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The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the
thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First,
we extend the thermal quadrupole method to calculate the surface temperature of semitransparent
multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by
convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal
diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser
beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in
glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in
heterogeneous materials with continuously varying physical properties, as is the case of
functionally graded materials and partially cured dental resins. © 2011 American Institute of

Physics. [doi:10.1063/1.3614525]

. INTRODUCTION

Photothermal radiometry (PTR) is a nondestructive
remote sensing technique that has been widely used to mea-
sure the thermal diffusivity of homogeneous samples. Since
the seminal work by Mandelis and co-workers,'! modulated
PTR has also been used for thermal conductivity depth pro-
file reconstruction of heterogeneous samples as case (sur-
face) hardened steels,””’ functionally graded materials,® and
partially cured dental resins.” In the last years, two works
dealing with the application of modulated PTR to the simul-
taneous reconstruction of the in-depth varying absorption
coefficient () and thermal diffusivity (D) of semitransparent
heterogeneous samples have been published.'®!!

The aim of this work is to study the capability of modu-
lated PTR to obtain simultaneously o and D in multilayered
materials. First, we apply the thermal quadrupole method to
calculate the surface temperature of layered semitransparent
materials. The thermal quadrupole method is a unified exact
method for representing linear systems. It has been applied
in the framework of heat conductive transfer to calculate the
surface temperature of opaque multilayered samples12 and to
calculate the combined radiative and conductive heat transfer
in semitransparent bulk materials. 13 Here, we extend this ele-
gant matrix method to express the surface temperature of
multilayered semitransparent samples in a compact manner.
Plane and Gaussian illuminations are studied. We focus on
the following issues: (a) the influence of heat losses by con-
vection and radiation in the modulated PTR signal, (b) the
influence of the thin paint layers, that are used to increase
the light absorptivity and infrared emissivity, on the accu-
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racy of the thermal diffusivity measurements, using modu-
lated PTR, (c) the effect of lateral heat diffusion due to the
use of Gaussian laser beams, and (d) the retrieval of the ther-
mal contact resistance in glass stacks. Modulated PTR meas-
urements confirm the validity of the model.

Finally, we address the simultaneous reconstruction of o
and D depth profiles in heterogeneous materials with contin-
uously varying physical properties. These materials are mod-
eled as stratified ones made of a large number of parallel
layers, each one characterized by constant o and D. In this
work, sigmoidal o and D profiles are studied, although simi-
lar results are obtained for exponential profiles. The proce-
dure is as follows: (a) we calculate the amplitude and phase
of the surface temperature for a given o and D sigmoidal pro-
file using the thermal quadrupole method with a large num-
ber of layers, (b) then, we add a white uniform noise to these
amplitude and phase values to simulate experimental data,
and (c) finally, we apply a nonlinear-regularized minimiza-
tion with a total variation (TV) penalty term'* to reconstruct
the oo and D depth profiles using a different number of layers
in order to avoid inverse crime, i.e., an excessively optimistic
accuracy of the reconstructions.'” The quality of the recon-
structed thermal and optical depth-varying properties indi-
cates the promising possibilities of this procedure.

Il. THEORY

In this section, we develop the thermal quadrupole
method for semitransparent materials. Modulated plane and
focused illuminations are considered.

A. Modulated and plane illumination
Let us now consider the semitransparent multilayered

sample depicted in Fig. 1, illuminated by a plane light beam

© 2011 American Institute of Physics
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FIG. 1. Diagram of a semitransparent multilayered slab.

and modulated at a frequency f (w = 2xnf). Each layer is
characterized by its thermal conductivity (K;), thermal diffu-
sivity (D;), optical absorption coefficient (;), and thickness
(L;). The one-dimensional (1D) heat diffusion equation for
each layer writes

I T, O
422 q;li = K’

(M

where ¢; = \/io/D; is the thermal wave vector and
0= %oc,-e’“"(z’z") is the heat source. /; is the incident light in-
tensity reaching layer i that, in the absence of internal reflec-
tions, is given by I; = [ e~ (mlitnlat +2ali) The solution
of Eq. (1) is usually expressed by exponential functions'®

Ti(z) = A7) 4 Bie 473 4 Cre 73 (2)

where A; and B; are constants obtained from the boundary
conditions and
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However, when dealing with the thermal quadrupole method,
it is more convenient to use hyperbolic functions:

Ti(z) = AiSinh|qi(z — z)] + BiCoshlgi(z — zi)] + Cie” "¢,

(4a)
drT;
di(z) = _Kiz
= —Kiqi{AiCosh|qi(z — z;)] + B;Sinh|q;(z — z;)]}
+ KiCiO(i€71’<Z?Z"),
(4b)

where ¢ is the heat flux.

