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The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the

thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First,

we extend the thermal quadrupole method to calculate the surface temperature of semitransparent

multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by

convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal

diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser

beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in

glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in

heterogeneous materials with continuously varying physical properties, as is the case of

functionally graded materials and partially cured dental resins. VC 2011 American Institute of
Physics. [doi:10.1063/1.3614525]

I. INTRODUCTION

Photothermal radiometry (PTR) is a nondestructive

remote sensing technique that has been widely used to mea-

sure the thermal diffusivity of homogeneous samples. Since

the seminal work by Mandelis and co-workers,1 modulated

PTR has also been used for thermal conductivity depth pro-

file reconstruction of heterogeneous samples as case (sur-

face) hardened steels,2–7 functionally graded materials,8 and

partially cured dental resins.9 In the last years, two works

dealing with the application of modulated PTR to the simul-

taneous reconstruction of the in-depth varying absorption

coefficient (a) and thermal diffusivity (D) of semitransparent

heterogeneous samples have been published.10,11

The aim of this work is to study the capability of modu-

lated PTR to obtain simultaneously a and D in multilayered

materials. First, we apply the thermal quadrupole method to

calculate the surface temperature of layered semitransparent

materials. The thermal quadrupole method is a unified exact

method for representing linear systems. It has been applied

in the framework of heat conductive transfer to calculate the

surface temperature of opaque multilayered samples12 and to

calculate the combined radiative and conductive heat transfer

in semitransparent bulk materials.13 Here, we extend this ele-

gant matrix method to express the surface temperature of

multilayered semitransparent samples in a compact manner.

Plane and Gaussian illuminations are studied. We focus on

the following issues: (a) the influence of heat losses by con-

vection and radiation in the modulated PTR signal, (b) the

influence of the thin paint layers, that are used to increase

the light absorptivity and infrared emissivity, on the accu-

racy of the thermal diffusivity measurements, using modu-

lated PTR, (c) the effect of lateral heat diffusion due to the

use of Gaussian laser beams, and (d) the retrieval of the ther-

mal contact resistance in glass stacks. Modulated PTR meas-

urements confirm the validity of the model.

Finally, we address the simultaneous reconstruction of a
and D depth profiles in heterogeneous materials with contin-

uously varying physical properties. These materials are mod-

eled as stratified ones made of a large number of parallel

layers, each one characterized by constant a and D. In this

work, sigmoidal a and D profiles are studied, although simi-

lar results are obtained for exponential profiles. The proce-

dure is as follows: (a) we calculate the amplitude and phase

of the surface temperature for a given a and D sigmoidal pro-

file using the thermal quadrupole method with a large num-

ber of layers, (b) then, we add a white uniform noise to these

amplitude and phase values to simulate experimental data,

and (c) finally, we apply a nonlinear-regularized minimiza-

tion with a total variation (TV) penalty term14 to reconstruct

the a and D depth profiles using a different number of layers

in order to avoid inverse crime, i.e., an excessively optimistic

accuracy of the reconstructions.15 The quality of the recon-

structed thermal and optical depth-varying properties indi-

cates the promising possibilities of this procedure.

II. THEORY

In this section, we develop the thermal quadrupole

method for semitransparent materials. Modulated plane and

focused illuminations are considered.

A. Modulated and plane illumination

Let us now consider the semitransparent multilayered

sample depicted in Fig. 1, illuminated by a plane light beam
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and modulated at a frequency f x ¼ 2pfð Þ. Each layer is

characterized by its thermal conductivity (Ki), thermal diffu-

sivity (Di), optical absorption coefficient (ai), and thickness

(Li). The one-dimensional (1D) heat diffusion equation for

each layer writes

d2Ti

dz2
� q2

i Ti ¼ �
Qi

Ki
; (1)

where qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ix=Di

p
is the thermal wave vector and

Qi ¼ Ii

2
aie
�ai z�zið Þ is the heat source. Ii is the incident light in-

tensity reaching layer i that, in the absence of internal reflec-

tions, is given by Ii ¼ I1e� a1L1þa2L2þ:::þai�1Li�1ð Þ. The solution

of Eq. (1) is usually expressed by exponential functions16

TiðzÞ ¼ Aie
qiðz�ziÞ þ Bie

�qiðz�ziÞ þ Cie
�ai z�zið Þ; (2)

where Ai and Bi are constants obtained from the boundary

conditions and

Ci ¼
Iiai

2Ki q2
i � a2

i

� � : (3)

