

Análisis Matemático y Aplicaciones: Física Matemática

J. Aguirre¹, N. Arribalaga¹, Jean-Bernard Bru^{1,2}, F. de la Hoz⁴, J. Duoandikoetxea¹, L. Escauriaza¹, M. Escobedo¹, Luca Fanelli¹,

Andoni García¹, C. Gorria³, Albert Mas¹, A. Moyua¹, O. Oruetxebarria¹, E. Seijo⁴, F. Vadillo³, Luis Vega¹ y M. Zubeldia¹

¹ Dpto. Matemáticas; ² IKERBASQUE, Basque Foundation for Science; ³ Dpto. Matemática Aplicada y Estadística e I.O.; ⁴ Dpto. Matemática Aplicada.

Relativistic Quantum Mechanics: The Dirac equation

The Dirac equation has played a fundamental role in various areas of modern physics and mathematics. The **free Dirac equation** defined as

$$i \frac{\partial}{\partial t} \psi(t, x) = H_0 \psi(t, x),$$

where $\psi(x, t) : \mathbb{R}^{3+1} \rightarrow \mathbb{C}^4$, describes a relativistic electron or positron which moves freely as if there were no external fields or other particles. The **free Dirac operator** H_0 is defined as

$$H_0 = -i\alpha \cdot \nabla + \beta m = \begin{pmatrix} mc^2 \mathbb{I}_2 & -i\sigma \cdot \nabla \\ -i\sigma \cdot \nabla & -mc^2 \mathbb{I}_2 \end{pmatrix},$$

where $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ and $\sigma = (\sigma_1, \sigma_2, \sigma_3)$ are triplets of matrices and $\alpha_k, \beta \in \mathcal{M}_{4 \times 4}(\mathbb{C})$, $k = 1, 2, 3$, are the *Dirac matrices*

$$\alpha_k = \begin{pmatrix} 0 & \sigma_k \\ \sigma_k & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & -\mathbb{I}_2 \end{pmatrix},$$

defined in terms of the *Pauli matrices* $\sigma_k \in \mathcal{M}_{2 \times 2}(\mathbb{C})$, given by

$$\mathbb{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

and m is a positive real constant describing the mass of the particle. We neglect the physical constants.

- **Self-adjointness of Dirac operators with electromagnetic potentials**

The property of being self-adjoint is a fundamental information to study operators in quantum mechanics. Therefore we study the self-adjointness of the Dirac operator with an Hermitian matrix potential $\mathbb{V} = \mathbb{V}(x) : \mathbb{R}^3 \rightarrow \mathcal{M}_{4 \times 4}(\mathbb{C})$ such that $|x| |\mathbb{V}(x)| < 1$, where $|\mathbb{V}(x)| = \sup_{\|\psi\|=1} \langle \mathbb{V}\psi, \mathbb{V}\psi \rangle$. We prove that the Dirac operator $H = -i\alpha \cdot \nabla + m\beta - \mathbb{V}$ with domain

$$\mathcal{D}(H) = \{\psi \in L^2(\mathbb{R}^3, \mathbb{C}^4) : H\psi \in L^2(\mathbb{R}^3, \mathbb{C}^4)\}$$

is self-adjoint in $L^2(\mathbb{R}^3, \mathbb{C}^4)$. Moreover, we see that the self-adjoint extension is characterized by the fact that

$$\mathcal{D}(H) \subset H^{1/2}(\mathbb{R}^3, \mathbb{C}^4) \cap \left\{ \psi : \int_{\mathbb{R}^3} |\psi|^2 \frac{dx}{|x|} < +\infty \right\}.$$

An explicit example of an electromagnetic operator that satisfies the above assumption is

$$\mathbb{V} = \begin{pmatrix} \frac{\nu}{|x|} & \sigma \cdot A \\ \sigma \cdot A & \frac{\nu}{|x|} \end{pmatrix},$$

where $|\nu| + |x| |A(x)| < 1$ for $A = A(x) : \mathbb{R}^3 \rightarrow \mathbb{R}^3$. This work has been developed in [2].

