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KAF3 (A = Mn, Co, Ni) are considered as perfect 3-D Heisenberg antiferromagnets though there are scarce
experimental evidences of that behaviour in the case of the last two perovskites. In this work, a high res-
olution photopyroelectric technique has been used to study the critical behaviour of the antiferromag-
netic transition in KCoF; and KNiF; measuring specific heat, thermal diffusivity and thermal
conductivity. The critical behaviour of KNiF; slightly deviates from the perfect Heisenberg universality
class (the retrieved parameters are o= —0.110, A*/A~ = 1.30), due to its small uniaxial anisotropy; this

f;e_l); ‘ilzglrdbsf;haviour behaviour has been confirmed by the critical parameters of both the specific heat and the thermal diffu-
Calorimetry sivity. In opposition to what is assumed in literature, the critical behaviour of KCoF3 cannot be simply

described by the Heisenberg universality class (o = —0.081, A"/A~ = 1.19) due to the spin-orbit interaction
at the magnetic transition, which introduces a perturbation in the Hamiltonian and makes the pure Hei-
senberg model incomplete for this case. The results for both materials disagree with and correct previous
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works on them.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Perovskites have attracted great attention in the last decades
because of several interesting properties such as high-temperature
superconductivity, colossal magneto resistance and competing
physical mechanisms at the magnetic transitions. Halogen based
cubic perovskites ABX; (A and B are mono- and divalent cations
and X is a monovalent halogen anion) have been extensively stud-
ied due to the variety of their electrical, optical and magnetic prop-
erties [1]. Regarding the characteristics of continuous phase
transitions, the experimental study of their critical behaviour has
been widely used to ascertain the validity of the universality clas-
ses, which allows to describe the underlying physical mechanisms
in different kind of materials with a common model, thus getting a
quick insight on the physics of the transition. In the particular case
of magnetic transitions, the dimensionality of the system d and the
(an)isotropy of the magnetic ordering (expressed by the number of
components of the order parameter n) are the identifiers which
assign the material to the Ising, XY or Heisenberg class (just to
mention the most common ones) [2]. There is a wide variety of
experimental variables which can be used to extract the critical
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behaviour (magnetic, thermal, nuclear, optical...) but some tech-
niques are more sensitive than others in order to retrieve the crit-
ical parameters and discriminate among the models, especially if
the values of those parameters are very different from one model
to the next one. Besides, the high resolution techniques which
allow to get closer to the critical temperature are the best ones
to evaluate possible crossovers or deviations from a certain model,
either because of a small anisotropy with respect to the isotropic
model, or due to the presence of a perturbing second physical
mechanism at the transition which introduces an additional order
parameter or interactions between the two of them. In particular,
thermal measurements which study the critical behaviour of the
specific heat and related thermal variables (thermal diffusivity,
thermal conductivity) are better suited than other techniques as
the value of their critical parameters are very different in each
model (see Table 1); high resolution ac photopyroelectric calorim-
etry has revealed as a very sensitive technique to measure thermal
variables and retrieve the critical parameters with great accuracy
[3-7].

Focusing our attention on fluoride perovskites, critical behav-
iour studies of RbMnF; and KMnF3; have soundly established that
they belong to the 3D-Heisenberg class, as the isotropic arrange-
ment of their spins is nearly perfect [3,4,8,9], while the easy-plane
antiferromagnet CsMnF3 is a perfect 3D-XY [5] and the strongly
anisotropic FeF, is a nice example of a 3D-Ising one [8]. KNiF3
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and KCoF; are also generally included among the cubic perovskites,
though there is a deviation from the cubic structure at the mag-
netic transition, small in the case of KNiF3 but tetragonal in the
case of KCoFs. Both of them are thought to belong to the perfect
3D-Heisenberg class [10-12] but only one work has been done to
evaluate this attribution, by means of linear birefringence [13].

