentence.

Let us turn now to ACI-constructions selected by verbs of propositional attitude in Hungarian.

ACI-complements to verbs of propositional attitude have the same properties as these complements with verbs of perception. However, there is one interesting difference between these two constructions, as observed by Komlósy (1985). Komlósy notes that the clausal complement of verbs of propositional attitude is not headed by an infinitive but by an adjective (cf. (9b)). So, it might be more appropriate to call the Hungarian equivalent of (8b) *Accusativus-cum-Adjectivo*. For convenience, however, I will continue to speak about ACI-complements in these cases as well.

The Hungarian construction rather resembles the English construction with verbs of propositional attitude selecting a small clause (henceforth labelled as S):

(11) I consider [s John/him a fool]

It is unclear why these verbs in Hungarian may not select an infinitive. According to Komlósy, the adjective functions as a secondary predicate which is incorporated into the matrix verb. This yields a complex verb (cf. section 4.4.), because in neutral sentences the adjective occurs in the VM-position, and it bears dative case. So, in (9b) 'restructuring' seems to have applied resulting into a monoclausal structure.

Following the analysis of ACI-complements in English, I will relate the accusative Case of János/ő in this sentence to the matrix verb and its θ-role to the secondary predicate. The θ-role may be transmitted through chain formation with big PRO or NP-trace. The precise determination of this is a subject for further research.

(18) A syntactic relative of ACI-constructions in Hungarian is the adjective complement selected by raising verbs:

(i) János [V szomorúnak látszik]
 John sad-DAT seem-AGR3sg
 'John seems sad'
Recapitulating, the subject NP of an ACI-complement in Hungarian exhibits a mismatch between Case- and θ-assignment. This NP receives its accusative Case from a matrix governor, which may be a perception verb or a verb of propositional attitude. Its θ-role is assigned compositionally by the lower VP. Exceptional Case-marking is allowed, because ACI-complements are accessible for Case-assignment of the higher verb. They have a structural subject position outside the VP just as such complements in English. The appearance of such complements in Hungarian provides empirical support for the subject-predicate partitioning of the sentence. Furthermore, they also support the claim that the accusative is a structural Case in Hungarian, similar to accusative Case in English (cf. 3.2.(7b)).

5.3.6. Control Theory

Another domain of subject-object asymmetries is provided by control theory. This asymmetry is due to the EPP 3.3.(7), here repeated for convenience as (1):

(1) Clauses must have subjects

In untensed embedded clauses the EPP introduces an empty category in the subject position functioning as the controllee in control relations. Chomsky (1981: 74-78) refers to this empty category as big PRO.

Chomsky claims that PRO is ungoverned in infinitive clauses, because these clauses lack an I-node. Koster (1987), on the other hand, argues that PRO may be governed in such cases. For our purposes, it is sufficient that both approaches assume the presence of an empty category subject in untensed embedded clauses. This implies a subject-object asymmetry.

This section examines two phenomena belonging to the domain of control theory in which subject-object asymmetries appear involving (I) control constructions with infinitive complements (cf. section 5.3.6.1), and (II) control relations with secondary predicates (cf. section 5.3.6.2.).

5.3.6.1. Infinitive Complements

Usually, two cases of control are distinguished with infinitive complements, namely, (i) subject control, and (ii) object control constructions. Consider an example of each:

This sentence contains a complex verb as well (cf. chapter three, note 32). Note, however, that in such constructions the raised NP receives its nominative Case from the raising verb. There is no other Case assigner available. The θ-role of the NP must originate from the secondary predicate, since raising verbs do not assign θ-roles. So, (i) displays another instance of a mismatch between Case- and θ-assignment.

(19) Hungarian has also some verbs selecting Dativus-cum-Infinitivo (DCI). Compare, for example, the DCI-complement of the verb segítő 'help':

(i) Segítő [IP Jánosnak/nak csomagolnij]

help-AGR.1sg John-DAT/he-DAT pack-FI

'I help John/him to pack.'

If this complement is analysed analogously to the ACI-complement, then it follows that the dative is a structural Case as well. Maybe this provides an explanation for the fact that the prominence of the accusative over the dative is not so clear always, for example, in the case of reflexive binding (cf. 3.3.4.(8a)-(8d)). (See section 5.4. for further discussion of the case system in Hungarian).
Verbs of the promise-type specify that the controller of PRO is the subject of the matrix verb, as in (2a). Verbs of the persuade-type specify that the controller of PRO is the object of the matrix verb, as in (2b). It has been argued that Hungarian displays both subject and object control (cf. Kálmán et al. 1984; 1986, É. Kiss 1987a, and Szabolcsi 1983a). The case of object control is, however, not so clear. Below I will argue that it may be treated as an ACI-construction. Consider first some cases of subject control.

(I) Verbs such as akar ‘want’, elmegy ‘go away’, fél ‘fear’, igyekszik ‘strive’, imad ‘love’, kell ‘must’, megpróbál ‘try’, and szeret ‘like’ induce subject control. Compare:

(3) a. János akarta látni Marit
 John wanted-AGR3sg see-INFI Mary-ACC
 ‘John wanted to see Mary.’

b. Péter imádott táncolni Marival
 Peter loved-AGR3sg dance-INFI Mary-INSTR
 ‘Peter loved to dance with Mary.’

c. Jánosnak kell látni Marit
 John-DAT has to-AGR3sg see-INFI Mary-ACC
 ‘John has to see Mary.’

d. Külődné Jánost úszni send-AGR1sg John-ACC swim-INFI
 ‘I send John to swim.’

Recall that akar ‘want’ and kell ‘have to’ trigger ‘restructuring’ yielding a monoclusal structure (cf. section 5.3.2.). This implies that in the surface representation of (3a) and (3c), PRO would not be present. This entails a violation of the EPP, since θ-role of the infinitival predicate cannot be assigned to the subject.

A violation of the Projection Principle in these cases, however, may be avoided by adopting a suggestion of Szabolcsi (1983a). Szabolcsi relates the presence of PRO to the assignment of a θ-role to the position it occupies. Therefore, if the infinitival predicate does not assign a θ-role to its subject, PRO may be missing. According to Szabolcsi, (some) subject control verbs precisely create this effect. They absorb the θ-role of the subject of their infinitive complement and bequeath it to their own subject. Hence, PRO might be absent from the syntactic representation.

(II) Consider the following sentences:

(4) a. János láttja Marit énekelni
 John saw-AGR3sg Mary-ACC sing-INFI
 ‘John saw Mary singing.’

b. Hagytalak teged játszani Pistaval
 let-AGR1sg2sg you-ACC play-INFI Steve-INSTR
 ‘I let you play with Steve.’

I analysed the infinitive complements of verbs of perception and propositional attitude, like enged ‘let’, hagy ‘let’, hall ‘hear’, hív ‘call’, hoz ‘bring’, and látni ‘see’, as ACI-complements (cf. section 5.3.5.3.). Hence, the sentences in (4) have a structure as in (5):
The reason I treated this group of verbs in a way comparable to ACI-verbs in English, was because they display similar syntactic properties as their ACI-counterparts in English.

Szabolcsi (1983a), on the other hand, regards the complements of these verbs as object control complements. Szabolcsi assumes that the accusative NP is a direct argument of the matrix verb associated with a PRO subject in the infinitive complement. So, according to Szabolcsi, the sentences in (4) have the following structure (bracketing is mine):

(6) a. János látta Marit [IP PRO énekelni]
 b. Hagytalak téged [IP PRO játszani Pistaval]

Szabolcsi argues that an object control analysis in these cases is supported by the fact that the Hungarian construction does not merely require a direct perception of the action denoted by the matrix predicate but also a direct perception of the entity carrying out the action denoted by the embedded predicate. This can, however, easily be incorporated into the ACI-analysis by adopting Williams' (1983) extension of the theory of θ-assignment.

Williams argues that an NP may be assigned different θ-roles providing that each θ-role is assigned by a different θ-role assigner. Of course, it remains to be explained why the subject of an ACI-complement in Hungarian receives two θ-roles but not in English. I will leave this dichotomy for further research. So, there is not much reason to assume that the syntactic representation of the cases in (4) contain a PRO subject.

Summarizing, the EPP provides an empty category, i.e. PRO, in the subject position of infinitive complements which is accessible for control by an NP of a higher domain. Hungarian displays only subject control. Control phenomena arise only if there is a subject-predicate dichotomy of the sentence. Hence, the presence of these phenomena is an argument for the subject-predicate partitioning of the sentence.

5.3.6.2. Secondary Predicates

Another construction type in which control theory is supposed to be operative is secondary predication, the so-called 'small' clause. Compare:

(7) John eats naked

This sentence contains a secondary predicate, the adjective naked. It attributes a property to the subject NP John. In the literature, two kinds of analyses have been proposed for secondary predication, (1) Chomsky (1981) and Stowell (1982), and (11) Williams (1980; 1983). Let us first consider the Chomsky-Stowell approach.

(1) Chomsky and Stowell argue that the secondary predicate in (7) heads a small clause which has a PRO subject analogously to the subject of infinitive complements:

(8) John eats [s PRO naked]

20 Note that this theory violates the uniqueness condition on θ-assignment in 3.2.(2) or 4.6.(26). Therefore, Williams' suggestion remains somewhat controversial.
This clause does not contain I, and thus its PRO subject is accessible for a controller of a higher domain, i.e. John in (8).

This analysis is supported by the fact that the subject of a secondary predicate may be overtly present in syntax if the grammar provides a mode to sanction the Case of the lexical subject in the small clause parallel to infinitive constructions:

(9) a. I saw [IP John to be sad] b. I consider [IP John to be a fool] c. John seems [IP — to be sad]

The matrix verb in (9a) and (9b) is an ACI-verb, and the matrix verb in (9c) is a raising predicate.

The embedded subjects in (9) are sanctioned for Case in the following manner. ACI-verbs are lexically specified for making their embedded domain accessible for government and Case-assignment (cf. section 5.3.5.3.). Hence, the embedded subject John in (9a) and (9b) is assigned accusative Case and may therefore remain in-situ. In (9c), a violation of the Case Filter is avoided, because a raising predicate allows movement of the embedded subject John to the matrix subject where it is assigned nominative Case by I.

Note that exactly the same analysis is applied to small clauses. The only difference is that the embedded VP in (9) is replaced by an AP in (10a) and (10c) and by an NP in (10b):

Again, the embedded subject of these constructions cannot be Case-marked within its own clause by absence of a suitable Case-assigner. The constructions are saved, however, in the same way as the ones in (9).

(II) An alternative to the Chomsky-Stowell analysis is elaborated in Williams (1980; 1983). According to Williams, the relation between a secondary predicate and its controller is restricted by the theory of Predication.

Predication states that a predicate may be related to its controller if the controller c-commands the predicate. So, under this theory, the sentence in (7) receives the following analysis:

(11) John eats naked

Thus the control relation is established directly without making reference to an embedded PRO.

At this place, I will not take a decision in favor of one of the analyses of secondary predication. I will adopt, however, the following structural condition on this phenomenon relevant to both approaches, namely:

(12) A secondary predicate can be controlled by a lexical NP if it is c-commanded by that lexical NP

Let us turn to a discussion of secondary predication in Hungarian. This phenomenon has been studied by Komlósy (1985). According to Komlósy, secondary predicates may or may not belong to the PAS of the verb. The former case is an instance of argumental secondary predication, and the latter is an instance of adjunctival secondary predication. Let us first examine argumental secondary predication.
(1) Komlósy (1985) points out that argumental secondary predicates are semantically selected by the verb and are marked with a case-suffix. According to Komlósy, there are a couple of case-suffixes such as the translative, formalis, or essive endings whose primary function is to reflect secondary predication. Consider:

(13) János jutalmul kapott egy oklevelet
 John reward-ESS received a diploma-ACC
 ‘As a reward John was given a diploma.’
 (Komlósy 1985: 59)

Komlósy observes furthermore that in their neutral order secondary argumental predicates must be left-adjacent to the verb and may not be modified by an article. Komlósy concludes therefore that these predicates occupy the VM-position and form with the verb a V'-constituent (see, section 4.4.1.).

Resultative predicates are a good example of secondary predication. Resultative predicates denote the new quality or property of an argument which it acquires as a result of the event denoted by the verb. They are selected by verbs of change such as lesz ‘turn into’, vállok ‘become’, or alakul ‘grow’.

Resultative nouns are assigned translative case, and resultative adjectives are usually marked ablative:

(14) a. János (*a) jó mérnökké vált
 John the good engineer-TRANS became-AGR3sg
 ‘John became a good engineer.’
 b. Mari (*a) pirosra festette a falat
 Mary the red-SUBL painted-AGR3sg the wall-ACC
 ‘Mary painted the wall red.’
 (Komlósy 1985: 61)

These verbs are obligatorily specified for a secondary predicate in their PAS. Verbs of change of state, or contact, however, may only optionally select a secondary predicate. Consider the pairs in ((15a), (15b)) and ((16a), (16b)):

(15) a. Mari főzi a krumplit
 Mary cook-AGR3sg the potatoe-ACC
 ‘Mary cooks the potatoe.’
 b. Mari péppel főzte a krumplit
 Mary pulp-TRANS cooked-AGR3sg the potatoe-ACC
 ‘Mary cooked the potatoe to a pulp.’
 (Komlósy 1985: 62)

 John beat-AGR3sg Peter-ACC John flat-SUBL beat-AGR3sg Peter-ACC
 ‘John is beating Peter.’ ‘John beat Peter to pulp.’
 (Komlósy 1985: 62)

Let us consider the Hungarian equivalents of the English constructions in which the overt lexical subject of a small clause is sanctioned for Case (cf. (10)):
Recall that ACI-complements of the verbs of propositional attitude the infinitive is replaced by a dative marked adjective (cf. 5.3.5.(9b)). This adjective appears in the VM-position. A dative marked adjective also occurs when perception verbs (cf. (17a)) and raising verbs (cf. (17b)) select a small clause complement. With Komlósy (1985), I will assume that the dative case in these sentences belongs to the PAS of the verb, similarly as the instances of the secondary predicates in the examples (13)-(16).

Let us attempt to make some generalizations over the above examples. First, as noted by Komlósy (1985), lexical properties of the predicate govern the selection of the secondary predicates and the determination of their controller. Second, only nominative and accusative arguments of the verb, or D-structure subjects (cf. (17)) may act as controllers with this phenomenon. The nominative NP functions as a controller in case the secondary predicate is obligatorily selected as in (13) and (14a), while in (14b) and (15) the accusative argument is lexically designated as controller, even if a suitable nominative controller is present, see, for example (14b).

According to Williams (1980), the c-command condition on Predication is a necessary condition but not a sufficient one. Both lexical and syntactic factors may determine the establishment of a predication relation. The structural constraint implies that nominative and accusative NPs, or the D-structure subject of small clauses, must be higher in the syntactic tree than the secondary predicate, otherwise the c-command condition is violated. If the secondary predicates in (13)-(17) are inherent parts of the PAS of the verb, then both the (nominative) subject and the (accusative) object have structural prominence over an complement with lexical case, i.e. a translative, dative, sublative, essive, etc. argument of the verb.

Let us turn to a discussion of adjunctival secondary predication.

(II) Williams (1980) observes that sentences containing an adjunctival secondary predicate in English may be ambiguous:

(18) a. John painted the door wet b. John saw Mary drunk

Williams points out that (18a) and (18b) have a reading in which the secondary predicates wet, and drunk may be controlled either by the subject or by the object.

Under the first reading the state of the subject is indicated. In (18a) John is attributed the property of being wet, and in (18b) John is attributed the property of being drunk. Under the second reading of (18a) the door becomes wet as a result of John's painting, while in (18b) Mary is in the state of being drunk.

According to Williams, these ambiguities are due to the fact that secondary predicates may be attached either to IP (labelling is mine), or to the VP. In the former case, only the subject qualifies as a controller, while in the latter case the secondary predicate is controlled by the object. This is in accordance with (12).

Consider now the Hungarian equivalents of the sentences in (18):
(19) a. János vizesen festette az ajtót
 John wet-adv painted-AGR3sg the door-ACC
 'John painted the door wet.'

b. János vizesre festette az ajtót
 John wet-SUBL painted-AGR3sg the door-ACC
 'John painted the door wet.'

(20) a. [NP János [cp aki ittas volt]] láッta Marit
 John who drunk was saw-AGR3sg Mary-ACC
 'John saw Mary drunk.'

b. János ittasan láッta Marit
 John drunk-adv saw-AGR3sg Mary-ACC
 'John saw Mary drunk.'

As may be observed from these sentences, Hungarian disambiguates the readings associated with the English sentences in (18). The (a)-sentences represent the readings of (18) in which the subject acts as the controller, while the (b)-sentences represents the readings of (18) in which the object acts as the controller.

The subject reading of (18a) is expressed in Hungarian by adding to the stem of the adjective vizes the adverbial marker (adv) -en whereas the object reading of (18b) is formed by incorporating the adjective into the PAS of the verb as in (14b). The subject reading of (18b) cannot be expressed with a secondary predicate. A relativization strategy has to be chosen instead, while the object reading of (18b) is expressed with the help of the adverbializer just as the reading of (18a).

It is unclear why Hungarian disambiguates the readings associated with adjunctival secondary predication in English. An account for the individual readings, however, may run along the following lines.

Komlósy (1985) notes that some secondary predicates may belong to the PAS of the verb that also selects the argument of which they state a property. According to Komlósy, argumental secondary predicates are semantically much closer to the verb than adjunctival secondary predicates. Adjuncts attribute merely a property of the argument without affecting the event denoted by the predicate. Consider the following pairs:

(21) a. János darabokra törte a vázat
 John pieces-SUBL broke-AGR3sg the vase-ACC
 'John broke the vase into pieces.'

b. *János vizesre/szárazra/üresre törte a vázat
 John wet-SUBL/dry-SUBL/empty-SUBL broke-AGR3sg the vase-ACC
 'John broke the vase into pieces.'

(21) Hale and Laughren (1983) and Simpson (1983) observe that in Warlpiri this phenomenon occurs as well. In that language case congruence indicates over which NP the secondary predicate is predicatced. Compare:

(i) a. Jakamarra yani pamajangka
 Jakamarra-ABS IMP go alcohol-source-ABS
 'Jakamarra is going drunk.'

b. Jakamarra Napaljarri pakarnu pamajangkarlu
 Jakamarra-ERG Napaljarri-ABS hit alcohol-SOURCE-ERG
 'Jakamarra hit Napaljarri drunk.'

c. Jakamarra Napaljarri pakarnu pamajangka
 Jakamarra-ERG Napaljarri-ABS hit alcohol-SOURCE-ABS
 'Jakamarra hit Napaljarri drunk.'
The verb *tör* ‘break’ selects a secondary predicate with a specific meaning. Therefore, an argumental secondary predicate indicated by the ablative case is allowed (cf. (21a)). However, an adjunct with the inessive case is prohibited (cf. (21b)). The verb *hoz* ‘bring’ does not put selectional restrictions on its secondary predicate. Therefore, adjuncts may function as secondary predicates much more freely with this verb (cf. (22)).