- **Dispersion of the electromagnetic Dirac equation**

The 3D Dirac equation can be listed as a **dispersive equation**. It is interesting to quantify dispersive phenomena for the perturbed flows by using Strichartz estimates. However, those estimates fail for some potentials. We construct some **counterexamples to Strichartz estimates** for the **magnetic Dirac equation**. That is, for potentials of the form

$$A(x) = |x|^{-\delta} M x, \quad 1 < \delta < 2$$

where

$$M := \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

we prove that the solution of the magnetic Dirac equation

$$\begin{cases} i\partial_t u(t, x) + H u(t, x) = 0 \\ u(0, x) = f(x), \end{cases}$$

for $H = -i\alpha \cdot (\nabla - iA) + m\beta$ and with initial datum $f \in H^{\frac{1}{p} - \frac{1}{q} + \frac{1}{2}}$, does not satisfy the Strichartz estimates

$$\|e^{itH} f\|_{L_t^p L_x^q} \leq C \|f\|_{H^{\frac{1}{p} - \frac{1}{q} + \frac{1}{2}}},$$

for any couple (p, q) satisfying the Schrödinger admissibility condition

$$\frac{2}{p} + \frac{3}{q} = \frac{3}{2}, \quad 2 \leq p \leq \infty, \quad 2 \leq q \leq 6.$$

See [3] for the details.

References

- [1] J. Apraiz, L. Escauriaza, Null-Control and Measurable Sets. *Preprint to appear in Control, Optimisation and Calculus of Variations*.
- [2] N. Arribalaga, J. Duoandikoetxea, L. Vega Essential self-adjointness for electromagnetic Dirac operators. *preprint*
- [3] N. Arribalaga, L. Fanelli, A. García On the lack of dispersion for a class of magnetic Dirac flows. *arXiv: 1107.0843v1* (2011)
- [4] J. A. Barceló, L. Vega, M. Zubeldia Sommerfeld radiation condition and applications for magnetic Hamiltonians. *preprint*
- [5] M. Zubeldia Sommerfeld radiation condition and a priori estimates for Helmholtz equation with magnetic potential. *arXiv: 1104.4237* (2011)

Electromagnetic Helmholtz equation

Free Helmholtz equation

- The Helmholtz equation is the elliptic second order partial differential equation

$$\Delta u(x) + k^2 u(x) = f(x)$$

in \mathbb{R}^d , where $\Delta = \sum_{j=1}^d \frac{\partial^2}{\partial x_j^2}$ is the Laplacian, k is the wave number and u is the amplitude. It is encountered in many branches of mathematical physics as in the theory of elasticity or theory of electromagnetic waves.

- In order to solve this equation uniquely, there must be additional restrictions on the behavior of the solution at infinity. These restrictions are the so-called Sommerfeld radiation conditions, which are typically read by

$$\lim_{|x| \rightarrow \infty} |x|^{\frac{d-1}{2}} \left(\frac{\partial u(x)}{\partial |x|} \pm iku(x) \right) = 0 \quad \text{uniformly in } \frac{x}{|x|} \in S^{d-1}.$$

Electromagnetic Schrödinger Hamiltonian

$$H_A = \nabla_A^2 + V = (\nabla + iA(x))^2 + V(x) \quad \text{in } \mathbb{R}^d \quad (d \geq 3).$$

- $A : \mathbb{R}^d \rightarrow \mathbb{R}^d$ magnetic (vector) potential \rightarrow describes the interaction of a free particle with an external magnetic field, which is defined as the $d \times d$ anti-symmetric matrix

$$B = B(x) = (B_{jk}), \quad B_{jk} = \frac{\partial A_j}{\partial x_k} - \frac{\partial A_k}{\partial x_j}.$$

The trapping component of B is $B_\tau(x) = \frac{x}{|x|} B(x)$, the projection of B on the tangential space in x to the sphere of radio $|x|$. $V : \mathbb{R}^d \rightarrow \mathbb{R}$ is the electric (scalar) potential.

