Application of the thermal quadrupole method to the propagation of thermal waves in multilayered cylinders

Agustín Salazar
Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería, Universidad del País Vasco, Alameda Urquijo s/n, 48013 Bilbao, Spain

Ricardo Celorio
Departamento de Matemática Aplicada, Universidad de Zaragoza, Campus Río Ebro, Edificio Torres Quevedo, 50018 Zaragoza, Spain

(Received 10 July 2006; accepted 25 September 2006; published online 15 December 2006)

Up to now, research in photothermal techniques has been mainly restricted to samples with flat surfaces. In this work the surface temperature oscillation of multilayered cylindrical samples which are heated by a modulated light beam is calculated by using the quadrupole method. Different illumination geometries have been studied. Moreover, the lack of adherence between layers, as well as heat losses at the surface, has been considered in the model. Following this theoretical approach, photothermal techniques can be used for the quantitative thermophysical characterization of cylindrical samples with continuously varying in-depth thermal conductivity. © 2006 American Institute of Physics. [DOI: 10.1063/1.2400403]

I. INTRODUCTION

Photothermal techniques have become very powerful tools for the thermophysical characterization and nondestructive evaluation (NDE) of a wide variety of materials. Photothermal wave techniques are based on the generation and detection of thermal waves in the sample under study. Thermal waves are generated in a material as a consequence of the absorption of an intensity modulated light beam. These highly damped thermal waves propagate through the material and are scattered by the buried heterogeneities. Different photothermal setups have been developed to detect these thermal waves and therefore to extract from them information on the thermal properties and internal structure of the material: infrared radiometry, mirage effect, photothermal reflectance, etc.

For decades, research in photothermal techniques has been restricted to samples with flat surfaces. Recently, some studies on cylindrical and spherical samples have been published. In this work we calculate, using the quadrupole method, the surface temperature of a multilayered cylindrical sample which is heated by a modulated light beam. The quadrupole method is a unified exact method of representing linear systems. It has been applied in the framework of conductive transfer to calculate the surface temperature of flat multilayered samples. Here we exploit this elegant method to express the surface temperature of multilayered cylindrical samples in a compact manner. Different illumination geometries have been studied, both with and without keeping the cylindrical symmetry. On the other hand, the lack of adherence between layers has been taken into account by introducing a thermal contact resistance. Moreover, heat losses at the surface have also been considered. Consequently, it is expected that this theoretical approach encourages the use of photothermal techniques for the quantitative thermophysical characterization of cylindrical samples with continuously varying in-depth thermal conductivity, as is the case of hardened steel wires, tubes, and nails.

II. THEORY

In this section we first apply the quadrupole method to calculate the surface temperature of a multilayered cylinder that is illuminated by a light beam with cylindrical symmetry, modulated at a frequency f ($\omega=2\pi f$). Accordingly, in this simple configuration the one-dimensional approach can be used. Then we generalize the method to include illuminations with no cylindrical symmetry, which are of more practical interest.

A. Illumination with cylindrical symmetry

1. A hollow cylinder

Let us consider an infinite, homogeneous, and opaque hollow cylinder with an outer radius a and an inner radius b, which is uniformly illuminated by a radial light beam of intensity I_0 modulated at a frequency f. Its cross section is shown in Fig. 1. Due to the cylindrical symmetry of the illumination the temperature oscillation at any point of the cylinder can be written as

$$T(r) = PJ_0(q r) + QH_0(q r),$$

where $q = \sqrt{\omega_D}$ is the thermal wave vector, with D the thermal diffusivity of the sample and J_0 and H_0 are the zeroth order of the Bessel and Hankel functions of the first kind, respectively. The first term in Eq. (1) represents the ingoing cylindrical thermal wave starting at the sample surface, while the second one is the corresponding reflected wave at the inner surface. P and Q are two constants to be determined according to the boundary conditions. On the other hand, if we define j as minus the heat flux at any point of the cylinder, then it writes

\[\mathbf{Q} \cdot \mathbf{v} = -\mathbf{q}, \]

where \mathbf{Q} is the heat flux and \mathbf{v} is the surface normal. The surface temperature oscillation at any point of the cylinder can be written as

$$T(r) = PJ_0(q r) + QH_0(q r).$$

Accordingly, in this simple configuration the one-dimensional approach can be used. Then we generalize the method to include illuminations with no cylindrical symmetry, which are of more practical interest.