By applying Eq. (4) at the front (z;) and rear (z;;) surfa-
ces of layer i, a matrix relationship between temperature and
heat flux at both surfaces is obtained:

b@) = D) o
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where a; =d; = Cosh(q;L;), b; = %Z;L”), ¢i =K;q;Sinh(q;L;),

Xi=C; {%Sinh(%’lﬁ) — Cosh(qiL;) + e’“'L'} , and
Y,' = C,‘K,‘ [q,Sll’lh(q,L,) - O{,'COSI’l(q,'Ll') + {Xl-e_“"L’} .

According to Eq. (5), the temperatures at the front and rear
surfaces of layer i can be obtained provided the heat fluxes at
its surfaces are known. Note that, if the layer is opaque, then
X;=Y,=0.

B. Modulated and focused illumination

Now, we study the same semitransparent multilayered
sample as in the previous subsection, but illuminated by a
modulated and focused laser beam of Gaussian profile.
According to the radial symmetry of the problem, the two-
dimensional (2D) heat diffusion equation for each layer
writes

o*T; 19T O°T; ,

_ 9
or? +;E+ 022

qiTi— Ki7

(6)

~R)P) ) .
where Q; = WTocie %(2=%) ig the heat source. P; is the

incident power reaching layer i that, in the absence of reflec-
tion, is given by P; = Pje~(ulitwlottsialia) and g is the
laser beam radius (at 1/e* of the intensity). The solution of
Eq. (6) is obtained by using the Hankel transform"’

Ti(r,z) = J:o 51, (6r)T4(8,2)dd

= J J,(r) [A;eﬁf(“”“"')
0

+B;e_ﬁi(2_z/’) + C;e—“/(f—Z[) ds (7)

where T;(d,z) is the Hankel transform of the temperature, J,,
is the Bessel function of zeroth order and ,8,2 =g+ 5. A;
and B; are constants obtained from the boundary conditions,
and

/ P 0

C=—"
()

i

e—(éa)z/S. (8)

For the sake of convenience, we will use hyperbolic func-
tions instead of exponentials when applying the thermal
quadrupole method:

T(5,2) = AjSinh{B,(z — z,)] + B,Cosh[B,(z — =)

+ Clemte=21), (9a)
- dT;
¢i(5vz) - _Kia / ,
= —Kif{A;Cosh[B;(z — z;)] + B;Sinh[B;(z — z;)]}
+ K,‘C;Otieia"(zizi),
(9b)
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where ¢;(5,2) is the Hankel transform of the normal heat
flux.

By applying Eq. (9) at the front (z;) and rear (z;,) surfa-
ces of layer i, a matrix relationship between Hankel trans-
forms of the temperature and heat flux at both surfaces is
obtained:

1) (4 5 (16500 )
<¢i(5’zi))_<ci d;><¢i(5,2i:1)—Y; - 1o

where a, = d, = Cosh(f,L;), b, = %ﬁ[“, ¢; =K B:Sinh(B:L;),

X, =C; [%Sinh(ﬁiL,-) — Cosh(p;L;) + e’“"L'} , and

Y, = CiKi[BiSinh(B,L;) — aiCosh(B,L;) + o).

Note that, if the sample is opaque, X:- = Y; = 0. According to
Eq. (10), the Hankel transform of the temperatures at the
front and rear surfaces are obtained provided the Hankel
transforms of the normal heat fluxes are known.

By comparing Egs. (5) and (10), one can realize that the
expressions for the 1D temperature and the Hankel transform
of the 2D temperature are the same, provided the following
changes are performed: ¢; — f; and I;/2 — Pje~ %" /8 /g,
Accordingly, in the remaining of this theoretical analysis, we
will only explicitly refer to the plane illumination.

For an anisotropic sample, for which the heat propaga-
tion is three-dimensional, one can proceed in a similar way,
but using the Fourier transform instead of the Hankel trans-
form. Moreover, by applying the inverse Laplace transform
to the modulated solutions given by Egs. (5) and (10), the
temperature rise of the sample above the ambient due to a
transient illumination (Dirac pulse, step-like pulse,...) can
be directly obtained.

