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Discrete Uncertainty Principles
• Classical Uncertainty Principles

The classical Hardy and Heisenberg uncertainty principles assert that a function and its
Fourier transform cannot be simultaneously localized.

• Discrete Uncertainty Principles
We are currently working on versions of these results in a discrete setting, where we consider
a discrete spatial variable k ∈ Z and we replace the usual Fourier transform by the so called
discrete-time Fourier transform. Real-variable techniques similar to those used in [1] lead to:

Theorem 1 ([2, 3]) Let u be a solution to

∂tu(k, t) = i [u(k + 1, t)− 2u(k, t) + u(k − 1, t)] + V (k)u(k, t)

in Z× [0, 1] with V ∈ L∞. There exists µ0 > 0 such that if µ > µ0 and

∑
k∈Z

e
2µ|k| log |k|

(|u(k, 0)|2 + |u(k, 1)|2) < +∞;

then, u ≡ 0. Hence, a solution to the discrete Schrödinger equation cannot have fast decay at
two different times.

The decay assumed for the solution at times t = 0 and t = 1 in Theorem 1 is related to the
modified Bessel function Ik , as it happens in the continuous case with the Gaussian [1].
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Relativistic Quantum Mechanics
• Shell interactions for Dirac operators

The free Dirac operator is a first-order differential operator defined by:

H = −iα · ∇+mβ =

 m 0 −i∂3 −∂2 − i∂1

0 m ∂2 − i∂1 i∂3

−i∂3 −∂2 − i∂1 −m 0
∂2 − i∂1 i∂3 0 −m

 .

The free Dirac operator is a first order differential operator satisfyingH2 = (−∆+m2)I4 and
governs the quantum relativistic dynamics of an electron of mass m with no external forces
acting on it.

We study the shell interaction of measure valued potentials: let Ω ⊂ R3 be a bounded regular
domain, then we consider potentials V living at the boundary ∂Ω of Ω, i.e., V are L2(σ)4-
valued potentials, where σ is the surface measure of ∂Ω.

For such potentials, in [1] we construct a domain of self-adjointness D(H + V ) ⊂ L2(R3)4.
In particular, we study Electrostatic plus Lorentz scalar potentials

Ves(ϕ) =
1

2
(λe + λsβ)(ϕ+ + ϕ−), λe, λs ∈ R such that λ2

e − λ
2
s 6= 0, 4,

where ϕ± are non-tangential boundary values of ϕ on ∂Ω. We prove thatH+Ves defined on
D(H + Ves) is self-adjoint and

– If |λe| /∈ [1/C, 4C] for someC that depends only on the surface (λs = 0), thenH+Ves
has no eigenvalues in (−m,m).

• Confinement
A potential V generates confinement with respect to H and ∂Ω if the particles under consid-
eration which are initially confined in Ω at time t = 0 remain in Ω for all t ∈ R under the
evolution ∂t = −i(H + V ), i.e.,H + V makes ∂Ω impenetrable for particles.

In [1] we prove that Ves generates confinement w.r.t. H and ∂Ω ⇔ λ2
e − λ

2
s = −4, which

extends previous results in [2].

• Current research
The MIT bag model is one of the simplest relativistic models for the confinement of an electron
in a box, which is a particular case of the above-mentioned confinement potentials. Continuing
with the work in [3] we want to study the eigenvalue problem for this model,{

Hψ = aψ, in Ω

−iβ(α · n)ψ = ψ, in ∂Ω

where ψ ∈ H1(Ω)4, a > 0 and n is the exterior normal vector. We are interested in self-
adjointness, spectral properties and the non-relativistic limit.
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Borderline weighted estimates for commutators
• Averages and maximal operators

Given a strictly increasing and convex function A such that A(0) = 0 and A(t) → ∞ as
t→∞, we define the average of f with respect toA over a cubeQ as

‖f‖A(L),Q = inf

{
λ > 0 :

1

|Q|

∫
Q

A

( |f(x)|
λ

)
dx ≤ 1

}
.

We can define maximal operators related to those averages as follows

MA(L)f(x) = sup
x∈Q
‖f‖A(L),Q.

If A(t) = t log(e + t)ρ for ρ > 0 we denote MA(L) = ML(logL)ρ . Similarly if A(t) =
t log(e+ t) log(e+ log(e+ t))ρ for ρ > 0, we writeMA(L) = ML logL(log log(L))ρ .

• Borderline weighted estimates for commutators
Given b ∈ BMO and T a Calderón-Zygmund operator we define the commutator [b, T ] as

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x).

We have obtained the following quantitative estimate [3]:

w[b,T ]f (λ) .
1

ε2

∫
Rn

Φ

(‖b‖BMO|f(x)|
λ

)
ML(logL)1+εw(x)dx ε > 0,

where w[b,T ]f (λ) = w({x ∈ Rn : |[b, T ]f(x)| > λ}) and Φ(t) = t log(e + t). This
estimate is a quantitative version of the main result in [2] and it is also a natural counterpart to
the quantitative estimate obtained in [1] for Calderón-Zygumund operators.

• Open questions
It should be possible to replace the maximal operator on the right hand side of the inequality
by a smaller operator. For instance we should be able to obtain the following estimate

w[b,T ]f (λ) .
1

ε2

∫
Rn

Φ

(‖b‖BMO|f(x)|
λ

)
ML logL(log logL)1+εw(x)dx ε > 0.

We also wonder whether the quadratic decay on ε is the best possible or if we could obtain a
linear decay instead. That linear decay would lead to a better dependence on the A1 constant
in the case w ∈ A1.
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Analytic parabolic equations and Control Theory
• Second order analytic parabolic equations: we consider the parabolic evolution

∂tu−
∑n
i,j=1 a

ij(x, t)∂xixju = 0, in Ω× (0, T ]

u(x, t) = 0, on ∂Ω× (0, T ]

u(x, 0) = u0, u0 ∈ L2(Ω).

(1)

We assume that the space-time dependent coefficients satisfy

i) uniform parabolicity: for some λ > 0

n∑
j,i=1

a
ij

(x, t)ξiξj ≥ λ|ξ|2 for (x, t) ∈ Ω× (0, T ], ∀ξ ∈ Rn;

ii) real-analyticity: there exists ρ0 > 0 such that

|∂αx ∂
k
t a(x, t)| ≤ ρ−|α|−k0 |α|!k! for (x, t) ∈ Ω× (0, T ] and (α, k) ∈ Nn × N.

• Quantitative estimates of real-analyticity
Assuming that the boundary of the domain Ω can be described locally as the graph of a real-
analytic function we have proved [2, 3] that solutions to (1) satisfy the following quantitative
estimate of analyticity:

|∂αx ∂
k
t u(x, t)| ≤ e

ρ
t ρ
−|α|−k

t
−k|α|!k!‖u0‖L2(Ω) (2)

with (x, t) ∈ Ω× (0, T ] and (α, k) ∈ Nn × N. Here ρ is a constant depending on ρ0 and the
real-analyticity of the domain Ω.

• Control Theory
The results obtained in [2, 3] are extensions of those in [1], where the estimate (2) is used to
prove a null-controllability property from measurable sets for the Heat equation. In [3] we
have extended the analyticity and controllability results to higher-order parabolic equations .
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