However, when dealing with the thermal quadrupole method,

it is more convenient to use hyperbolic functions:

TiðzÞ ¼ AiSinh qiðz� ziÞ½ � þ BiCosh qiðz� ziÞ½ � þ Cie
�ai z�zið Þ;

(4a)

/iðzÞ ¼ �Ki
dTi

dz
¼ �Kiqi AiCosh qiðz� ziÞ½ � þ BiSinh qiðz� ziÞ½ �f g
þ KiCiaie

�aiðz�ziÞ;

(4b)

where / is the heat flux.

By applying Eq. (4) at the front (zi) and rear (ziþ1) surfa-

ces of layer i, a matrix relationship between temperature and

heat flux at both surfaces is obtained:

TiðziÞ
/iðziÞ

� �
¼ ai bi

ci di

� �
Tiðziþ1Þ � Xi

/iðziþ1Þ � Yi

� �
; (5)

where ai¼ di¼Cosh qiLið Þ, bi¼ Sinh qiLið Þ
Kiqi

, ci¼KiqiSinh qiLið Þ,

Xi¼Ci
ai

qi
Sinh qiLið Þ�Cosh qiLið Þþe�aiLi

h i
, and

Yi ¼ CiKi qiSinh qiLið Þ � aiCosh qiLið Þ þ aie
�aiLi

� �
:

According to Eq. (5), the temperatures at the front and rear

surfaces of layer i can be obtained provided the heat fluxes at

its surfaces are known. Note that, if the layer is opaque, then

Xi ¼ Yi ¼ 0.

B. Modulated and focused illumination

Now, we study the same semitransparent multilayered

sample as in the previous subsection, but illuminated by a

modulated and focused laser beam of Gaussian profile.

According to the radial symmetry of the problem, the two-

dimensional (2D) heat diffusion equation for each layer

writes

@2Ti

@r2
þ 1

r

@Ti

@r
þ @

2Ti

@z2
� q2

i Ti ¼ �
Qi

Ki
; (6)

where Qi ¼ 2Pie
� 2r2=a2ð Þ
pa2 aie

�ai z�zið Þ is the heat source. Pi is the

incident power reaching layer i that, in the absence of reflec-

tion, is given by Pi ¼ P1e� a1L1þa2L2þ:::þai�1Li�1ð Þ and a is the

laser beam radius (at 1/e2 of the intensity). The solution of

Eq. (6) is obtained by using the Hankel transform17

Tiðr; zÞ ¼
ð1

0

dJoðdrÞ �Tiðd; zÞdd

¼
ð1

0

dJoðdrÞ A
0

ie
biðz�ziÞ

h

þB
0

ie
�biðz�ziÞ þ C

0

ie
�aiðz�ziÞ

i
dd (7)

where �Tiðd; zÞ is the Hankel transform of the temperature, Jo

is the Bessel function of zeroth order and b2
i ¼ q2

i þ d2. A
0
i

and B
0
i are constants obtained from the boundary conditions,

and

C
0

i ¼
Piai

pKi b2
i � a2

i

� � e� dað Þ2=8: (8)

For the sake of convenience, we will use hyperbolic func-

tions instead of exponentials when applying the thermal

quadrupole method:

�Tiðd; zÞ ¼ A
0

iSinh biðz� ziÞ½ � þ B
0

iCosh biðz� ziÞ½ �
þ C

0

ie
�aiðz�ziÞ; (9a)

�/iðd; zÞ ¼ �Ki
d �Ti

dz
¼ �KibifA

0

iCosh biðz� ziÞ½ � þ B
0

iSinh biðz� ziÞ½ �g
þ KiC

0

iaie
�aiðz�ziÞ;

(9b)

FIG. 1. Diagram of a semitransparent multilayered slab.
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where �/iðd; zÞ is the Hankel transform of the normal heat

flux.