- We study the electromagnetic Helmholtz equation

$$H_A u(x) + \lambda u(x) = f(x), \quad x \in \mathbb{R}^d, \quad \lambda \in \mathbb{R} \setminus \{0\}.$$

Under suitable assumptions on the potential V and the trapping component B_τ , we prove some a priori estimates and Sommerfeld radiation conditions for the electromagnetic Helmholtz equation:

$$\begin{aligned} \sup_{R \geq 1} \frac{1}{R} \int_{|x| \leq R} |u(x)|^2 dx &< \infty \\ \int_{\mathbb{R}^d} \frac{|u(x)|^2}{|x|^2} dx &\leq \frac{4}{(d-2)^2} \int_{\mathbb{R}^d} \left| \nabla_A (e^{-i\lambda^{1/2}|x|} u) \right|^2 dx < \infty \\ \sup_{R > 0} R \int_{|x| \geq R} \left| \nabla_A u(x) - i\lambda^{1/2} \frac{x}{|x|} u(x) \right|^2 dx &< \infty, \end{aligned}$$

where $\nabla_A = \nabla + iA(x)$. This result can be found in [4].

- We then deduce some applications to the evolution equation and the scattering theory associated to this equation.

Null–Control and measurable sets

The control for the heat equation in a smooth and bounded domain Ω in \mathbb{R}^n for a time interval $(0, T)$, $T > 0$ and for a distributed control f we consider

$$\begin{cases} \Delta u - \partial_t u = f(x, t) \chi_\omega(x), & \text{in } \Omega \times (0, T), \\ u = 0, & \text{on } \partial\Omega \times [0, T], \\ u(0) = u_0, & \text{in } \Omega. \end{cases} \quad (1)$$

Here, $\omega \subset \Omega$ is an interior control region. The null controllability of this equation is about the existence for any u_0 in $L^2(\Omega)$ of a control f in $L^2(\omega \times (0, T))$ with

$$\|f\|_{L^2(\omega \times (0, T))} \leq N \|u_0\|_{L^2(\Omega)}, \quad (2)$$

such that $u(T) = 0$. Next are our main results for the interior null–controllability case of some parabolic evolutions with controls acting over measurable sets. The results can be found in [1].

Theorem 1. Let $n \geq 2$. Then, $\Delta - \partial_t$ is null-controllable at all positive times, with distributed controls acting over a measurable set $\omega \subset \Omega$ with positive Lebesgue measure, when

$$\Delta = \nabla \cdot (\mathbf{A}(x) \nabla \cdot) + V(x),$$

is a self-adjoint elliptic operator, the coefficients matrix \mathbf{A} is smooth in $\bar{\Omega}$, V is bounded in Ω and both are real-analytic in an open neighborhood of ω . The same holds when $n = 1$,

$$\Delta = \frac{1}{\rho(x)} [\partial_x (a(x) \partial_x) + b(x) \partial_x + c(x)]$$

and a, b, c and ρ are measurable functions in $\Omega = (0, 1)$.

Theorem 2. Let $n \geq 2$. Then, $\Delta - \partial_t$ is null-controllable at all times $T > 0$ with boundary controls acting over a measurable set $\gamma \subset \partial\Omega$ with positive surface measure when

$$\Delta = \nabla \cdot (\mathbf{A}(x) \nabla \cdot) + V(x)$$

is a self-adjoint elliptic operator, the coefficients matrix \mathbf{A} is smooth in $\bar{\Omega}$, V is bounded in Ω and both are real-analytic in an open neighborhood of γ in $\bar{\Omega}$.

Proyectos