

Mathematical Analysis and Applications

N. Accomazzo¹, J. Apraiz¹, N. Arrizabalaga¹, J.B. Bru^{1,3,4}, J. Cayama¹, C.M. Cuesta¹, F. de la Hoz², X. Diez¹, J. Duoandikoetxea¹, L. Escauriaza¹, M. Escobedo¹, A. Fernández¹, M. Mourgoglou^{1,4}, O. Orueta-ebarria¹, I. Parissis^{1,4}, C. Pérez Moreno^{1,3,4}, J. Rivas¹, I.P. Rivera^{1,3}, F. Vadillo², L. Vega^{1,3}, C. Zhang¹.

¹ Depto. De Matemáticas-UPV/EHU; ² Depto. De Matemática Aplicada y Estadística e Investigación Operativa-EHU/UPV; ³ BCAM- Basque Center of Applied Mathematics; ⁴ IKERBASQUE, Basque Foundation for Science.

Fractal Conservation Laws

X. Diez, C.M. Cuesta and F. Achleitner.

Conservation laws are well-studied evolution equation which has many modelling applications in areas such as fluid dynamics, nonlinear acoustics and traffic flows. The generic scalar such equation being:

$$\begin{cases} \partial_t u(t, x) + \partial_x(f(u)) = 0, & t > 0, x \in \mathbb{R}, \\ u(0, x) = u_0(x) & x \in \mathbb{R}. \end{cases} \quad (1)$$

Weak solutions of (1) are not unique in general, therefore additional criteria are needed to establish uniqueness. One way of obtaining uniqueness is by regularising the equation with a viscosity term, e.g. in the linear case, adding ϵu_{xx} for $\epsilon > 0$. The solution of the new problem is unique and regular and performing the limit $\epsilon \rightarrow 0^+$ (the zero viscosity limit) gives a unique solution of (1). This coincides with what is called an **entropy solution**.

We study the following **fractal conservation law** which can be seen as a nonlocal regularisation of (1):

$$\begin{cases} \partial_t u^\epsilon(t, x) + \partial_x f(u^\epsilon) = \epsilon \partial_x \mathcal{D}_x^\alpha u^\epsilon, & t > 0, x \in \mathbb{R}, \\ u^\epsilon(0, x) = u_0(x) & x \in \mathbb{R}, \end{cases} \quad (2)$$

where $u_0 \in \mathcal{L}^\infty(\mathbb{R})$, $f \in \mathcal{C}^\infty$ and the operator \mathcal{D}_x^α acting on the space variable x . This **fractional derivative** \mathcal{D}_x^α is the nonlocal operator

$$(\mathcal{D}_x^\alpha g)(x) = \frac{1}{\Gamma(1-\alpha)} \int_{-\infty}^x \frac{g'(y)}{(x-y)^\alpha} dy, \quad 0 < \alpha < 1,$$

which corresponds to a left-sided *Caputo* type fractional derivative integrated from $-\infty$ and is of order α .

This type of equation arises in fluid mechanics as a simplified model of stratified shallow-water flows, for instance. Our aim is to prove the limit $\epsilon \rightarrow 0^+$ of the family of functions parametrised by ϵ that satisfy (2).

First, we prove global existence and uniqueness of (2) for any $\epsilon > 0$. The local existence is based on a standard fixed-point argument, whereas the global existence is obtained after proving a maximum principle (see [2]).

The corresponding vanishing viscosity limit here is obtained by comparing this family of classical solutions to the entropy solution of (1). We rigorously prove that in the limit $\epsilon \rightarrow 0^+$, solutions converge to the entropy solution. To do this we use a **doubling variable technique** originally proposed in [3] for the local case.

- [1] F. Achleitner, S. Hittmeir, and C. Schmeiser. On nonlinear conservation laws with a nonlocal diffusion term. *J. Differential Equations*, 250(4):2177–2196, 2011.
- [2] J. Droniou and C. Imbert. Fractal first-order partial differential equations. *Arch. Ration. Mech. Anal.*, 182(2):299–331, 2006.
- [3] S. N. Kruzhkov. First order quasilinear equations with several independent variables. *Mat. Sb. (N.S.)*, 81 (123):228–255, 1970.