By applying Eq. (9) at the front (zi) and rear (ziþ1) surfa-

ces of layer i, a matrix relationship between Hankel trans-

forms of the temperature and heat flux at both surfaces is

obtained:

�Tiðd; ziÞ
�/iðd; ziÞ

� �
¼ a

0
i b

0
i

c
0
i d

0
i

� �
�Tiðd; ziþ1Þ � X

0
i

�/iðd; ziþ1Þ � Y
0
i

� �
; (10)

where a
0
i¼ d

0
i ¼Cosh biLið Þ, b

0
i¼

Sinh biLið Þ
Kibi

, c
0
i¼KibiSinh biLið Þ,

X
0
i¼C

0
i

ai

bi
Sinh biLið Þ�Cosh biLið Þþ e�aiLi

h i
, and

Y
0

i ¼ C
0

iKi biSinh biLið Þ � aiCosh biLið Þ þ aie
�aiLi

� �
:

Note that, if the sample is opaque, X
0
i ¼ Y

0
i ¼ 0. According to

Eq. (10), the Hankel transform of the temperatures at the

front and rear surfaces are obtained provided the Hankel

transforms of the normal heat fluxes are known.

By comparing Eqs. (5) and (10), one can realize that the

expressions for the 1D temperature and the Hankel transform

of the 2D temperature are the same, provided the following

changes are performed: qi ! bi and Ii=2! Pie
� dað Þ2=8=p.

Accordingly, in the remaining of this theoretical analysis, we

will only explicitly refer to the plane illumination.

For an anisotropic sample, for which the heat propaga-

tion is three-dimensional, one can proceed in a similar way,

but using the Fourier transform instead of the Hankel trans-

form. Moreover, by applying the inverse Laplace transform

to the modulated solutions given by Eqs. (5) and (10), the

temperature rise of the sample above the ambient due to a

transient illumination (Dirac pulse, step-like pulse, …) can

be directly obtained.

C. A homogeneous slab

Let us start by considering the simple case of a slab of

thickness L illuminated by a plane and modulated light beam

of intensity I1. If the sample is adiabatically isolated from its

surroundings, /ð0Þ ¼ /ðLÞ ¼ 0 and the matrix expression

relating the temperature at the sample surfaces writes

Tð0Þ
0

� �
¼ a b

c d

� �
TðLÞ � X

0� Y

� �
: (11)

Note that, in these calculations, the multiple reflections of

the incident light beam have not been considered. If heat

losses are present, the heat fluxes at the front and rear surfa-

ces are, respectively, /ð0Þ ¼ �hf Tð0Þ � KgqgTð0Þ and

/ðLÞ ¼ hrTðLÞ þ KgqgTðLÞ, where hf and hr are the com-

bined heat transfer coefficients by radiation and convection

at the front and rear surfaces, respectively. The last term in

each expression is the heat flux by conduction to the sur-

rounding gas, which is proportional to the surface tempera-

ture, since the gas is considered infinitely thick. According

to Eq. (5), the matrix expression relating the temperature at

the sample surfaces can be written as

Tð0Þ
0

� �
¼

1 0

hf 1

� �
1 0

Kgqg 1

� �
a b

c d

� �
1 0

Kgqg 1

� �

1 0

hr 1

� �
TðLÞ

0

� �

�
1 0

hf 1

� �
1 0

Kgqg 1

� �
a b

c d

� �
X

Y

� �
;

(12)

where subscript g stands for the surrounding gas. As can be

seen, the influence of conduction to the gas and convection

and radiation are separated in independent matrices.

Figures 2 and 3 show the influence of heat losses on the

surface temperature. In all the calculations, the following pa-

rameters have been used: Dg¼ 22 mm2/s, Kg¼ 0.026

Wm�1K�1, and hf ¼ hr ¼ 15 Wm�2K�1, which is a good

upper estimation for room temperature measurements.18

Two normalization procedures have been analyzed. In the

case of self-normalization, the ratio of the front and rear sur-

face temperatures is considered: Tn ¼ TðLÞ=Tð0Þ. This is a

suitable method for thin slabs. In Fig. 2, the natural loga-

rithm of the self-normalized temperature amplitude, Ln(Tn),

and its phase, W(Tn), are plotted against
ffiffiffi
f
p

. Calculations

have been performed for a semitransparent slab with the fol-

lowing parameters: D¼ 0.5 mm2/s, K¼ 1.0 Wm�1K�1,

L¼ 0.5 mm, and a¼ 3 mm�1. The dotted lines correspond to

the effect of heat losses. As it is well known, the effect of

heat losses is stronger at low frequencies and for poor ther-

mal conductors.19 However, in self-normalization, both

Ln(Tn) and W(Tn) converge to zero at low frequencies and,

therefore, the effect of heat losses is almost negligible.

