Chaotropes & Kosmotropes and the Driving Force of the Salting Effect

Ronen Zangi

Department of Organic Chemistry I
University of the Basque Country, UPV/EHU
San Sebastian, Spain

The 14th ISSP, 25–30 July 2010
The Salting Problem and its Significance

How does the solvent induced interaction between solute particles vary when salts of different types are dissolved in the aqueous solution?
The Salting Problem and its Significance

How does the solvent induced interaction between solute particles vary when salts of different types are dissolved in the aqueous solution?

- Protein solubility: crystallization and aggregation

- Recognition between proteins and multimerization
- Catalytic activity of enzymes
- Stability of secondary and tertiary structures

- Phase boundaries of micellar solutions and lipid bilayers
- Cloud point of non-ionic surfactants
- Polymer swelling
Characteristics of the Salting Phenomenon

- It becomes important at moderate salt concentrations: 0.01–1.0 M
- Additive over all ions in solution; anions have larger effect than cations
- The dependence of solute solubility on salt concentration:

\[
\log\left(\frac{S_0}{S}\right) = K_s C_s
\]

Salting-Out: \(K_s > 0 \)
Stronger solute-solute interactions

Salting-In: \(K_s < 0 \)
Weaker solute-solute interactions
Characteristics of the Salting Phenomenon

- It becomes important at moderate salt concentrations: 0.01–1.0 M
- Additive over all ions in solution; anions have larger effect than cations
- The dependence of solute solubility on salt concentration:

\[\log(\frac{S_0}{S}) = K_s C_s \]

Salting-Out: \(K_s > 0 \)

Salting-In: \(K_s < 0 \)

stronger solute-solute interactions

weaker solute-solute interactions

[Graph showing solubility changes with salt concentration for various solvents and solutes.]

Long & McDevit, Chem. Rev. 51, 119 (1952)
Characteristics of the Salting Phenomenon

- It becomes important at moderate salt concentrations: 0.01–1.0 M
- Additive over all ions in solution; anions have larger effect than cations
- The dependence of solute solubility on salt concentration:

\[
\log\left(\frac{S_0}{S}\right) = K_s C_s
\]

Salting-Out: \(K_s > 0\)
Salting-In: \(K_s < 0\)

- Salting-In enhances for larger and more polar solutes

Long & McDevit, Chem. Rev. 51, 119 (1952)
Hofmeister Series

The ranking of the (Salting-Out and Salting-In) ions to precipitate proteins:

\[
\text{PO}_4^{3-} > \text{SO}_4^{2-} > \text{HPO}_4^{2-} > \text{OH}^- > \text{F}^- > \text{Cl}^- > \text{Br}^- > \text{NO}_3^- > \text{I}^- > \text{SCN}^- > \text{ClO}_4^- \\
\text{Al}^{3+} > \text{Mg}^{2+} > \text{Ca}^{2+} > \text{Ba}^{2+} > \text{Na}^+ > \text{K}^+ > \text{NH}_4^+ > \text{Rb}^+ > \text{Cs}^+
\]

\[\text{stronger solute-solute interactions} \quad \Rightarrow \quad \text{weaker solute-solute interactions}\]

\[\Rightarrow \text{Attraction between the proteins increases with ionic charge density}\]

Electrostatic theories

problems with predicting salting-in behavior

Proposed Explanations

Changes in the structure of water

* Kosmotropic ions - order the structure of water \[\Rightarrow \text{Salting-Out}\]

* Chaototropic ions - disorder the structure of water \[\Rightarrow \text{Salting-In}\]

problems with accounting for different behavior of the same salt
Molecular Dynamics Simulations

Two Hydrophobic Plates (~ 2.1 nm) solvated in aqueous electrolyte solutions

$\sigma_{\text{plt}} = 0.40$ nm
$\epsilon_{\text{plt}} = 0.50$ kJ/mol

SPC/E water

$N = 1090$ molecules

Salt: 30 anions & 30 cations

1.43 molal (1.20–1.35 M)

$\sigma_{\text{ion}} = 0.50$ nm
$\epsilon_{\text{ion}} = 1.00$ kJ/mol
Molecular Dynamics Simulations