Commutators of singular integrals

N. Accomazzo, C. Pérez Moreno and I. Parissis.

Consider T a linear operator defined on a function space and b a "good" function (in general, this will mean locally integrable). We define a new operator called the *commutator* of T and b by $[b, T]f(x) = b(x)T(f)(x) - T(bf)(x)$. We want to study this operator on a particular setting: when the operator T is a singular integral. We can think that $T = H$ is the Hilbert transform,

$$Hf(x) = \text{p.v.} \int_{\mathbb{R}} \frac{1}{x-y} f(y) dy.$$

We will also take b in the class of *bounded mean oscillation* (BMO) defined by

$$\|b\|_{\text{BMO}} := \sup_Q \int_Q |b(x) - b_Q| dx < \infty,$$

where Q denotes a cube with sides parallel to the axis and $b_Q = \int_Q b(y) dy$. This turns out to be the right class for the study of commutators, since we have the following

Theorem. If T is a Calderón Zygmund operator and b belongs to the class BMO, then $[b, T] : L^p(\mathbb{R}^n) \rightarrow L^p(\mathbb{R}^n)$ is bounded for all $1 < p < \infty$. Conversely, if we have that $[b, H] : L^p(\mathbb{R}) \rightarrow L^p(\mathbb{R})$ is bounded for some p ($1 < p < \infty$) then $b \in \text{BMO}$.

In the case $p = 1$ we know that the commutator in general is not bounded, but we have that they satisfy an endpoint inequality when $b \in \text{BMO}$ and T is a Calderón Zygmund operator:

$$|\{x \in \mathbb{R}^n : |[b, T]f(x)| > t\}| \leq \int_{\mathbb{R}^n} \phi(\|b\|_{\text{BMO}} |f(x)|/t) dx \quad (3)$$

where $\phi(t) = t(1 + \log^+(t))$. We also have a converse for this result: if $T = H$ is the Hilbert transform and the commutator $[b, H]$ satisfies the endpoint inequality (3), we get that b has to belong to BMO.

- [1] N. Accomazzo. A characterization of BMO in terms of endpoint bounds for commutators of singular integrals. To appear Israel J. Math. Preprint <https://arxiv.org/abs/1802.05516>
- [2] R. R. Coifman, R. Rochberg and Guido Weiss. Factorization Theorems for Hardy Spaces in Several Variables. *Ann. of Math.* (2), 103 (3): 611–635, 1976.
- [3] C. Pérez. Endpoint estimates for commutators of singular integral operators. *J. Funct. Anal.*, 128 (1):163–185, 1995.

Some members of our group

A pseudo-spectral method for the fractional Laplacian on \mathbb{R}

J. Cayama, C. M. Cuesta and F. de la Hoz.

We develop a pseudo-spectral method to solve initial-value problems associated to PDEs involving the fractional Laplacian operator $(-\Delta)^{\alpha/2}$ acting on the whole real line, where (see also [2])

$$(-\Delta)^{\alpha/2} u(x) = c_\alpha \int_{-\infty}^{+\infty} \frac{u(x) - u(y)}{|x-y|^{1+\alpha}} dy, \quad \text{with } c_\alpha = -\frac{2^\alpha \Gamma(1/2 + \alpha/2)}{\sqrt{\pi} \Gamma(-\alpha/2)}$$

We took $\alpha \in (0, 2)$. We consider the representation of the fractional Laplacian given by the following lemma:

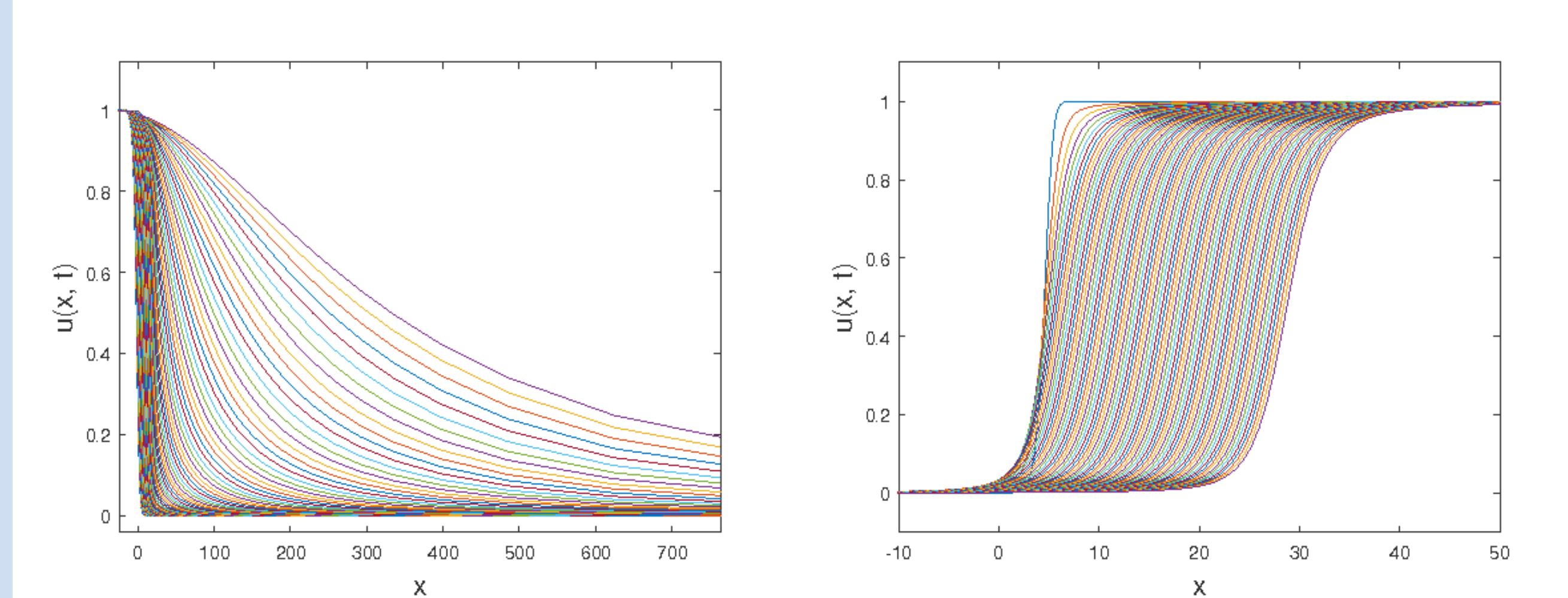
$$(-\Delta)^{\alpha/2} u(x) = \begin{cases} \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{u'(y)}{x-y} dy, & \alpha = 1, \\ \frac{c_\alpha}{\alpha(1-\alpha)} \int_{-\infty}^{+\infty} \frac{u''(y)}{|x-y|^{\alpha-1}} dy, & \alpha \neq 1. \end{cases}$$

Then, we perform the change of variable $x = L \cot(s)$, $L > 0$, to transform \mathbb{R} into the interval $[0, \pi]$, where a Fourier expansion of $u(x(s))$ can be applied. We approximate $(-\Delta)^{\alpha/2} e^{iks}$, $k \in \mathbb{Z}$, by means of the midpoint quadrature rule, improving the results with Richardson's extrapolation, similarly as in [1].

This method deals accurately and efficiently with problems posed on \mathbb{R} , and avoids truncating the domain (which requires introducing artificial boundary conditions). In order to illustrate its applicability, we have simulated the evolution of the following non-local Fisher-KPP equation:

$$\partial_t u + (-\Delta)^{\alpha/2} u = f(u), \quad x \in \mathbb{R}, \quad t \geq 0.$$

On the one hand, taking $f(u) = u(1-u)$, and $u(x, 0) = [-\tanh(x/(2\sqrt{6}))/2 + 1/2]^2$, the solution behaves like a front whose propagation speed increases exponentially with time (see the left-hand side figure, with $\alpha = 1.89$). On the other hand, taking $f(u) = u(1-u)(u-0.75)$, and $u(x, 0) = 1 - [\tanh(-x+5)/2 + 1/2]^2$, it behaves like a front that propagates with constant speed (see the right-hand side figure, with $\alpha = 1.51$).



- [1] F. de la Hoz and C. M. Cuesta. A pseudo-spectral method for a non-local KdV-Burgers equation posed on \mathbb{R} . *Journal of Computational Physics*, 311:45–61, 2016.
- [2] M. Kwaśnicki. Ten equivalent definitions of the fractional Laplace operator. *Fractional Calculus and Applied Analysis*, 20(1):7–51, 2017.

Research Projects

IT641-13 (Gobierno Vasco, Grupos de Investigación), researcher in charge: Luis Vega. MTM2014-53145-P (Ministerio de Economía y Competitividad) researchers in charge: Luis Vega (1), Carlota Cuesta (2). MTM2017-82160-C2 (Ministerio de Economía y Competitividad) researchers in charge: Carlos Pérez. MTM2017-82160-C2-2-P (Ministerio de Economía y Competitividad) researchers in charge: J.B. Bru (1), M. Mourgoglou (2). MTM2014-52347-C2-1-R (Ministerio de Economía y Competitividad) researchers in charge: M. Escobedo (1), J.C. Peral (2). HADE-Harmonic Analysis and Differential Equations: new challenges (ERC-EA European Research Council Executive Agency), researcher in charge: Luis Vega.