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Ecuaciones de Dirac no lineales
En [1], hemos considerado la ecuación de Dirac no lineal, con una, dos y tres variables espaciales:

Ψt = A1Ψx + A2Ψy + A3Ψz + if(|Ψ1|2 + |Ψ2|2 − |Ψ3|2 − |Ψ4|2)BΨ, (1)

para−∞ < x, y, z < +∞, 0 ≤ t ≤ T,Ψ ∈ C4. Aj yB son matrices 4× 4:

Aj =

(
0 −σj
−σj 0

)
, para j = 1, 2, 3, B =

(
−I2 0

0 I2

)
(2)

donde σj son las matrices de Pauli y f(s) es una función real de variable real s. Hemos considerado el
caso importante f(s) = m− 2λs,m,λ ∈ R, donde λ es el parámetro no lineal; si 0 < λ� 1, tenemos
un problema débilmente no lineal.

La idea del factor integrante consiste en realizar un cambio de variable para resolver de manera
exacta la parte lineal de la ecuación [3]. Tras calcular los respectivos factores integrantes para las ecua-
ciones no lineales de Dirac en dimensión uno, dos y tres, hemos discretizado los sistemas no lineales
resultantes mediante un Runge-Kutta de orden cuatro.

La gráfica de la izquierda muestra el dato inicial para el caso bidimensional; se trata de un dromión
[2]. La gráfica de la derecha corresponde al estado de dicho dromión en t = 5.
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Singularidades en hidrodinámica
Uno de los problemas más importantes en hidrodinámica implica la evolución de una interfase entre dos
fluidos infinitos, de densidades ρ1 y ρ2, perfectos, incompresibles e irrotacionales en dos dimensiones
bajo la acción de la gravedad g, siendo de particular interés la estructura de las diferentes singularidades
que puede desarrollar dicha interfase.
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Clasificaremos las singularidades en función del
número de Atwood,Aρ =

ρ1−ρ2
ρ1+ρ2

:

• Aρ = −1⇒ Inestabilidad de Rayleigh-Taylor.

• Aρ = 0 ⇒ Hojas de vorticidad, inestabilidad
de Helmholtz-Kelvin.

• Aρ = 1 ⇒ Problema de waterwaves, inestabili-
dad de Thomson.

Asimismo, también podemos estudiar el problema de waterwaves cuando ρ2 > 0 y 0 < Aρ < 1; y la
inestabilidad de Helmholtz-Kelvin cuando ρ1 > 0 y −1 < Aρ < 0. Los casos Aρ = 1 y Aρ = −1
corresponden respectivamente a los problemas clásicos de waterwaves y de Rayleigh-Taylor, pudiendo
considerarse tensión superficial, o no.

En [1], hemos demostrado que tanto los problemas de Rayleigh-Taylor como los de waterwaves
desarrollan singularidades de tipo Moore en la curvatura, cuando ambas densidades son no nulas.

Para el problema clásico de waterwaves, hemos propuesto y dado evidencia del desarrollo de una
singularidad en forma de espiral logarítmica de dos brazos, como se muestra en la gráfica inferior, mien-
tras que para el problema clásico de Rayleigh-Taylor, no hemos encontrado singularidades.
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Análisis Isogeométrico
El Análisis Isogeométrico se introdujo en [1] con la intención de mejorar la conexión entre la simulación
numérica y el Diseño Asistido por Ordenador (CAD). La idea fundamental del Análisis Isogeométicro
consiste en utilizar directamente la geometría obtenida a través de CAD en términos de B-Splines o
B-Splines racionales no uniformes (NURBS) y aproximar las soluciones de ecuaciones diferenciales me-
diante el mismo tipo de funciones.

Los beneficios clave de los métodos basados en NURBS son: representación exacta del dominio
físico, utilización directa de los datos obtenidos de CAD, un aumento del ratio precisión / coste com-
putacional.

Los esquemas de NURBS ya han comenzado a aparecer en la literatura relacionada con la ingeniería
y algunos resultados preliminares muestran un futuro prometedor. Sin embargo, la teoría de aproxi-
mación del Análisis Isogeométrico basado en NURBS no está en absoluto desarrollada.

En [2] se da un primer paso en la obtención de estimaciones del error de aproximación para espacios
de NURBS en dos dimensiones. Estas estimaciones son explícitas en los tres parámetros de discretización:
diámetro del mallado, h, grado de los polinomios, p, y regularidad en los nodos, k, bajo la restricción
2k − 1 ≤ p. Por tanto, los casos de mayor regularidad, hasta k = p, siguen suponiendo un problema
abierto.

Por otro lado, en [3] se establecen las bases para la aproximación de campos vectoriales, con especial
atención a los campos electromagnéticos. Se construyen espacios de Splines y operadores de proyección
que satisfacen un diagrama de De Rham en dimensión 3. La regularidad de los B-Splines abre un camino
hacia esquemas de discretización completamente nuevos para las ecuaciones de Maxwell, por ejemplo.
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Modelo de tráfico: flujo / colapso

El flujo de tráfico de un grupo de
vehículos, se puede modelizar me-
diante ecuaciones diferenciales [1].
El objetivo es calcular la velocidad
que garantiza un flujo óptimo, evi-
tando el colapso. Intervienen fac-
tores como la sensibilidad de reac-
ción de los conductores, τ , y la dis-
tancia de seguridad, h(t).

TRAFICO FLUIDO COLAPSO

En el modelo simplificado anular de N vehículos, la posición angular del n-ésimo en el instante t es
xn(t). La dinámica del movimiento [2] queda determinada por el sistema de segundo grado:

τẍn = −ẋn + F (xn+1 − xn − hn), i = 1, . . . , N. (3)

La fuerza F (·) ≈ tanh(x) depende de la separación, un(t) = xn+1(t) − xn(t), de la distancia de
seguridad, h+ hn(t), de la velocidad, etc.

Solución de equilibrio: hn = h y los vehículos viajan equidistantes, un(t) = d, con velocidad, v0 =
F (d− h). Linealizando alrededor del punto de equilibrio se obtiene el valor crítico [3], τc = 1/2F ′(l).

Modelo determinista τ < τc ⇒ estable, flujo libre.
τ ≥ τc ⇒ inestable, colapso.

Si hay componente estocástica 〈ξn(t)〉 = 0, 〈ξn(t)ξj(s)〉 = Q2 δnj δ(t− s), el sistema para un(t) es

{
ün = 1

τ (−u̇n + V (un+1 − hn+1(t))− V (un − hn(t))) , n = 1, . . . , N

εḣn = h− hn + fn, θḟn = −fn + ξn(t).
(4)

Se escribe el sistema de primer orden, z′(t) = F (z, ξ), z ∈ R4N con un = zn, u′n = zN+n,
hn = z2N+n y fn = z3N+n, su aproximación Z(k) ≈ z(k∆t) y se utiliza la regla del punto medio,

Z
(k+1)

= Z
(k)

+ ∆tF

(
Z(k) + Z(k+1)

2

)
+
√

∆t Q ν
k
, ν

k ∈ N (0, 1), i = 1, . . . , N. (5)
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Parámetros: N = 60, h = d = 1,
τ = 1.08 ∗ τ0 (inestable), intervalo
temporal 0 ≤ T ≤ 6 · 105. Se con-
cluye que la interacción de tipo es-
tocástico (Q = 0.5) evita la forma-
ción de colapsos en el tráfico, que se
reflejan en el crecimiento de σu(t) =
varianza (un(t)−d) muy por encima
de 0.
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