It is worth taking into account the similarities and differences in
magnetic properties among RbMnFs, KMnFs, KNiF; and KCoFs. All
of them have a G-type antiferromagnetic structure but the direc-
tion of the spins differs: in RbMnFs; this is along the threefold axes,
in KMnF; they are canted 43.4° with respect to the c-axis, in KNiF3
it is along the fourfold axes and in KCoF;s it is along the c-axis
[14,15]. Another important difference is that Mn?* ions have no
orbital moment, while Ni>* and Co?* ions have, so the influence
of spin-orbit interaction could and does make a difference at the
transition, being more important for KCoF3 than for KNiFs. Lastly,
uniaxial anisotropy (the ratio between the anisotropy field Hj
and the exchange field Hg) has been evaluated for RbMnF;
(6 x 1075) [16], KMnF; (5.9 x 107%) [17] and KNiF; (2.4 x 107)
[10], values which suggest that KNiF; might present differences
with respect to the other two. That kind of information is not avail-
able for the case of KCoFs.

Hence, the aim of this work is to perform high resolution ther-
mal measurements to evaluate how the particularities of KNiF; and
KCoF; affect the critical parameters and identify if they really
belong to the 3D-Heisenberg universality class or not.

2. Samples and experimental techniques

Single crystals of KCoF; and KNiF; were grown from the melt by the horizontal
Bridgman method as described in detail by Skrzypek et al. [ 18]. The starting stoichi-
ometric mixtures KHF,, CoF,, NiF, were heated to maximum temperatures higher
than their respective melting points by about 50 K. The single crystals were then
obtained by cooling the liquid mixtures. The low cooling rates were maintained
by driving the melt through the temperature gradient of the furnace at a rate of
4 mm/h. The crystallization process was performed under an argon atmosphere.
The crystal structure was verified by X-ray diffraction technique. These compounds
crystallized in the perovskite cubic symmetry (Pm3m). The unit-cell parameters
are: 4.011(2) A and 4.069(4) A for KNiF5 and KCoFs, respectively [19]. The measure-
ments were carried out on powdered samples from line profile measurements in
similar conditions as reported in [20]. The KNiF; does not show any evidence of
structural phase transitions and KCoF; undergoes a tetragonal distortion with c/
a<1 at 114 K according with Okazaki et al. [21]. The X-ray microanalysis technique
allowed us to carry out the homogeneity analysis. The measurements were made
for a few micro areas of the crystal surface (the dimensions of which were about
a few hundred micrometers). The results obtained confirm the high homogeneity
of the crystal examined. Slices of thickness of about 0.73 mm were used for the
present study. The samples were prepared so that they had well polished, plane-
parallel surfaces.

A high-resolution ac photopyroelectric calorimetry in the back detection config-
uration has been used in this work to extract thermal diffusivity D, specific heat c,
and thermal conductivity K. The first one is extracted from the phase of the photo-
pyroelectric signal while a combination of amplitude and phase must be used for
the other two thermal parameters. The details of the experimental setup, as well
as of the theory which explains how the thermal parameters are obtained from
the photopyroelectric signal can be found elsewhere [5,22-25]. The range of cooling
and heating rates used has been from 60 mK/min for measurements on a wide tem-
perature range down to 10 mK/min for high-resolution runs close to the Néel
temperatures.

Table 1

Most common magnetic universality classes for d = 3 and the corresponding critical
parameters. o and A*/A™ are for specific heat, § for spontaneous magnetization, y for
isothermal susceptibility, v for the correlation length.

Universality class n o B y v A*|A-
Ising 1 0.11 0.33 1.24 0.63 0.52
XY 2 -0.014 0.34 1.30 0.66 1.06
Heisenberg 3 -0.115 0.36 1.39 0.71 1.52

3. Fitting procedure

The experimental specific heat curves have been fitted to the
equation:

Cp = B+ Ct+ A*[t]*(1 + E*|¢9), M

where t = (T — Ty)/Ty is the reduced temperature, Ty the critical
temperature, and o, A*, B, C and E* are adjustable parameters. Super-
scripts + and — stand for T> Ty and T < Ty respectively. The linear
term represents the background contribution to the specific heat
(which includes both the lattice and the magnetic contributions),
while the last term is the anomalous contribution to the specific
heat. The factor under parenthesis is the correction to scaling that
represents a singular contribution to the leading power as known
from experiments and theory [26,27].