C. A homogeneous slab

Let us start by considering the simple case of a slab of
thickness L illuminated by a plane and modulated light beam
of intensity /;. If the sample is adiabatically isolated from its
surroundings, ¢(0) = ¢(L) =0 and the matrix expression
relating the temperature at the sample surfaces writes

(9)-( O0E)

Note that, in these calculations, the multiple reflections of
the incident light beam have not been considered. If heat
losses are present, the heat fluxes at the front and rear surfa-
ces are, respectively, ¢(0) = —hT(0) — K,q,T(0) and
¢(L) = hT(L) + K,q,T(L), where h; and h, are the com-
bined heat transfer coefficients by radiation and convection
at the front and rear surfaces, respectively. The last term in
each expression is the heat flux by conduction to the sur-
rounding gas, which is proportional to the surface tempera-
ture, since the gas is considered infinitely thick. According
to Eq. (5), the matrix expression relating the temperature at
the sample surfaces can be written as

J. Appl. Phys. 110, 033516 (2011)

(TE)O)):@ ?)(K;qg ?)(j Z)(K:qg (1))
G ()
(o Dl DEDE)

12)

where subscript g stands for the surrounding gas. As can be
seen, the influence of conduction to the gas and convection
and radiation are separated in independent matrices.

Figures 2 and 3 show the influence of heat losses on the
surface temperature. In all the calculations, the following pa-
rameters have been used: D,=22 mm%s, K,=0.026
Wmflel, and hy =h, =15 Wmfszl, which is a good
upper estimation for room temperature measurements.'®
Two normalization procedures have been analyzed. In the
case of self-normalization, the ratio of the front and rear sur-
face temperatures is considered: T, = T(L)/T(0). This is a
suitable method for thin slabs. In Fig. 2, the natural loga-
rithm of the self-normalized temperature amplitude, Ln(7),),
and its phase, W(T,), are plotted against +/f. Calculations
have been performed for a semitransparent slab with the fol-
lowing parameters: D =0.5 mmz/s, K=1.0 Wmflel,
L=0.5mm, and « =3 mm . The dotted lines correspond to
the effect of heat losses. As it is well known, the effect of
heat losses is stronger at low frequencies and for poor ther-
mal conductors."’ However, in self-normalization, both
Ln(T,) and W(T,) converge to zero at low frequencies and,
therefore, the effect of heat losses is almost negligible.

The second normalization procedure consists of compar-
ing the sample temperature at the front surface to that of a
reference: T, = T(0)/T,r(0). In Fig. 3(a), a very thick opa-
que slab with D = 1.0 mm?/s and K =2.5 Wm 'K~ is com-
pared with a very thick and opaque reference sample with
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FIG. 2. Calculations of the self-normalized temperature as a function of /f
for a slab with D =0.5 mmz/s, K=1.0 Wmflel, L=0.5 mm, and =3
mm ™. Continuous lines correspond to the absence of heat losses. Dotted
lines correspond to the effect of heat losses with iy = h,. =15 Wm 2K
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D,o;s =0.5 mm*/s and K,,; = 1.0 Wm ™ 'K, The dotted lines
correspond to the deviation due to heat losses. As can be
seen, only at frequencies below 0.1 Hz must the influence of
heat losses be taken into account. Note that, in absence of
heat losses, the amplitude of 7) is equal to e, /e =0.566,
where ¢ = K/+/D is the thermal effusivity and W(T")=0.
This means that, if the sample and the reference are ther-
mally thick, only the thermal effusivity of the sample can be
obtained.

In Fig. 3(b), we show the same calculations as in
Fig. 3(a), but L,.,,=L=1 mm. As before, the dotted lines
indicate the effect of heat losses, which are negligible above
0.1 Hz. Note that the amplitude of T, converges to e,/
e=0.566 at high frequencies and to (pcL),,/(pcL) = 0.80
at low frequencies, where pc = K/D is the heat capacity. In
its turn, W(T’,) converges to zero, both at low and high fre-
quencies. From the shape of the normalized temperature at
intermediate frequencies, both D and K can be retrieved.