A. Illumination with cylindrical symmetry

1. A hollow cylinder

Let us consider an infinite, homogeneous, and opaque hollow cylinder with an outer radius a and an inner radius b, which is uniformly illuminated by a radial light beam of intensity I_0 modulated at a frequency f. Its cross section is shown in Fig. 1(a). Due to the cylindrical symmetry of the illumination the temperature oscillation at any point of the cylinder can be written as

$$T(r) = PJ_0(q r) + QH_0(q r),$$

where $q = \sqrt{\omega_D}$ is the thermal wave vector, with D the thermal diffusivity of the sample and J_0 and H_0 are the zeroth order of the Bessel and Hankel functions of the first kind, respectively. The first term in Eq. (1) represents the ingoing cylindrical thermal wave starting at the sample surface, while the second one is the corresponding reflected wave at the inner surface. P and Q are two constants to be determined according to the boundary conditions. On the other hand, if we define j as minus the heat flux at any point of the cylinder, then it writes
where K is the thermal conductivity of the sample and J'_0 and H'_0 are the derivatives of the Bessel and Hankel functions, respectively. The constants P and Q can be easily eliminated from Eqs. (1) and (2) by taking the values of temperature and heat flux at both surfaces ($r=a$ and $r=b$). In this way, a linear relation between temperature and flux at the outer and inner surfaces is obtained that can be expressed in the following matrix form:

$$
\begin{pmatrix}
T(a) \\
j(a)
\end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix}
T(b) \\
j(b)
\end{pmatrix},
$$

(3)

with

$$
A = [H'_0(qb)J'_0(qa) - J'_0(qb)H'_0(qa)]/E,
$$

$$
B = [J'_0(qb)H'_0(qa) - H'_0(qb)J'_0(qa)]/EKq,
$$

$$
C = Kq[H'_0(qb)J'_0(qa) - J'_0(qb)H'_0(qa)]/E,
$$

$$
D = [J'_0(qb)H'_0(qa) - H'_0(qb)J'_0(qa)]/E
$$

and

$$
E = H'_0(qb)J'_0(qb) - H'_0(qb)J'_0(qb).
$$

It is interesting to note that Eq. (3) is valid for any boundary condition at the surfaces. According to Eq. (3), if the heat flux at both surfaces is known, then the surface temperature can be obtained. For instance, for negligible heat losses [$j(a)=I_0/2$ and $j(b)=0$] the surface temperature at both surfaces reduces to

$$
T(a) = \frac{I_0 A}{2 C},
$$

(4a)

$$
T(b) = \frac{I_0}{2 C},
$$

(4b)

On the other hand, when heat losses are present [$j(a) = I_0/2 - h_a T(a)$ and $j(b)=h_b T(b)$] the surface temperature writes

$$
T(a) = \frac{I_0}{2 C} \frac{A + B'h_b}{C + D'h_b + A'h_a + B'h_a h_b},
$$

(5a)

$$
T(b) = \frac{I_0}{2 C} \frac{1}{C + D'h_b + A'h_a + B'h_a h_b},
$$

(5b)

where h_a and h_b are the linearized heat transfer coefficients5 at the outer and inner surfaces, respectively, which account for convective and radiative losses. Note that in the absence of heat losses ($h_a=h_b=0$) Eqs. (5) reduce to Eqs. (4). On the other hand, when $b=0$ in Eq. (5a) and using the properties of the Bessel functions8 the surface temperature of a solid cylinder is obtained,

$$
T(a) = \frac{I_0}{2 Kq J'_0(qa) + h_a J'_0(qa)}.
$$

(6)

It is worth noting that Eqs. (3)–(5) are the same as those obtained for a homogeneous and semi-infinite slab whose front surface is periodically illuminated by a uniform light beam,2 but the coefficients A to D depend now on Bessel functions instead of on hyperbolic ones. That is the reason why we have used minus the heat flux instead of the heat flux itself.