The second normalization procedure consists of compar-

ing the sample temperature at the front surface to that of a

reference: T0n ¼ Tð0Þ=Tref ð0Þ. In Fig. 3(a), a very thick opa-

que slab with D¼ 1.0 mm2/s and K¼ 2.5 Wm�1K�1 is com-

pared with a very thick and opaque reference sample with

FIG. 2. Calculations of the self-normalized temperature as a function of
ffiffiffi
f
p

for a slab with D¼ 0.5 mm2/s, K¼ 1.0 Wm�1K�1, L¼ 0.5 mm, and a¼ 3

mm�1. Continuous lines correspond to the absence of heat losses. Dotted

lines correspond to the effect of heat losses with hf ¼ hr¼ 15 Wm�2K�1.
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Dref ¼ 0.5 mm2/s and Kref ¼ 1.0 Wm�1K�1. The dotted lines

correspond to the deviation due to heat losses. As can be

seen, only at frequencies below 0.1 Hz must the influence of

heat losses be taken into account. Note that, in absence of

heat losses, the amplitude of T0n is equal to eref/e¼ 0.566,

where e ¼ K=
ffiffiffiffi
D
p

is the thermal effusivity and W(T0n)¼ 0.

This means that, if the sample and the reference are ther-

mally thick, only the thermal effusivity of the sample can be

obtained.

In Fig. 3(b), we show the same calculations as in

Fig. 3(a), but Lref¼L¼ 1 mm. As before, the dotted lines

indicate the effect of heat losses, which are negligible above

0.1 Hz. Note that the amplitude of T0n converges to eref/

e¼ 0.566 at high frequencies and to qcLð Þref = qcLð Þ ¼ 0:80

at low frequencies, where qc ¼ K=D is the heat capacity. In

its turn, W(T0n) converges to zero, both at low and high fre-

quencies. From the shape of the normalized temperature at

intermediate frequencies, both D and K can be retrieved.

Finally, in Fig. 3(c), we show the same calculations as

in Fig. 3(b), but for semitransparent sample and reference,

with aref ¼ a¼ 3 mm�1. As can be seen, the information on

the optical properties appears at frequencies higher than

0.1 Hz, where the effect of heat losses is negligible.

As the effect of heat losses is only significant below

0.1 Hz and most experimental measurements with modulated

PTR are performed at frequencies above this limit, heat

losses will not be considered in the remainder of the

manuscript.

D. A multilayered material

The powerfulness of the matrix method is more evident

when dealing with multilayered structures. We come back to

the multilayered sample depicted in Fig. 1. For the sake of

simplicity, Eq. (5) can be expressed as

Hi ¼ Mi Oi � Pið Þ; (13)

where Hi is the input matrix, Oi is the output matrix, Mi is

the thermal matrix, and Pi is the optical matrix. To obtain a

single matrix equation, relating temperature and heat flux at

the front (z¼ z1¼ 0) and rear (z¼ zNþ 1¼ L) surfaces, we

need to know the relationship between temperature and heat

flux at each intermediate boundary. Two possibilities are

considered:

(a) If there is a perfect thermal contact between the layers,

temperature and heat flux continuity can be applied:

Tiðziþ1Þ ¼ Tiþ1ðziþ1Þ and /iðziþ1Þ ¼ /iþ1ðziþ1Þ, and,

therefore, Oi¼Hiþ1. By applying this equation to each

layer, we obtain

H1 ¼ ZNON �
XN

p¼1

ZpPp; (14)

where Zp¼
Qp
i¼1

Mi, H1¼
T1ð0Þ
/1ð0Þ

� �
, and ON ¼

TNðLÞ
/NðLÞ

� �
.

If heat losses are negligible, /1ð0Þ¼/NðLÞ¼ 0.

