

Análisis Matemático: Física Matemática

M. Agirre⁴, J. Aguirre¹, J. Apraiz¹, N. Arrizabalaga¹, J.B. Bru^{1,2,4}, A. Cornejo¹, C. Cuesta¹, J. Duoandikoetxea¹, L. Escauriaza¹, M. Escobedo¹, A. Fernández⁵, A. García¹, F. de la Hoz³, S. Montaner¹, O. Orueta-Barria¹, T. Ourmieres-Bonafos⁴, I. Parissis^{1,2}, C. Pérez^{1,2,4}, F. Pizzichillo⁴, J. Rivas¹, I.P. Rivera¹, F. Vadillo³ y L. Vega^{1,4}. ¹Dpto. Matemáticas; ²IKERBASQUE, Basque Foundation for Science; ³Dpto. Matemática Aplicada y Estadística e I.O.; ⁴Basque Center for Applied Mathematics (BCAM); ⁵Dpto. Economía Aplicada V.

Discrete Uncertainty Principles

• Classical Uncertainty Principles

The classical Hardy and Heisenberg uncertainty principles assert that a function and its Fourier transform cannot be simultaneously localized.

• Discrete Uncertainty Principles

We are currently working on versions of these results in a discrete setting, where we consider a discrete spatial variable $k \in \mathbb{Z}$ and we replace the usual Fourier transform by the so called discrete-time Fourier transform. Real-variable techniques similar to those used in [1] lead to:

Theorem 1 ([2, 3]) Let u be a solution to

$$\partial_t u(k, t) = i[u(k+1, t) - 2u(k, t) + u(k-1, t)] + V(k)u(k, t)$$

in $\mathbb{Z} \times [0, 1]$ with $V \in L^\infty$. There exists $\mu_0 > 0$ such that if $\mu > \mu_0$ and

$$\sum_{k \in \mathbb{Z}} e^{2\mu|k| \log|k|} (|u(k, 0)|^2 + |u(k, 1)|^2) < +\infty;$$

then, $u \equiv 0$. Hence, a solution to the discrete Schrödinger equation cannot have fast decay at two different times.

The decay assumed for the solution at times $t = 0$ and $t = 1$ in Theorem 1 is related to the modified Bessel function I_k , as it happens in the continuous case with the Gaussian [1].

- [1] L. Escauriaza, C.E. Kenig, G. Ponce, L. Vega, *On uniqueness properties of solutions of Schrödinger equations*. *Comm. Partial Diff. Eq.*, 31 no 10-12 (2006), 1811–1823.
- [2] A. Fernández-Bertolin, *A discrete Hardy's uncertainty principle and discrete evolutions*. arXiv:1506.00119. To appear in *J. Anal. Math.*
- [3] A. Fernández-Bertolin, L. Vega, *Uniqueness properties for discrete equations and Carleman estimates*. arXiv:1509.08545.

Borderline weighted estimates for commutators

• Averages and maximal operators

Given a strictly increasing and convex function A such that $A(0) = 0$ and $A(t) \rightarrow \infty$ as $t \rightarrow \infty$, we define the **average** of f with respect to A over a cube Q as

$$\|f\|_{A(L), Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_Q A\left(\frac{|f(x)|}{\lambda}\right) dx \leq 1 \right\}.$$

We can define **maximal operators** related to those averages as follows

$$M_{A(L)}f(x) = \sup_{x \in Q} \|f\|_{A(L), Q}.$$

If $A(t) = t \log(e + t)^\rho$ for $\rho > 0$ we denote $M_{A(L)} = M_{L \log L}^\rho$. Similarly if $A(t) = t \log(e + t) \log(e + \log(e + t))^\rho$ for $\rho > 0$, we write $M_{A(L)} = M_{L \log L \log \log(L)}^\rho$.

• Borderline weighted estimates for commutators

Given $b \in BMO$ and T a Calderón-Zygmund operator we define the commutator $[b, T]$ as

$$[b, T]f(x) = b(x)Tf(x) - T(bf)(x).$$

We have obtained the following **quantitative estimate** [3]:

$$w_{[b, T]f}(\lambda) \lesssim \frac{1}{\varepsilon^2} \int_{\mathbb{R}^n} \Phi\left(\frac{\|b\|_{BMO}|f(x)|}{\lambda}\right) M_{L \log L}^{1+\varepsilon} w(x) dx \quad \varepsilon > 0,$$

where $w_{[b, T]f}(\lambda) = w(\{x \in \mathbb{R}^n : |[b, T]f(x)| > \lambda\})$ and $\Phi(t) = t \log(e + t)$. This estimate is a quantitative version of the main result in [2] and it is also a natural counterpart to the quantitative estimate obtained in [1] for Calderón-Zygmund operators.