Finally, in Fig. 3(c), we show the same calculations as
in Fig. 3(b), but for semitransparent sample and reference,
with o, =0 =3 mm ™. As can be seen, the information on
the optical properties appears at frequencies higher than
0.1 Hz, where the effect of heat losses is negligible.

As the effect of heat losses is only significant below
0.1 Hz and most experimental measurements with modulated
PTR are performed at frequencies above this limit, heat
losses will not be considered in the remainder of the
manuscript.

D. A multilayered material

The powerfulness of the matrix method is more evident
when dealing with multilayered structures. We come back to
the multilayered sample depicted in Fig. 1. For the sake of
simplicity, Eq. (5) can be expressed as

H; =M;(0, —P)), (13)

where H; is the input matrix, O; is the output matrix, M; is
the thermal matrix, and P; is the optical matrix. To obtain a
single matrix equation, relating temperature and heat flux at
the front (z=z;=0) and rear (z=2zy,=L) surfaces, we
need to know the relationship between temperature and heat
flux at each intermediate boundary. Two possibilities are
considered:

(a) If there is a perfect thermal contact between the layers,
temperature and heat flux continuity can be applied:
Ti(ziy1) = Tix1(zim1) and  §(zip1) = Py (zi1), and,
therefore, O; = H;, . By applying this equation to each
layer, we obtain

N
Hy = ZyOx = > ZyPy, (14)

p=1

oy - (110 o= (115)

1

If heat losses are negligible, ¢, (0) = ¢y (L) =0.
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(b) A thermal resistance R;;,; is introduced to account
for the lack of adherence between the layers i and
i+1. This means that the heat flux continuity still
holds but there is a jump in temperature given by
T,‘(Zl‘+1) = T,'+1(Z,‘+1) +Ri,i+l¢i+1 (Zi+1), and, therefore,

1 Ry .
O; = R ;11Hy1, where R4y = (0 "1“ ) This means

that the matrix equation relating temperature and heat
flux at the front (z=0) and rear (z=L) surfaces are
similar to Eq. (14), but changing 7., that is the product of
the thermal matrices, by Z/p =M1§R1,2M2§R2,3M3, ...... y
Mp—lng—l,pMpa

N
Hy = Zy0y =Y Z,P).
p=1

lll. APPLICATIONS

As this paper deals with modulated and plane illumina-
tion, we first analyze the effect of using a Gaussian laser
beam instead of a completely flat light source, i.e., the dis-
turbing effect of 2D heat propagation. Simulations are per-
formed for a stainless steel slab (D =4.0 mm?%/s, K=15.0
Wm 'K™!, L=1.0 mm). In Fig. 4(a), we show the self-nor-
malized amplitude and phase as a function of the square root
of the frequency. The continuous line corresponds to a plane
light beam, and the dotted line corresponds to a Gaussian
beam with ¢ =5 mm. As can be seen, the influence of the
lateral heat diffusion in the slopes and, therefore, in the ther-
mal diffusivity of the steel sample is almost negligible. In
Fig. 4(b), we show the result of the normalization of the steel
sample with a reference made of vitreous carbon (D =6.0
mmz/s, K=6.3 Wmflel, L =00). The continuous lines
stand for a plane light beam, the dashed lines for ¢ = 10 mm,
and the dotted lines for a =5 mm. Now, the influence of lat-
eral heat diffusion is not negligible and, to retrieve the ther-
mal properties of the steel sample accurately, the size of the
laser spot must be included in the fitting procedure.

One of the applications of this matrix method is to quan-
tify the effect of coating the sample surfaces with paint
layers in order to increase the light absorption and the IR
emissivity. In Fig. 5, we show the effect of the presence of

) a =15 mm (dotted lines).
10° 100 10
Jf (Hz)
paint layers  (Dpgn =0.20 mm?/s and Kppaine = 0.40

Wm_lK_l) of different thicknesses in the self-normalized
temperature of a Ni slab 1.03 mm thick (Dy; =22 mm?/s and
Ky, =80 Wm 'K using plane illumination. In the ab-
sence of the paint layers, continuous lines Ln(7,,) and ‘¥(T,,)
are parallel straight lines from whose slope (m) the thermal
diffusivity can be obtained: m = —L+/n/D. The presence of
two 1 um thick paint layers (open circles) produces an
increase of the slope, leading to an underestimation of the
thermal diffusivity of the material if the above equation is
directly applied, i.e., using L = Lyppic + Lpgine- For 10 pum
thick paint layers (crosses), even the parallelism of Ln(7,)
and W(T,) is lost. This is the reason why we obtained smaller
values of the thermal diffusivity of Ni and AISI-304 stainless
steel than those found in the literature (see Table I in the first
part of this paper). In Fig. 6(a), we quantify the error in the
thermal diffusivity of opaque slabs due to the presence of the
thin paint layers as a function of the diffusivity of the sam-
ple. As before, the slope m = —L\/n/D is used to calculate
the thermal diffusivity, where L is the sum of the thickness
of the sample and the thicknesses of the two paint layers.

