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En [1], hemos considerado la ecuacion de Dirac no lineal, con una, dos y tres variables espaciales:

W, = AW, + Ay W, + Az, +if (|17 + |Ts|? — | W3] — |W4]|°)BW, (1)

para —oo < 7,Y,z2 < +00,0 <t < T, ¥ € Cc*. A; y B son matrices 4 X 4:

o 0 —O'j . L —12 0
AJ _ (_O-j 0 ) y paraj - 172737 B = ( 0 IZ) (2)

donde o son las matrices de Pauliy f(s) es una funciéon real de variable real s. Hemos considerado el
caso importante f(s) = m — 2As, m, A € R, donde A es el parametro no lineal; si 0 < A < 1, tenemos
un problema débilmente no lineal.

La idea del factor integrante consiste en realizar un cambio de variable para resolver de manera
exacta la parte lineal de la ecuacion [3]. Tras calcular los respectivos factores integrantes para las ecua-
ciones no lineales de Dirac en dimension uno, dos y tres, hemos discretizado los sistemas no lineales
resultantes mediante un Runge-Kutta de orden cuatro.

La grafica de la izquierda muestra el dato inicial para el caso bidimensional; se trata de un dromion
[2]. La gréfica de la derecha corresponde al estado de dicho dromién en ¢t = 5.
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Uno de los problemas més importantes en hidrodindmica implica la evolucién de una interfase entre dos
fluidos infinitos, de densidades p1 y p2, perfectos, incompresibles e irrotacionales en dos dimensiones
bajo la accion de la gravedad g, siendo de particular interés la estructura de las diferentes singularidades
que puede desarrollar dicha interfase.
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Asimismo, también podemos estudiar el problema de waterwaves cuando p2 > 0y 0 < A, < 1;yla
inestabilidad de Helmholtz-Kelvin cuando p; > 0y —1 < A, < 0. Loscasos A, = 1y A, = —1
corresponden respectivamente a los problemas clésicos de waterwaves y de Rayleigh-Taylor, pudiendo
considerarse tension superficial, o no.

En [1], hemos demostrado que tanto los problemas de Rayleigh-Taylor como los de waterwaves
desarrollan singularidades de tipo Moore en la curvatura, cuando ambas densidades son no nulas.

Para el problema clasico de waterwaves, hemos propuesto y dado evidencia del desarrollo de una
singularidad en forma de espiral logaritmica de dos brazos, como se muestra en la gréfica inferior, mien-
tras que para el problema clésico de Rayleigh-Taylor, no hemos encontrado singularidades.
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El Analisis Isogeométrico se introdujo en [1] con la intencién de mejorar la conexién entre la simulacion
numérica y el Disefio Asistido por Ordenador (CAD). La idea fundamental del Anélisis Isogeométicro
consiste en utilizar directamente la geometria obtenida a través de CAD en términos de B-Splines o
B-Splines racionales no uniformes (NURBS) y aproximar las soluciones de ecuaciones diferenciales me-
diante el mismo tipo de funciones.

Los beneficios clave de los métodos basados en NURBS son: representacion exacta del dominio
fisico, utilizacion directa de los datos obtenidos de CAD, un aumento del ratio precisiéon / coste com-
putacional.

Los esquemas de NURBS ya han comenzado a aparecer en la literatura relacionada con la ingenieria
y algunos resultados preliminares muestran un futuro prometedor. Sin embargo, la teoria de aproxi-
macion del Analisis Isogeométrico basado en NURBS no estd en absoluto desarrollada.

En [2] se da un primer paso en la obtencion de estimaciones del error de aproximacion para espacios
de NURBS en dos dimensiones. Estas estimaciones son explicitas en los tres pardmetros de discretizacion:
didmetro del mallado, h, grado de los polinomios, p, y regularidad en los nodos, k, bajo la restriccion
2k — 1 < p. Por tanto, los casos de mayor regularidad, hasta £ = p, siguen suponiendo un problema
abierto.

Por otro lado, en [3] se establecen las bases para la aproximacién de campos vectoriales, con especial
atencion a los campos electromagnéticos. Se construyen espacios de Splines y operadores de proyeccion
que satisfacen un diagrama de De Rham en dimension 3. La regularidad de los B-Splines abre un camino
hacia esquemas de discretizaciéon completamente nuevos para las ecuaciones de Maxwell, por ejemplo.
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El flujo de trafico de un grupo de
vehiculos, se puede modelizar me-
diante ecuaciones diferenciales [1].
El objetivo es calcular la velocidad
que garantiza un flujo 6ptimo, evi-
tando el colapso. Intervienen fac-
tores como la sensibilidad de reac-
cion de los conductores, 7, y la dis-
tancia de seguridad, h(t).

COLAPSO

En el modelo simplificado anular de N vehiculos, la posicion angular del n-ésimo en el instante ¢ es
xn (t). La dindmica del movimiento [2] queda determinada por el sistema de segundo grado:

Tin:—jjn+F(£Un+1—CEn—hn>, iZl,...,N. (3)

La fuerza F'(-) ~ tanh(xz) depende de la separaciéon, u, (t) = xn,+1(t) — x,(t), de la distancia de
seguridad, h + h, (t), de la velocidad, etc.

Solucién de equilibrio: h,, = h y los vehiculos viajan equidistantes, v, (t) = d, con velocidad, vg =
F'(d — h). Linealizando alrededor del punto de equilibrio se obtiene el valor critico [3], 7. = 1/2F"(1).

T < T. = estable, flujo libre.

Modelo determinista T > 1. = inestable, colapso.

Si hay componente estocastica (£, (t)) = 0, (£, (t)€;(s)) = Q2 §,,; 5(t — s), el sistema para u., (t) es

 hns1 () — V(un — hn(#)), n=1,...,N

Uy = % (_un + V(un—l—l .
{ : efn :_fn_l_gn(t)- (4)

Ehn:h_hn+fn7

Se escribe el sistema de primer orden, 2’ (t) = F(z,€), z € R* con u,, = zn, v/, = znin,
hyn = 2aN4+n Y fn = 23N4n, SU aproximacion 7(k) ~ z(kAt) y se utiliza la regla del punto medio,

Z(k) 4 7(k+1)
z/(F+1) :Z(k)—l—AtF< +2 +VAtQV®, VP eN(0,1),i=1,...,N. (5

Parametros: N = 60, h = d = 1,
7 = 1.08 % 7 (inestable), intervalo
temporal 0 < 7' < 6 - 10°. Se con-
cluye que la interaccion de tipo es-
A ShRRtX ol tocastico ((Q = 0.5) evita la forma-

cién de colapsos en el trafico, que se
02- reflejan en el crecimiento de o, (t) =
varianza (un,, (t) — d) muy por encima
°‘1’ de 0.
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