• Open questions

It should be possible to replace the maximal operator on the right hand side of the inequality by a smaller operator. For instance we should be able to obtain the following estimate

$$w_{[b, T]f}(\lambda) \lesssim \frac{1}{\varepsilon^2} \int_{\mathbb{R}^n} \Phi\left(\frac{\|b\|_{BMO}|f(x)|}{\lambda}\right) M_{L \log L \log \log L}^{1+\varepsilon} w(x) dx \quad \varepsilon > 0.$$

We also wonder whether the quadratic decay on ε is the best possible or if we could obtain a linear decay instead. That linear decay would lead to a better dependence on the A_1 constant in the case $w \in A_1$.

- [1] T. Hytönen, C. Pérez, *The $L(\log L)^\varepsilon$ endpoint estimate for maximal singular integral operators*. *J. Math. Anal. Appl.* 428 (2015), no. 1, 605–626.
- [2] C. Pérez, G. Pradolini, *Sharp weighted endpoint estimates for commutators of singular integral operators*. *Michigan mathematical journal*, (2001), V. 49, 23-37.
- [3] C. Pérez, I. P. Rivera-Ríos, *Borderline weighted estimates for commutators of singular integrals*. To appear in *Israel J. Math.* Preprint available at <http://arxiv.org/abs/1507.08568>

Research Projects

IT641-13 (Gobierno Vasco, Grupos de Investigación), researcher in charge: Luis Vega. MTM2014-53145-P (Ministerio de Economía y Competitividad) researchers in charge: Luis Vega (1), Carlota Cuesta (2). MTM2014-53850-P (Ministerio de Economía y Competitividad) researchers in charge: Carlos Pérez (1), J.B. Bru (2). HADE-Harmonic Analysis and Differential Equations: new challenges (ERC-EA European Research Council Executive Agency), researcher in charge: Luis Vega.

Relativistic Quantum Mechanics

• Shell interactions for Dirac operators

The **free Dirac operator** is a first-order differential operator defined by:

$$H = -i\alpha \cdot \nabla + m\beta = \begin{pmatrix} m & 0 & -i\partial_3 & -\partial_2 - i\partial_1 \\ 0 & m & \partial_2 - i\partial_1 & -m \\ -i\partial_3 & -\partial_2 - i\partial_1 & i\partial_3 & 0 \\ \partial_2 - i\partial_1 & i\partial_3 & 0 & -m \end{pmatrix}.$$

The **free Dirac operator** is a first order differential operator satisfying $H^2 = (-\Delta + m^2)\mathbb{I}_4$ and governs the **quantum relativistic dynamics** of an electron of mass m with no external forces acting on it.

We study the **shell interaction of measure valued potentials**: let $\Omega \subset \mathbb{R}^3$ be a bounded regular domain, then we consider potentials V living at the boundary $\partial\Omega$ of Ω , i.e., V are $L^2(\sigma)^4$ -valued potentials, where σ is the surface measure of $\partial\Omega$.

For such potentials, in [1] we construct a domain of self-adjointness $D(H + V) \subset L^2(\mathbb{R}^3)^4$. In particular, we study **Electrostatic plus Lorentz scalar potentials**

$$V_{es}(\varphi) = \frac{1}{2}(\lambda_e + \lambda_s\beta)(\varphi_+ + \varphi_-), \quad \lambda_e, \lambda_s \in \mathbb{R} \text{ such that } \lambda_e^2 - \lambda_s^2 \neq 0, 4,$$

where φ_\pm are non-tangential boundary values of φ on $\partial\Omega$. We prove that $H + V_{es}$ defined on $D(H + V_{es})$ is self-adjoint and

- If $|\lambda_e| \notin [1/C, 4C]$ for some C that depends only on the surface ($\lambda_s = 0$), then $H + V_{es}$ has no eigenvalues in $(-m, m)$.