A non-linear least square routine using a Levenberg-Marquardt
method has been used to simultaneously fit the experimental data
for T> Ty and T < Ty. First of all, we selected a fitting range close to
the transition while avoiding the rounding part, and kept fixed the
value of Ty. We performed a first fitting without the correction to
scaling term and obtained a set of adjusted parameters. After-
wards, we tried to increase the number of data points included
in the fitting, first fixing t,;;; and increasing t,;q, up to values where
no changes were detected in the fit quality, and then fixing t,;,.x and
decreasing t,;, to get as close as possible to the Néel temperature,
always avoiding the rounded part. The next step was to introduce
the correction to scaling term in order to improve the fitting. As a
last checking, we let Ty be a free parameter in order to confirm the
fitting. In the whole process, we focused our attention on the root
mean square value as well as on the deviation plot, which is the
difference between the fitted values and the measured ones as a
function of the reduced temperature. This procedure is the one
commonly used for this kind of fittings [5-7,26].

Thermal diffusivity has also been used to extract information
about the critical behaviour of the magnetic transition. A similar
equation to Eq. (1), used for specific heat, with its own critical
parameters, is written as

D=V +Wt+U*|t| (1 +F*|t]°%) (2)

and an equivalent procedure to the one explained above with ¢, has
been followed to fit the experimental results of thermal diffusivity
to Eq. (2).

In order to compare the fitted parameters obtained by means of
(1) and (2), we use the constitutive equation D = % where K
stands for thermal conductivity and p for density, and thus write
(leaving aside the correction to scaling factors, which are phenom-
enologically introduced only to extend the fitting range):

K K C, A
pc,  pB

-1
D=V +Wt+Ut| " = — 1+Et+F|t|“> 3)

Approximate relations between the parameters can be found in
the Heisenberg, XY and Ising universality classes [3-6]. In particu-
lar, in the Heisenberg case, where |t|"* « 1, the right hand part can
be developed in a Taylor series, giving

+
D_V+Wt+Ui|tbz%(l—%t—%m“) (4)

From Eq. (4) we can extract the following relations among the
critical parameters of the specific heat and thermal diffusivity

b~ o, (5a)
U* ~ —KA*/pB* > 0 (5b)
Ut/U-~A"/A (5¢)
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Besides, the rest of the parameters are related through
V ~K/pB (5d)
W ~ —KC/pB? (5€)

4. Results and discussion

The thermal diffusivity as a function of temperature in a long
temperature range centred at the magnetic transition for both
samples is presented in Fig. 1. The general evolution is quite typi-
cal, with higher values at low temperature due to the wider length
of the phonons mean free path, quickly diminishing as tempera-
ture increases, reaching at room temperature the values of
1.21 mm?/s (KCoF;) and 2.15 mm?/s (KNiF;). The inset in Fig. 1
shows the evolution of thermal diffusivity for KCoF; near room
temperature in order to better compare it with KNiFs. In both
cases, the antiferromagnetic transition is manifested as a dip
superimposed on the thermal diffusivity curve. The Néel tempera-
tures are, respectively, 115.3 K and 244.8 K, in agreement with lit-
erature [28-30]. It is worth pointing out that no thermal hysteresis
appears in any of the thermal variables in any sample, within our
experimental uncertainty. Besides, the shapes are consistent with
continuous transitions.

Figs. 2 and 3 show the high resolution curves for thermal diffu-
sivity, specific heat and thermal conductivity in the case of KNiF3
and KCoFs, respectively, in the near vicinity of the Néel tempera-
ture as a function of the reduced temperature t = (T — Ty)/Tn. Spe-
cific heat and thermal conductivity are always noisier than
thermal diffusivity using this technique, as the latter is obtained
only using the phase of the photopyroelectric signal while for the
former two both amplitude and phase are needed. Specific heat
shows the usual lambda-shape associated to second-order phase
transitions; concerning thermal conductivity, there is only a
change of slope at the transition, which is bigger in the case of
KNiF; than in the case of KCoF; (see Figs. 2e and 3e).