Two Hydrophobic Plates ($\varnothing \sim 2.1$ nm) solvated in aqueous electrolyte solutions

$\sigma_{\text{plt}} = 0.40$ nm
$\epsilon_{\text{plt}} = 0.50$ kJ/mol

SPC/E water

$N = 1090$ molecules

Potential of Mean Force

$\frac{1}{2} \left\langle \hat{r}_{12} \cdot (\vec{F}_1 - \vec{F}_2) \right\rangle_{\vec{r}_1,\vec{r}_2} = -\partial w(r_{12}) / \partial r_{12}$

$\langle \hat{r}_\perp \cdot (\vec{F}_1 - \vec{F}_2) \rangle_{\vec{r}_1,\vec{r}_2} = 0$

Salt: 30 anions & 30 cations

1.43 molal (1.20–1.35 M)

$\sigma_{\text{ion}} = 0.50$ nm
$\epsilon_{\text{ion}} = 1.00$ kJ/mol

$T = 300$ K
$P = 1$ atm
Changes in the Hydrophobic Interaction as a Function of the Type of Salt in Solution

Free energy profile of bringing the plates from far apart to contact

Free energy difference for association process:

\[P(aq) + P(aq) \rightleftharpoons P_2(aq) \]

\(w(r) \) [kJ/mol]

\(q = 0.50 \)

\(q = 0.60 \)

\(q = 0.70 \)

\(q = 1.00 \)

\(q = 1.20 \)

\(q = 1.40 \)

\(d \) [nm]

Salting-In ions: \(q < 0.90 \ e \)

\textbf{weaker} effective interaction between plates

Salting-Out ions: \(q > 0.90 \ e \)

\textbf{stronger} effective interaction between plates

- Why did the effective interaction change?
- Can the variation be predicted?

The Corresponding Changes in Water Structure

Water-Water RDF

Interactions Between Water Molecules

The Corresponding Changes in Water Dynamics

Salting-out ions induce an increase in the viscosity, and a decrease in the rotational decay rate of water. Vise versa for salting-in ions.

It is the strength of the ion-water interactions, and not the ion-induced structural changes of water, that affect the dynamics of water.
A Thermodynamic View: Preferential Binding

Linked Functions: J. Wyman, Adv. Protein Chem. 19, 224 (1964)

Consider the reaction: \[\text{A(aq)} + \text{B(aq)} \rightleftharpoons \text{C(aq)} \]

Now, add a ligand (salt) \(X \) that can (in addition to water) interact with A, B and C.
A Thermodynamic View: Preferential Binding

Linked Functions: J. Wyman, Adv. Protein Chem. 19, 224 (1964)

Consider the reaction: \[A(aq) + B(aq) \rightleftharpoons C(aq) \]

Now, add a ligand (salt) \(X \) that can (in addition to water) interact with A, B and C

\[A + iX + jW \rightleftharpoons AX_iW_j \quad i = 0, 1, \ldots, p \quad ; \quad j = p - i \]
\[B + kX + lW \rightleftharpoons BX_kW_l \quad k = 0, 1, \ldots, q \quad ; \quad l = q - k \]
\[C + mX + nW \rightleftharpoons CX_mW_n \quad m = 0, 1, \ldots, r \quad ; \quad n = r - m \]

How does the addition of \(X \) affect the equilibrium constant of the reaction?

In the limit of infinite dilution of A, B and C \[\implies \]

\[\frac{d \ln K}{d \ln a_X} = \nu_{X,C} - \nu_{X,A} - \nu_{X,B} - \frac{n_X}{n_W} (\nu_{W,C} - \nu_{W,A} - \nu_{W,B}) \equiv \Delta \nu_{X, \text{pref}} \]