2. A multilayered cylinder

Now we consider an infinite and opaque multilayered cylinder whose outer surface is uniformly illuminated by a radial light beam of intensity I_0 modulated at a frequency f. Its cross section is shown in Fig. 1(b). It is made of N layers of different thicknesses and materials. The thermophysical properties of layer i are labeled by subindex i and its outer and inner radii by a_i and a_{i+1}, respectively. According to the quadrupole method the temperature at the outer and inner surfaces of the cylinder, taking into account the influence of heat losses, are given by Eqs. (5),

$$
T(a_i) = \frac{I_0}{2 C'} \frac{A' + B'h_b}{C' + D'h_b + A'h_a + B'h_a h_b},
$$

(7a)
light intensity over the cylinder surface \(g(\phi, \alpha)\) is \(I_0\) for \(\pi/2 - \alpha \leq \phi \leq \pi/2 + \alpha\) and zero for all other angles, and after being expanded in Fourier series writes

\[
g(\phi, \alpha) = I_0 \sum_{m=-\infty}^{\infty} (-i)^m \frac{\sin(m\alpha)}{m\pi} e^{im\phi} = I_0 \sum_{m=-\infty}^{\infty} g_m(\alpha) e^{im\phi}.
\]

(10)

In the second one [see Fig. 2(b)] the light intensity is \(I_0 \sin \phi\) for \(\pi/2 - \alpha \leq \phi \leq \pi/2 + \alpha\) and zero for all other angles, and expanded in Fourier series can be written as

\[
g(\phi, \alpha) = I_0 \sum_{m=-\infty}^{\infty} (-i)^m \frac{m \sin(m\alpha) \cos \alpha - \sin \alpha \cos(m\alpha)}{\pi(m^2 - 1)} e^{im\phi} = I_0 \sum_{m=-\infty}^{\infty} g_m(\alpha) e^{im\phi}.
\]

(11)

1. A hollow cylinder

Let us consider the same hollow cylinder as in Sec. II A 1. Two light beams are considered whose cross sections are shown in Fig. 2. According to the loss of cylindrical symmetry, the temperature oscillation at any point of the cylinder is given by \(^6\text{,}^7\)

\[
T(r, \phi) = \sum_{m=-\infty}^{\infty} [P_m J_m(qr) + Q_m H_m(qr)] e^{im\phi} = \sum_{m=-\infty}^{\infty} t_m(r) e^{im\phi},
\]

(12)

where \(J_m\) and \(H_m\) are the \(m\)th order of the Bessel and Hankel functions of the first kind, respectively. \(P_m\) and \(Q_m\) are \(2m + 1\) constants to be determined according to the boundary conditions. On the other hand, \(j\) at any point of the cylinder writes

\[
j(r, \phi) = K \frac{\partial T}{\partial r} = Kq \sum_{m=-\infty}^{\infty} [P_m J'_m(qr) + Q_m H'_m(qr)] e^{im\phi} = \sum_{m=-\infty}^{\infty} f_m(r) e^{im\phi},
\]

(13)

where \(J'_m\) and \(H'_m\) are the derivatives of the Bessel and Hankel functions, respectively. The \(2m + 1\) constants \(P_m\) and \(Q_m\) can be eliminated from Eqs. (10) and (11) by taking the values of \(t_m\) and \(f_m\) at both surfaces \((r=a)\) and \((r=b)\). In this way, a linear relation between \(t_m\) and \(f_m\) at the outer and inner surfaces is obtained that can be expressed in the following matrix form:

\[
\begin{pmatrix}
t_m(a) \\
f_m(a)
\end{pmatrix} = \begin{pmatrix} A_m & B_m \\ C_m & D_m \end{pmatrix} \begin{pmatrix} t_m(b) \\
f_m(b)
\end{pmatrix},
\]

\[
\forall m = -\infty, \ldots, 0, \ldots, \infty,
\]