Starting with KNiFs, the fitted curve for specific heat is superim-
posed to the experimental data points in Fig. 2a, in which the dots
correspond to the experimental data (not all of them have been
presented, for the sake of clarity) and the continuous lines to the
best fitting to Eq. (1). As can be seen in Fig. 2a, the fitting is very
good. In order to better evaluate the quality of the fittings,
Fig. 2b shows the deviation plots of the fitting with respect to

6 KCoF, 16 |
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Fig. 1. Thermal diffusivity as a function of temperature for KCoF; and KNiF;. The
inset shows the behaviour near room temperature for KCoFs.
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Fig. 2. Experimental (dots) and fitted curves (continuous lines) of the specific heat
(a), thermal diffusivity (c) and thermal conductivity (e) as a function of the reduced
temperature for the antiferromagnetic to paramagnetic transition in KNiFs. (b) and
(d) present the corresponding deviation plots. Open circles are for T < Ty and crosses
for T > Ty. Not all experimental points are shown, for the sake of clarity.

the experimental curve. Again, not all points are presented, for
the sake of clarity.

The fitting ranges are in all cases limited by the rounding in the
curves; this rounding is inherent to the samples and not attribut-
able to the technique, as shown elsewhere [7].

The values of the critical parameters, the fitting ranges and the
quality of the fittings given by the root mean square value are pre-
sented in Table 2. The values of the critical exponent
o=-0.110£0.003 and the ratio of the coefficients A"/
A" =1.30+0.03 agree quite well with the theoretical values for
the 3D-Heisenberg universality class though there is a small devi-
ation in the ratio, reducing its value (which is 0.52 for the uniaxial
Ising class). This is surely due to the fact that there is a small uni-
axial magnetic anisotropy [10] with a slightly distorted cubic
structure, which makes KNiF3 not as perfect a Heisenberg antifer-
romagnet as KMnF3 or RbMnFs, where the critical exponents of
both specific heat and thermal diffusivity comply with that univer-
sality class, fulfilling Eq. (5) [3,4]. Uniaxial anisotropy (the ratio
between the anisotropy field H4 and the exchange field Hg) is
2.4 x 107> in KNiF; [10] while it is 5.9 x 105 in KMnF; [17] and
6 x 10°% in RbMnF; [16]. Even if the values are small, the differ-
ence is of an order of magnitude, which could simply imply small
deviations in the critical parameters from the theoretical values of
the Heisenberg universality class, as it happens. It is well known
from renormalization group theory that the presence of a small
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Fig. 3. Experimental (dots) and fitted curves (continuous lines) of the specific heat
(a), thermal diffusivity (c) and thermal conductivity (e) as a function of the reduced
temperature for the antiferromagnetic to paramagnetic transition in KCoFs. (b) and
(d) present the corresponding deviation plots. Open circles are for T < Ty and crosses
for T> Ty. Not all experimental points are shown, for the sake of clarity.

anisotropy can produce a crossover from the 3D-Heisenberg class
to the 3D-Ising one as the reduced temperature approaches zero.
The reduced temperature t, at which this crossover takes place is
given by |t,| = |[Ha/Hg|®® [31]. For the case of KNiF; |t =2 x 107*
which is precisely the limit of our fitting for T > Ty. This means that
we are hinting this anisotropy in our experimental results, as they
only slightly deviate from the Heisenberg values.

Fig. 2c and d shows the result of the fittings for thermal diffusiv-
ity. The values of the critical parameters, the fitting ranges and the
quality of the fittings given by the root mean square value are also
presented in Table 2. The values of the critical exponent
b=-0.099+0.004 and the ratio of the coefficients U’/

=0.554 ~-K A'[pB*=0.663, U =0308 ~-K A /pB*>=0512,
V=2.173 ~K|pB=2.100, and W= —4.18 but —KC/pB*>=-1.26. U~
and W contain the biggest discrepancy, again due to the small devi-
ation from the pure Heisenberg universality class.

Now we will turn our attention to KCoFs. Fig. 3a shows the fit-
ted curve for specific heat superimposed to the experimental data
points. The curvature at T > Ty cannot be adequately fitted with Eq.
(1), as the fitting is done at the same time for both branches with
common critical parameters. The best fit gives values for the criti-
cal exponent o = —0.081 + 0.01 and for the ratio of the coefficients
A"[A” =1.19 £ 0.17 which further deviate from the 3D-Heisenberg
model and whose fitting quality is worse than in the case of KNiFs.
This is clearly seen not only in the deviation plots (Fig. 3b) but also
in the root mean square value in Table 3 if we compare it with the
one obtained for KNiF; in Table 2. Table 3 also displays all the val-
ues of the parameters for KCoFs, as well as their errors, which are
also worse than for KNiFs. In any case, the fitting is good enough to
extract the critical parameters for this material from Eq. (1).