We can translate Komlósy’s observations into structural terms as follows. An argumental secondary predicate must be attached to the VP, and an adjunct may be adjoined either to the VP, or to IP. This largely depends on idiosyncratic lexical factors. If these assumptions are correct, it is explained why the argumental secondary predicate in (19b) is controlled by the accusative argument, and why the adjunctival secondary predicate may be controlled either by the subject in (19a), or by the object in (20b). The assumption of a VP node and c-command restriction (12) are crucial in explaining the ambiguity of the English examples (18). Note that these assumptions are relevant in covering the difference between argumental and adjunctival secondary predication in Hungarian as well.

In (19a), the adjunctival secondary predicate *vizesen* is adjoined to IP. Hence, because of the c-command condition on Predication, its controller can only be the subject NP. In (20b), the adjunctival secondary predicate is adjoined to VP, and it is predicated over the object NP. In (19b), the argumental secondary predicate *vizesre* is attached to the VP, and it is controlled by the object NP.

Note that in (19b) and (20b) both the subject and the object satisfy the c-command condition. The fact that the argumental secondary predicate in (19b) and the adjunctival secondary predicate in (20b) are controlled by the object but not by the subject NP follows from Williams’ (1980) additional lexical restriction on Predication:

(23) If a secondary predicate is in the VP, then this secondary predicate is predicated of the theme of V.

The transitive verbs *fest* ‘paint’ in (19b) and *lát* ‘see’ in (20b) belong to the agent-theme class. This type of verbs assigns its accusative object a theme by rule 3.2.(3a). Hence, the secondary predicates *vizesre* and *ittasan* are predicated over the object NP. The subject and object oriented readings associated with the adjunctival secondary predicates in (19a) and (20b) demonstrate that adjuncts may be more freely attached to the VP and IP than argumental secondary predicates. Hence, this dichotomy shows that argumental predicates always occupy a position under VP, unlike adjuncts of secondary predication.²²

(22) Komlósy (1985) and De Groot (1987) discuss another type of adjunctival predication in Hungarian, the so-called predicative verbal adverbial construction. These predicates are formed by adding the adverbial participle suffix -valve to the verbal stem:

(i) Az ajtó be van csukva
 the door prefix is close-suffix
 ‘The door is closed.’
Recapitulating, I argued that secondary predication is restricted by the distribution of the verbal arguments. Only nominative and accusative NPs may function as controllers of an argumental secondary predicate. This type of secondary predicate is incorporated into the PAS of the verb. This may be observed from the fact that it bears a lexical case. From theories on secondary predication (cf. Chomsky 1981, Stowell 1982, and Williams 1980; 1983), it follows that the nominative and accusative NPs must be structurally superior to the argumental predicate. Hungarian resolves ambiguities between a subject and an object oriented reading, which occur with secondary predication in English, with adjunctival secondary predication, argumental secondary predication, or relativization. It must be admitted that some properties of secondary predication are not completely understood at the present state of research, like the difference between English and Hungarian with the incorporation of secondary predicates into the PAS of the verb, or the disambiguation of readings associated with adjunctival secondary predication. However, the Hungarian counterparts corresponding to the subject and object oriented readings in English show that argumental secondary predicates are attached to the VP. The distribution of adjunctival secondary predicates, on the other hand, is much freer. In order to derive the readings related to argumental and adjunctival secondary predication, the assumption of a VP is crucial.

5.3.7. Wh-Module

Here, I will focus on subject-object asymmetries with Wh-movement in Hungarian. These asymmetries occur in long Wh-movement (cf. section 5.3.7.1.), and in a phenomenon that is contingent on Wh-movement, namely, parasitic gaps (cf. 5.3.7.2.).

5.3.7.1. The Distribution of Long Wh-movement

Consider the following instances of long Wh-movement:

(1) a. *Ki/kit gondolsz hogy t láttat Vili
who-NOM/-ACC think-AGR2sg that saw-AGR3sg Bill-ACC
‘Who do you think saw Bill?’

b. Kit gondolsz hogy Vili láttott t
who-ACC think-AGR2sg that Bill saw-AGR3sg
‘Who do you think that Bill saw?’

c. Kinek gondolod hogy János könyvet adott t
who-DAT think-AGR2sg that John book-ACC gave-AGR3sg
‘To who do you think that John gave a book?’

d. Kivel szeretnéd hogy Mari beszéljen t
who-INST like-COND-AGR2sg that Mary speak-SUBJ-AGR3sg
‘With whom would you like that Mary should speak?’

e. Kiről gondolod hogy Mari könyvet kapott t
who-ABL think-AGR2sg that Mary book-ACC got-AGR2sg
‘From who do you think that Mary got a book?’

Further, Komlósy distinguishes a stative construction and a perfective dynamic passive depending on the coupe used. Judging from the examples in the references above, this adverbial predicate may only be controlled by a nominative NP which may be either an agent, or an underlying theme object. This state of affairs arises if the adverbial predicate is attached to IP, and is controlled at S-structure. Hence, this construction type provides another argument for the claim that the nominative NP is the external argument.

(23) Hale and Laughren (1983) and Simpson (1983) report that extension of the semantic definition of a basic predicate is a very productive rule in Warlpiri. The syntactic concomitant of these ‘adjunctions’ is always a secondary predicate.
Long Wh-movement is restricted by dialectal and idiolectal factors. Roughly, there are two dialects to which I will refer in the remainder as Hungarian I and Hungarian II.

(1) Hungarian I

É. Kiss (1981a), Horvath (1981), and Szabolcsi (personal communication) report that they find long Wh-movement completely acceptable in Hungarian. This phenomenon seems to be especially frequent in the spoken language (cf. De Groot 1981c, Szalamin 1978, and Zolnay 1926).

É. Kiss (1982b) observes that a subject-object asymmetry turns up in long Wh-movement. According to É. Kiss, an extracted nominative Wh-phrase ends up accusatively marked (cf. (1a)), whereas an accusative Wh-phrase retains its case during the derivation (cf. (1b)). Furthermore, É. Kiss observes that extracted Wh-phrases with lexical case take their Case-feature along.

The verbs ad ‘give’, beszél ‘speak’, and kap ‘get’ subcategorize for a dative, instrumental, and ablative NP, respectively. The case-endings on the extracted Wh-phrases correspond to the subcategorized cases of these verbs in (1c)-(1e).

So, only a nominative Wh-phrase undergoes a Case change when it is fronted by Wh-movement. Comrie (1981, 155) and Van der Auwera (1984, 260) observe the same with long relativization, a syntactic relative of long Wh-movement. This phenomenon is derived by Wh-fronting of the relative pronoun:

\[
\begin{align*}
(2) & \quad a. \text{ a fiú akilátítt mondta hogy a pénzt elvette } \\
& \text{ the boy who-NOM/-ACC said-AGR1sg that away-took-AGR3sg the money-ACC } \\
& \text{ 'The boy that I said took away the money.'} \\
& b. \text{ a pénzt amit mondta hogy a fiú elvette } \\
& \text{ the money-ACC which-ACC said-AGR1sg that the boy away-took-AGR3sg } \\
& \text{ 'The boy that I said took away the money.'} \\
& c. \text{ a fiú akinek gondoló hogy János könyvet adott } \\
& \text{ the boy who-DAT think-AGR2sg that John book-ACC gave-AGR3sg } \\
& \text{ 'The boy that you think that John gave a book to.'} \\
& d. \text{ a fiú akivel szeretnéd hogy beszéljen } \\
& \text{ the boy who-INSTR like-COND-AGR2sg that speak-SUBJ-AGR3sg } \\
& \text{ 'The boy that you would like that he should speak with.'} \\
& e. \text{ a fiú akitől gondoló hogy Mari könyvet kapott } \\
& \text{ the boy who-ABL think-AGR2sg that Mary book-ACC got-AGR3sg } \\
& \text{ 'The boy that you think that Mary got a book from.'}
\end{align*}
\]

This paradigm shows that a non-nominative relative pronoun (cf. (2b)-(2e)), unlike the nominative one (cf. (2a)), takes along its Case assigned in the embedded clause when raised into the matrix sentence.

(24) Keenan and Comrie (1977) propose an accessibility hierarchy for relativization. According to Keenan and Comrie, this phenomenon is restricted by the following hierarchy:

(i) Subject > direct object > non-direct object > possessor

This hierarchy is only respected by simple sentences. Comrie (1981: 154) points out that embedded clauses do not have to obey (i). For example, long Wh-movement and relativization in Hungarian do not pattern as in (i), but rather as in (ii), the reverse of (i):

(ii) Lexical case (non-direct object) > accusative (direct object) > nominative (subject)
In chapter six, I will consider the mechanism of this Case change in more detail. Here, it is sufficient to indicate how it is related to the configurationality of phrase structure.

Theories on Case-assignment (see, for example, Chomsky 1981 or Kayne 1984) assume that some maximal projections, like VP, are opaque for Case-assignment by a higher governor. Other maximal projections, however, may be transparent for Case-assignment by a higher governor. For example, the IP is transparent for accusative Case-assignment in A.C.I.-complements (cf. section 5.3.5.3.) and the CP displays this property in long Wh-movement (cf. Kayne 1984). Hence, only complements which are base-generated outside the VP may undergo a Case change.

The Case change of the nominative NP with long Wh-movement implies, then, that it is base-generated outside the VP, and that the non-nominative NPs are base-generated within the VP. This distinction can only be made if the phrase structure in Hungarian has a configurational structure with a separate VP.

(II) Hungarian II

Other native-speakers, for example Komlósy (1986), reject cases of long Wh-movement in Hungarian entirely, or accept them only quite marginally. For the latter group there is even an accessibility hierarchy observable.

The grammaticality of this phenomenon decreases in the order (1c), (1d), (1e) > (1b) > (1a), and the grammaticality of long relativization decreases from (2c), (2d), (2e) > (2b) > (2a). This means we have the following accessibility hierarchy:

(3) **Accessibility Hierarchy for Long Wh-movement in Hungarian**

DAT, INSTR, ABL > ACC > NOM.

The cut off point for grammaticality in this hierarchy is at the first ‘>’ symbol. The opposition between grammaticality and ungrammaticality in this dialect coincides with the opposition between lexical case and structural Case:

(4) Lexical case > structural Case

Thus, the following generalization in terms of Case theory emerges for speakers of Hungarian II who allow long Wh-movement:

(5) Long Wh-movement in Hungarian II is licit if the Wh-antecedent bears lexical case

This restriction is the exact reverse of the condition on pro-drop in Hungarian (cf. 4.2.(34)) which states that pronouns in Hungarian may only be dropped if they are assigned structural Case. I argued in section 3.2.1. that the opposition between nominative/accusative Case and lexical case coincides with the opposition between structural Case and θ-case in Hungarian. If there is a matching between the type of Case and structural positions in the phrase structure, as is assumed in theories on Case (cf. Chomsky 1981, Kayne 1984), then condition (5) reflects that the phrase structure of Hungarian has a configurational structure.

Summarizing, long Wh-movement is subject to dialectal variation, probably in the form of a continuum. I labelled these dialects Hungarian I and Hungarian II. In chapter six, I will suggest that dialectal variation with long Wh-movement is rela-
tated to a parameter, namely, $\pm \text{move } Wh$. The positive option of this parameter allows long Wh-movement, apart from the Case change phenomenon, without exception, whereas its negative option accepts it rather marginally.

Anderson and Kvam (1984) report a similar variation with long Wh-movement in German. Taking into account the fact that both Hungarian and German have a relatively 'rich' case-system, it seems reasonable to search for an explanation of this variation in terms of Case theory. I will return to this topic later on.

In conclusion, in both dialects subject-object asymmetries show up. In Hungarian I, the fronted nominative Wh-phrase undergoes a Case change, and in Hungarian II, for those speakers who accept long Wh-movement at all, only Wh-phrases with a lexical case may be extracted. I have argued that both asymmetries are due to Case theory. The former asymmetry is related to the opacity of maximal projections for a higher Case-governor, whereas the latter one is related to the one-to-one matching between type of Case and structural positions. The distribution of long Wh-movement in Hungarian makes it clear that its phrase structure displays a hierarchical organization.

5.3.7.2. The Distribution of Parasitic Gaps

In the literature, it has been observed that the distribution of parasitic gaps in English yields a subject-object asymmetry:

(6) a. *You put away the papers [before reading e]
b. *The papers fell off the table [before you read e]
c. Which papers did you put away [before reading e]
d. *Which papers fell off the table [before you read e]

Chomsky (1982) notes that parasitic gaps, in these sentences indicated by e, have to obey the following two descriptive conditions:25

(7) a. Parasitic gaps are contingent on Wh-movement, and
b. Parasitic gaps may not be c-commanded by the Wh-trace

Absence of Wh-movement accounts for the ungrammaticality of (6a) and (6b). The difference in grammaticality between (6c) and (6b) is subsumed by restriction (7b). The trace of the subject Wh-phrase in (6d), unlike the trace of the object Wh-phrase in (6c), c-commands the parasitic gap in the adjunct phrase. Hence, sentence (6d) but not (6c) is ungrammatical. Let us consider the distribution of parasitic gaps in Hungarian. Because of condition (7a), constructions with such gaps can be tested at best by relying on the judgements of speakers of Hungarian I. Recall that this dialect allows long Wh-movement quite easily.

É. Kiss (1985) observes that precisely the same pattern of grammaticality occurs with parasitic gaps in the Hungarian equivalents of (6):

(25) With Koster (1987: 360), I will assume that parasitic gaps are subject to the usual anti-c-command requirement.
(8) a. *Eltetted az iratokat [mielőtt elolvastál volna e]
 away-put-AGR2sg-def the papers-ACC before read-AGR2sg-indef had
b. *Leestek az iratok az asztalról [mielőtt elolvastál volna e]
 off-fell-AGR3pl-indef the papers the table-DELAT before read-AGR2sg-indef had
c. Milyen iratokat tettél el [mielőtt elolvastál volna e]
 what papers-ACC put-AGR2sg-indef away before read-AGR2sg-indef had
d. *Milyen iratok estek le az asztalról [mielőtt elolvastál volna e]
 what papers fell-AGR3pl-indef off the table-DELAT before read-AGR2sg-indef had

One could argue that the positions e in these sentences do not contain a parasitic gap but a small pro, since Hungarian is a pro-drop language. The grammaticality of (8c) would then be due to the presence of a small pro rather than to Wh-movement.

The spelling out of an overt pronoun in English has a similar effect. It turns the ungrammatical sentences in (6) into grammatical ones:

(9) a. You put away the papers [before reading them]
 b. The papers fell off the table [before you read them]
 c. Which papers did you put away [before reading them]
 d. Which papers fell off the table [before you read them]

However, there are two arguments which contradict the small pro hypothesis. First, the assumption of pro cannot explain the difference in grammaticality between ((8a), (8b), (8d)) and (8c). Secondly, the distribution of e does not correspond with the diagnostics of accusative pro-drop. Third person accusative pronouns may only be omitted if they are singular, and trigger definite conjugation on the verb (cf. 4.2.(34b)). In (8), the Wh-antecedent is plural and the embedded verb displays indefinite conjugation. Therefore, a small pro, unlike an overt plural pronoun, may not even appear when the conjugation of the embedded verb is changed into definite. Compare the counterparts of (8a) and (8c):26

(10) a. Eltetted az iratokat [mielőtt elolvastad volna *(őket)]
 away-put-AGR2sg-def the papers-ACC before read-AGR3sg-def had them
b. Milyen iratokat tettél el [mielőtt elolvastad volna *(őket)]
 what papers-ACC put-AGR2sg-indef away before read-AGR2sg-def had them

Therefore, it may safely be concluded that the examples (8) involve parasitic gaps and that a subject-object asymmetry turns up with this phenomenon in Hungarian as well, at least in Hungarian 1.

É. Kiss (1985) and Horváth (1987) note furthermore that other quantificational NPs than Wh-phrases may also license parasitic gaps and that subject-object asymmetries occur in these constructions, too. This supports the hypothesis that quantifiers in Hungarian are moved into non-A-positions in the Quantifier Field (cf. 2.1.(28£), just as focussed NPs, since only such NPs may license parasitic gaps (cf. Engdahl 1984):

(26) For speakers of Hungarian II, who accept long Wh-movement only marginally, these sentences with an overt pronoun are the only grammatical alternants. Sentences of the type (8c) are a question mark at best for such speakers. (See, also section 6.7.1. for a discussion of dialectal variation with the distribution of parasitic gaps in Hungarian).
5.3.8. Quantification Theory

This section investigates the syntactic and semantic properties of constructions containing numeral quantificational NPs. It turns out that with these constructions a subject-object asymmetry shows up. Before discussing adverbial numeral NPs, I will first concentrate on argumental numeral NPs.

(1) Consider the following sentence from English:

(1) Two boys stole three apples

This sentence contains a subject and an object numeral NP.

De Meij (1982; 1983) observes that two readings are associated with (1). In the distributive reading, the predicate stole three apples is applied to each of the boys individually. Therefore the number of the apples stolen is minimally three and maximally six. On the other hand, in the total reading the two plural NPs indicate merely the size of sets involved, namely, two boys and three apples. Therefore the number of apples stolen in this case is maximally three.

Let us consider the Hungarian equivalent of this sentence:

(2) Két fiú lopott három almát
 two boy stole-AGR3sg three apple-ACC

In contrast to its English counterpart, the Hungarian word by word equivalent only has a total reading. The number of the apples stolen is maximally three. In order to derive the distributive reading of the English sentence another strategy may be chosen, namely, by reduplication of the adnominal numeral in the accusative NP.

(3) Két fiú lopott három-három almát
 two boy stole-AGR3sg three-three apple-ACC

Example (3) implies that six apples were stolen.

(27) See Higginbotham and May (1981) for the derivation of total and distributive readings with the assumption of LE.

(28) A nominal head is singular in Hungarian if it is modified by a countable adnominal phrase.

(29) Besides reduplication, other strategies with the same effect may be chosen as well. (i) The adnominal numeral in the nominative NP may be modified by the adnominal quantifier mind it ‘all the’:

(i) Mind a két fiú lopott három almát
 all the two boy stole-AGR3sg three apple-ACC
 ‘Two boys stole three apples each.’

or, (ii) by focusing the nominative NP, as Anna Szabolcsi (personal communication) brings to my attention:

(ii) [P Két fiú] lopott három almát
 two boy stole-AGR3sg three apple-ACC
 ‘Two boys stole three apples each.’
Reduplication of the adnominal numeral in the nominative NP, if possible at all, does not render the distributive reading of the English sentence (1). For those native-speakers who accept this, it has the effect of turning the two boys into two sets of two boys. Hence, the numeral distributes phrase-internally over its head. The number of apples stolen, however, remains three as in (2). This yields a total reading only:

(4) Két-két fiú lopott három almát
 two-two boy stole-AGR3sg three apple-ACC
 'Two groups of two boys stole (maximally) three apples.'