(14)

with
When heat losses are present, the expression for the surface temperature of a solid cylinder is obtained,

\[T(a, \phi) = \frac{I_0}{2} \sum_{m=-\infty}^{\infty} g_m(\alpha) \frac{A_m + B_mh_b}{C_m + D_mh_b + A_mh_a + B_mh_dh_b} e^{im\phi}, \quad (18a) \]

\[T(b, \phi) = \frac{I_0}{2} \sum_{m=-\infty}^{\infty} g_m(\alpha) \frac{1}{C_m + D_mh_b + A_mh_a + B_mh_dh_b} e^{im\phi}. \quad (18b) \]

As a particular case, by making \(b = 0 \) in Eq. (18a) and using the properties of the Bessel functions, a simple expression for the surface temperature of a solid cylinder is obtained,

\[T(a, \phi) = \frac{I_0}{2} \sum_{m=-\infty}^{\infty} g_m(\alpha) \frac{J_m(qa)}{KqJ_m'(qa) + h_aJ_m(qa)} e^{im\phi}. \quad (19) \]

2. A multilayered cylinder

Finally, we consider the same multilayered cylinder as in Sec. II A 2. Proceeding in a similar way as before, the temperature at any point of the outer and inner surfaces, taking into account the influence of heat losses, is given by Eqs. (18),

\[A_m = \frac{[H_m'(qb)J_m(qa) - J_m'(qb)H_m(qa)]}{E_m}, \]

\[B_m = \frac{[J_m(qb)H_m(qa) - H_m(qb)J_m(qa)]}{E_m Kq}, \]

\[C_m = Kq [H_m'(qa)J_m(qa) - J_m'(qa)H_m(qa)]/E_m, \]

\[D_m = [J_m(qb)H_m'(qa) - H_m(qb)J_m'(qa)]/E_m, \]

and

\[E_m = \frac{H_m'(qa)J_m(qa) - H_m(qa)J_m'(qa)}{E_m}. \]

For negligible heat losses \([f_m(a) = I_0 \sqrt{g_m(\alpha)}/2 \text{ and } f_m(b) = 0, \forall m = -\infty, \ldots, 0, \ldots, \infty]\) the coefficients \(t_m(a) \) and \(t_m(b) \) are

\[t_m(a) = \frac{I_0}{2} g_m(\alpha) \frac{A_m}{C_m}, \quad (15a) \]

\[t_m(b) = \frac{I_0}{2} g_m(\alpha) \frac{1}{C_m}, \quad (15b) \]

and using Eq. (12) the surface temperature can be obtained,

\[T(a, \phi) = \frac{I_0}{2} \sum_{m=-\infty}^{\infty} g_m(\alpha) \frac{A_m}{C_m} e^{im\phi}, \quad (16a) \]

\[T(b, \phi) = \frac{I_0}{2} \sum_{m=-\infty}^{\infty} g_m(\alpha) \frac{1}{C_m} e^{im\phi}, \quad (16b) \]

where \(g_m(\alpha) \) is taken from Eq. (10) or (11) according to the geometry of the illumination.

When heat losses are present \([f_m(a) = I_0 \sqrt{g_m(\alpha)}/2 \text{ and } f_m(b) = \hbar J_m'(qa), \forall m = -\infty, \ldots, 0, \ldots, \infty]\) the coefficients \(t_m(a) \) and \(t_m(b) \) are

\[t_m(a) = \frac{I_0}{2} g_m(\alpha) \frac{A_m + B_mh_b}{C_m + D_mh_b + A_mh_a + B_mh_dh_b}, \quad (17a) \]

\[t_m(b) = \frac{I_0}{2} g_m(\alpha) \frac{1}{C_m + D_mh_b + A_mh_a + B_mh_dh_b}, \quad (17b) \]
but now the \(2m+1\) transfer matrices to obtain the frequency dependent coefficients \(A'_{m}\) to \(D'_{m}\) are

\[
\begin{pmatrix}
A'_{m}
B'_{m}
\end{pmatrix}
= \prod_{j=1}^{N}
\begin{pmatrix}
A_{mi}
B_{mi}
\end{pmatrix},
m = -\infty, \ldots, 0, \ldots, +\infty,
\]