Ni

11 I\\\l\l\l‘\I\Il\l\l‘ll\lllll\‘\lll‘
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i
\I\I‘I\\\I\I\I‘\I\II\I\I‘II\IIIII\‘J
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FIG. 5. Calculations of the self-normalized temperature as a function of \/f
for a Ni slab 1.03 mm thick with paint layers in each surface using plane
illumination. Continuous lines L, =0, open circles L, 4, =1 pm, and
crosses Lyqin; =10 um. Upper and lower curves correspond to Ln(7},) and
Y(T,), respectively.
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Calculations have been performed for various thicknesses of
the paint layers, whose thermal properties are: D,,4;,, = 0.20
mm?/s and K aine = 0.40 Wm 'K, In all the calculations,
the ratio L/ \/5 =0.5s72 is kept constant. In this figure, it
can be seen that, the further the thermal diffusivities of paint
and sample, the higher the error on the obtained thermal dif-
fusivity of the sample. Note that even a 1 um thick paint
layer can produce a significant error on thermal diffusivity
measurements. Moreover, these calculations show that using
a coating of higher/lower thermal diffusivity than that of the
sample introduces an overestimation/underestimation on the
retrieved sample diffusivity. In particular, paint layers must
be avoided for accurate modulated PTR thermal diffusivity
measurements of good thermal conductors. Anyway, it is
surprising that, in the laser flash method, where the front sur-
face of an opaque plate is illuminated by a brief light pulse
and the temperature at the rear surface is recorded, the influ-
ence of the paint layers is almost negligible (see Fig. 6(b)).

0IIII|YII]|IIII

L

Radians

lllJlIIlllIIIIlII'

o
IIII|\|II|I|II|IIII

0.5 1 1.5 2
705 @A)

[«)

FIG. 7. Modulated PTR measurements of the self-normalized temperature
as a function of /f for a filter stack made of two equal neutral density filters
(L=1.04 mm) with a holed plastic film as a barrier. Plane illumination has
been used. The thickness of the plastic film is varied: O (no plastic), 25 pum,
50 pum, and 75 pm. The arrows indicate increasing thicknesses of the plastic
films. Continuous lines are the fittings to Eq. (15).

A second application is the characterization of the ther-
mal contact resistance between layers. In Fig. 7, we show by
symbols the self-normalized PTR signal corresponding to a
two-layer sample made of two neutral density filters
(Edmund Optics, optical density 1.0) of the same thickness,
L =1.04 mm, whose properties were measured in the first
part of this paper (D=0.54 mm?%s, o=2.10 mm™ ', and
f = 00). These modulated PTR measurements have been per-
formed using the same experimental setup as in Part I of this
work, using plane illumination. In order to vary the thermal
contact resistance, a plastic layer with a centered hole of 2
cm of diameter was placed between the two glass slabs. Plas-
tic films of the following thicknesses were used: O (no plastic
film), 25 pum, 50 um, and 75 pum. The glass slabs with the
plastic films were pressed using two clips. The continuous
lines correspond to the simultaneous fitting of Ln(7),,) and
W(T,) to Eq. (15), with the thermal resistance R as the fitting
parameter. As can be seen, the quality of the fitting is good,
and the retrieved thermal resistances are 1.05x 1077,
7.6x107% 1.6 x 1072, and 2.3 x 10* Km* W', According
to the expression R =L/K,;,, where K ;. =0.026 Wm 'K,
these thermal resistances correspond to air layers of thick-
ness 2.7 um (no plastic film), 20 um, 41 um, and 60 pm,
which are close to, but a bit below, the geometrical values.
This underestimation could be ascribed to the real reduction
of the air layer, since the clamping decreases the plastic film
thickness.