In KCoF5 the spins are ordered along the z-axis; as the single
crystal sample turns multidomain at the critical temperature, the
average should give a Heisenberg behaviour. Besides, even in mon-
odomain samples, measurements on linear birefringence obtained
the same critical parameter for both KNiF3 and KCoFs [13].

But there is an important difference between KNiF3; and KCoFs,
as the transition in the latter is not purely magnetic: there is also a
distortion of the crystal lattice from cubic to tetragonal [19,21],
whose origin lies in the spin orbit interaction. The Co?" ion possess
in the cubic field a threefold orbitally degenerate ground state. For
these ions, degeneracy can be removed by two means: the Jahn-
Teller effect and the spin-orbit interaction. An ion of Co?* can be
analyzed as a single hole in the t,, level. During tetragonal defor-
mation with c/a > 1, the Jahn-Teller effect stabilizes the hole-orbi-
tal Id,,>=I1* — 0>. Since the ground state has a zero orbital moment,
the spin-orbit interaction is ineffective. For a tetragonal deforma-
tion where c/a < 1 (which is the case of KCoF; [21,32]), the doublet
[1” = 1> appears to be lower. However, for this case we have a
ground state characterized by an unquenched orbital momentum,
and the spin-orbit interaction leads to the splitting of this level. In
KNiF3 the spin-orbit interaction is negligible, that’s why this mech-
anism is not important in that case.

Usually, the transition leading to the disappearance of degener-
acy by the spin-orbit effect takes place simultaneously with the
magnetic ordering. This conclusion follows from the analysis of
the Hamiltonian, which depends on both the spin and the orbital
variables. These variables, due to the exchange interaction and
the spin-orbit interaction, are markedly interrelated. Conse-
quently, we deal not only with magnetic ordering, but also with
orbital ordering which, in its turn, produces the distortion of the
crystal lattice.

For the calculation of the magnetic susceptibility of these mag-
netic systems Suzuki et al. [33] applied the correlated effective

U~ =1.77 £ 0.05 also point to the 3D Heisenberg universality class, field approximation method (CEFA) with the following
with deviations due to the mentioned small uniaxial anisotropy Hamiltonian:
(for the Ising universality class, the theoretical value is U*/
U-=2.0). H= ZHi +JZsi ] (6)
With the fitted results shown in Table 2, we see that the param- ' <U;
eters approximately fulfill Eq. (5) as b=—0.099 ~ o= —0.110, U* Hi = Al - s; + (7)
Table 2
Critical parameters and quality of the fittings (given by the root mean square value) for KNiFs.
o A*JA- Ty (K) B(Jkg 'K CUkg 'K A (Jkg'K E E* RMS
¢ (Jkg'K')  -0.110£0.003  130%0.03 24522 10294 619+8 —250+4 —-0.400+0.006  —0240:0.026  0.9983
b U*ju- Ty (K) V (mm?/s) W (mm?/s) U~ (mm?[s) F F RMS
D (mm?[s) -0.099+0.004 1.77+0.05 24504  2173+0.009  -4.18+0.03 0.308  0.007 25101 1.3110.04 0.9996
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g:ilzi]:a?parameters and quality of the fittings (given by the root mean square value) for KCoFs.
o A'JA” Ty (K) B(Ukg'K') Cc(Ukg'KYH A (kg'KYH E E RMS
e (J kg ' K1) —0.081+£0.010 1.19£0.17 115.53 1016 +40 603 +10 —456 +37 —0.63 +0.06 0.05 +0.02 0.99466
b Utju~- Ty (K) V (mm?/s) W (mm?/s) U~ (mm?/s) F~ F RMS
D (mm?/s) —0.082 £0.011 1.26 £0.20 115.35 0.7+0.2 -1.9+0.1 22+0.2 —0.08 £ 0.01 -0.13+£0.06 0.99166

