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Relativistic Quantum Mechanics: The Dirac equation
The Dirac equation has played a fundamental role in various areas of modern physics and mathematics.
The free Dirac equation defined as

i
∂

∂t
ψ(t, x) = H0ψ(t, x),

where ψ(x, t) : R3+1 → C4, describes a relativistic electron or positron which moves freely as if there
were no external fields or other particles. The free Dirac operatorH0 is defined as

H0 = −iα · ∇+ βm =

(
mc2I2 −iσ · ∇
−iσ · ∇ −mc2I2

)
,

where α = (α1, α2, α3) and σ = (σ1, σ2, σ3) are triplets of matrices and αk, β ∈ M4×4(C), k =
1, 2, 3, are the Dirac matrices

αk =

(
0 σk
σk 0

)
, β =

(
I2 0
0 −I2

)
,

defined in terms of the Pauli matrices σk ∈ M2×2(C), given by

I2 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

andm is a positive real constant describing the mass of the particle. We neglect the physical constants.

• Self-adjointness of Dirac operators with electromagnetic potentials

The property of being self-adjoint is a fundamental information to study operators in quantum mechan-
ics. Therefore we study the self-adjointness of the Dirac operator with an Hermitian matrix potential
V = V(x) : R3 → M4×4(C) such that |x||V(x)| < 1, where |V(x)| = sup‖ψ‖=1〈Vψ,Vψ〉. We
prove that the Dirac operatorH = −iα · ∇+mβ − V with domain

D(H) = {ψ ∈ L2
(R3

,C4
) : Hψ ∈ L2

(R3
,C4

)}

is self-adjoint inL2(R3,C4). Moreover, we see that the self-adjoint extension is characterized by the fact
that

D(H) ⊂ H1/2
(R3

,C4
) ∩
{
ψ :

∫
R3
|ψ|2

dx

|x|
< +∞

}
.

An explicit example of an electromagnetic operator that satisfies the above assumption is

V =

(
ν
|x| σ · A

σ · A ν
|x|

)
,

where |ν|+ |x||A(x)| < 1 forA = A(x) : R3 → R3. This work has been developed in [2].

• Dispersion of the electromagnetic Dirac equation

The 3D Dirac equation can be listed as a dispersive equation. It is interesting to quantify dispersive
phenomena for the perturbed flows by using Strichartz estimates. However, those estimates fail for
some potentials. We construct some counterexamples to Strichartz estimates for the magnetic Dirac
equation. That is, for potentials of the form

A(x) = |x|−δMx, 1 < δ < 2

where

M :=

 0 1 0
−1 0 0
0 0 0

 ,

we prove that the solution of the magnetic Dirac equation

{
i∂tu(t, x) +Hu(t, x) = 0

u(0, x) = f(x),

for H = −iα · (∇− iA) +mβ and with initial datum f ∈ H
1
p
− 1
q

+ 1
2 , does not satisfy the Strichartz

estimates
‖eitHf‖Lpt L

q
x
≤ C‖f‖

H
1
p
− 1
q

+ 1
2
,

for any couple (p, q) satisfying the Schrödinger admissibility condition

2

p
+

3

q
=

3

2
, 2 ≤ p ≤ ∞, 2 ≤ q ≤ 6.

See [3] for the details.
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Electromagnetic Helmholtz equation
Free Helmholtz equation

• The Helmholtz equation is the elliptic second order partial differential equation

∆u(x) + k
2
u(x) = f(x)

in Rd, where ∆ =
∑d
j=1

∂2

∂x2
j

is the Laplacian, k is the wave number and u is the amplitude. It

is encountered in many branches of mathematical physics as in the theory of elasticity or theory
of electromagnetic waves.

• In order to solve this equation uniquely, there must be additional restrictions on the behavior
of the solution at infinity. These restrictions are the so-called Sommerfeld radiation conditions,
which are typically read by

lim
|x|→∞

|x|
d−1

2

(
∂u(x)

∂|x|
± iku(x)

)
= 0 uniformly in

x

|x|
∈ Sd−1

.

Electromagnetic Schrödinger Hamiltonian

HA = ∇2
A + V = (∇+ iA(x))

2
+ V (x) in Rd (d ≥ 3).

• A : Rd → Rd magnetic (vector) potential→ describes the interaction of a free particle with an
external magnetic field, which is defined as the d× d anti-symmetric matrix

B = B(x) = (Bjk), Bjk =
∂Aj

∂xk
−
∂Ak

∂xj
.

The trapping component ofB isBτ (x) = x
|x|B(x), the projection ofB on the tangential space

in x to the sphere of radio |x|. V : Rd → R is the electric (scalar) potential.

• We study the electromagnetic Helmholtz equation

HAu(x) + λu(x) = f(x), x ∈ Rd, λ ∈ R\{0}.

Under suitable assumptions on the potential V and the trapping componentBτ , we prove some
a priori estimates and Sommerfeld radiation conditions for the electromagnetic Helmholtz equa-
tion:

sup
R≥1

1

R

∫
|x|≤R

|u(x)|2dx <∞

∫
Rd

|u(x)|2

|x|2
dx ≤

4

(d− 2)2

∫
Rd

∣∣∣∣∇A(e
−iλ1/2|x|

u)

∣∣∣∣2 dx <∞
sup
R>0

R

∫
|x|≥R

∣∣∣∣∇Au(x)− iλ1/2 x

|x|
u(x)

∣∣∣∣2 dx <∞,
where∇A = ∇+ iA(x). This result can be found in [4].

• We then deduce some applications to the evolution equation and the scattering theory associated
to this equation.

Null–Control and measurable sets
The control for the heat equation in a smooth and bounded domain Ω in Rn for a time interval (0, T ),
T > 0 and for a distributed control f we consider

4u− ∂tu = f(x, t)χω(x), in Ω× (0, T ),

u = 0, on ∂Ω× [0, T ],

u(0) = u0, in Ω.

(1)

Here, ω ⊂ Ω is an interior control region. The null controllability of this equation is about the existence
for any u0 in L2(Ω) of a control f in L2(ω × (0, T )) with

‖f‖L2(ω×(0,T )) ≤ N‖u0‖L2(Ω), (2)

such that u(T ) = 0. Next are our main results for the interior null–controllability case of some parabolic
evolutions with controls acting over measurable sets. The results can be found in [1].

Theorem 1. Let n ≥ 2. Then,4− ∂t is null-controllable at all positive times, with distributed controls acting
over a measurable set ω ⊂ Ω with positive Lebesgue measure, when

4 = ∇ · (A(x)∇ · ) + V (x),

is a self-adjoint elliptic operator, the coefficients matrix A is smooth in Ω, V is bounded in Ω and both are real-
analytic in an open neighborhood of ω. The same holds when n = 1,

4 =
1

ρ(x)
[∂x (a(x)∂x ) + b(x)∂x + c(x)]

and a, b, c and ρ are measurable functions in Ω = (0, 1).

Theorem 2. Let n ≥ 2. Then,4 − ∂t is null-controllable at all times T > 0 with boundary controls acting
over a measurable set γ ⊂ ∂Ω with positive surface measure when

4 = ∇ · (A(x)∇ · ) + V (x)

is a self-adjoint elliptic operator, the coefficients matrix A is smooth in Ω, V is bounded in Ω and both are real-
analytic in an open neighborhood of γ in Ω.
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