FIG. 3. Calculations of the normalized

temperature with a reference with the

following data: Dref ¼ 0.5 mm2/s,

Kref ¼ 1.0 Wm�1K�1, D¼ 1.0 mm2/s,

K¼ 2.5 Wm�1K�1. (a) Both are opaque

and thick, (b) both are opaque and

Lref ¼L¼ 1 mm, and (c) both are semi-

transparent, aref ¼ a¼ 3 mm�1, and

Lref ¼L¼ 1 mm. Continuous lines cor-

respond to the absence of heat losses,

while dotted lines correspond to the

effect of heat losses with hf ¼ hr¼ 15

Wm�2K�1.
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(b) A thermal resistance Ri,iþ1 is introduced to account

for the lack of adherence between the layers i and

iþ1. This means that the heat flux continuity still

holds but there is a jump in temperature given by

Tiðziþ1Þ ¼ Tiþ1ðziþ1Þ þ Ri;iþ1/iþ1ðziþ1Þ, and, therefore,

Oi ¼ <i;iþ1Hiþ1, where <i;iþ1 ¼
	

1 Ri;iþ1

0 1



. This means

that the matrix equation relating temperature and heat

flux at the front (z¼ 0) and rear (z¼ L) surfaces are

similar to Eq. (14), but changing Zp, that is the product of

the thermal matrices, by Z
0

p ¼ M1<1;2M2<2;3M3; ::::::;
Mp�1<p�1;pMp;

H1 ¼ Z
0

NON �
XN

p¼1

Z
0

pPp: (15)

III. APPLICATIONS

As this paper deals with modulated and plane illumina-

tion, we first analyze the effect of using a Gaussian laser

beam instead of a completely flat light source, i.e., the dis-

turbing effect of 2D heat propagation. Simulations are per-

formed for a stainless steel slab (D¼ 4.0 mm2/s, K¼ 15.0

Wm�1K�1, L¼ 1.0 mm). In Fig. 4(a), we show the self-nor-

malized amplitude and phase as a function of the square root

of the frequency. The continuous line corresponds to a plane

light beam, and the dotted line corresponds to a Gaussian

beam with a¼ 5 mm. As can be seen, the influence of the

lateral heat diffusion in the slopes and, therefore, in the ther-

mal diffusivity of the steel sample is almost negligible. In

Fig. 4(b), we show the result of the normalization of the steel

sample with a reference made of vitreous carbon (D¼ 6.0

mm2/s, K¼ 6.3 Wm�1K�1, L¼1). The continuous lines

stand for a plane light beam, the dashed lines for a¼ 10 mm,

and the dotted lines for a¼ 5 mm. Now, the influence of lat-

eral heat diffusion is not negligible and, to retrieve the ther-

mal properties of the steel sample accurately, the size of the

laser spot must be included in the fitting procedure.

One of the applications of this matrix method is to quan-

tify the effect of coating the sample surfaces with paint

layers in order to increase the light absorption and the IR

emissivity. In Fig. 5, we show the effect of the presence of

paint layers (Dpaint¼ 0.20 mm2/s and Kpaint¼ 0.40

Wm�1K�1) of different thicknesses in the self-normalized

temperature of a Ni slab 1.03 mm thick (DNi¼ 22 mm2/s and

KNi¼ 80 Wm�1K�1) using plane illumination. In the ab-

sence of the paint layers, continuous lines Ln(Tn) and W(Tn)

are parallel straight lines from whose slope (m) the thermal

diffusivity can be obtained: m ¼ �L
ffiffiffiffiffiffiffiffiffi
p=D

p
. The presence of

two 1 lm thick paint layers (open circles) produces an

increase of the slope, leading to an underestimation of the

thermal diffusivity of the material if the above equation is

directly applied, i.e., using L ¼ Lsample þ Lpaint. For 10 lm

thick paint layers (crosses), even the parallelism of Ln(Tn)

and W(Tn) is lost. This is the reason why we obtained smaller

values of the thermal diffusivity of Ni and AISI-304 stainless

steel than those found in the literature (see Table I in the first

part of this paper). In Fig. 6(a), we quantify the error in the

thermal diffusivity of opaque slabs due to the presence of the

thin paint layers as a function of the diffusivity of the sam-

ple. As before, the slope m ¼ �L
ffiffiffiffiffiffiffiffiffi
p=D

p
is used to calculate

the thermal diffusivity, where L is the sum of the thickness

of the sample and the thicknesses of the two paint layers.