According to De Meij, whom I will follow here, distributivity is a property of the PAS. A distributive reading can be obtained by distributing the property of the predicate over the members of the set denoted by the subject individually. From this it follows that this phenomenon involves a subject-predicate partitioning of the sentence. In Hungarian, this subject-object asymmetry is even spelled out overtly by means of a morpholexical device, that is, by reduplicating the adnominal modifier in the object NP.

Distributivity also provides empirical evidence for the internal partitioning of the VP. Compare the following example with the tryadic verb give:

(5) Two boys gave four apples to three girls

This sentence may have at least the following three readings. Besides the total reading in which maximally four apples are given to three girls, (5) may have the following two distributive readings.

First, the property denoted by the direct object and the verb distributes over the members of the set denoted by the subject individually. The number of the apples given is in that case minimally four and maximally eight. Second, the property denoted by the object and the verb distributes over the indirect object. The number of apples given is then minimally four and maximally twelve.

The word by word equivalent of this sentence in Hungarian has again only a total reading:

(6) Két fiú adott négy almát három lánynak
 two boy gave-AGR3sg four apple-ACC three girl-DAT
 'Two boys gave (maximally) four apples to three girls.'

Reduplication of the numeral in the accusative NP négy almát results in the second distributive reading, that is, the property of the direct object and the verb may only distribute over the indirect object:

(7) Két fiú adott három lánynak négy-négy almát
 two boy gave-AGR3sg three girl-DAT four-four apple-ACC
 'Two boys gave four apples to three girls each.'

Thus, the distributive reading with tryadic verbs in Hungarian is more restricted than in English. It involves only the non-nominative NPs.

De Meij's account of distributivity is based on compositionality. A property of a subphrase, i.e. the VP, of the clause distributes over the subject. If this approach is correct, then the object and the verb constitute a subphrase, probably a V’, when a
tryadic verb has a distributive reading. This subphrase distributes over the indirect object VP-internally.

(II) Adverbial distributive numerals provide further empirical evidence for the subject-predicate partitioning of the clause. The adverbial distributive numerals hármassával (three-INSTR) ‘three at a time’ and hármanként (three-ESS) ‘three by three’ may distribute either over the subject such as in the (a)-sentences, or over the predicate such as in the (b)-sentences:

(8) a. A férfi hármassával mentek az ablakhoz
 'The boys went to the window three at a time.'
 b. Két férfi ellopta az almákat hármassával
 'Two boys stole the apples three at a time.'

(9) a. A férfi hármanként mentek az ablakhoz
 'The boys went to the window three by three.'
 b. Két férfi ellopta az almákat hármanként
 'Two boys stole the apples three by three.'

The ambiguities in these sentences can be accounted for most easily by assuming that the adverbials are attached under IP so that they may equally distribute over the subject and the predicate. This implies a subject-predicate partitioning of the clause.

Summarizing, I discussed subject-object asymmetries with argumental and adverbial distributive NPs. Argumental distributive NPs may be created by a morpholexical strategy which doubles the adnominal numeral. However, their distribution is restricted. Only the accusative NP of a transitive sentence may be reduplicated. So, distributivity with two-place predicates provides empirical support for a subject-predicate dichotomy of the clause. Adverbial distributive numerals illustrate the same. They are ambiguous between a reading in which they distribute over the subject and a reading in which they distribute over the predicate. Furthermore, distributivity with three-place predicates yields evidence for a VP-internal partitioning as well. The argumental distributive object numeral may only distribute over its structurally closest ‘antecedent’, i.e., the indirect object.

To express distributivity by means of a morpholexical strategy is not only restricted to Hungarian. Gil (1982) notes that Georgian displays this strategy as well. Georges Rebuschi (personal communication) brings to my attention that this phenomenon in Basque is expressed with the help of the suffix -na. It may be attached only to the object of a transitive sentence. From this, I conclude that a morpholexical device reflecting distributivity deserves a place in the typology of subject-object asymmetries.

5.4. Evaluation

This section evaluates the subject-object symmetries and subject-object asymmetries discussed in the preceding sections. Concerning these clusters, we can make the following observations. First, in terms of the modules of the grammar they are rather heterogeneous in nature. Both subject-object symmetries and subject-object asymmetries appear in the domain of X'-theory, θ-theory, binding theory, Wh-module, and
quantification theory. Secondly, these clusters themselves are diverse in nature. Some of them are fairly complicated. The question arises what is the proper strategy to account for their properties within a theory of UG? Let us first consider the position of subject-object asymmetries in Hungarian.

5.4.1. The Configurational Structure of Hungarian

I will assume that the cluster of subject-object asymmetries is the unmarked case, as they can be derived directly from the categorial component of syntax (cf. 0.1.1.(lb)). This component generates structural configurations which serve as the basis for other modules, like government theory or binding theory. This implies that subject-object asymmetries should appear frequently in the grammar of natural languages. This turns out to be the case.

Subject-object asymmetries are well-attested across languages. Some of them qualify as language universals. A candidate for this is, for example, reflexive binding.

In all languages which have been claimed to be non-configurational, reflexive anaphors are subject to hierarchical constraints. Hale (1983), Whitman (1984), and Mohanan (1984) report that object reflexive anaphors in respectively Warlpiri, Japanese, and Malayalam may be bound by subjects, but not vice versa. This is also the case in Hungarian (cf. section 5.3.4.1.). It is, then, extremely likely that reflexive binding is universally restricted by a subject-object asymmetry. Thus, it is both from a theoretical and empirical point of view unmotivated to relax subcomponents of the grammar like X'-theory, government theory or the Projection Principle to derive subject-object symmetries in the grammar of a particular language. Such an approach is pursued in É. Kiss (1987a) in connection with the subject-object symmetries in Hungarian. Let us discuss some of the consequences of this attempt.

É. Kiss assigns the Hungarian phrase structure the non-configurational structure 5.1.(1), here repeated as (1):

\[
S \rightarrow V \ X^*
\]

This structure predicts the occurrence of subject-object symmetries in Hungarian. This appears indeed to be the case (cf. section 5.2.). É. Kiss (1987a) acknowledges the subject-object asymmetries involving reflexive binding (cf. section 5.3.4.1.), the distribution of big PRO in infinite complements (cf. section 5.3.6.1.), and the Case change of an extracted nominative Wh-phrase (cf. section 5.3.7.1). How are these phenomena derived in a phrase structure of the type in (1)?

Let us consider how É. Kiss deals with the asymmetries involved in reflexive binding. In order to account for this phenomenon, É. Kiss (1987a, 180) assumes a prominence hierarchy. According to her, prominence hierarchy is not reflected structurally in non-configurational languages but as a case-hierarchy:

\[
\text{NOM} > \text{ACC} > \text{DAT} > \text{INSTR} > \text{LEXICAL CASE}
\]

She further formulates the following rule for reflexive binding:

\[
A \text{ reflexive anaphor may only be bound by an antecedent which is more prominent in hierarchy (2) than the reflexive anaphor}
\]

Although this rule is descriptively adequate, it is unsatisfying from a theoretical point of view for at least two reasons.
(A) A consequence of (3) is that reflexive anaphors in English and Hungarian obey completely different conditions. The distribution of the English reflexive anaphor is accounted for by a structural condition in the style of Binding Principle A (cf. 5.3.4.(3a)), whereas the distribution of the Hungarian reflexive anaphor falls under (3). This suggests that a generalization is missed. Reflexive binding in terms of this rule, then, leads to a break with the well-motivated c-command condition on dependent elements.

(B) É. Kiss (1987a: 183) makes the following remarks on the status of the case-hierarchy in Hungarian grammar: "The definition introduces case-hierarchy as an auxiliary device, to be applied in languages of a "flat" argument structure, in the sentences of which c-command is unable to establish a hierarchy among the maximal major categories." From this, it follows that this hierarchy applies only to NPs which are coarguments. Therefore, it can only be extended to subject-object asymmetries which involve coarguments like secondary predication (cf. section 5.3.6.2.) or reduplication of distributive numerals (cf. section 5.3.8.). However, it cannot account for the following subject-object asymmetries.

(i) The case-hierarchy checks overt case-endings. Hence, it is not able to cover subject-object asymmetries which do not refer to overt case-endings, but rather to underlying GPs. This is the case with transitivity alternations (cf. section 5.3.1.1.), noun-incorporation (cf. section 5.3.1.2.) and θ-theory (cf. section 5.3.3.).

(ii) This hierarchy cannot account for the asymmetries which bear on non-coarguments. These asymmetries turn up when one of the NPs involved is embedded in a subphrase, or a separate clause. This is the case with the binding of names (cf. section 5.3.4.2.), the distribution of bound pronouns (cf. section 5.3.4.3.), switch reference (cf. section 5.3.4.5.), the distribution of long Wh-movement (cf. section 5.3.7.1.) and of parasitic gaps (cf. section 5.3.7.2.).

(iii) The case-hierarchy is not operative if the asymmetries single out only one of the verbal arguments such as in synthetic reflexivization/reciprocalization (cf. section 5.3.1.1.), X'-theory (cf. section 5.3.2.), the conjugational patterns of the Hungarian verb (cf. section 5.3.5.1.), ACI-verbs (cf. section 5.3.5.3.), control with infinitive complements (cf. section 5.3.6.1.), and the distribution of small pro (cf. section 5.3.8.1.).

The anomalies in (i)-(iii) show that (2) has a very limited scope. This implies that further auxiliary devices have to be formulated in order to account for them. Certainly, that is an undesirable step.

Summarizing, the case-hierarchy is theoretically inadequate for the following reasons. First, the syntactic properties of lexical items such as reflexive anaphors, which are cross-linguistically uniform, would be captured differently in Hungarian. Reflexive binding could not be formulated in terms of structural conditions. Second, it applies in a rather narrow domain. From this it follows that further auxiliary mechanisms have to be added to cover other subject-object asymmetries in Hungarian. Above I noted that the case-hierarchy is descriptively adequate, at least with respect to the cases subsumed by Binding Principle A. This suggests that it is a reflection of abstract structural configurations. Let us investigate whether this hierarchy can be reinterpreted in this sense.

Van Riemsdijk (1982; 1983a) classifies the overt case-markers of languages with a rich case-system in terms of a universal feature system employing mnemo-
nic categories such as *subject* [S], *closest argument* [CA], etc. In this system, the features may be organized in a binary tree which expresses (like in hierarchical constituent structures) the concept of 'belonging closer to'. Van Riemsdijk further notes that it would be attractive to associate this case-hierarchy with the hierarchy of GFs developed within the framework of Relational Grammar (cf. Perlmutter 1984).

This framework states that the subject GF is more prominent than the object GF, etc. Following Van Riemsdijk's suggestion, I will relate the above case-hierarchy to the hierarchy of GFs, or to the *external* (ext) versus *internal* (int) dichotomy in the LS of the verb. Recall that this is defined structurally (cf. chapter three).

Further, I will assume, as in various other theoretical approaches, that besides the external-internal opposition there is also a VP-internal divisioning in the form of an *internal argument 1* versus *internal argument 2* dichotomy.

Below I will demonstrate that these hierarchies are supported empirically in Hungarian. Restatement of the case-hierarchy in terms of the hierarchy among the verb arguments yields the following taxonomy of the case-system:

(4)
\[
\begin{align*}
\text{a. external argument} & = \text{NOM} \\
& \quad \text{(subject)} \\
\text{b. internal argument 1} & = \text{ACC, DAT, INSTR} \\
& \quad \text{(direct object)} \\
\text{c. internal argument 2} & = \text{DAT, INSTR, LEXICAL CASE} \\
& \quad \text{(indirect object, etc.)}
\end{align*}
\]

The equations in (4) must be read as follows. The external argument is the nominatively marked NP. The internal argument 1 is the accusative NP, if there is one, otherwise the dative NP, if there is one, and so on. The internal argument 2 is the datively marked NP, if there is one, otherwise the instrumentally marked NP, and so on.

We can use these equations to classify the subject-object asymmetries. This yields the following matrix:

(5)
\[
\begin{array}{|c|c|c|}
\hline
\text{transitivity alternations} & + & + & - \\
\text{reflexivization/reciprocalsation} & - & + & - \\
\text{noun-incorporation} & - & + & + \\
\text{infinitive-with-internal argument} & - & + & + \\
\text{compositional \(\theta\)-assignment} & - & + & + \\
\text{reflexive binding} & + & + & - \\
\text{binding of names} & + & + & - \\
\text{distribution of bound pronouns} & + & + & - \\
\text{switch reference} & + & + & - \\
\text{\(\text{Indef/def}\) conjugation} & + & + & - \\
\text{the suffix \(-lak\)} & + & + & - \\
\text{distribution of \textit{pro}} & + & + & - \\
\text{person/number features of \textit{pro}} & + & - & - \\
\text{ACI/DCI-verbs} & + & - & - \\
\text{subject control} & + & - & - \\
\text{secondary predication} & + & - & - \\
\text{Case change in long} & + & - & - \\
\text{Wh-movement/relativization} & + & - & - \\
\text{distribution of Wh-trace in Hungarian II} & - & - & + \\
\text{distribution of parasitic gaps} & - & + & + \\
\text{reduplication of distributive numerals} & - & + & + \\
\text{adverbial distributive numerals} & + & - & - \\
\hline
\end{array}
\]
The values in this matrix group together those arguments of the verb that have the same distribution with a particular syntactic phenomenon.

Compositional θ-assignment, reflexive binding, the binding of names, the distribution of bound pronouns, switch reference, ACI/DCI-verbs, subject control with infinitive complements, the distribution of parasitic gaps and reduplication of distributive numerals provide empirical evidence for the hypothesis that the external argument is superior to the internal arguments of the verb. Thus, the following prominence hierarchy is supported by these phenomena:

(6) external argument > internal argument 1 and internal argument 2

Reflexive binding, binding of a pair of names, the distribution of bound pronouns, the conjugation with the suffix \(-lak\), secondary predication, and the distribution of \(pro\) provide evidence for the hypothesis that the external argument and internal argument 1 are more prominent than internal argument 2. This yields the prominence hierarchy in (7):

(7) external argument and internal argument 1 > internal argument 2

By collapsing (6) and (7), we derive (8):

(8) external argument > internal argument 1 > internal argument 2

Some of the phenomena in the matrix above refer to one of the arguments of the verb, exclusively emphasizing their primitive status in this hierarchy.

The external argument is singled out by ACI/DCI-verbs (which assign accusative/dative Case to the subject of their sentential complement), by the Case change of a nominative NP which undergoes long Wh-movement and by \(pro\)-drop which may affect all persons and numbers of a nominative NP only.

The accusative internal argument 1 is exclusively referred to in morpholexical transitivity alternations, synthetic reflexivization/reciprocalization, and in the definite conjugation of the verb. The internal argument 2 is singled out, at least in Hungarian II, by the distribution of Wh-traces.

There is also empirical evidence for the primitive status of VP. Three phenomena refer in particular to a combination of the verb with its internal arguments, including noun-incorporation, the structure of infinitive complements and argumental/adverbial distributive numerals. Below I will provide further support for this claim by showing that under certain conditions VP-rules may apply in Hungarian as well.

So, we may depict this syntactic representation by means of the familiar tree-structure notation:

(9) S
 ext VP
 int 1 V'
 int 2 V

(30) See also Nakajima (1986) for the claim that the distribution of parasitic gaps provides evidence for the hypothesis that Hungarian phrase structure is hierarchical rather than flat.
This diagram expresses that the Hungarian phrase structure is configurational, and meets the principle of binary branching.

In chapter seven, I will argue that the Head Parameter, which specifies the order of heads and complements, is 'head-final' in Hungarian. This means that each lexical head follows its complement. Hence, (9) reflects the basic SOV-structure of Hungarian.

The question arises how the spelling out of morphological case is related to the structural positions in this configuration? The Case-assignment rules in 3.2.(7) are insufficient to account for this. Here, I will not accommodate Case theory to the rich case-system of Hungarian, because this would be beyond the scope of this study. Instead I will make the following points.

If we adopt a biuniqueness condition on Case-assignment, the set of Case-governors has to be extended with the V'. The Case of the external position is governed by I, the Case of the internal argument 1 is governed by V', and the Case of internal position 2 is governed by V. Of course, the cases which are actually realized depends on the inherent properties of these governors.

The Case assigned to the external argument and internal argument 1 is structural Case, whereas the Case assigned to internal argument 2 is lexical Case. Observe then that θ-governed arguments are structurally closer to the verb than arguments assigned structural Case.

The following phenomena support the hypothesis that the dative may also be a structural Case, that is a governee of V'. First, in binding phenomena the dative and accusative are equally prominent (cf. reflexive binding in 5.3.4.(8a)-(8d)). Second, Hungarian displays DCI-complements (cf. fn.19). Third, in clauses with a tryadic verb a reduplicated adnominal numeral embedded in an accusative NP distributes over the dative NP (cf. 5.3.8.(7)).

Nearly all the subject-object asymmetries can be covered by applying the devices of the modules of the grammar to structure (9). For most of these phenomena this was already carried out above. It was not possible in all cases, given the present state of the art. First, some of their properties are badly understood. Recall, for example, Noun-Incorporation in Hungarian (see, section 5.3.1.2.). Such phenomena require much more extensive study than has been carried out hitherto.

Second, a successful account of subject-object asymmetries depends also on specific theoretical assumptions concerning the theory of UG and the phrase structure of Hungarian. Some of them require further investigation. For example, the development of a theory of abstract Case and its morphological realization, or the status of scrambling. To illustrate the type of puzzles which have to be faced, consider again some subject-object asymmetries within the domain of binding theory.

Let us assume that the case-system of Hungarian is as in (4), and its phrase structure is as in (9). In that case, the asymmetries with reflexive binding and the binding of a pair of names fall into place. They may be accounted for by Binding Principle A and C respectively.

The phenomena subsumed under these principles remain unaffected by scrambling. Hence, the sentences 5.3.4.(7a) and (7b) and 5.3.4.(12a) and (12b), here repeated as (8) and (9), display the following pattern of grammaticality, whatever the linear order of the constituents in the sentences is:
Saito and Hoji (1983) argue that scrambling is an instance of Move-α which adjoins the scrambled NP to a maximal major category, presumably into a non-A-position.

In terms of this theory, we may say that these operations do not affect the application of the Binding Principles A and C. It follows, then, that either the Binding Principles apply before movement, or that scrambling does not reverse the c-command relation. This could otherwise turn a grammatical clause into an ungrammatical one, or vice versa.