Finally, we deal with the simultaneous reconstruction of
D and « in materials with in-depth varying physical proper-
ties, as is the case of partially cured resins and functionally
graded materials.?’ In this work, we present the results for
sigmoidal « and D profiles, although similar conclusions
have been obtained for exponential and oscillating profiles.
The continuous lines in Fig. 8 show typical o and D in-depth
profiles for partially cured dental resins.'' Due to photopoly-
merization, the thermal diffusivity of the resin increases,
while the optical absorption coefficient decreases, i.e., the
material becomes a better thermal conductor and more trans-
parent. In this process, the heat capacity is assumed to
remain constant: pc =2.5 x 10° Jm *K . In the example of
Fig. 8, the curing process reaches about 0.3 mm. As can be
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FIG. 8. Real sigmoidal diffusivity and absorption coefficient profiles (con-
tinuous lines) and reconstructed profiles using the TV regularization (dots).

seen, the shape of D(z) and a(z) are not exactly anticorre-
lated, in order to study the most general and difficult case (if
we had the a priori information that they are completely
anticorrelated, the problem would reduce to reconstruct one
of them). In Fig. 9, we show by symbols the normalized am-
plitude and phase of the surface temperature. A white uni-
form noise has been added to simulate the experimental data:
*1% in amplitude and *£0.25° in phase. The synthetic data
have been obtained using the thermal quadrupole method,
Eq. (14), using 1000 layers. Normalization is performed
with a completely cured sample, i.e., D =0.40 mm?*/s and
=2 mm . In these calculations, the sample is assumed to
be opaque to IR wavelengths. These synthetic data have
been used to reconstruct the o and D profiles. The total varia-
tion (TV) method has been used, since it is more efficient to
reconstruct steep sigmoidal shapes than Tikhonov regulariza-
tion. Details of the inverse procedure are given in Ref. 21.
The continuous lines in Fig. 9 correspond to the best fitting
of the synthetic data using TV method. On the other hand,
the dots in Fig. 8 are the mean value of the reconstructed o
and D profiles at each depth. The error bar is related to the
different reconstructions obtained from different initial
guesses. As can be seen, the quality of the reconstruction of
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FIG. 9. Normalized amplitude (dots) and phase (crosses) synthetic values of
the surface temperature corresponding to the D and o profiles of Fig. 8.
White noise has been added to simulate experimental data. Solid lines are
the best fittings using TV regularization.
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both D and « is quite good, indicating the ability of photo-
thermal techniques to retrieve not only the in-depth varying
thermal properties, but also the optical properties.

IV. SUMMARY AND CONCLUSIONS

In this work, we have extended the thermal quadrupole
method to semitransparent multilayered structures, including
the cases of plane and focused illuminations. We have ana-
lyzed important experimental aspects, like heat losses, 2D
propagation, and coating of the sample, that affect the values
of thermal diffusivity and optical absorption coefficient
obtained from PTR data. The analysis has been carried out,
both when performing self-normalization and when using
normalization with a reference sample. In self-normalization,
the influence of both heat losses and 2D heat propagation is
negligible. However, when using the normalization with a
reference, both effects must be taken into account. On the
one hand, heat losses are important only at frequencies
below 0.1 Hz and, therefore, in most experimental condi-
tions, their influence can be neglected. On the contrary, the
effect of 2D heat propagation is more significant, and it can
influence greatly the accuracy of the retrieved thermal and
optical parameters. In order to overcome this issue, a laser
with a top hat shape is the best option. Otherwise, 2D heat
propagation must be used in the fitting procedure, where the
size of the Gaussian beam must be included. The analysis
also shows that paint layers as thin as 1 yum can significantly
affect the thermal diffusivity of opaque materials obtained
from PTR data in cases where the diffusivities of the coating
and the sample are very different. For this reason, the use of
very thin (nm thick) coating layers is advised, in case the op-
tical absorption or IR emissivity of the sample needs to be
improved.

Finally, the ability of the method to assess thermal resis-
tances has been validated experimentally by evaluating the
air thickness between two glasses from PTR data. The good
agreement between the retrieved air gap thicknesses and the
actual distance between glasses confirms the validity of the
model. Moreover, the application of the method to retrieve
simultaneously in-depth varying thermal diffusivity and
absorption coefficient profiles from synthetic data has given
very promising results. Experimental measurements on par-
tially cured dental resins and on functionally graded materi-
als are now in progress to verify the validity of the
procedure.
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