FIG. 4. Influence of the laser spot size

on the normalized temperature for a

stainless steel slab (D¼ 4.0 mm2/s,

K¼ 15.0 Wm�1K�1, L¼ 1.0 mm). (a)

Self-normalized temperature and (b)

normalization with reference (vitreous

carbon: D¼ 6.0 mm2/s, K¼ 6.3

Wm�1K�1, L¼1). a¼1 (continuous

lines), a¼ 10 mm (dashed lines), and

a¼ 5 mm (dotted lines).

FIG. 5. Calculations of the self-normalized temperature as a function of
ffiffiffi
f
p

for a Ni slab 1.03 mm thick with paint layers in each surface using plane

illumination. Continuous lines Lpaint¼ 0, open circles Lpaint¼ 1 mm, and

crosses Lpaint¼ 10 mm. Upper and lower curves correspond to Ln(Tn) and

W(Tn), respectively.
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Calculations have been performed for various thicknesses of

the paint layers, whose thermal properties are: Dpaint¼ 0.20

mm2/s and Kpaint¼ 0.40 Wm�1K�1. In all the calculations,

the ratio L=
ffiffiffiffi
D
p
¼ 0:5s0:5 is kept constant. In this figure, it

can be seen that, the further the thermal diffusivities of paint

and sample, the higher the error on the obtained thermal dif-

fusivity of the sample. Note that even a 1 lm thick paint

layer can produce a significant error on thermal diffusivity

measurements. Moreover, these calculations show that using

a coating of higher/lower thermal diffusivity than that of the

sample introduces an overestimation/underestimation on the

retrieved sample diffusivity. In particular, paint layers must

be avoided for accurate modulated PTR thermal diffusivity

measurements of good thermal conductors. Anyway, it is

surprising that, in the laser flash method, where the front sur-

face of an opaque plate is illuminated by a brief light pulse

and the temperature at the rear surface is recorded, the influ-

ence of the paint layers is almost negligible (see Fig. 6(b)).

A second application is the characterization of the ther-

mal contact resistance between layers. In Fig. 7, we show by

symbols the self-normalized PTR signal corresponding to a

two-layer sample made of two neutral density filters

(Edmund Optics, optical density 1.0) of the same thickness,

L¼ 1.04 mm, whose properties were measured in the first

part of this paper (D¼ 0.54 mm2/s, a¼ 2.10 mm�1, and

b¼1). These modulated PTR measurements have been per-

formed using the same experimental setup as in Part I of this

work, using plane illumination. In order to vary the thermal

contact resistance, a plastic layer with a centered hole of 2

cm of diameter was placed between the two glass slabs. Plas-

tic films of the following thicknesses were used: 0 (no plastic

film), 25 lm, 50 lm, and 75 lm. The glass slabs with the

plastic films were pressed using two clips. The continuous

lines correspond to the simultaneous fitting of Ln(Tn) and

W(Tn) to Eq. (15), with the thermal resistance R as the fitting

parameter. As can be seen, the quality of the fitting is good,

and the retrieved thermal resistances are 1.05� 10�4,

7.6� 10�4, 1.6� 10�3, and 2.3� 10�3 Km2 W�1. According

to the expression R¼L/Kair, where Kair¼ 0.026 Wm�1K�1,

these thermal resistances correspond to air layers of thick-

ness 2.7 lm (no plastic film), 20 lm, 41 lm, and 60 lm,

which are close to, but a bit below, the geometrical values.

This underestimation could be ascribed to the real reduction

of the air layer, since the clamping decreases the plastic film

thickness.

Finally, we deal with the simultaneous reconstruction of

D and a in materials with in-depth varying physical proper-

ties, as is the case of partially cured resins and functionally

graded materials.20 In this work, we present the results for

sigmoidal a and D profiles, although similar conclusions

have been obtained for exponential and oscillating profiles.