Consider now, again, the cases of bound variable interpretation of pronouns 5.3.4.((23a), (24a), (25a), and (26a), here repeated as (10) (only the relevant bracketing is indicated):

(10) a. \[János szereti magát\] John loves himself-ACC 'John loves himself.'
 b. \[*Jánost szereti maga\] John-ACC loves himself

(11) a. \[János anyja szereti Jánost\] John mother-npAGR3sg loves John-ACe 'John's mother loves John.'
 b. \[*János szereti János anyját\] John loves John mother-npAFR3 sg-ACC

The distribution of bound pronouns is, unlike Binding Principle A and C phenomena, sensitive to scrambling. If the subject NP is postponed as in (10b) the WCO-effect vanishes, and if the object NP containing the pronoun is scrambled over the subject as in (10d) no WCO-effect arises.31 Note, incidentally, that this paradigm provides empirical evidence for the claim that scrambling is not a stylistic rule applying at PF but a rule of syntax.

The question, then, is why does scrambling affect the binding relation between a pair (quantifier, pronoun) but not the binding relation between a pair (name, reflexive anaphor), or (name, name). There are several ways to escape this binding 'paradox' depending on the theoretical assumptions we adopt. A solution of this puzzle may run as follows.

Preverbal NPs are adjoined to the CP in Hungarian (cf. section 2.2.). Furthermore, suppose that postverbal subjects are adjoined to the VP (cf. Belletti and Rizzi 1982). As a consequence of the latter, the c-command relation between the subject and the object may be changed if the object is a Wh-phrase.

In (10b), the trace of the Wh-phrase in object position c-commands the bound pronoun in the subject possessive NP which is adjoined to the VP. However, in (10a)

(31) Webelhuth (1985) notes that German displays this 'anti-crossover' effect as well.
the object Wh-trace does not c-command the subject possessive NP that is adjoined to CP. Hence, the former sentence is grammatical, whereas the latter is ruled out as a violation of condition 5.3.4.(21) on bound pronouns. The dichotomy between the pairs of ((10a), (10b)) and ((10c), (10d)) follows, if we assume that the subject Wh-trace c-commands both the object possessive NP adjoined to VP (cf. (10c)) and the object possessive NP adjoined to CP (cf. (10d)).

However, under these assumptions the grammaticality of a scrambled variant of (9a) would remain unexplained:

\[(13) \quad [\text{cp} \text{János} \quad [\text{vp} \text{t} \text{szereti} \quad [\text{vp} \text{János anyja}]]]]\]

A name embedded in a postverbal subject possessive NP would be c-commanded by the trace of the accusative name in object position. This configuration violates Binding Principle C. So, in (10b) c-command of the phrase adjoined to VP by the object trace is required but it has to be blocked in (11).

A solution for this contradiction would be to assume ‘reconstruction’ in the case of Binding Principles A and C, that is, to apply these conditions only to base-generated positions. 32 In that case, (11) would not violate Binding Principle C, yielding a grammatical sentence. 33

Let us turn now to a discussion of the properties of the subject-object symmetries. So far, it was argued that the Hungarian phrase structure is asymmetric. The subject is structurally prominent over the other arguments of the verb. How do subject-object symmetries appear in such a structural configuration?

Since some of these subject-object symmetries have rather intrinsic properties, it is hard to imagine that they fall outside the scope of UG. This is strongly supported by the fact that they appear in the same modules as subject-object asymmetries do. Before we examine subject-object symmetries in Hungarian within a theory of UG, let us localize the problems associated with these phenomena.

There are two kinds of subject-object symmetries. (I) Subject-object symmetries which also occur in established configurational languages, and (II) subject-object symmetries which have a somewhat different form in Hungarian than in other established configurational languages. The phenomena in (I) cannot count as decisive evidence for the absence of a VP in Hungarian. Further, these subject-object symmetries pose a problem in some other configurational languages as well. Therefore, I will argue that these subject-object symmetries are epiphenomena. They arise from the interaction of independent principles with the configurational phrase structure. On the other hand, the subject-object symmetries in (II) constitute some residual pro-

(32) This solution is similar in spirit to the one of Van Riemsdijk and Williams (1981) and Mohanan (1983). In these accounts, binding paradoxes are covered by applying the Binding Principles A and C before the execution of move \(\alpha \), and by applying the condition 5.3.4.(21) on bound pronouns after the execution of move \(\alpha \). As a result, the principles of binding theory are distributed over different levels of representation.

(33) In section 5.4.2.7., I will replace Binding Principle C by a discourse principle. This does not, however, affect the solution for binding paradoxes, because the discourse principle may also be sensitive to GF-positions.
blems not yet accounted for. It seems to me that these symmetries should be dealt with by directly relating them to specific properties of Hungarian phrase structure. Let us discuss first the epiphenomenal subject-object symmetries.

5.4.2. The Epiphenomenal Symmetries

This section examines subject-object symmetries in Hungarian that appear also in established configurational languages such as English, Dutch or Frisian. To this category belong the following phenomena, involving the distribution of sentence adverbs (cf. section 5.4.2.1.), the absence of VP-rules (cf. section 5.4.2.2.), the absence of *that*-trace effects (cf. section 5.4.2.3.), Wh-movement from possessive NPs (cf. section 5.4.2.4.), the formation of idioms (cf. section 5.4.2.5.), compositional θ-assignment to the object (cf. section 5.4.2.6), and Binding Principle C symmetries (cf. section 5.4.2.7.).

5.4.2.1. The Distribution of Sentence Adverbs

Hungarian does not require verb-object adjacency, contrary to English (cf. section 5.2.1.1.). The verb and its direct object may be separated by an adverb. Compare 5.2.1.(4)-(6), here repeated as (1):

(1) a. János látta valószínűleg Marit
 John saw-AGR3sg probably Mary-ACC
 'John has probably seen Mary.'

 b. János kinyíltotta gyorsan az ajtót
 John opened-AGR3sg quickly the door-ACC
 'John has opened the door quickly.'

 c. Mari elolvasta tegnap a könyvet
 Mary read-AGR3sg yesterday the book-ACC
 'Mary has read the book yesterday.'

 d. Mari elolvasta otthon a könyvet
 Mary read-AGR3sg at home the book-ACC
 'Mary has read the book at home.'

Koster (1986) observes that in the uncontroversially configurational language Dutch the facts are similar. Consider the Dutch equivalents of (1):

(2) a. Jan heeft Marie waarschijnlijk gezien
 John has Mary probably seen
 'John has probably seen Mary.'

 b. Jan heeft de deur snel geopend
 John has the door quickly opened
 'John has opened the door quickly.'

 c. Marie heeft het boek gisteren gelezen
 Mary has the book yesterday read
 'Mary has read the book yesterday.'

 d. Marie heeft het boek thuis gelezen
 Mary has the book at home read
 'Mary has read the book at home.'

These sentences show that verb-object adjacency is required neither in Hungarian, nor in Dutch. Both languages differ in this respect from English, in which the object has to be adjacent to the verb. What rule is responsible for this dichotomy?

(34) Jarich Hoekstra (personal communication) points out that the lack of verb-object adjacency also occurs in Frisian:

(i) a. Jan hat Hikke *ni alle gedachten* sjoen
 Jan has Hikke probably seen

 b. Jan hat de door *gau* lependwaan
 Jan has the door *quickly* opened

 c. Jan hat it boek *juster* lein.
 Jan has the book *yesterday* read

I will assume that this phenomenon in Frisian is derived similar to Dutch (see below).
Object and sentence adverbs display free word order in Dutch:

(3) a. Jan heeft waarschijnlijk [vp Marie gezien]
 b. Jan heeft [vp Marie [vp waarschijnlijk [t gezien]]]

 John has probably seen

 'Probably, John has seen Mary.'

It has been argued that the absence of verb-object adjacency in Dutch is caused by the fact that Dutch easily permits leftward adjunction of objects to the VP (cf. Hoekstra 1984, and Koster 1986). Note that the trace of the object satisfies this requirement at D-structure. Hence, the absence of verb-object adjacency is allowed only at S-structure, but not at D-structure in that language.

This requirement in English can be restated as follows. Why doesn’t adjunction of the object to the VP yield a grammatical sentence in English?

Koster (1988) argues that in left-branching languages only leftward adjunction of the object is allowed, and in right-branching languages only rightward adjunction of the object to the VP. According to Koster, the VP in English has properties of both a left-branching and right-branching structure. Therefore, neither adjunction of the object to the right of VP, nor adjunction to the left of VP is possible. This covers the verb-object adjacency requirement in English.

Let us consider now how the absence of this phenomenon is derived in Hungarian.

If verb-object adjacency is not required in uncontroversial configurational languages such as Dutch, its absence cannot count as an argument for the VP-less phrase structure. The apparent violation of verb-object adjacency in Dutch is due to the application of movement rules in the mapping of D-structure onto S-structure. Hence, the null-hypothesis is to relate the absence of this phenomenon in Hungarian to similar rules. We have two such rules available.

First, V-to-C movement (2.2.2.(9)). Second, the option of leftward adjunction of the object to the VP, since Hungarian is a left-branching language (cf. 2.2.1.(1)). These movement rules are sufficient to derive the following orders:

The order in (4a) represents the surface order of the constituents in (1c), for example. The order in (4b), on the other hand, represents the surface order of a scrambled alternant of this sentence:

(5) a. Mari elolvasta tegnap [vp a könyvet t]
 Mary read yesterday the book-ACC

b. Mari elolvasta [vp a könyvet [vp tegnap t]]
 Mary read the book-ACC yesterday

(5a) is derived by V-to-C movement, and (5b) is derived by an application of this rule in combination with leftward adjunction of the object to the VP.

Observe that in (5a) the verb scrambles over the sentence adverb tegnap. This yields the absence of verb-object adjacency. Accidentally, in (5b) adjunction of the object to the VP results in verb-object adjacency at S-structure as well. Thus, the absence of this phenomenon in Hungarian is subsumed by the properties of adjunction, and by the properties of its phrase structure. Let us turn to a discussion of the absence of VP-rules in Hungarian.
5.4.2.2. The Absence of VP-rules

It has been claimed that Hungarian lacks VP-rules, in contrast to English (cf. section 5.2.1.2.). However, I will argue in this section that this is the case with VP-deletion only.

In established configurational languages such as Dutch or Frisian, VP-deletion is absent as well. This implies that the lack of this phenomenon from the syntax of a particular language cannot be a decisive argument for the absence of a VP in the phrase structure of that language. Of course, the dichotomy between languages with VP-deletion and languages without it has to be accounted for.

I will suggest that the presence of VP-deletion in English, in contrast to Dutch, Frisian, or Hungarian, correlates with the strength of I in these languages. Further, I will demonstrate that VP-preposing and VP-pronominalization are operative in Hungarian as well, just as in English, or Dutch. These rules apply only in a specific syntactic context. Note that the presence of these phenomena in Hungarian provides direct evidence for a VP in that language. Let us consider first VP-deletion.

(I) Steele (1981) notes that VP-deletion in English involves an Aux item to the left of the ellipsis:

(1) a. John loves Mary, and Peter does too
 b. John will have cooked dinner, and so may have Peter

So, the deletion of the VP loves Mary in (la), and the deletion of the VP cooked dinner in (1b) depends on the presence of an Aux item. This item is an inflected form of do in (la), and have in (1b).

The equivalents of these sentences in Dutch are, however, ungrammatical:

(2) a. *Jan houdt van Marie, en Peter doet ook
 John loves Mary and Peter does too
 b. *Jan zal een maaltijd gekookt hebben, en zo zal Peter ook hebben
 Jan will a meal cooked have and so will Peter too have

These sentences can be turned into grammatical ones by inserting the demonstrative-pronoun dat ‘that’ at the ellipsis site in the second conjunct. This pronoun refers to the VP:

(3) a. Jan houdt van Marie, en Peter doet dat ook
 John loves Mary and Peter does that too
 b. Jan zal een maaltijd gekookt hebben, en dat zal Peter ook gedaan hebben
 Jan will a meal cooked have and that will Peter too done have

Apart from VP-pronominalization, it is also possible to form the Dutch equivalents of the sentences in (1) by maintaining the subject in the second conjunct. Compare:

(35) Fanselow (1987a: 87) reports that German lacks VP-deletion as well:

(i) *Peter liebt Afrika, und Stanley tut auch
 Peter loves Afrika and Stanley does too
(4) a. Jan houdt van Marie, en Peter ook
 John loves Mary and Peter too
b. Jan zal een maaltijd gekookt hebben, en zo ook Peter
 John will a meal cooked have and so too Peter

These sentences, however, are not cases of VP-deletion, but of ‘gapping’, or ‘reduction’. This operation may delete constituents, or parts of independent constituents. Therefore, as Zwarts (1986) argues, it is not a reliable constituent-test.

Zwarts discusses the following sentences:

(5) a. Arabella bought a whip and sold a faucet
b. Arabella bought and Clarissa sold a whip
(Zwarts 1986, (1))

(5a) exemplifies a case of coordination, and (5b) exemplifies two conjoined clauses in which the first conjunct is reduced by the deletion of the object. The latter construction is traditionally known as ‘Right Node Raising’.

Zwarts argues as follows. If only constituents of the same categorial type may be conjoined, as is generally assumed, then it follows from the grammatical status of (5a) that the phrases bought a whip and sold a faucet are categorially identical. Zwarts continues to argue that the same reasoning leads to the conclusion that the phrases Arabella bought and Clarissa sold in (5b) are of a same categorial type. According to Zwarts, this result is rather dubious, because these phrases are not regarded as constituents. Hence, reduction rules do not necessarily obliterate a single constituent. How can Right Node Raising be captured?

According to McGee Wood (1986), this phenomenon can only be captured adequately by a linearization rule, a PF-rule. McGee Wood formulates the following generalization:

(6) The element which can be omitted in Right Node Raising is the right-most element in the left-hand conjunct

For example, in Japanese only the verb may be omitted from the first conjunct (Japanese is head-final). Compare the following sentences (the ellipsis site is indicated by e):

(7) a. *Tanaka-san ga e katta, Sumisu-san ga sakana o tabemasita
 Takana subj bought Smith subj fish obj ate
 'Ms. Takana bought and Ms Smith ate fish.'
b. Tanaka-san ga sakana o e, Sumisu-san ga niku o tabemasita
 Takana subj fish obj Sumisu subj meat obj ate
 'Ms. Takana ate fish and Ms. Smith meat.'
 (McGee Wood 1986, (3))

Let us now discuss VP-deletion, and VP-reduction in Hungarian.

VP-deletion yields an ungrammatical result (cf. (8a)). The counterparts of English sentences with VP-deletion such as (1) can only be turned into grammatical ones by a gapping strategy (cf. (8b)):
Let us turn now to VP-gapping in Hungarian. I will first examine reduction of the first conjunct, i.e. Right Node Raising, and then reduction of the second conjunct.

In Hungarian, it is allowed to omit either the object or the verb from the first conjunct, but not the subject:

(9) a. János etette és Mari itatta a kacsákat
 ‘John fed the ducks and Mary made the ducks drink water.’

b. János 'kolbászt e és Mari 'kenyeret adott a fiúknak
 ‘It was sausage that John gave and it was bread that Mary gave to the boys.’

c. *etette a kacsákat és János itatta a kacsákat
 ‘The ducks were fed and John made the ducks drink water.’

This paradigm demonstrates that only the subject must be present in the first conjunct.

In (9a), the object is deleted from the first conjunct, and in (9b) the verb is deleted from the first conjunct. (9a) represents a neutral sentence, as may be observed from the English glosses. (9b), on the other hand, involves contrastive Focus. The NP kollbászt in the first conjunct, and the NP kenyeret in the second conjunct have primary stress. If (6) is correct, then this provides another argument for the claim that SVO is the neutral sentence order in Hungarian (cf. 2.2.(28a)), since the object in (9a) is omitted in neutral order.

Note that (9c) matches the distribution of nominative pro-drop in Hungarian (cf. 4.2.(34a)). One could therefore argue that this sentence is ungrammatical for independent reasons, namely, because of the fact that backward pronominalization is not allowed. However, deletion of an NP-constituent in the first conjunct does not imply that a small pro must be present at the ellipsis site.

The first conjunct of (9a), for example, provides a context for accusative pro-drop (cf. 4.2.(343b)). The verb etet is conjugated definitely, and subcategorizes for an accusative NP. However, an accusative pro cannot be present at the ellipsis site, because the deleted constituent a kacsák ‘the ducks’ is plural. Recall that accusative pro-drop is not sanctioned when the NP is plural. Hence, if pro is not present at the ellipsis site in (9a), we may assume that this is not the case either in (9c).

In sum, reduction of the first conjunct in Hungarian yields a subject-object asymmetry. The object may always be deleted, the verb under specific circumstances, but the subject may never be omitted.

Let us consider now reduction of the second conjunct. Reduction of the second conjunct is much freer than reduction of the first conjunct. É. Kiss (1981b) observes that this phenomenon may affect a combination of the verb and any of its NP complements:
In (10a), the verb with its accusative, and dative NPs, in (10b) the verb with its nominative and accusative NPs, and in (10c) the verb with its nominative and dative NPs are ‘reconstructed’ in the second conjunct. These sentences thus show that any combination of the verb with its complement may be omitted from the second conjunct.

Let us summarize this brief discussion of conjunction reduction. It does not necessarily refer to single constituents. This seems to be true across languages. Hungarian does not form an exception. This implies that reduction tests are illegitimate VP-tests. They do not bear on the question whether there is a VP in a particular language. Let us turn next to a discussion of VP-preposing.

(11) English acknowledges the rule of VP-preposing. Consider the following sentence:

John read the book, and read the book John did

The VP read the book is preposed to the initial position of the second conjunct.

This phenomenon in Hungarian may only apply in a specific context, namely, when the verb and its direct complements are left-dislocated. So, before presenting some instances of VP-preposing, let us first consider Left Dislocation with verbs:

(12) a. Mulatni, Péter mulattott
 enjoy-INFI Peter enjoyed-AGR3sg
 ‘Enjoy, himself Peter did.’

b. Péter be nem rugott de énekelt, énekelt
 Peter in not kicked-AGR3sg but sing-INFI sing-AGR3sg
 ‘Get drunk Peter didn’t but sing he did.’

These sentences exemplify that Left Dislocation of a finite verb yields an infinitival copy of this verb in the initial-position of its own minimal clause. This is in (12a) the matrix sentence, and in (12b) it is the embedded clause.