\(\nu_{Y,M} = \) number of \(Y \) molecules bound to \(M \) macromolecule

\(a_X = \) chemical activity of \(X \)
Binding/Exclusion of the Ions and Water

Anions & Cations

Water

Density Profiles

$q = 0.50 \text{ e}$

$q = 0.90 \text{ e}$

$q = 1.40 \text{ e}$
Relation between $\Delta \nu_{\text{pref}}$ and ΔG

$$
\Delta \nu_{\text{ions, pref}} = (\Delta \nu_{\text{cations}} + \Delta \nu_{\text{anions}})/2 - \frac{n_{\text{salt}}}{n_{\text{water}}} \Delta \nu_{\text{water}}
$$

$$
d(\Delta G) = -RT \Delta \nu_{\text{ions, pref}} \cdot d \ln a_{\text{ions}}
$$

P(aq) + P(aq) ⇌ P_2(aq)

binding of the ions \implies salting-in
exclusion of the ions \implies salting-out
Mechanism of Salting-In and Salting-Out

What is the driving force for: \[\text{P(aq)} + \text{P(aq)} \rightleftharpoons \text{P}_2\text{(aq)} \] in pure water?

In the large scale regime it is **enthalpic** and **entropic**:

- \(\Delta H < 0 \) = enthalpic penalty for solvating a hydrophobic surface due to loss of hydrogen bonds at the interface
- \(\Delta S > 0 \) = entropic penalty for solvating a hydrophobic surface due to ordering of interfacial waters
Mechanism of Salting-In and Salting-Out

What is the driving force for: \(P(aq) + P(aq) \rightleftharpoons P_2(aq) \) in pure water?

In the large scale regime it is enthalpic and entropic:

1. \(\Delta H < 0 \) \(\iff \) enthalpic penalty for solvating a hydrophobic surface due to loss of hydrogen bonds at the interface
2. \(\Delta S > 0 \) \(\iff \) entropic penalty for solvating a hydrophobic surface due to ordering of interfacial waters

In salt solutions:

The mechanism for Salting-In and Salting-Out can be inferred from changes of \(\Delta H \) and \(\Delta S \) in salt solutions relative to pure water

\[
\Delta\Delta G(q) = \Delta G_{\text{salt}}(q) - \Delta G_{\text{water}}
\]

\(\implies \) Salting-Out \(\Delta\Delta G < 0 \) \(\implies \) Salting-In \(\Delta\Delta G > 0 \)

\[
\Delta\Delta H(q) = \Delta H_{\text{salt}}(q) - \Delta H_{\text{water}}
\]

\[
\Delta\Delta S(q) = \Delta S_{\text{salt}}(q) - \Delta S_{\text{water}}
\]
Mechanism of Salting-Out

For Salting-Out (high charge-density ions):

\[\Delta \Delta G = \Delta \Delta H - T \Delta \Delta S \]

negative positive negative

Thus, Salting-Out is purely an entropic effect

Salting-Out: is driven by elimination of an exclusion zone for the ions
Mechanism of Salting-In (region-I)

For Salting-In ($0.65 < |q| < 0.90 \text{ e}$): \[\Delta \Delta G = \Delta \Delta H - T \Delta \Delta S \]

Thus, Salting-In in this regime is an entropic effect

Salting-In: the binding of ions reduces the ordering of the interfacial water (entropic penalty) and, therefore, stabilizes the monomeric state.
For Salting-In (low charge-density ions):

\[\Delta \Delta G = \Delta \Delta H - T \Delta \Delta S \]

\[\text{positive} \quad \text{positive} \quad \text{negative} \]

Thus, Salting-In in this regime is an enthalpic effect.

Salting-In: the binding of ions reduces the enthalpic penalty when the plates are solveted in water (acting as ‘surfactants’).
Conclusions

● We did not find a correlation between the ion-induced changes of the structure (and dynamics) between water molecules and the ability of these ions to alter the magnitude of the hydrophobic interactions.

● However, we did observe that \(\Delta G \) correlates with \(\Delta \nu_{ions, pref} \) (depends on both ions and solute) with 3 different slopes.

● From \(\Delta \Delta H \) and \(\Delta \Delta S \) we find the 3 slopes match 3 different mechanisms for the salting effect.
Acknowledgments

Bruce J. Berne (Columbia University)

Morten Hagen

Funding Agencies:

- International Reintegration Grant
- Start-Up Fund

Computer Facilities: