Natural Orbital Functional Theory Applied to Biologically relevant systems

J. M. Matxain1, X. Lopez1, F. Ruipérez1, J. M. Ugalde1, M. Piris1,2, E. Matito3

1Euskal Herriko Unibertsitatea / University of the Basque Country
2IKERBASQUE, Basque Foundation for Science
3University of Girona

Donostia, March 8th 2013
Molecular electronic structure program within Natural Orbital Functional Theory

Developed by Prof. Mario Piris (Ikerbasque R. P.)

Arina (one processor)

H Abstraction and C–C and O–O Homolytic Bond Cleavage

<table>
<thead>
<tr>
<th>Reaction</th>
<th>PNOF5</th>
<th>CASSCF(2,2)</th>
<th>CASPT2(2,2)</th>
<th>exptl</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CH_4 \rightarrow \cdot CH_3 + \cdot H$</td>
<td>98.9</td>
<td>98.0</td>
<td>109.6</td>
<td>113.0</td>
</tr>
<tr>
<td>$NH_3 \rightarrow \cdot NH_2 + \cdot H$</td>
<td>97.9</td>
<td>93.3</td>
<td>111.5</td>
<td>115.9</td>
</tr>
<tr>
<td>$H_2O \rightarrow \cdot OH + \cdot H$</td>
<td>106.1</td>
<td>92.9</td>
<td>122.8</td>
<td>126.0</td>
</tr>
<tr>
<td>$C_2H_6 \rightarrow \cdot C_2H_5 + \cdot H$</td>
<td>98.9</td>
<td>89.2</td>
<td>106.0</td>
<td>109.4</td>
</tr>
<tr>
<td>$H_2O_2 \rightarrow \cdot OOH + \cdot H$</td>
<td>86.6</td>
<td>81.3</td>
<td>91.0</td>
<td>92.7</td>
</tr>
<tr>
<td>$C_2H_6 \rightarrow 2 \cdot CH_3$</td>
<td>83.1</td>
<td>74.2</td>
<td>96.6</td>
<td>96.6</td>
</tr>
<tr>
<td>$H_2O_2 \rightarrow 2 \cdot OH$</td>
<td>32.6</td>
<td>19.4</td>
<td>53.7</td>
<td>55.1</td>
</tr>
</tbody>
</table>

- **PNOF5 results between CASSCF and CASPT2**
- Non-dynamical correlation like CASSCF, and part of dynamical correlation
ROS (Reactive Oxygen Species): abundant among radical species (RNS, RCS, RSS)
- \(\cdot OH, \cdot OOH, \cdot O_2^-, ^1O_2 \).

Biomacromolecular targets:
- Proteins, cell membrane phospholipids, DNA, RNA...

Attack may cause...
- Alteration of the function (function loss) of cell macromolecules
- If not controlled, cell death

Diseases
- Alzheimer, Parkinson etc...
- Among others, \(\cdot OH \) Attack to proteins
Based on success on the study of radical mediated reactions, want to study radical reactions with larger systems: proteins.
Parallelization of PNOFID program carried out by E. Matito
Tests on Arina (Supercomputer at UPV/EHU) Successfull
Possible to jump to larger systems? Let us try!
Very Challenging in NOFT!!
Project to carry out at BSC Mare Nostrum supercomputer

- QCM-2012-2-0011: PNOF theory: Towards biological applications (Feb - June 2012)
- QCM-2012-1-0019: PNOF theory: Towards biological applications (July - October 2012)
- Total hours: 800,000
Model: Tripeptide model, R only at the central amino acid.
Transition Metals

- Transition Metal chemistry also challenging within Natural Orbital Functional Theory
- $\text{Cr}_2, \text{Mo}_2, \text{W}_2$

![Graph showing orbital energies and bond lengths.](image-url)
Transition Metals in Biology

- Fe_xS_y clusters metallic part of proteins (interaction with cys)

Two projects at MN:
- QCM-2012-3-0004: Transition metal chemistry with PNOF5 (Nov 2012 - Feb 2013)
- QCM-2013-1-0007: Transition metal chemistry with PNOF5. (March 2013 - June 2013)
- Total hours: 820.000

- New MN: recompilation
- Not fast task (longer calculation periods desirable)
Concluding Remarks

- Parallelization good. It could be improved.
- Desirable longer periods in MN.
- Possible to study large systems with PNOF5.
- Results in between CASSCF and CASPT2.
- Three publications (in production)
- A step forward in Natural Orbital Functional Theory
Acknowledgments

Theoretical Chemistry Group

Supercomputing Resources

- The SGI/IZO–SGIker (UPV/EHU)
 - Arina supercomputer
- BSC
 - Mare Nostrum supercomputer

J. M. Matxain1, X. Lopez1, F. Ruipérez1, J. M. Ugalde1,