The meaning of these doubled verb constructions is more subtle than indicated in the glosses (cf. Szabolcsi 1980, 1981b for discussion). Consider now the following sentences in which left dislocation of the VP has taken place:

(36) See for further discussion of ellipsis and gapping in Hungarian Kerkovits (1985) and Bánréti (1985).
(38) Kallgren and Prince (1988) discuss a similar phenomenon in Yiddish.
(39) With the De Groot (1981b), I assume that the infinitival copy in initial-position is what De Groot calls theme position. This position is identical to the left-dislocation position of section 4.3.
These sentences exhibit the following properties.

First of all, observe that the direct argument of the verb is doubled along with the infinitival copy. Second, this argument may not be modified by a determiner, and is incorporated by the infinitive. Hence, this left-dislocated VP displays the diagnostics of Noun-Incorporation (see, section 5.3.1.2.). Recall that this phenomenon involves only the underlying direct arguments of the verb. Third, the above constructions have a property in common with VP-preposing in English.

Webelhuth (1985) points out that in English, the inflectional complex with the tense and agreement features remains outside of the preposed constituent. In (11), for example, this complex appears on the lexical item did. Obviously, this is due to the requirement that these features must be attached to a lexical item within the clause. This explains also why an infinitival copy appears in Hungarian when a finite verb is left-dislocated. The finite verb must remain inside of the sentence, because the inflectional features are bound to it.

Hence, VP-preposing in Hungarian is quite similar to English in this respect, although the inflectional features are spelled out on a lexical I item in English, but in Hungarian they are realized on V. This phenomenon in Hungarian is further constrained, as it does not apply with fully referential NPs. Instead of taking this as an argument for the absence of a VP (cf. 5.2.1.(7)), the question is rather why it is prohibited with a full referential NP. At this place, I do not have a solution to offer for this problem. Let us consider now VP-pronominalization in Hungarian.

(III) We have seen already an instance of VP-pronominalization. In Dutch, the d-pronoun dat at the ellipsis site refers to the preposed VP. Compare the sentences in (2), here repeated as (14):

(14) a. Jan houdt van Marie, en Peter doet dat ook
John loves Mary and Peter does that too
b. Jan zal een maaltijd gekookt hebben, dat zal Peter ook gedaan hebben
John will a meal cooked have, that will Peter too done have

Koster (1987) argues that this phenomenon is not a transformational rule but that it is a case of anaphora, similar to the Left Dislocation of NPs. The preposed VP is left-dislocated, and its position at the ellipsis site is hold by a d-pronoun:

(15) a [Het boek lezen], dat wil ik niet
the book read-INFI that want I not
b. [De auto kopen], dat heeft Jan niet gedaan
the car buy-INFI that has John not done
c. [Het huis bouwen], dat zal hij niet
a house built-INFI that will he not

In these sentences, the preposed constituent is the infinitival alternant of the verb, like the preposed constituent with VP-preposing in English, or Hungarian (cf. (11), and (13)). The d-pronoun represents the dislocated VP-constituent in the sentence.
Consider now the Hungarian equivalents of (15):

(16) a. [A könyvet elovasni], azt nem akarom
the book-ACC perf-read-INFI that-ACC not want-AGR1sg

b. [Az autót megvenni], azt János nem tette
the car-ACC buy-INFI that-ACC John not did-AGR3sg

c. [A házat megépíteni], azt nem fogja
the house-ACC build-INFI that-ACC not will-AGR3sg

In these sentences, the accusative demonstrative pronoun azt refers to the dislocated VP which contains an infinitive and its direct accusative NP.

One could argue that the preposed phrases in (16) are not VPs, but IPs, because they must have a PRO in their subject position. Recall, however, that auxiliary verbs such as akar and fog trigger ‘restructuring’ with an infinitive complement at S-structure (cf. section 5.3.2.). Hence, at least the preposed complements in (16a) or (16c) are categorically VPs. Although it must be admitted that the force of this argument for a VP in Hungarian is somewhat weakened by the fact that it depends largely on theory-internal considerations.

Let us now summarize this section on VP-rules. I demonstrated that VP-rules also appear in Hungarian.

VP-preposing applies if a finite verb together with its direct NP argument is left-dislocated. This argument, however, may not be modified by an article, and the finite verb appears in the form of an infinitival copy.

VP-pronominalization takes place if a finite verb with its direct NP argument is left-dislocated, and its position at the ellipsis site is filled by a d-pronoun. The left-dislocated verb is an infinitive. The fact that the verb may only be preposed, or pronominalized in its unfinite form has to do with the requirement that the inflectional-features must be bound in its clause.

The occurrence of VP-preposing, and VP-pronominalization provides direct evidence for a VP in Hungarian, and may therefore be added to the list in 5.4.1.(5).40 Further, I argued that VP-deletion is not a reliable constituent-test. It does not apply in Hungarian, in contrast to English. However, in established configurational languages like Dutch this phenomenon does not occur either. Therefore, the lack of VP-deletion in the grammar of a particular language cannot be an argument in favor of a VP-less phrase structure of that language.

It seems to me that the dichotomy between English on the one hand, and Dutch, Frisian, or Hungarian on the other hand involves the IP-parameter (cf. section 2.2.2.). I is strong in English, but it is weak in the other languages. Only material to the right of I may be deleted in English, as I is always lexically filled, and must be present in the clause to host the inflectional-features. This happens to coincide with VP. Weak I, however, does not isolate this node with reduction phenomena. Therefore, it does not show up with such phenomena in the other Germanic languages or Hungarian.

(40) Webelhuth (1985) notes that VP-preposing in German is impossible. According to Webelhuth, the absence of this is due to the fact that German has no separate I-position.
There appears to be a dichotomy between the reduction of the first conjunct (Right Node Raising), and reduction of the second one in Hungarian. With the former the verb or the object may be deleted, whereas in the second conjunct a combination of the verb and any of its direct NPs may be deleted. Hence, Right Node Raising displays a subject-object asymmetry, and may therefore be added to the list in 5.4.1.(5).\(^4\)

5.4.2.3. The Absence of that-Trace Effects

Hungarian lacks *that*-trace effects (cf. 5.2.4.2). The complementizer hogy ‘that’ has to be spelled out both when the subject or the object is raised by long Wh-movement. Compare the sentences in 5.2.4.(4), here repeated for convenience as (1):

(1) a. *Kit gondolsz *hogy* t látta Vilit?
 ‘Who do you think saw Bill?’

b. *Kit gondolsz *hogy* Vili látott t?
 ‘Who do you think that Bill saw?’

Koster (1986) observes that the complementizer dat ‘that’ may not be omitted when the subject (cf. (2a)) or the object (cf. (2b)) are fronted by long Wh-movement in Dutch:

(2) a. *Wie denk je *dat* hem gezien heeft?
 ‘Who do you think has seen him?’

b. *Wie denk je *dat* hij t gezien heeft?
 ‘Who do you think that he has seen?’

Jarich Hoekstra (personal communication) informs me that Frisian lacks *that*-trace effects as well. With long Wh-movement the complementizer must be present:

(3) a. *Wa tinkst *dat* t hem sjoen hat?
 ‘Who do you think has seen him?’

b. *Wa tinkst *dat* er t sjoen hat?
 ‘Who do you think he has seen?’

These sentences show that *that*-trace violations appear in uncontroversial configurational languages such as Dutch or Frisian. So the absence of these violations in Hungarian does not necessarily provide evidence for the absence of a VP in that language. The question then is how to cover the dichotomy between English on the one hand, and the other Germanic languages and Hungarian on the other hand.

I will assume that this is related to the IP-parameter (cf. 2.2.2.(5)), here repeated as (4):

(4) a. I is strong in English

b. I is weak in Dutch, Frisian, and Hungarian

Recall further that the minimal maximal domain of the subject and object in these language-types is the following:

\(^{41}\) Whitman (1984) and Fukui (1986) observe that Japanese does not display VP-rules. See these references for further discussion on the lack of direct evidence for a VP in that language.
(5) a. **Assumption 1**
 In languages with *strong* I, the minimal maximal domain of the subject is IP, but the minimal maximal domain of the object is CP.

 b. **Assumption 2**
 In languages with *weak* I, the minimal maximal domain of the subject is similar to the minimal maximal domain of the object, that is, CP.

A consequence of the fact that the VP may L-contain the IP in languages with weak I (cf. chapter two) is that the domain of the subject is 'stretched' from IP to CP. Before we settle the dichotomy with *that*-trace effects between English and the other Germanic languages, or Hungarian, let us first consider the binding theory for Wh-traces.

Following Aoun (1986), I will assume that Wh-traces are non-A-anaphors, and that they must therefore be bound in the minimal maximal domain of their governor. The Binding Principle for Wh-traces is defined as follows:

(6) **Binding Principle for Wh-traces**
Wh-traces are bound in the minimal maximal domain of their governor (if it contains an antecedent).

Let us first derive the *that*-trace effect of English:

(7) a. *[CP Who do you think [cp t that [IP t saw John]]]
 b. [CP Who do you think [cp t that [IP John [vp saw t]]]]

I is strong in English (cf. (4a)). By (5a), the domain of the subject is IP, whereas the domain of the object is CP. (7a) is ungrammatical because it yields a violation of Binding Principle (6). The subject trace is not bound in its minimal maximal domain, the IP. (7b), on the other hand, is not ruled out by Binding Principle (6). The object trace in (7b) is bound in its minimal maximal domain, the CP. In this domain there is an appropriate binder, namely, the intermediate trace in the Spec of CP. Hence, this yields a subject-object asymmetry.

The question arises why the absence of the complementizer *that* turns (7a) into a grammatical sentence:

(8) [CP Who do you think [cp t [ip t saw John]]]

CP in this sentence has no lexical head. Therefore, it is L-contained by IP (cf. 2.2.2.(37) for the definition of L-containment). Contrary to (7a), the subject Wh-trace is bound in its minimal maximal domain, the IP, by the intermediate trace. Hence, no binding theory violation occurs, and the sentence is grammatical.

Let us turn now to the absence of *that*-trace effects in the other Germanic languages and Hungarian.

I is weak in Dutch, Frisian, and Hungarian (cf. (4b)). By (5b), the domain of the subject and the object is the CP in these languages. This implies that subject and object Wh-traces must find an appropriate antecedent in CP.

Consider, for example, the violation of *that*-trace effects in Hungarian, here repeated as (9):42

(42) In chapter six, it will be argued that long Wh-movement in Hungarian applies successively cyclicly through the Spec of CP and that V-to-C movement does not block the application of this phenomenon. Hence, for ease of perception I will present the verb in its base-generated position in (9).
Binding Principle for Wh-traces is satisfied both by the subject and object Wh-trace. In their minimal maximal domain, i.e. the CP, an appropriate binder is present, namely, the intermediate trace in the [Spec, CP]. Hence, this accounts for the absence of that-trace effects in languages with weak I. This approach predicts that there is an argument/non-argument symmetry with that-trace effects in Dutch, Frisian, and Hungarian but not in English.

Compare the following sentences with the extraction of the adjunct why in English, Dutch, Frisian, and Hungarian respectively:

(10) a. [CP Why do you think [CP t that John has left t]]
 b. [CP Waarom denk jij [CP t dat Jan t weggegaan is]]
 c. [CP Wérom tinkst [CP t dat Jan t fuortgien is]]
 d. [CP Miért gondolod [CP t hogy János elment t]]

Suppose adjuncts, like why, are adjoined to VP as follows:

(11) VP
 /
 VP Adjunct
 \
 V

According to the government definition in 2.2.2.(40), adjoined categories are governed by the head of the category to which they are adjoined. A maximal projection includes all member-nodes of that projection. Therefore, the adjunct in this configuration is governed by V.

From this it follows that the local domain of adjuncts is CP. Note now that Binding Principle (6) is satisfied in (10), for the trace in [Spec, CP] may act as an antecedent for the trace at the extraction site. This yields then an argument/non-argument symmetry with that-trace violations in Dutch, Frisian or Hungarian but not in English, as expected.

Recapitulating, that-trace violations appear also in established configurational languages such as Dutch or Frisian. Therefore, this phenomenon cannot count as a convincing argument for the hypothesis that the phrase structure of that language lacks a VP. Rather, the difference between English and the other Germanic languages or Hungarian with that-trace effects is related to the properties of I in these languages. If I is strong the local domain of the subject is different from the local domain of the object, whereas if I is weak the local domain of the subject and the object coincide. This is responsible for the subject-object asymmetry with this phenomenon in English, and for the lack of it in the other Germanic languages or Hungarian.
5.4.2.4. Wh-movement from Possessive NPs

Subject-object symmetries occur with (long) Wh-movement from possessive NPs in Hungarian. Compare the sentences 5.2.4.(5) and (6), here repeated as (1) and (2):

(1) a. *Kinek ismertétek [NP a t vendégét]?*
 who-DAT knew-AGR2pl the guest-npAGR3sg-ACC
 'Whose guest did you know?'

 b. *Kinek alszik [NP a t vendégét]?*
 who-DAT sleep-AGR3sg the guest-npAGR3sg
 'Whose guest sleeps?'

(2) a. Melyik színésznőnek gondolja János hogy Péter megtalálta [NP a t fényképét]?
 which actress-DAT think-AGR3sg John that Peter found the photo-npAGR3sg-ACC
 'Which actress does John think that Peter found the photo of?'

 b. Melyik színésznőnek gondolja János hogy [NP a t fényképe] meg lett?
 which actress-DAT think-AGR3sg John that the photo-npAGR3sg up-turned-AGR3sg
 'Which actress does John think that the photo of was found?'

In the sentences in (2), the Wh-possessor NP of an object phrase and of a subject phrase are fronted to the matrix sentence. I argued in the preceding section that long Wh-movement from both these positions yields a grammatical result. Therefore, the question is rather what allows short Wh-movement in (1)?

Following Szabolcsi (1981a, 1984), I will assume that Wh-possessors may escape from their possessive NP through the Spec-position of this constituent, more precisely through the Spec of DP (cf. chapter seven for details). This position may serve as a landing and extraction site for raised possessor NPs. Once Wh-possessors leave their possessive NP, they may participate in long Wh-movement. Hence, subject-object symmetries with (long) Wh-movement do not necessarily provide evidence for a non-configurational approach of Hungarian.

5.4.2.5. The Formation of Idioms

The formation of idioms in Hungarian is captured by generalization 5.2.1.(13), here repeated as (1):

(1) An idiom frame may consist of a combination of a verb with any of its direct arguments

If an idiom frame corresponds to a single constituent, the occurrence of idioms with a free object argument poses a problem for the assumption that Hungarian is a configurational language. É. Kiss (1987c) refers to Ó. Nagy (1966) for hundred of idioms of that type.

Horvath (1987: 162) notes, however, that among this large number of Hungarian subject idioms, only a few are true subject idioms with a free object argument. Even among those, there are some with an English counterpart matching them word by word such as the equivalents of 5.2.1.(10a) and (10b), here repeated as (2):
796

Jan Koster (personal communication) has brought to my attention that in Dutch idioms with a free object argument may appear as well:

(3) a. Er is mij een steen van het hart gevallen
 'There is a stone from the heart fell'
 'I am relieved.'

 b. Hem is de moed in de schoenen gezonken
 'He lost courage.'

One could argue that these idioms are not proper subject idioms, because they involve the ergative verbs *vallen* 'to fall', and *zinken* 'to sink'. The following example represents, however, an undebatable subject idiom:43

(4) Waar wringt hem de schoen?
 'What is your problem?'

In view of the fact that there are subject idioms in uncontroversial configurational languages such as English or Dutch, there is at best only a quantitative difference between these languages and Hungarian. Thus, idioms should not be considered as reliable evidence concerning the question whether the phrase structure of a particular language is configurational or not (cf. also Horvath 1987).

5.4.2.6. Compositional θ-Assignment to the Object

I discussed some instances of thematic object selection depending on the choice of the subject (cf. section 5.2.2.). Horvath (1987: 152) observes that they can essentially be matched one-to-one with similar cases from English, an established configurational language.

Horvath presents the examples (1b) and (2b)-(2d) from English, in which the object theme role is determined by the θ-role of the subject (cf. also Marantz 1984):

(1) a. The kidnappers are killing Mary
 'Mary is suffering from pain in her feet.'

 b. Her feet are killing Mary

(2) a. Mary hit John
 'A feeling steals upon X that ...'

 c. Misfortune hit John

 d. An idea hit John

I fully agree with the conclusion of Horvath (1987: 153) on the status of arguments based on compositional θ-assignment in the configurationality debate: "In view of the lack of substantial empirical evidence that would distinguish Hungarian
from the English-type languages in terms of manifestation of selectional asymme-
tries and symmetries between subjects and objects, we can only conclude that the
domain of semantic selection provides no support, and in fact is problematic, for a
strict non-configurational model."

5.4.2.7. Binding Principle C Symmetries

In section 5.2.3., I discussed the subject-object symmetry with pronominal nonco-
reference (Binding Principle C) 5.2.3.(4), here repeated as (1):

(1) a. *Jánoș anyja szereti (őt)
John mother-npAGR3sg loves him
b. *(Ő) szereti János anyját
John mother-
'John's mother loves him.'

This phenomenon resists scrambling. Compare 5.3.2.(5), here repeated as (2):

(2) a. *(Ő) szereti Jánoš anyja
John's mother loves
b. *Jánoš anyját szereti (ő)
John loves John mother-
'John loves John's mother.'

É. Kiss (1987a) argues that Binding Principle C 6.3.4.(3c), here repeated as (3),
accounts for this symmetry with pronominal nonreference:

(3) Binding Principle C: An R-expression (a category that is referentially independent,
for example, names) is free

É. Kiss assumes further that this principle operates on a flat structure in the case
of Hungarian (cf. 5.1.(1)).

However, Binding Principle C configurations with a sequence of names display a
subject-object asymmetry. Compare 5.3.4.(12), here repeated as (4):

(4) a. János anyja szereti Jánost
John mother-npAGR3sg loves John-ACC
'John's mother loves John.'
b. *János szereti János anyját
John loves John mother-npAGR3sg-ACC
*'John loves John's mother.'

Recall furthermore that this phenomenon remains unaffected with scrambling.
Compare 5.3.4.(19), here repeated as (5):

(5) a. Jánost szereti János anyja
John-ACC loves John-npAGR mother
b. *János anyját szereti János
John mother-npAGR-ACC loves John

Binding Principle C with a pair of names is also unaffected by the depth of em-
bedding.

If a name is embedded a maximal projection deeper than the other name, then
again we find a subject-object asymmetry. Reconsider 5.3.4.(20), here repeated as (6):
From the paradigms above, we draw the following conclusions:

(i) The general discourse principle (7) is grammaticalized in Hungarian:

(7) Avoid repetition of R-expressions

This principle operates on structural configurations, and it is subsumed by Binding Principle C.

(II) Because the distribution of the pair (pronoun, name) does not display any asymmetry, whereas the corresponding relation of a pair (name, name) yields an asymmetry, what falls under Binding Principle C involves a split. The relation (name, name) is, as pointed out above, covered by Binding Principle C. The binding relation between a pronoun and a name, however, cannot be accommodated by a structural condition. Therefore, it seems to me, it is not constrained by a syntactic principle in the strict sense.