where ] is the exchange constant between nearest-neighbour spins
(next-nearest neighbour interactions are completely negligible in
these materials), s;, s; stand for the spins vectors, I; for the orbital
angular momentum vector, A is the coefficient of the spin-orbit
coupling for the T, state, [;, is the z-component of the orbital angular
momentum vector, being z the tetragonal axis. The second term of
Eq. (7) represents the effect of a tetragonal crystalline field, where ¢
is a parameter determined within the CEFA model. It may therefore
be concluded that the lattice distortion occurs at the Néel point, and
that it is the result of the magnetic properties of the system studied.
The consequence is that the critical behaviour cannot be adequately
described by the Heisenberg model, where the hamiltonian only
includes the second term in Eq. (6); our experimental results cor-
roborate this point.

As a checking point, we have studied the possibility of the pres-
ence of a crossover temperature from the 3D-Heisenberg model to
the 3D-Ising, as renormalization group theory suggests. As there is
no information available about the values of the anisotropy field Hy
and the exchange field Hg in KCoF3; we cannot evaluate the cross-
over temperature t, but we have performed fittings using different
regions without finding any crossover.

Fig. 3c and d shows the thermal diffusivity, the fitting using Eq.
(2) and the corresponding deviation plot for KCoFsz (all fitting
parameters are presented in Table 3). The critical exponent and
the ratio of the coefficients again deviate from the Heisenberg
model and, what’s also important, Eq. (5), which approximately
hold for the Heisenberg case, are not fulfilled, there are strong
deviations.

Lastly, the different behaviour shown by both materials in ther-
mal conductivity below the phase transition (the change in slope in
the case of KNiF; is much bigger than in KCoFs) can also be
explained due to the unquenched orbital angular momentum in
the latter case. Heat carriers in these insulator materials are mainly
phonons, which means that the different scattering mechanisms
that can take place in them will affect the value of thermal conduc-
tivity and its evolution with temperature. If phonon-phonon inter-
action is the main scattering mechanism, as temperature is
reduced there will be a quick increase in thermal conductivity,
more rapidly than 1/T, exponential at low enough temperatures
[34]. But if there are other limiting mechanisms which reduce
the phonon mean free path, such as phonon-magnon interactions,
the increase in thermal conductivity as temperature is lowered will
be severely reduced. In the case of KCoF; it has been experimen-
tally [35] and theoretically [36] proved the presence of a strong
phonon-magnon interaction due to its orbital angular momentum,
as opposed to other similar systems without it (RbMnF3;, KMnF3
which are similar in this aspect to KNiF5 as its spin-orbit coupling
is negligible). This strong interaction may have two origins: the
fluctuations in the crystal field or the modulation of the exchange
interactions, in both cases due to the motion of the atoms. Buyers
et al. showed that the crystal field effect was important while the
second effect was not, due to a lack of evidence for anisotropic
exchange in spin wave measurements [36]. Thus, phonon-phonon
scattering is the dominating effect to limit the phonon-mean free
path in KNiF; while a strong phonon-magnon scattering takes
place in KCoFs, reducing the phonon mean free path. This is the
reason why, from the paramagnetic phase to the antiferromagnetic

one, the thermal conductivity in KCoF; increases slowlier than in
the case of KNiFs.

5. Conclusions

Critical behaviour of the antiferromagnetic transition in KNiF3
and KCoF3 has been studied by means of a high resolution photo-
pyroelectric technique, measuring specific heat, thermal diffusivity
and thermal conductivity in the close vicinity of the Néel temper-
atures. In the case of KNiFs, it has been shown that its critical
behaviour slightly deviates from the perfect Heisenberg universal-
ity class, due to its small uniaxial anisotropy (in contrast to perfect
Heisenberg systems such as RbMnF; and KMnFs); this behaviour
has been confirmed by the interrelation among the critical param-
eters of the different thermal variables. In the case of KCoFs;, its
critical behaviour has a stronger deviation from the Heisenberg
universality class due to the spin-orbit interaction, which intro-
duces a perturbation in the Hamiltonian which cannot be
described by a pure Heisenberg model. This work corrects previous
assumptions and results in literature, where both KCoF; and KNiF;
have been considered so far as perfect 3D-Heisenberg antiferro-
magnets. In order to reveal their real critical behaviour, high reso-
lution techniques must be employed.
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