(21)

with

\[
A_{mi} = [H'_{mi}(q,i)J_{m}(q,i) - J'_{mi}(q,i)H_{mi}(q,i)]E_{mi},
\]

\[
B_{mi} = [J_{m}(q,i+1)H_{mi}(q,i)] - H_{mi}(q,i)J_{m}(q,i)]E_{mi}K_{q,i},
\]

\[
C_{mi} = K_{q,i}[J_{m}(q,i)H_{mi}(q,i) - J_{m}(q,i)H_{mi}(q,i)]E_{mi}.
\]

\[
D_{mi} = [J_{m}(q,i+1)H'_{mi}(q,i) - H_{mi}(q,i+1)J'_{mi}(q,i)]E_{mi}
\]

and

\[
E_{mi} = H'_{mi}(q,i)J_{m}(q,i) - H_{mi}(q,i+1)J'_{mi}(q,i+1).
\]

As in the case of illumination with cylindrical symmetry, the influence of a bad adherence between layers \(i\) and \(i+1\) is accounted for by inserting in Eq. (21) the same matrix given by Eq. (9) between the two adjacent matrices \(i\) and \(i+1\).

III. NUMERICAL CALCULATIONS AND DISCUSSION

As a test of consistency we have compared our solutions obtained from the quadrupole method to those previously published using Green’s function method for a solid cylinder and for a two-layer cylinder which are illuminated as in Fig. 2(b). Calculations of the surface temperature of a solid cylinder using our Eq. (19) and using Eq. (11) in Ref. 2 and of a bilayer cylinder using our Eq. (20a) and using Eq. (17) in Ref. 3 show the same results in the whole range of frequencies.

Now we calculate the surface temperature oscillation in a two-layer solid cylinder with a total radius of 1 mm, which is illuminated by a modulated light beam with cylindrical symmetry as that shown in Fig. 1(a). The outer layer is made of AISI-304 stainless steel \((K=10 W m^{-1} K^{-1}\) and \(D=4 mm^{2}/s\)) with a thickness of 0.2 mm. In all the simulations the surface temperature of the two-layer cylinder is normalized to a homogeneous stainless steel cylinder with the same radius as the bilayer one. In Fig. 3 the influence of the material of the inner layer on the amplitude and phase of the surface temperature is shown as a function of the modulation frequency. The continuous line represents the case of...
an inner layer made of a much better thermal conductor than
the stainless steel ($K=400$ W m$^{-1}$ K$^{-1}$ and $D=100$ mm2/s).
As can be seen there is a decrease in the amplitude together
with an increase in the phase. The dotted line corresponds to
an inner air layer ($K=0.026$ W m$^{-1}$ K$^{-1}$ and $D=22$ mm2/s),
showing the opposite trend, i.e., an increase in amplitude and
a decrease in phase. Finally, the dashed line stands for a
thermal insulator ($K=0.2$ W m$^{-1}$ K$^{-1}$ and $D=0.1$ mm2/s)
that shows an intermediate behavior. These results are similar
to those found in two-layer plates. The influence in the
that shows an intermediate behavior. These results are simi-
lar to those found in two-layer plates. The influence in the
surface temperature due to the presence of a thermal resis-
tance between the two layers is shown in Fig. 4. The material
is the same two-layer cylinder as in Fig. 3 with the
inner layer made of a very good thermal conductor
($K=400$ W m$^{-1}$ K$^{-1}$ and $D=100$ mm2/s). The continuous
line represents a perfect thermal contact, the dashed line is for $R=10^{-3}$ m2 K W$^{-1}$, the dotted line is for $R=10^{-4}$ m2 K W$^{-1}$, and the dashed-dotted line for $R=10^{-5}$ m2 K W$^{-1}$. As the thermal resistance increases both
amplitude and phase differ from the perfect thermal contact,
represented by the continuous line, and the temperature be-
haves as in the case of an inner insulator (see dashed line in
Fig. 3). In Fig. 5 the influence of heat losses at the surface is
shown. The bilayer cylinder is the same as in Fig. 4, with a
perfect thermal contact between the core and coating. The
continuous line represents the absence of heat losses and it is
the same curve as the continuous line in Fig. 4. The influence
of heat losses only appears at low frequencies and it is small
even for high coefficients of heat losses ($h=100$–500 W m$^{-2}$ K$^{-1}$). This is due to the fact that stain-
less steel is quite a good thermal conductor and the influence
of heat losses increases as the thermal conductivity of the
material decreases.