The question arises of course how this binding relation is captured in Hungarian. Below I will suggest that it is subject to a discourse principle proposed in Koster (1987).

Let us first investigate whether a Binding Principle C effect appears in the relation between a pair of (pronoun, name) by varying (i) the case-marking on the NPs, (ii) the type of NPs, or (iii) the depth of embedding.

(i) In (1), the free pronoun is marked nominatively or accusatively. The following sentences exemplify that pronouns with lexical case, i.e. dative (cf. (8)) or instrumental (cf. (9)), cannot be coreferential either with a name embedded in a possessive NP, whatever the linear order:

(8) a. *Mari anyja kiabált neki Mary mother-npAGR3sg shouted she-DAT
 ‘Mary’s mother shouted to her.’
 b. *Neki kiabált Mari anyja

(9) a. *Mari anyja veszekedett vele Mary mother-npAGR3sg quarrelled she-INSTR
 ‘Mary’s mother had a quarrel with her.’
 b. *Vele veszekedett Mari anyja

From a comparison of these examples and those in (1), we conclude that the symmetry with pronominal noncoreference has nothing to do with the type of case-marking. The pronoun may either appear with structural Case or with lexical case.

Let us determine whether this phenomenon is sensitive to the type of NP.

(ii) One could hypothesize that it is caused by the particular structure of the possessive NP in Hungarian. Recall that possessive NPs contain AGR which is spelled out on the head-noun (cf. chapter two).
In the following sentences, the R-expression is embedded in an NP which lacks AGR. Pronominal noncoreference is, however, obligatory in these cases as well, independently of the case-marking on the pronoun, i.e. nominative (cf. (10a)), accusative (cf. (11a)), and dative (cf. (12a)), or of whatever the linear order of the constituents is (cf. (10b), (11b), and (12b)).

(10) a. *[NP A Mari által Jánosnak küldött levelet] nem olvasta (\(\bar{\theta}\))
 the Mary by John-DAT sent letter-ACC not read he
 *'He has not read the letter sent to John by Mary.'
 b. *(\(\bar{\theta}\)) nem olvasta [NP A Mari által Jánosnak küldött levelet]

(11) a. *[NP A Jánossal táncoló lány] megcsőkolta (\(\bar{\theta}\))
 the John-INSTR dance-pres.part. girl kissed him
 'The girl who was dancing with John kissed him.'
 b. *(\(\bar{\theta}\)) megcsőkolta [NP a Jánossal táncoló lány]

(12) a. *[NP A Jánossal táncoló lány] tetszett neki (\(\bar{\theta}\))
 the John-INSTR dance-pres.part. girl liked he-DAT
 *'He liked the girl who was dancing with John.'
 b. *Neki tetszett [NP a Jánossal táncoló lány]

Hence, we conclude that the symmetry with pronominal noncoreference is not due to the type of NP. Let us check whether it has to do with the depth of embedding.

(iii) Here, I will consider pronominal noncoreference with the following three types of embedded clauses: (A) that-clauses, or free relatives, (B) embedded clauses of absolute subordination and (C) relative clauses (see, section 4.5. for a discussion of these types). Let us discuss first this phenomenon in that-clauses and free relatives.

(A) Kenesei (1984b) observes that in case an R-expression is embedded in a that-clause (cf. (13a) and (13c)), again, a subject-object symmetry occurs with pronominal noncoreference. Note further that these configurations remain unaffected by the application of scrambling (cf. (13b) and (13d)):

(13) a. *(\(\bar{\theta}\)) nem érdekelte [CP hogy keresik Jánost]
 he-ACC not interested that seek-AGR3pl John-ACC
 *'He was not interested in the fact that they sought John.'
 b. *[CP Hogy keresik Jánost] (\(\bar{\theta}\)) nem érdekelte
 c. *(\(\bar{\theta}\)) tudta [CP hogy keresik Jánost]
 he knew that seek-AGR3pl John-ACC
 *'He knew that they sought John.'
 d. *[CP Hogy keresik Jánost] tudta (\(\bar{\theta}\))

The following paradigm shows that free relatives pattern with that-clauses:

(44) Anna Szabolcsi (personal communication) has brought to my attention that this is not the case with a focussed pronoun. Compare the alternant of (10a):

(i) [NP A Mari által Jánosnak küldött levelet] [\(\bar{\theta}\)(\(\bar{\theta}\))] nem olvasta
 the Mary by John-DAT sent letter-ACC he/that not read
 *'It is him who did not read the letter sent to John by Mary.'

Hence, focussing is an intervening factor from which I will abstract in the discussion below.
In Hungarian, embedded clauses, or free relatives have a CP-structure (cf. section 4.5.1.). Hence, the subject-object symmetry with pronominal noncoreference remains unaffected if the name is embedded only under CP. Let us consider now pronominal noncoreference with absolute subordination.

Kenesei (1984b) notes that a positional subject-object asymmetry with this phenomenon shows up in embedded clauses of absolute subordination. These embedded clauses are introduced by complementizers such as mivel 'since', or bár 'though'. A coreferential reading between a free pronoun and a name embedded in such clauses is allowed only if this clause is in sentence-initial position:

(15) a. [CP Mivel János beteg volt] (ò) otthon maradt
 'Since John was ill, he stayed at home.'
 b. *(ò) otthon maradt [CP mivel János beteg volt]

Kenesei argues that this positional asymmetry is due to the fact that clauses of absolute subordination are adjoined to the matrix clause when they are in initial position, but are attached under this clause when they are in postverbal position. These examples show that pronominal noncoreference is sensitive to the structural environment as well.

Let us turn to pronominal noncoreference with relative clauses.

(C) The sentences in (1)-(2), and in (11)-(14) have in common that the name is embedded in a phrase that has a relatively low degree of embedding, i.e. either in NP, or CP. A higher degree of embedding than in these cases can be reached by embedding the name in a relative clause.

With Kenesei (1984a, 1984b), I assume that relative clauses with a lexical head have the following structure in Hungarian:

(17) [XP (X)P [CP ...]]

Note now that the subject-object symmetry with pronominal noncoreference breaks down when the name is embedded in an accusative relative clause that precedes the nominative free pronoun:
ASYMMETRIES IN HUNGARIAN

(18) a. *(ő) nem szereti [NP azt a lányn [CP aki Jánossal táncoolt]]
 he not loves that-ACC the girl-ACC who John-INSTR danced
 *'He does not love the girl who danced with John.'
 b. [NP Azt a lányn [CP aki Jánossal táncoolt]] nem szereti (ő)

Furthermore, pronominal coreference is also possible when the name is embedded in a nominative relative clause that precedes a free accusative pronoun:

(19) a. [NP Az a lányn [CP aki táncoolt Jánossal nem szereti (ot)]]
 that the girl who danced John-INSTR not loves him
 'The girl who danced with John does not love him.'
 b. *(őt) nem szereti [NP az a lányn [CP aki táncoolt Jánossal]]

So, pronominal noncoreference with relative clauses displays a subject-object asymmetry.45

Let us first examine the pair in (18). This pair represents the Hungarian structural counterpart of SCO. For example, the English sentence (20a), but not (20b) is a typical case of this phenomenon:

(20) a. *Who does he love t1
 b. [Which man that John] does he like t1

In (20a), the trace of Wh-movement is coindexed with and c-commanded by the pronoun he in subject position. Such a structure exhibits the SCO-effect. Example (20b), however, neither possesses the relevant structure (with coindexing), nor displays SCO.

Saito and Hoji (1983) claim that this contrast is also found with scrambling in Japanese:

(21) a. *[S Johnni [S karogai t1; syōkaisita]] (koto)
 John-ACC he introduced fact
 *'He introduced John (to the audience).'
 b. [S [NP Maryga Johnni] okuttra tegamio]j [S karogai mada t1 yonde inai] (koto)
 Mary John-DAT sent letter-ACC he yet read have-no fact
 (Saito and Hoji 1983: 246)

Again, the object trace in (21a) is coindexed with and c-commanded by the pronoun karō ‘he’ in subject position, unlike in (21b).

Only the former exhibits SCO. According to Saito and Hoji, it is the adjunction of the object to S that reverses the c-command relations in (21b). Therefore, Saito and Hoji conclude that scrambling regarded as an instance of Move-α applied to a hierarchical phrase structure gives the correct result.

(45) In case a relative clause is focussed its CP-part has to be extraposed. When both the pronoun and the extraposed clause are postverbally disjoint reference is obligatory in any order:

(i) a. *[p Az a lányt nem szereti (ő) [CP aki Jánossal táncoolt]]
 that-ACC the girl-ACC not loves he who John-INSTR danced
 b. *[p Az a lányt nem szereti [CP aki Jánossal táncoolt (ő)]]
 that-ACC the girl-ACC not loves he who John-INSTR danced he
 c. *[p Az a lányt nem szereti [CP aki Jánossal táncoolt] (őt)]
 that the girl not loves he who John-INSTR danced him
 d. *[p Az a lányt nem szereti (őt) [CP aki Jánossal táncoolt]]
 that the girl not loves him who John-INSTR danced
The SCO-effect in the Hungarian pair (18), as I will make precise below, can be accounted for along the lines of Saito and Hoji (1983). This implies that we cannot derive the absence of the SCO in the pair ((1b), (2b)) in purely syntactic terms. Therefore, I will suggest that the symmetries with pronominal noncoreference are subsumed by a discourse principle. Let us turn now to a discussion of the pair in (19).

Scrambling of the accusative pronoun \(\hat{b}t \) to a preverbal CP-position blocks a coreferential reading between this pronoun and a name (cf. (19b)). The 'precedence' effect with pronominal noncoreference is not too surprising if we take into account that the linear order of the pronoun and the name in this sentence matches the context of backward pronominalization.

In the literature (cf. Solan 1983, among others), it has often been reported that there is almost a total ban on backward pronominal coreference across languages. This restriction is sometimes relaxed in certain structural environments as a marked alternative. Forward anaphora, on the other hand, is always possible.

How then is the dichotomy between (19a) and (19b) accounted for?

Recall that reflexive binding in Hungarian is not sensitive to scrambling (cf. section 5.3.4.1.). If, on the other hand, pronominal noncoreference is sensitive to scrambling, as the pairs in (18) and (19) demonstrate, then we run into a reconstruction paradox in Hungarian as well.

The following triple from English exemplifies this type of paradox:

(22) a. *He throws away \[some of the books John read\]
 b. [Which of the books that John read] does he throw away it?
 c. [Which picture of himself] did Mary say John admired most it?

(22a) and (22b) represent instances of pronominal noncoreference and (22c) exhibits reflexive binding.

In the case of pronominal coreference, the pronoun may not c-command the antecedent with which it is coreferential. In the case of reflexive binding, on the other hand, the reflexive anaphor must be c-commanded by its coreferential antecedent. If we would apply these conditions at a derived level of representation, say, after Wh-movement, the ungrammaticality of (22a), and the grammaticality of (22b) would be predicted, since he c-commands its antecedent John in (22a), but not in (22b). However, under this option the grammaticality of (22c) remains unexplained. The reason for this is that the reflexive anaphor is not c-commanded by its antecedent after Wh-movement.

What is needed to arrive at the correct result in this sentence is the reconstruction of the Wh-phrase to its base-generated position. However, if we apply the Binding Principles at the base-generated structure, that is, before the application of move \(\text{Wh} \), then the ungrammaticality of (22a) and the grammaticality of (22c) follow, but now the grammaticality of (22b) is unexpected. The pronoun and its antecedent in (22a) and (22b) display a similar c-command configuration in their base-generated structure.

So, whatever level of representation we take as relevant for the Binding Principles, we run into a paradox. In order to escape this paradox, Van Riemsdijk and Williams (1981), and Mohanan (1983) have proposed to determine reflexive binding at
D-structure or NP-structure, that is before an application of Move-α, and pronominal noncoreference at S-structure, that is, after an application of Move-α. This correctly yields the patterning of data in (22). Therefore, let us adopt this solution for binding paradoxes.

Consider now how the scrambling effects with pronominal noncoreference in the Hungarian pairs (18) and (19) are derived.

The subject pronoun in (18a) is higher on the tree than its antecedent, because it is scrambled to a preverbal [Spec, CP], whereas its antecedent is embedded in an object phrase that is base-generated in the VP. This configuration violates the c-command constraint on pronominal noncoreference, yielding an ungrammatical result.

(18b), however, is grammatical because of the SCO-effect. The accusative relative clause with the name is scrambled to a preverbal CP-position over the subject pronoun. Therefore, it does not c-command its antecedent at S-structure any longer.

(19a) is grammatical, because the object pronoun does not c-command the name embedded in a subject relative clause. In (19b), on the other hand, the object pronoun is scrambled to a preverbal CP-position, whereas its antecedent is adjoined to the VP. In this S-structure configuration the pronoun c-commands its antecedent. Hence, a coreferential reading between the pronoun and the name is blocked.

In sum, pronominal noncoreference in Hungarian yields both a subject-object symmetry and a subject-object asymmetry. The binding relation between a pair of names displays a subject-object asymmetry. This implies that not all the facts subsumed under Binding Principle C can be accounted for by this principle. The question then arises what is the status of this principle in a theory of UG?

Koster (1987, 369) concludes that Binding Principle C is not a purely syntactic principle. Koster proposes to reinterpret it as a discourse principle, according to which the crucial relative prominence of NPs in the discourse is determined by both structural and nonstructural factors. Koster motivates this step by the following two problem cases.

First, Koster observes that Binding Principle C effects do not form a unitary phenomenon. Many different cases supposed to be ruled out by this principle vary enormously in acceptability.

Compare the following sentences:

(23) a. *He hates John
 b. *He thinks that John is sick
 c. *John thinks that John is sick
 d. *He left because John was sick
 e. *John left because John was sick
 f. *Nobody left because John was sick
 g. *Who t thinks that we like t
 h. *Who t was arrested before we saw e

(Koster 1987: 346)

Koster notes that all these sentences in (23) are supposed to be covered by Principle C. According to Koster, however, this is suspicious, because they differ enormously in acceptability. For example, (23a) is entirely unacceptable in the intended reading, while (23c) is almost acceptable.

Second, Koster notes that c-command is neither necessary, nor sufficient for the disjoint reference interpretation:
(24) a. *We talked with him about John
b. We gave her the furcoat that Mary has always wanted
(Koster 1987: 347)

(24a) illustrates that Binding Principle C effects are not necessary for disjoint reference. The pronoun embedded in the PP does not c-command the name. (24b) illustrates that c-command is not sufficient for Principle C violations to occur. This sentence is grammatical in the intended reading, although the name is c-commanded by the pronoun.46

In order to account for the cases accommodated by Binding Principle C, Koster (1987) formulates a discourse principle that also may take structural information into account:

(25) Discourse Principle for Coreferential NPs:
For each sequence of coreferential argument NP_i
C = (NP_1, ..., NP_i, NP_{i+1}, ..., NP_n) (1 < i ≤ n)
NP_{i+1} must be more anaphoric than NP_i (unless both are anaphors/pronominals),
depending on the relative prominence of NP_i
(Koster 1987: 353)

According to Koster, following Lakoff (1968) at this point, anaphoricity is a matter of degree in agreement with the following relative scale:

(26) pronouns (anaphors) > epithets > definite descriptions > names

Koster points out that crucial in this reformulation of this Binding Principle is the role given to the relative prominence of NP. The intuitive idea is that the need to continue a sequence with a more anaphoric NP decreases if the prominence of the last NP of the discourse sequence decreases.

Koster further assumes that relative prominence can also be determined by purely structural factors for which he sets up the following prominence hierarchy:

(27) Prominence (i) c-command
a. local subject; b. governing subject; c. subject; d. nonsubject
(ii) non-c-command
a. degree of embedding i (i>0); b. degree of embedding i + 1; c. etc.

This specification of the relative prominence of two NPs in a sequence distinguishes two cases. Firstly, the first NP c-commands the second NP. Secondly, the first NP does not c-command the second one. In the former case, the first NP is relatively more prominent if it is a local subject with respect to the second NP. If we go down the list, the disjoint reference interpretation becomes less compelling.

Consider, for example, a case in which the depth of embedding plays a role:

(28) a. *In John's apartment, he spends a lot of time
b. In the apartment John just rented, he spends a lot of time

(Koster (1987) points out that if one assumes that phrase structure is binary branching in the sense of Kayne (1984), the c-command relation between the pronoun and the name would be blocked. In that case, the grammaticality of (24b) would not pose a problem for Binding Principle C.)
It seems reasonable to suppose that the preposed phrases in both (28a) and (28b) are structurally in the same relation to the nominative pronoun. Therefore, an account of these cases based on a version of c-command is not very attractive (see, for example, Reinhart 1983).

The relative prominence of the embedded name decreases in (28b) compared to (28a), for John is embedded deeper into the PP. The former, unlike the latter, is grammatical under the intended reading. Obviously, a less prominent NP in terms of degree of embedding may be followed by a more anaphoric NP.

Jan Koster (personal communication) has brought to my attention that the same holds for Dutch. In (29a), the name is embedded in a possessive NP, and in (29b) it is embedded in a relative clause. A coreferential reading is only possible in the latter one, in which the name is embedded more deeply:

(29) a. *Jan’s vader haat bij John’s father hates he
 b. De man die Jan sloeg, haat bij the man who John beat hates he
 *John’s father be hates.’
 'The man who beats John, be hates.’

At this place, I would like to add another factor to (27) which may influence the relative prominence of two NPs in a sequence, namely linear order:

(30) (iii) linear order: NPi precedes NPi+1 in a string

Hence, in accordance with principle (25), NPi+1 must be more anaphoric than NPi on scale (26). Some languages rely for their rule on pronominal noncoreference entirely on linear order. Mohanan (1983: 120), for example, reports that a pronoun may never precede its antecedent in Malayalam. Compare the following sentences:

(31) a. Kuṭi awante ammaye guli child his mother-ACC pinched
 b. *Awante ammaye kuṭi guli *John’s mother-ACC pinched his mother.’
 c. *Awan kuttiyute ammaye guli he child’s mother-ACC pinched
 d. Kuṭiyute ammaye awan guli *He pinched the child’s mother.’

According to Mohanan, if a pronoun precedes its antecedent such as in (31b) and (31c), a coreferential reading is ruled out.

Furthermore, (31b) displays that c-command does not play a role with respect to pronominal noncoreference in Malayalam. This sentence is ungrammatical, although the pronoun his does c-command its antecedent.

Recall that the following Binding Principle C dichotomies appear in Hungarian:

(i) Coreferentiality between a sequence of names diverges from coreferentiality between a sequence of a pronoun and a name, and
(ii) a subject-object asymmetry with pronominal noncoreference shows up with a relatively higher degree of embedding, otherwise a subject-object symmetry.