The continuous lines in Fig. 8 show typical a and D in-depth

profiles for partially cured dental resins.11 Due to photopoly-

merization, the thermal diffusivity of the resin increases,

while the optical absorption coefficient decreases, i.e., the

material becomes a better thermal conductor and more trans-

parent. In this process, the heat capacity is assumed to

remain constant: qc¼ 2.5� 106 Jm�3K�1. In the example of

Fig. 8, the curing process reaches about 0.3 mm. As can be

FIG. 6. (a) Simulation of the error in

the thermal diffusivity of opaque slabs

due to the presence of a thin paint layer

as a function of the thermal diffusivity

using modulated PTR. (b) The same

using the flash method. Results for paint

layers of 1 mm, 5 mm, and 10 mm are

shown.

FIG. 7. Modulated PTR measurements of the self-normalized temperature

as a function of
ffiffiffi
f
p

for a filter stack made of two equal neutral density filters

(L¼ 1.04 mm) with a holed plastic film as a barrier. Plane illumination has

been used. The thickness of the plastic film is varied: 0 (no plastic), 25 mm,

50 mm, and 75 mm. The arrows indicate increasing thicknesses of the plastic

films. Continuous lines are the fittings to Eq. (15).
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seen, the shape of D(z) and a(z) are not exactly anticorre-

lated, in order to study the most general and difficult case (if

we had the a priori information that they are completely

anticorrelated, the problem would reduce to reconstruct one

of them). In Fig. 9, we show by symbols the normalized am-

plitude and phase of the surface temperature. A white uni-

form noise has been added to simulate the experimental data:

61% in amplitude and 60.25� in phase. The synthetic data

have been obtained using the thermal quadrupole method,

Eq. (14), using 1000 layers. Normalization is performed

with a completely cured sample, i.e., D¼ 0.40 mm2/s and

a¼ 2 mm�1. In these calculations, the sample is assumed to

be opaque to IR wavelengths. These synthetic data have

been used to reconstruct the a and D profiles. The total varia-

tion (TV) method has been used, since it is more efficient to

reconstruct steep sigmoidal shapes than Tikhonov regulariza-

tion. Details of the inverse procedure are given in Ref. 21.

The continuous lines in Fig. 9 correspond to the best fitting

of the synthetic data using TV method. On the other hand,

the dots in Fig. 8 are the mean value of the reconstructed a
and D profiles at each depth. The error bar is related to the

different reconstructions obtained from different initial

guesses. As can be seen, the quality of the reconstruction of

both D and a is quite good, indicating the ability of photo-

thermal techniques to retrieve not only the in-depth varying

thermal properties, but also the optical properties.

IV. SUMMARY AND CONCLUSIONS

In this work, we have extended the thermal quadrupole

method to semitransparent multilayered structures, including

the cases of plane and focused illuminations. We have ana-

lyzed important experimental aspects, like heat losses, 2D

propagation, and coating of the sample, that affect the values

of thermal diffusivity and optical absorption coefficient

obtained from PTR data. The analysis has been carried out,

both when performing self-normalization and when using

normalization with a reference sample. In self-normalization,

the influence of both heat losses and 2D heat propagation is

negligible. However, when using the normalization with a

reference, both effects must be taken into account. On the

one hand, heat losses are important only at frequencies

below 0.1 Hz and, therefore, in most experimental condi-

tions, their influence can be neglected. On the contrary, the

effect of 2D heat propagation is more significant, and it can

influence greatly the accuracy of the retrieved thermal and

optical parameters. In order to overcome this issue, a laser

with a top hat shape is the best option. Otherwise, 2D heat

propagation must be used in the fitting procedure, where the

size of the Gaussian beam must be included. The analysis

also shows that paint layers as thin as 1 lm can significantly

affect the thermal diffusivity of opaque materials obtained

from PTR data in cases where the diffusivities of the coating

and the sample are very different. For this reason, the use of

very thin (nm thick) coating layers is advised, in case the op-

tical absorption or IR emissivity of the sample needs to be

improved.

Finally, the ability of the method to assess thermal resis-

tances has been validated experimentally by evaluating the

air thickness between two glasses from PTR data. The good

agreement between the retrieved air gap thicknesses and the

actual distance between glasses confirms the validity of the

model. Moreover, the application of the method to retrieve

simultaneously in-depth varying thermal diffusivity and

absorption coefficient profiles from synthetic data has given

very promising results. Experimental measurements on par-

tially cured dental resins and on functionally graded materi-

als are now in progress to verify the validity of the

procedure.
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