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Many important processes at the microscale require far-from-equilibrium conditions to occur, as
in the functioning of mesoscopic bioreactors, nanoscopic rotors, and nanoscale mass conveyors.
Achieving such conditions, however, is typically based on energy inputs that strongly affect the
thermal properties of the environment and the controllability of the system itself. Here, we present a
general class of far-from-equilibrium processes that suppress the net thermal exchange with the envi-
ronment by maintaining the Maxwell-Boltzmann velocity distribution intact. This new phenomenon,
referred to as ghost equilibrium, results from the statistical cancellation of superheated and sub-
cooled nonequilibrated degrees of freedom that are autonomously generated through a microscale
energy sorting process. We provide general conditions to observe this phenomenon and study its im-
plications for manipulating energy at the microscale. The results are applied explicitly to two mech-
anistically different cases, an ensemble of rotational dipoles and a gas of trapped particles, which
encompass a great variety of common situations involving both rotational and translational degrees
of freedom. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3683441]

I. INTRODUCTION

Effective manipulation of energy at the microscale is
fundamental to create the far-from-equilibrium conditions
needed for the occurrence of many micrometer and submi-
crometer processes. Transferring energy into small-scale sys-
tems is prone to affect the thermal properties of the environ-
ment and the controllability of the system itself. The result is
often very large thermal gradients, which typically range from
105 K/m on the mesoscale1 to 108 K/m on the nanoscale.2

The generation of thermal gradients and temperature differ-
ences arises in the first step toward establishing the fluxes and
forces that ultimately lead to motion, currents, and many other
processes that can perform useful tasks at the microscale.
Thermal gradients have been used, for instance, to drive sub-
nanometer motion of cargoes along carbon nanotubes3 and
are present in nanoscale mass conveyors.4 Down to the molec-
ular level, thermal gradients can polarize water molecules and
produce large electric fields.5 Thermal heterogeneities have
also been used to trap DNA in mesoscopic bioreactors.6

Motivated by the relevance of energy manipulation in
such wide-ranging processes, we asked whether it is possi-
ble to drive systems far from equilibrium with strong inter-
nal temperature differences but without net thermal exchange
with their environment. We have focused on the most ro-
bust case in which the overall thermal energy distribution for
the far-from-equilibrium system is shaped as the equilibrium
Maxwell-Boltzmann velocity distribution. This type of ap-
proach will provide the system as a whole with the same ki-
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netic energy distribution as the thermal bath, thus minimizing
the perturbation of the environment. The Maxwell-Boltzmann
velocity distribution7 plays a central role because it is a uni-
versal feature of systems at equilibrium,8 it determines key
thermodynamic properties, and its absence is a signature of
far-from-equilibrium conditions.9, 10 Therefore, it has tacitly
been accepted that its presence implies close proximity to
equilibrium.11

Here, we show that there exists a new type of states that
are deep inside the nonequilibrium regime but that, paradox-
ically, maintain the Maxwell-Boltzmann velocity distribution
and global temperature as if they were exactly at equilibrium.
This new phenomenon, which we have termed ghost equilib-
rium, results from the self-sorting of the kinetic energy into
superheated and subcooled regions along a nonequilibrated
degree of freedom that statistically cancel each other for the
whole system.

We consider the general class of systems described by
a coordinate, s, and its associated velocity, u, with dynamics
governed by the stochastic second-order differential equation

ds

dt
= u,

du

dt
= −γ u + F (s, t) + �(t), (1)

where F(s, t) is a force-dependent function of the coordi-
nate and time, and γ is a damping constant. Fluctuations are
taken into account by a Gaussian noise term �(t) with zero
mean and correlation function 〈�(t)�(t′)〉 = 2Dδ(t − t′). The
intensity of the noise, D, is determined by the thermal en-
ergy kT at equilibrium by the fluctuation-dissipation theorem:
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D = γ kT/μ, where μ is a parameter quantifying the inertia
of the degree of freedom. This stochastic equation, known
as Langevin equation, captures the fluctuating behavior of a
wide diversity of dynamical systems in contact with a thermal
bath. It was originally proposed for Brownian motion12 and it
has subsequently been extended to many situations,13 includ-
ing electronic devices,14 organic semiconductors,15 confined
colloids,16 suspensions of ferromagnetic particles,17 granular
matter,18 nuclear physics,19 critical dynamics,20 and biologi-
cal systems.21

Close to equilibrium, the velocity distribution of sys-
tems governed by Eq. (1) is always Gaussian for each
value of s.9 It is obtained from the probability density of
s and u, which for sufficiently slow changes of F(s, t) is

given by P (s, u) = e−γ
U (s,t)+u2/2

D /
∫ ∞
−∞ e−γ

U (s,t)+u2/2
D dsdu, where

U (s, t) = − ∫ s

s0
F (s ′, t)ds ′ can be viewed as a generalized

potential energy. In general, the velocity distribution is not
Gaussian and the exact form of the probability distribu-
tion is determined by the Fokker-Planck equation22 ∂ tP(s, u)
= [− ∂su + ∂u(γ u − F(s, t)) + D∂u, u]P(s, u).