Following with the same illumination we analyze the
surface temperature of a multilayered cylinder. It has a radius
of 1 mm, with an inner core of a radius of 0.5 mm made of
AISI-304 stainless steel ($K=10$ W m$^{-1}$ K$^{-1}$ and
$D=4$ mm2/s). In the outer part of the cylinder the transport
thermal properties suffer from a continuously steplike de-
crease down to half of the core values at the surface
($K=5$ W m$^{-1}$ K$^{-1}$ and $D=2$ mm2/s). In Fig. 6 the normal-
ized amplitude and phase of the surface temperature oscillation
is shown as a function of the modulation frequency. Normalization is performed with respect to a homogeneou-
slayered cylinder of the same size made of AISI-304 stainless steel.
Four cases are considered: (a) two outer layers 0.25 mm
thick each, (b) three outer layers 0.166 mm thick each, (c)
five outer layers 0.10 mm thick each, and (d) ten outer layers
0.05 mm thick each. As the number of layers increases the shapes
of both amplitude and phase are similar but shifted to higher
frequencies. Moreover, the highest phase contrast is reduced. This is due to the fact that as the number of layers
increases the thermal contrast reduces and therefore the amplitude of the reflected thermal wave becomes smaller. Note
that as the number of layers goes to infinity this model simu-
lates the case of a heterogeneous material with continuously
varying thermal properties, as is the case of samples affected
by surface modifying processes, e.g., steel hardening, an-
nealing, etc. However, as in the case of flat layered systems,
the convergence is very slow and many layers are necessary
to guarantee the convergence.

Now we study the same multilayered sample of Fig. 6
but illuminated with a light beam with no cylindrical sym-
metry [as that shown in Fig. 2(b)] with $\alpha=\pi/2$. In Fig. 7 we
show the frequency scan of the normalized amplitude and
phase of the surface temperature as measured at the north
pole of the sample ($\phi=\pi/2$). Three differences with respect
to Fig. 6 can be pointed out: (a) a double peak structure, both
in amplitude and phase, (b) a shift to lower frequencies, and
(c) a reduction of the highest phase contrast. In Fig. 8 we
show the south pole temperature ($\phi=-\pi/2$) as a function of
the square root frequency. As in the case of flat layers a linear
behavior has been found, but a simple relation be-
tween its slope and the effective thermal properties of the
multilayered cylinder has not been found. As can be seen, as
the number of layers increases the slope does in agreement with the corresponding increase of the effective thermal properties of the sample.

It is worth noting that using the inverse Laplace transform, the modulated solutions presented in Sec. II can be used to calculate the temperature evolution of multilayered cylinders after being heated by a short duration light pulse. This means that this theoretical approach can be used in both lock-in and pulsed infrared thermographies.

In this work an extension of the thermal quadrupole method to calculate the surface temperature of multilayered cylindrical samples has been presented. It is expected that this theoretical approach encourages the use of photothermal techniques for the quantitative thermophysical characterization of coated cylinders and hardened steel cylindrical samples such as thin wires, tubes, and nails.

ACKNOWLEDGMENT

This work has been supported by the Ministerio de Educación y Ciencia through research Grant No MAT2005-02999.