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Mathematical Foundations of Statistical Mechanics — Quantum Many-Body Theory

e Electromagnetic Schrodinger flow

e The past decade has seen a drastic increase in interest in ultra-cold atoms, driven by experiments
on superconductors and Bose-Einstein condensates of STRb, “Li, ?3Na, S°Rb, 4! K, 133Cs, hy-
drogen, metastable triplet “He, 1"*YDb, 8°Rbs, etc.

Bose-Einstein condensates for temperatures T < T, << 107 °K

performed for 2> Na in the MIT by the group of Wolfgang Ketterle
(2001 Nobel Prize in Physics)

e The remarkable degree of universality of quantum phase transitions allows us to focus on effec-
tive theories.

e Rigorous quantum many-body theory is however, a notoriously ditficult subject.

e In fact, mathematical foundations of statistical mechanics and the quantum many-body theory
involve many different fields of mathematics such as:
(1) Functional analysis [1] — Operator theory [2]- Convex analysis [3].
(2) Probability theory [4] — Stochastic processes [5].
(3) Variational problems [6] — Game theory [7].
(4) Operator algebras [8].
(5) Differential equations [9].

Current research lines

e Mathematical Methods to diagonalize Hamiltonians [10]: Proof of global (resp. local) existence

and uniqueness of solutions of the Brockett-Wegner diagonalizing flow H; = |Hy,[H¢, A]| for
bounded (resp. unbounded) operators acting on a complex Hilbert space H.

e Diagonalization of quadratic Hamiltonians acting on a Boson Fock space by using a proof of the
well-posedness of non-autonomous evolution equations, see [11].

e Mathematical description of fermion systems on lattices - as for instance electrons in solids - with
long range interactions, see [7]. This gives a first answer to an old open problem in mathematical
physics - first addressed by Ginibre in 1968 for bosonic systems in continuum - about the validity
of the so-called Bogoliubov approximation on the level of states.

e Rigorous study of the thermodynamic impact of the Coulomb repulsion on s—-wave supercon-
ductors via the strong coupling BCS-Hubbard Hamiltonian, see [12]. This analysis implies a
rigorous explanation of the necessity of doping insulators to create superconductors.
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Consider a self-adjoint Schrodinger Hamiltonian H = (iV + A(x)) + V() acting on H* (R™), with a
fixed magnetic potential A : R" — R™ and electric potential VV : R"™ — R and look to the Schrédinger

flow generated by the group S(t) = e"**'. The dispersive properties of S(t) were extensively investi-
gated in the last years by the members of the group. We summarize them:

1. Define by B = dA the magnetic field and Br = 7 B its tangential component to the sphere

x|
(trapping component). If B, (0,V )1 are small, then weak dispersive properties hold for S(t)
(Fanelli-Vega [4]).

2. If B; and (0, V)4 are small and A, V' are short-range, then endpoint Strichartz estimates hold
for S(t)
I1S@)uollLprg S lluoll2;

for any Schrodinger admissible Strichartz pair (p, q) (D’Ancona-Fanelli-Vega-Visciglia [1]).

3. Strichartz estimates in general fail for long range potentials A,V (Fanelli-Garcia [4] and
Goldberg-Vega-Visciglia [6]).

The contribution given in this field by the group also permitted to understand the time-propagation of
solutions of the electromagnetic wave, Klein-Gordon and Dirac equations. The relation between disper-
sive equations and the Helmholtz-type equation

Hu — (k® £ ie)u =0

is an object of investigation since the paper [7], in the case A = 0, and [3] when A # 0.
The main aim is to completely understand the linear theory about Hamiltonian of the form H, which is
the fundamental tool in order to study Physical models described by nonlinear perturbations of S(t).

e Uncertainty Principles

One cannot simultaneously localize both a function and its Fourier transform. Some versions:

1. Heisenberg: let f be a function such that || f||2 = 1; then

([ Te-orwra) ([ Te-oi©rde) > o

2. Hardy: let |f(x)| < Ae~™%%" and 1f(©)] < Be~ ™3¢ for some constants A,B,aand B. If
a8 > 1,then f = 0.
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Uncertainty and the Schrodinger equation (Escauriaza, Kenig, Ponge and Vega [2])

1. Let w be a solution of 0:u = tAuonR"™ x [0, T]. If |u(x,0)] < Ae~1217/8% and lu(x, T)| <
Be_|‘”|2/o‘2,with af < 4T, thenw = 0.

2. Let u be a solution of 0;u = i(Au + V(x,t)u) in R™ x [0, T], with a potential V' € L°°.
Assume that, for o, 6 > 0 with ¥ ﬁ < 4] it holds:
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Q) [le!™*/B%u(0)]l L2 any < +o0, 1™/ OFw(T) | L2 gny < +o0
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(ii) suppo,qy lle!®!"/(HFE=DTV (1)]| L oo gny < +00

Then uw = 0.
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