(i) In order to account for disjointness between a sequence of names, it is sufficient to check the structural configuration in combination with a c-command condition. This condition may be formulated as a separate condition, something similar to Binding Principle C, or it may be formulated in terms of the structural factors (27i) that determine discourse principle (25). I will leave open the question of whether...
There is an independent syntactic principle for the binding relation of a sequence of names, the residue of Binding Principle C. Does this dichotomy appear in other languages as well?

Lasnik (1986) notes that in Thai, Vietnamese and English R-expressions must be pronoun-free. Lasnik suggests that this requirement, possibly a language universal, is due to an instantiation of a general prohibition on the binding of a more anaphoric expression by one that is less so. However, in Thai and Vietnamese, unlike in English, R-expressions may be bound by other names.

This split between a pair of names and a pair of (pronoun, name) is exemplified even more dramatically in Malayalam. Consider:

 b. The child pinched his mother.

Mohanan (1983) claims that the repetition of coreferential R-expressions is allowed in that language.

The comparison between (31) and (32) shows that pronominal noncoreference in Malayalam obeys a condition in terms of precedence, whereas no condition is imposed on names. The latter may be covered by the following rule, similar in spirit to Chomsky's (1976) rule A (this rule accounts for the distribution of bound pronouns):

(33) An R-expression A in Malayalam may be rewritten as an anaphor coreferential to a name B if and only if it is bound by B.

The question arises why there should be a split in coreference between a pair (name, name) and (pronoun, name)?

It seems to me, following Evans (1980: 358), that this has to do with the intrinsic differences between pronouns and names. According to Evans, the crucial difference between the relation (pronoun, name) and the relation (name, name) is that the pronoun may be referentially dependent upon the name, while two occurrences of a name may be intended to be coreferential, but neither occurrence is referentially dependent on the other.

The participants in a pair of names are equally prominent in terms of (26). Suppose, now, that by this absence of relative prominence, a pair of names may be exempted from discourse principle (25). This hypothesis is supported by the fact that disjoint reference is stronger if anaphoricity decreases. Thus, it has often been pointed out that both the following sentences are bad, but that (34b) is worse than (34a):

(34) a. *John thinks that John is sick
 b. *He thinks that John is sick

This is also the case with the Hungarian counterparts of these sentences:

(35) a. *János azt gondolja hogy János beteg
 b. *ő azt gondolja hogy János beteg

Let us turn now to a discussion of the Binding Principle C split with pronominal noncoreference.

(ii) The binding relation between a pronoun and a name is not determined by principles of grammar in a strict sense. Factors such as anaphoricity, depth of em-
bedding, precedence, and so on may play a role as well. In English and Dutch, a co-referential reading between a pronoun and an embedded name becomes possible by increasing depth of embedding (cf. (28) and (29)). This fact supports a discourse-oriented approach to pronominal noncoreference.

In Hungarian, pronominal noncoreference is always ruled out, unless the name is embedded more deeply, for example, in a relative clause. So, the situation with this phenomenon in Hungarian resembles the one in Dutch, or English. This indicates that pronominal noncoreference in that language also falls under discourse principle (25), and is determined by (27ii).

In conclusion, I argued Binding Principle C is a not a unitary phenomenon. First, in Hungarian coreference between a pair of names must be separated from pronominal

(47) I argued in section 4.2.4. that binding phenomena covered by Binding Principle C exhibit a parallel distribution between overt and non-overt pronouns in Hungarian. From this I concluded that small pro is present in the syntax of Hungarian. The argument, however, remains valid if we replace Principle C by a discourse principle. In that case, we have to assume that this discourse principle is fed similarly by overt and non-overt pronouns, otherwise the parallel distribution between these items would be left unexplained.

(48) A comparative study of binding phenomena in Hungarian and Basque would be very useful, because these phenomena display a similar distribution in these languages (I am indebted to Joseba Abaitua, Bernard Oyarzabal, and Georges Rebuschi for discussion and data).

Reflexive binding (cf. (i)), the binding between a pair of names (cf. (ii)), and the distribution of bound pronouns (cf. (iii)) yield subject (ERG)-object (ABS) asymmetries in Basque as well:

(i) a. Elkar ikusi dugu guk each other-ABS seen Aux we-ERG
b. *Elkerrek ikusi gaiztu gu each other-ERG seen Aux-ABS

Just as in Hungarian, reflexive binding and the binding relation between a pair of names in Basque resist scrambling, unlike bound pronouns. (Wh-phrases in Basque must appear in the fixed Focus position left-adjacent to the verb (cf. De Rijk 1978). Compare:

(ii) a. Mayiren amak Mayi maite du Mary GEN mother ERG Mary Loves Aux
b. ??Mayiren ama maite du Mary GEN mother-ABS Mary Loves Aux

Pronominal noncoreference with possessive NPs produces a subject-object symmetry, comparable to Hungarian:

(iii) a. Nork ikusi du bere ama? who-ERG seen Aux his mother-ABS
b. *Bere ama nork ikusi du? his mother-ABS who-ERG seen Aux

Joseba Abaitua (personal communication) has informed me that scrambling of the possessive NP in front of the pronoun weakens pronominal noncoreference:

(iv) a. ??Mayiren ama berak maite du she ERG whom Mary GEN mother-ABS she ERG loves Aux
b. *Berak maite du ??Mayiren ama she ERG whom Mary GEN mother-ABS she ERG loves Aux

It vanishes completely when the name is embedded in structures with a higher degree of embedding than possessive NPs like embedded clauses:

(v) a. ??Mayiren ama berak maite du ??Mayiren ama berak maite du
b. Mayiren ama berak maite du Mayiren ama berak maite du

Joséba Abaitua has informed me that scrambling of the possessive NP in front of the pronoun weakens pronominal noncoreference:

(vi) a. [Benitok kantrazeko] berari eskaratu diogu Benito ERG sing NOMI ko he DAT asked Aux
b. Uste du [Patsi bera dudu eztorteko dela] think ARG isg Aux Patsi ABS late come Aux Comp

c. [Mirenek Joni bidali zion eskuritzaz] ez du berak oraindik irakurti Miren ERG John DAT sent Aux rel letter ABS NEG Aux he ERG yet read

Especially the parallel between Hungarian and Basque with pronominal noncoreference is very interesting. In Basque, similar to Hungarian, a subject-object symmetry appears when the relative depth of embedding is low, otherwise a subject-object asymmetry appears.
noncoreference. The former, which yields subject-object asymmetries, may be captured in terms of a structural condition like Binding Principle C. The latter, on the other hand, is subsumed by Koster's (1987) discourse account of this phenomenon.

A prediction of this account, namely, that obligatory pronominal noncoreference vanishes with a relatively higher degree of embedding, is borne out in Hungarian as well. Hence, it is flexible enough to cover both subject-object symmetries and subject-object asymmetries.49 From this, I conclude that subject-object symmetries with some cases of pronominal noncoreference do not motivate the assignment of a flat sentence structure to Hungarian. Likewise, subject-object asymmetries with Binding Principle C can be seen as evidence against such an analysis, and as support for the configurational approach.

5.4.3. Some Residual Symmetries

This section investigates the following two subject-object symmetries in Hungarian, involving the absence of superiority effects (cf. section 5.4.3.1.) and the symmetries with the Topicalization of universal quantifiers (cf. section 5.4.3.2). These symmetries differ from the epiphenomenal symmetries discussed in the preceding section in that the latter have exactly, or almost exactly the same shape as in established configurational languages. In contrast to the epiphenomenal symmetries, they have a somewhat different form. It seems reasonable, as an initial working hypothesis, to relate these residual symmetries to a specific property of the syntax of Hungarian. It appears that an appropriate candidate for this is the recursive CP in Hungarian (cf. 2.2.3.(1)).

5.4.3.1. The Absence of Superiority Effects

Let us consider, again, 5.2.4.(1) and (2), that display the dichotomy between English and Hungarian with superiority effects.

The sentences in (1) exemplify that in English an object Wh-phrase, unlike a subject Wh-phrase, may not be preposed to the Spec of CP in a multiple Wh-question. Hence, the ungrammaticality of (1b):

(1) a. *Who has said what
 b. *What has who said

In Hungarian multiple Wh-questions, on the other hand, an object Wh-phrase may precede a subject Wh-phrase (cf. (2b)).50

(49) Platzer (1978) and Hale (1988) observe that pronominal noncoreference in Navaho always displays subject-object symmetries. A name in an embedded clause may always be coreferential with a non-overt subject, or object pronoun. Jelinek (1985; 1988) and Speas (1986) argue that this is due to the fact that NPs in that language are adjuncts that bind an A-position in Aux. Binding theory refers only to A-positions.

(50) The same appears in embedded clauses:

 (i) a. Nem tudom hogy ki mit mondott?
 not know-ARG1sg that who what-ACe said-AGR3sg
 'I do not know who said what?'
 b. Nem tudom hogy mit ki mondott?
 not know-ARG1sg that what-ACe who said-AGR3sg
 *'I do not know what who said?'
Before we present an analysis of this dichotomy between English and Hungarian, let us first consider multiple Wh-questions in Dutch, and Frisian, both established configurational languages.

In Dutch or Frisian, superiority effects are absent. Consider the Dutch counterparts of the English sentences in (1):

\[(3) \quad \begin{align*}
\text{a.} & \quad \text{Wie heeft wat gezegd} \\
\text{who has what said}
\end{align*} \\
\text{b.} & \quad \text{Wat heeft wie gezegd} \\
\text{what has who said}
\]

Jarich Hoekstra (personal communication) has informed me that Frisian is the same in this respect:

\[(4) \quad \begin{align*}
\text{a.} & \quad \text{Wa sei wat} \\
\text{who said what}
\end{align*} \\
\text{b.} & \quad \text{Wat sei wa} \\
\text{what said who}
\]

The (b)-sentences in (3) and (4) show that an object Wh-phrase may be fronted in Dutch and Frisian multiple Wh-questions over a subject Wh-phrase, unlike in English (1b). This patterning of these questions in Dutch and Frisian implies that the absence of superiority effects in Hungarian cannot count as decisive evidence for the claim that the phrase structure of that language is non-configurational.

Furthermore, there is also a dichotomy between the Hungarian multiple Wh-questions on the one hand, and the English, Dutch and Frisian multiple Wh-questions on the other hand. The Wh-phrases in Hungarian are 'stacked' preverbally, but in the other languages one of the Wh-phrases has to remain in-situ. Below I will argue that this dichotomy is related to the fact that the CP has a different structure in these languages.

Let us present now an analysis of superiority effects in English. Before we do so, we must first determine how Wh-phrases are assigned scope.

Following Baker (1970), I will assume that all cases of scope-assignment for Wh-phrases involve coindexing with an abstract scope marker Q. This marker is base-generated in the [Spec, CP] position. The representations of overt Wh-movement and Wh in-situ in this system are as follows:

\[(5) \quad \begin{align*}
\text{a.} & \quad [\text{cp Q} : [\text{Wh-phrase} : [\text{IP} \ldots \text{ti} \ldots]]] \\
\text{b.} & \quad [\text{cp Q} : [\text{IP} \ldots [\text{Wh-phrase}] \ldots]]
\]

In both cases, scope-assignment to the Wh-phrase depends on its relation with the scope marker Q. The difference between (5a) and (5b) is that the content of the
Wh-phrase is adjacent to \(Q \) in the former, but not in the latter. Therefore, these cases represent a different type of binding relation.

In (5a), the Wh-trace must be linked to its overt antecedent. We defined the Binding Principle for Wh-phrases as in 5.4.2.3.(6), here repeated as (6):

(6) Binding Principle for Wh-traces: Wh-traces are bound in the minimal maximal domain of their governor (if it contains an antecedent)

In (5b), however, the Wh in-situ must be linked to \(Q \). I will assume that the Binding Principle for Wh in-situ is as in (7):

(7) Binding Principle for Wh in-situ: Wh in-situ is bound in the minimal maximal domain of its governor (if it contains a \(Q \) marker)

Having settled the scope-assignment for Wh-phrases, let us reconsider the English sentence (1a), here repeated as (8):

(8) \([\text{CP}, \text{Wh}}, [\text{IP}, \text{ti}, \text{has} [\text{vp}, \text{said what}]])\]

The subject Wh-phrase \(\text{who} \) is moved to the Spec of CP, whereas the object Wh-phrase \(\text{what} \) remains in its base-generated position. The domain of the subject in English, a language with strong I, is IP. The domain of the object, on the other hand, is CP (cf. 5.4.2.3.(5a)).

The object Wh-phrase is a Wh in-situ, and therefore it must be linked to \(Q \) in the Spec of CP. This linking may be established because the domain of the object is CP. Hence, the Binding Principle for Wh in-situ is satisfied in (8). Consider now the binding of the Wh-trace in subject position.

The domain of the subject is IP in English. In this domain, there is no antecedent available for the Wh-trace. Hence, the Binding Principle (6) for Wh-traces is violated. However, (8) is grammatical. This principle can only be satisfied if the moved Wh-phrase in the [Spec, CP] functions as the antecedent for the subject trace. In that case, the domain of this trace must be stretched from IP to CP. Obviously, this has indeed applied in (8). The question then arises why do moved Wh-phrases have this property?

The canonical operator position for Wh-phrases in English is the [Spec, CP]. Thus, moved Wh-phrases must land in that position. A maximal projection can only be set up if it has a lexical head, otherwise it coincides with the projection it directly dominates because of \textit{L-containment} (cf. 2.2.2.(37)). Therefore, the [Spec, CP] position can only be determined if the CP is projected. In order to accomplish this, the CP must have a lexical head (cf. 2.2.2.(3)). This lexical head is provided by movement of I to C. This hypothesis is supported by the following pair:

(9) a. *[CP, \text{What}, [IP, \text{he}, \text{has} [\text{vp}, \text{done}, \text{ti}]]] \quad \text{b. [CP, \text{What}, \text{has}, [\text{ip}, \text{he}, \text{ti}, [\text{vp}, \text{done}, \text{ti}]]]}

Observe from this pair that the auxiliary \textit{has} must move from its base-generated I-position to the C-position when Wh-movement has applied (cf. (9b), otherwise the sentence is ruled out (cf. (9a))).
In sum, obligatorily filling the [Spec, CP] by a Wh-phrase triggers I-to-C movement. Hence, the structure of (8) is actually as in (10):

\[(10) \quad [\text{CP Who, has} [\text{IP t_1 t_2} [\text{VP said what}]]]\]

Suppose, now, that a concomitant of this movement is that the domain of the subject is extended. By this movement, the IP is robbed of its lexical head, which turns it into a 'defective' projection. Therefore, the subject position is accessible for the Wh-phrase in the Spec of CP. As a result, the Binding Principle for Wh-traces is satisfied, and (10) is grammatical. Let us consider now (11b).

This sentence has the following structure:

\[(11) \quad *[\text{CP what, has} [\text{IP who t_1} [\text{VP said t_1}]]]\]

The object Wh-phrase *what has moved to the Spec of CP. For reasons outlined above, this triggers I-to-C movement of the auxiliary *has. The subject Wh-phrase *who, on the other hand, remains in-situ. The object Wh-trace does not violate Binding Principle (6), because its Wh-antecedent is in its minimal maximal domain, the CP. The subject Wh in-situ, however, cannot be linked to its Q marker in the Spec of CP, since the domain of the subject is IP in English. Obviously, subject Wh in-situ, unlike subject Wh-movement, does not have the ability to stretch the domain of the subject. To say the same thing otherwise, subject Wh in-situ prevents the IP from becoming a transparent domain. Hence, the Binding Principle (7) for Wh in-situ is violated, and (11) is ruled out.

Let us turn now to a discussion of why superiority effects are absent from Dutch and Frisian?

These languages have in common with English that the canonical position for Wh-phrases is the Spec of CP. There is only one such position available. Therefore, in multiple Wh-questions only one of the Wh-phrases may appear in that position:

\[(12) \quad \text{a.} \quad [\text{CP Wie, heeft [IP t_1 [VP wat gezegd]]}] \quad \text{b.} \quad [\text{CP Wat, heeft [IP wie [VP t_1 gezegd]]}]\]

I is weak in Dutch, and in Frisian. In languages with weak I, the domain of the subject is identical with the domain of the object (cf. 5.4.2.3. (5b)), namely CP. Therefore, in these sentences no binding theory violations occur.

In (12a), the object Wh-phrase in-situ *wat may be linked to its Q antecedent in [Spec, CP], and in (12b) the subject Wh-phrase in-situ *wie may be too. Hence, no violation of Binding Principle (7) for Wh in-situ arises. The subject trace in (12a) is bound by its Wh-antecedent in the Spec of CP. This is also the case with the object Wh-trace in (12b). Hence, the Binding Principle for Wh-traces (6) is also satisfied. This causes then the absence of superiority effects in Dutch, or Frisian. Let us now consider the absence of this phenomena in Hungarian.

(53) I-to-C movement applies also in English yes/no questions:

\[(0) \quad [\text{CP Will, [IP John t_1 [VP buy this book]]}]]\]

With Kosmeijer (1988), I will assume that a question marker Q occupies the [Spec, CP] in this construction. However, this position can only be projected if the CP has a lexical head. Hence, I-to-C movement. Thus the motivation for this movement in yes/no questions is the same as for Wh-questions.
Wh-phrases in Hungarian must occur in the [Spec, CP] as well (cf. section 2.2.2.). The only difference between Dutch or Frisian on the one hand and Hungarian on the other hand with multiple Wh-questions is that Wh-phrases in Hungarian are stacked preverbally. This implies that in Hungarian, in contrast to Germanic languages, several Spec of CP positions are accessible for Wh-phrases. I will assume that this is due to the fact that CP in Hungarian is recursive within CP (cf. 2.2.3.1). Hence, all Wh-phrases in Hungarian are adjacent to their Q marker.

Therefore, the sentences in (2) display the following structure:

(13) a. \[cp \{ki; [cp mitk mondott; [vp t; [vp rik t]]]\}\]

b. \[cp \{mi\{k k\{i; mondott; [vp t; [vp rik t]]]\}\}\]

The lower [C, CP] in these sentences is filled by V-to-C movement, and the Specs of CP are filled by overt Wh-movements.

Let us determine now why Hungarian lacks superiority effects. It is weak in Hungarian, as in Dutch and Frisian. Therefore, the domain of the subject traces is the same as the domain of the object traces. Hence, these traces are both bound in their minimal maximal domain, the CP. Hence, no violation of the Binding Principle for Wh-traces appears.