• Confinement

A potential V **generates confinement** with respect to H and $\partial\Omega$ if the particles under consideration which are initially confined in Ω at time $t = 0$ remain in Ω for all $t \in \mathbb{R}$ under the evolution $\partial_t = -i(H + V)$, i.e., $H + V$ makes $\partial\Omega$ impenetrable for particles.

In [1] we prove that V_{es} generates confinement w.r.t. H and $\partial\Omega \Leftrightarrow \lambda_e^2 - \lambda_s^2 = -4$, which extends previous results in [2].

• Current research

The **MIT bag model** is one of the simplest relativistic models for the confinement of an electron in a box, which is a particular case of the above-mentioned confinement potentials. Continuing with the work in [3] we want to study the eigenvalue problem for this model,

$$\begin{cases} H\psi = a\psi, & \text{in } \Omega \\ -i\beta(\alpha \cdot n)\psi = \psi, & \text{in } \partial\Omega \end{cases}$$

where $\psi \in H^1(\Omega)^4$, $a > 0$ and n is the exterior normal vector. We are interested in self-adjointness, spectral properties and the non-relativistic limit.

- [1] N. Arrizabalaga, A. Mas, L. Vega, *Shell interactions for Dirac operators: on the point spectrum and the confinement*. *SIAM J. Math. Anal.* 47(2), (2015) 1044–1069.
- [2] J. Dittrich, P. Exner, P. Šeba, *Dirac operators with a spherically symmetric δ -shell interaction*. *J. Math. Phys.* 30 (1989), 2875–2882.
- [3] L. LeTreust, *A variational study of some hadron bag models*. *Calc. Var. Partial Differential Equations* 49, (2014) 753–793.

Analytic parabolic equations and Control Theory

• Second order analytic parabolic equations:

we consider the parabolic evolution

$$\begin{cases} \partial_t u - \sum_{i,j=1}^n a^{ij}(x, t) \partial_{x_i} \partial_{x_j} u = 0, & \text{in } \Omega \times (0, T] \\ u(x, t) = 0, & \text{on } \partial\Omega \times (0, T] \\ u(x, 0) = u_0, & u_0 \in L^2(\Omega). \end{cases} \quad (1)$$

We assume that the **space-time dependent coefficients** satisfy

- i) **uniform parabolicity**: for some $\lambda > 0$

$$\sum_{j,i=1}^n a^{ij}(x, t) \xi_i \xi_j \geq \lambda |\xi|^2 \quad \text{for } (x, t) \in \Omega \times (0, T], \forall \xi \in \mathbb{R}^n;$$

- ii) **real-analyticity**: there exists $\rho_0 > 0$ such that

$$|\partial_x^\alpha \partial_t^k a(x, t)| \leq \rho_0^{-|\alpha|-k} |\alpha|! k! \quad \text{for } (x, t) \in \Omega \times (0, T] \text{ and } (\alpha, k) \in \mathbb{N}^n \times \mathbb{N}.$$

• Quantitative estimates of real-analyticity

Assuming that the boundary of the domain Ω can be described locally as the graph of a real-analytic function we have proved [2, 3] that solutions to (1) satisfy the following **quantitative estimate of analyticity**:

$$|\partial_x^\alpha \partial_t^k u(x, t)| \leq e^{\frac{\rho}{t}} \rho^{-|\alpha|-k} t^{-k} |\alpha|! k! \|u_0\|_{L^2(\Omega)} \quad (2)$$

with $(x, t) \in \Omega \times (0, T]$ and $(\alpha, k) \in \mathbb{N}^n \times \mathbb{N}$. Here ρ is a constant depending on ρ_0 and the **real-analyticity** of the domain Ω .

• Control Theory

The results obtained in [2, 3] are extensions of those in [1], where the estimate (2) is used to prove a **null-controllability** property from **measurable sets** for the Heat equation. In [3] we have extended the analyticity and controllability results to **higher-order parabolic equations**.

- [1] J. Apraiz, L. Escauriaza, G. Wang, C. Zhang, *Observability Inequalities and Measurable Sets*. *J. Eur. Math. Soc.* 16 (2014) 2433–2475.
- [2] L. Escauriaza, S. Montaner, C. Zhang, *Observation from measurable sets for parabolic analytic evolutions and applications*. *J. Math. Pure Appl.* 104 (2015) 837–867.
- [3] L. Escauriaza, S. Montaner, C. Zhang, *Analyticity of solutions to parabolic evolutions and applications*. To appear. Preprint available at ArXiV.org.