We expect that superiority effects in English will also show up when the object Wh-phrase is replaced by an adjunct Wh-phrase. Compare the following pairs:

(14) a. \[cp \{\{who \{i; has; [ip t; [vp [vp come] when]]\}\}\}\]

b. \[*[^\{cp \{\{who \{i; has; [ip who t; [vp [vp come]]]\}\}\}\]\]

(15) a. \[cp \{\{who \{i; has; [ip t; [vp [vp lived] where]]\}\}\}\]

b. \[*[^\{cp \{\{who \{i; has; [ip who t; [vp [vp lived]]]\}\}\}\]\]

Adjuncts, like when and where, are governed by V, and thus their minimal maximal domain is CP (cf. section 5.4.2.3.), similarly to objects. Hence, the explanation for the dichotomy between the (a)-phrases and (b)-phrases in these pairs is the same as for the dichotomy between (1a) and (1b). In Dutch (cf. (16), Frisian (cf. (17)), and Hungarian (cf. (18)), on the other hand, a symmetry arises with the counterparts of these cases:

(16) a. \[cp \{\{who \{i; is; [ip t; [vp waar \{vp gekomen t]]\}\}\}\}\]

b. \[cp \{\{wanneer \{i; is; [ip wie \{vp t; [vp gekomen t]]\}\}\}\}\]

a'. \[cp \{\{wie \{i; heeft; [ip t; [vp waar \{vp gewoond t]]\]\}\}\]\]

b'. \[cp \{\{waar \{i; heeft; [ip wie \{vp t; [vp gewoond t]]\]\}\}\]\]

(17) a. \[cp \{\{wa \{i; is; [ip t; [vp waar \{vp hebben t]]\]\}\}\]\]

b. \[cp \{\{wanneer \{i; is; [ip waar \{vp t; [vp geworden t]]\}\]\}\]\]

a'. \[cp \{\{wa \{i; heeft \{ip t; [vp waar \{vp geweest t]]\]\}\}\]\]

b'. \[cp \{\{wa \{i; heeft \{ip waar \{vp t; [vp geweest t]]\]\}\}\]\]

The only difference between Dutch and Frisian on the one hand and Hungarian on the other hand is, again, that in the Hungarian equivalents both Wh-phrases must be fronted:
(18) a. [CP Ki [CP mikoYk jöttj [VP t] [VP t] t]]
 who when came
b. [CP MikoYk [CP ki; jottj [VP t] [VP t] t]]
a'. [CP Ki [CP holk lakottj [VP t] [VP t] t]]
 who where lived
b'. [CP Holk [CP ki; lakottj [VP t] [VP t] t]]

Furthermore, we expect that the only cases in which English patterns the same as the other Germanic languages and Hungarian is when both Wh-phrases are governed by the verb. This appears, for example, with an object and an adjunct Wh-phrase. Compare English (cf. (19)), Dutch (cf. (20)), Frisian (cf. (21)), and Hungarian (cf. (22)):

(19) a. [CP Whati didj [IP you t] [VP [VP see t] where]]
b. [CP Wherei didj [IP you t] [VP [VP see what] t]]

(20) a. [CP Wati hebj [IP ji; [VP waar [VP t] gezien t]]]
 what have you where seen
b. [CP Waari hebj [IP ji; [VP t] [VP wat gezien t]]]

(21) a. [CP Wati hastj [VP wannear [VP t] sjoen t]]
 what have you where seen
b. [CP Wanneari hastj [VP t] [VP wat sjoen t]]

(22) a. [CP Miti [CP holk láttalj [VP t] [VP t] t]]
 what-ACC where saw-AGR.2sg
b. [CP Holi [CP mitk láttalj [VP t] [VP t] t]]

In these pairs the local domain for both the object Wh-phrase and the adjunct Wh-phrase is CP. Therefore, in all cases the Binding Principles for Wh-traces and Wh-insitu is respected. Hence, this yields in all languages a object-adjunct symmetry.

Another case in which both Wh-phrases are governed by the verb is provided by the prepositional double object constructions with to-phrases. Following Kayne (1984, chapter seven), I will assume that these constructions have the following structure:

(23) [VP [v V NP] to NP]

Kayne (1984: 190) notes that the contrast between the following pair is less sharp than in (1) (bracketing is mine):

(24) a. [CP Who(m)i didj [IP you t] [VP [V give [5 ti what]]]

b. [CP Whati didj [IP you t] [VP [V give [5 ti you(m)]]]

(54) Joseph Aoun (personal communication) informs me that with the 'bare' double object construction, however, an asymmetry turns up:

(i) a. *(CP Who(m)i didj [IP you [VP give [5 ti what]]])
 b. [CP Whati didj [IP you [VP give [5 ti who(m)]]])

Suppose this construction is a small clause, as suggested in Kayne (1984, chapter seven), having a 'V [5 NP-NP]' structure. Suppose furthermore that its head is the accusative NP. In that case, the accusative NP, unlike the dative NP, is governed by V under head-government in the sense of Belletti and Rizzi (1982). As a result, the minimal maximal domain of this NP is stretched to CP. Therefore, the contrast between (ia) and (ib) is due to the dative NP. It falls into place if the subject of a small clause without a lexical head is accessible for government by a higher V. Hence, the Binding Principle (7) for Wh-insitu is respected in (ib) but not the Binding Principle (6) for Wh-traces in (ia). This yields the ungrammatical result in (ia).
According to the government definition 2.2.2.(40), both the direct object and indirect object are governed by V in these sentences. Hence, their local domain is CP. Therefore, no binding theory violation occurs in (24).

Multiple Wh-questions with double object constructions are grammatical in Dutch (cf. (25)), Frisian (cf. (26)), and Hungarian (cf. (27)), as expected.\(^{55}\)

(25) a. \[
[\text{CP (Aan) wiej hebj [IP jij [VP t_i [VP wat gegeven t_j]]]}
\]
to who have you what given

b. \[
[\text{CP Wat_i hebj [IP jij [VP (aan) wie [VP t_i gegeven t_j]]]}
\]

(26) a. \[
[\text{CP (Oan) wa_i hast_i [VP t_i [VP wat j_un t_j]]}
\]
to who have-you what given

b. \[
[\text{CP Wat_i hast_i [VP (oan) wa [VP t_i j_un t_j]]}
\]

(27) a. \[
[\text{CP Kine_ki [CP mit_k ad___l [VP t_i [VP wat gegeven t_j]]]}
\]
who-DAT what-ACC gave-AGR2sg

b. \[
[\text{CP Min [Kine_ki ad___l [VP t_i [VP t_i t_j]]]}
\]

In sum, I noted that superiority conditions are violated in uncontroversial configurational languages like Dutch or Frisian. Hence, the absence of these effects in Hungarian cannot count as an argument in favor of a non-configurational phrase structure of that language. I related the presence of these phenomena in English versus their absence in Dutch, Frisian, or Hungarian to a difference in the phrase structure of these languages.

Iis strong in English. Therefore, the domain of the subject differs from the domain of the object. An exception to this is overt Wh-movement. Application of this rule triggers domain stretching of the subject from IP to CP. Subject Wh in-situ lacks this ability. Therefore, a binding theory violation occurs with the latter, yielding a subject-object asymmetry.

In languages with weak I, on the other hand, like Dutch, Frisian or Hungarian, both the subject and the object have the same domain, the CP. Hence, both Wh-traces and Wh in-situ can be related to their antecedent in the Spec of CP. Therefore, no superiority effects arise in these languages.

The only difference between Dutch and Frisian on the one hand and Hungarian on the other hand, is that the Germanic languages, contrary to Hungarian, have only one canonical operator position for Wh-phrases available, the [Spec, CP]. In Hungarian, however, CP is recursive within CP. Therefore, all Wh-phrases may be adjacent to their scope marker in the Spec of CP.

Let us consider now the Topicalization of universal quantifiers.

5.4.3.2. Topicalization of Universal Quantifiers

É. Kiss (1987a: 29) has noted that Topicalization is known to be incompatible with universal quantification. É. Kiss argues that if a language has both sentence-initial subjects and objects, and sentence-initial subjects can be universally quantified, while sentence-initial objects cannot, it follows that such objects are located under a

\(^{(55)}\) Because of the fact that with these double object constructions a symmetry appears, there is no reason to assume that they are small clauses, like bare double object constructions in English (cf. note 54).
Topic node different from the subject position. According to É. Kiss, this dichotomy turns up in languages in which the subject and object have a non-parallel distribution (like Italian) but not in languages which display a parallel distribution of subject and object.

Consider the Hungarian sentences in (1) (’ indicates primary stress):

(1) a. János felhívott ‘mindenki t telefonon
 John up-called everyone-ACC phone-SUPER
 ‘John has phoned everyone.’

b. Mindenki felhívott János telefonon
 everyone-ACC up-called John phone-SUPER
 ‘Everyone has phoned John.’

c. Mindenki felhívta Jánost telefonon
 everyone up-called John-ACC phone-SUPER
 ‘Everyone has phoned John.’

d. Jánost mindenki felhívta telefonon
 John-ACC everyone up-called phone-SUPER
 ‘Everyone has phoned John.’

In Hungarian, an object universal quantifier may be topicalized (cf. (2b)), similar to an object name (cf. (2d)).

É. Kiss concludes from the fact that Hungarian has both sentence-initial subjects and objects (cf. (2b) and (2c)) which may be universally quantified that the subject and object are structurally equally prominent. However, the occurrence of this phenomenon in established configurational languages like Dutch or Frisian falsifies this conclusion.

Compare, for example, the Dutch equivalents of (1):

(2) a. Jan heeft iedereen gebeld
 John has everyone phoned
 ‘John has phoned everyone.’

b. Iedereen heeft Jan gebeld
 everyone has John phoned
 ‘Everyone has phoned John.’

c. Iedereen heeft J an gebeld
 everyone has John phoned
 ‘Everyone has phoned John.’

d. Jan heeft iedereen gebeld
 ‘John has phoned everyone.’

Jarich Hoekstra (personal communication) has brought to my attention that Frisian patterns exactly like Dutch in this respect:

(3) a. Jelle hat elke mien skille
 Jelle has everyone phoned
 Elke mien hat Jelle skille
 everyone has Jelle phoned
 ‘Jelle has phoned everyone.’

c. Elke mien hat Jelle skille
 everyone has Jelle phoned
 ‘Everyone has phoned John.’

d. Jelle hat elke mien skille
 ‘Jelle has phoned everyone.’

The (b)- and (d)-sentences in (2) and (3) show that Topicalization from object position of universal quantifiers yields a grammatical result, just as the Topicalization of names, in both Dutch and Frisian.

Let us first analyze Topicalization in Dutch. According to Koster (1978; 1987: 43-44), a topicalized phrase in Dutch is an NP in the configuration [β NP CP]. Koster further argues that Topicalization is generalized in Dutch, because ordinary clauses are in fact topicalized constructions. Therefore, (2a) has the following structure:

(56) Jarich Hoekstra (personal communication) has pointed out to me that Koster’s (1978) analysis for Topicalization in Dutch may be extended to Frisian.
(4) *Jan [CP O/dit heeft [IP t [vp iedereen gebeld]]]
 John that has everyone phoned
 'John has phoned everyone.'

In this construction, the open clause is predicated over the topic *Jan. This relation is established by linking the topic NP with either an empty operator O or a d-pronoun in the [Spec, CP] that binds the trace position.

Eric Hoekstra (personal communication) informs me that the empty operator may only be realized as a d-pronoun if the topic NP is referential. With fronted quantifiers, it may not be spelled out. Compare (4) and (5):

(5) a. *Niemand die ken ik
 Noone that know I

b. *Iedereen die ken ik
 Everyone that know I

c. *Wie die ken ik
 who that know I

d. *Ul'te die ken ik
 who that know I

The complementary distribution between the overt alternant of the empty operator and fronted quantifiers suggest that these quantifiers are adjacent to O in these cases. They occupy themselves the [Spec, CP] position, the canonical position for operators. Hence, the sentences in (5) have the following configuration:

(6) [CP O Niemand/iedereen/wie ken [IP ik [VP t]]]

So the Topicalization of names and universal quantifiers is allowed in Dutch, because the empty operator in topicalized constructions may indirectly be bound by names, via predication, or directly by the fronted quantifiers themselves, via movement of these quantifiers to [Spec, CP].

Let us now examine topicalization phenomena in Hungarian. Universal quantifiers may only appear postverbally when they are stressed (cf. (1a)). In the unmarked order, they occupy a position in the preverbal Quantifier Field (cf. 2.2.2.(28f)), as can be observed from the following alternant of (1a):

(7) János mindenkit felhívott telefonon
 John everyone-ACC up-called phone-SUPER

This is further supported by the fact that topicalized universal quantifiers may only precede focussed lexical NPs, otherwise the result is ungrammatical. Hence, Inversion between the finite verb and its prefix applies obligatorily with the order [Q NP[+lexical] prefix V[+finite]] (cf. 3.2.2.(28e)). Compare the following pairs with alternants of (1a) and (1c):

(8) a. *Mindenkit János felhívta telefonon
 everyone-ACC John up-called phone-SUPER

b. Mindenkit JÁNOS hívta fel telefonon

(9) a. *Mindenki Jánost felhívta telefonon
 everyone John-ACC up-called phone-SUPER

b. Mindenki JÁNOST hívta fel telefonon

Thus, these pairs support the hypothesis that preverbal universal quantifiers are in the Quantifier Field.
Recall that the Quantifier Field is accommodated by the CP, because CP is recursive within CP (cf. 2.2.3.1). As a consequence, topicalized object universal quantifiers occupy a [Spec, CP] position. Hence, (1b) and (1d) display the following structure:

\[(10) \text{ a. } [\text{CP} Oi \text{ mindenki felhívott} [\text{VP János [VP telefonon } t_i]]] Everyone-ACC up-called John phone-SUPER
\text{ b. } Jánostok [\text{CP } Ok [\text{CP} Oi mindenki felhívta] [\text{VP } t_i [\text{VP } tk t_j]]] John-ACC everyone up-called
\]

In fact, topicalized universal quantifiers are adjacent to the empty operator in [Spec, CP], just as their counterparts in Dutch (cf. (6)). Furthermore, (10b) demonstrates that Topicalization in Hungarian may even apply multiply, similarly to Wh-movement (cf. preceding section). This is a consequence of the fact that the CP is recursive within CP generating multiple operator positions. Therefore, topicalized phrases may all be adjacent to their empty operators, just as Wh-phrases may all be adjacent to their scope markers.

In conclusion, universal quantifiers in Hungarian may always be topicalized. This phenomenon is, however, also attested in other uncontroversial configurational languages, like Dutch or Frisian. Therefore, it cannot be explained in Hungarian by assuming that the subject and object are structurally equally prominent.

Topicalized universal quantifiers must be adjoined to [Spec, CP] which is due to the requirement that fronted universal quantifiers must occupy the canonical operator position, i.e. [Spec, CP]. This requirement is satisfied in Dutch, Frisian and Hungarian. Hungarian differs from the Germanic languages in that it allows multiple Topicalization. This is caused by the fact that Hungarian, unlike these languages, displays freedom of CP recursion, which provides multiple operator positions in that language.

5.5. Summary

Recapitulating, in this chapter I have evaluated the subject-object symmetries and the subject-object asymmetries appearing in Hungarian. The latter phenomena provide empirical evidence for the hypotheses that its syntax is configurational, and that it meets the principle of binary branching (cf. 5.1.(2)). This implies that the phrase structure of Hungarian has a VP.

If this is indeed correct, then the occurrence of subject-object symmetries is somewhat unexpected. However, I argued that these phenomena do not motivate the relaxation of subcomponents such as the Projection Principle, government theory or X'-theory. As a working strategy, I divided them into two groups.

(i) Subject-object symmetries which also appear in uncontroversial configurational languages. I referred to this group as the epiphenomenal symmetries. (ii) Subject-object symmetries which may occur in other configurational languages as well, but which have a somewhat different shape in those languages than in Hungarian. I referred to this group as residual symmetries.

The epiphenomenal symmetries may be further divided into two subgroups.

(A) Subject-object symmetries which appear in all established configurational languages. These phenomena involve compositional θ-assignment to the object, the formation of idioms, and violation of phenomena subsumed under Binding Principle C.
Some subject-object symmetries in Hungarian also occur in established configurational languages such as Dutch or Frisian, but not in English. These phenomena involve the absence of verb-object adjacency, the lack of VP-deletion, and the absence of that-trace effects. The lack of verb-object adjacency falls out from a theory of V-movement, and adjunction. The dichotomy between these languages with respect to VP-deletion is related to the status of the I-node. I is strong in English, but not in Dutch, Frisian or Hungarian. A strong I, unlike a weak I, has the ability to license the VP when VP-deletion applies. Finally, the dichotomy between these languages with that-trace effects is due to the scope of the subject domain. In languages with a weak I, in contrast to languages with a strong I, the domain of the subject coincides with the domain of the object. Hence, that-trace effects appear in English, but not in Dutch, Frisian, and Hungarian.

The residual symmetries involve the lack of superiority effects, and the possibility to topicalize universal quantifiers in Hungarian. These phenomena also occur in established configurational languages such as Dutch, or Frisian, but they have a somewhat different shape. The parallelism between, say Dutch and Hungarian shows that these phenomena do not offer convincing evidence for a non-configurational approach. The reason why these phenomena have a different shape in these languages is due to a particular property of Hungarian phrase structure.

In Hungarian, the CP is recursive within CP. Therefore, in that language there are infinitely many [Spec, CP] positions accessible to operators, whereas in Dutch or Frisian there is only one canonical operator position. As a consequence, Wh-phrases are stacked preverbally, and multiple Topicalization is allowed in Hungarian. This is not the case in Dutch or Frisian.

In conclusion, it seems to me that the evidence presented in this chapter unambiguously demonstrates that the phrase structure of Hungarian is configurational. A misleading conception of the phrase structure of that language has arisen by comparing Hungarian with English. It has gone unnoticed, however, that the position of English in, for example, the Germanic languages is rather unique, since not all Germanic languages have rigid word order, that-trace effects, superiority effects, and so on. By making a comparative study of Hungarian and other Germanic languages like Dutch or Frisian, we receive a radically different picture of its phrase structure.

A non-configurational approach of Hungarian is easily falsified. Instead of this apparent typology based on the presence or absence of the VP, a rather different typology emerges. This typology has to do with the strength of I.

Languages may vary in the lexical realization of this node. There may be lexical material available to fill I, or such material may be absent. Languages of the former type display a strong I, whereas languages of the latter type have a weak I. In English, for example, I is strong. In Dutch, Frisian and Hungarian, on the other hand, I is weak. This yields the IP-parameter involving at least the following typology (cf. also chapter two):
An interesting consequence of the IP-parameter is that it establishes a correlation between totally different phenomena in unrelated languages. Hungarian happens to fall into the same subtype as the Germanic languages Dutch or Frisian. This alone justifies, in my view, a further exploration of this parameter.