II. RESULTS

A. General conditions

To concentrate on the velocity distribution, we coarse-
grain the probability density between two values, s1 and s2, of
the degree of freedom s,

P̃ (u) =
∫ s2

s1
P (s, u)ds∫ ∞

−∞ du
∫ s2

s1
P (s, u)ds

. (2)

The dynamics of this reduced probability, after substitu-
tion in the Fokker-Planck equation, is given by

∂t P̃ (u) = (∂uγ u + D∂u,u)P̃ (u) − ∂u

∫ s2

s1

F (s, t)P (s, u)ds

−u(P (s2, u) − P (s1, u)). (3)

This non-closed equation shows that, in general, the ve-
locity distribution evolves with time and would not keep its
Gaussian shape far from equilibrium. If the right-hand side of
the equation is identically zero, however, the velocity distri-
bution in the coordinate-space region between s1 and s2 would
remain constant. We focus on conditions that cancel out each
of its three terms simultaneously.

The drift-diffusion term, ∂u(γ uP̃ (u)) + D∂u,uP̃ (u), is
zero for Gaussian velocity distributions of the type P̃ (u)
= e−γ u2/(2D)/

∫ ∞
−∞ e−γ u2/(2D)du, which are present for sys-

tems at equilibrium at time t0. The force-dependent term,
∂u

∫ s2

s1
F (s, t)P (s, u)ds, vanishes when force is switched off

at time t0 so that F(s, t) = F(s)�(t − t0), where � is the Heav-
iside step function.

The boundary term, P(s2, u) − P(s1, u), cancels out in two
important situations. The first one is when the system has pe-
riodicity � in the degree of freedom so that s2 is equivalent to
s1 + �. This periodicity straightforwardly guarantees the can-
cellation of this term. The second one is when the system has
specular symmetry and reflecting boundary conditions. Spec-

(a)

(b)

po
te

nt
ia

l e
ne

rg
y

t=0

translational coordinate

Π 0 Π Π 0 Π

4 0 4 4 0 4

t=0

angular coordinate

FIG. 1. Far-from-equilibrium processes with thermal equilibrium-like distri-
butions can be generated via energy sorting from time-dependent potential
energies. The potential energies of (a) a periodic system and (b) a spec-
ular system with reflecting boundaries are shown before (left) and after
(right) switching off the force field. Systems with these types of potential
energy functions that are initially in equilibrium will maintain their Maxwell-
Boltzmann velocity distributions intact during the relaxation to the new equi-
librium states.

ular symmetry around s0 implies P(s0 − s, u) = P(s0 + s, −u),
which can be used to rewrite the boundary term, with s1 = s0

− L and s2 = s0 + L, as P(s0 + L, u) − P(s0 + L, −u), which
in turn cancels out for reflecting boundary conditions.

Both a periodic system and a specular system with re-
flecting boundaries initially at equilibrium will cancel out the
right-hand side of Eq. (3) term-by-term upon switching off the
effects of the force (Fig. 1). Therefore, they will maintain their
Maxwell-Boltzmann velocity distribution intact during the re-
laxation to the new equilibrium state. If the inertial effects are
relevant, the relaxation process will take place beyond local
equilibrium.10

B. Application to rotational dipoles

As an exemplar of periodic system (Fig. 1(a)), we con-
sider the rotational motion of an ensemble of non-interacting
dipoles in an external field.9, 23 This type of systems en-
compasses small colloidal ferromagnetic particles, electric
dipoles, and microorganisms that act as gravitational dipoles.
In this case, s = θ is the angle between the dipole and the field,
u = ω is the angular velocity, μ = I is the moment of inertia,
and γ is the rotational damping. The force-dependent func-
tion is given by F(θ ) = −pEsin (θ )/I, where p is the dipolar
moment and E is the field.

As predicted by our general analysis, the system main-
tains the Maxwell-Boltzmann angular velocity distribution
intact upon switching off the field (Fig. 2(a)). The system,
however, evolves deep inside the nonequilibrium regime. The
initial shape of the velocity distribution is not generally kept
during the relaxation process for any region of angular coor-
dinate space that does not cancel out the boundary term of the
right-hand side of Eq. (3). Indeed, the velocities redistribute
along the angular coordinate. The distribution gets broader
for the ensemble of dipoles with cos (θ ) < 0 (Fig. 2(b)) and
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FIG. 2. Autonomous sorting of the equilibrium rotational kinetic energy
into nonequilibrated degrees of freedom upon switching off the field for an
ensemble of dipoles. In terms of the dimensionless time, τ = t/

√
I/kT , and

angular velocity, � = ω/
√

kT /I , the dynamics is given by dθ /dτ = � and
d�/dτ = −γ

√
I/kT � − (pE/kT )�(τ ) sin θ + �(τ ) with

〈
�(τ )�(τ ′)

〉
= 2γ

√
I/kT δ(τ − τ ′). The angular velocity distributions are shown at

different times after switching off the field for (a) the whole system, θ ∈
(0, 2π ), and for the regions of the angular coordinate with (b) cos (θ ) < 0
and (c) cos (θ ) > 0. The surfaces on the top-left of each graph represent the
corresponding continuous temporal evolution of the velocity distributions
between dimensionless time 0 and 5. The distributions were computed from
105 trajectories obtained by integrating the corresponding equations with a
second-order Runge-Kutta method for stochastic differential equations.25

The values of the parameters are γ
√

I/kT = 0.3 and (pE/kT) = 3.

thinner for dipoles with cos (θ ) > 0 (Fig. 2(c)). When the
system gets close to the final equilibrium state, the Maxwell-
Boltzmann velocity distribution settles in again uniformly for
every region of the angular coordinate space.

The redistribution of velocities during the relaxation pro-
cess leads to an autonomous sorting of the kinetic energy in
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0,2( )
 cos( ) < 0

 cos( ) > 0

FIG. 3. Local heating and cooling without global temperature changes for
an ensemble of dipoles. The rotational kinetic temperature, TK = I〈ω2〉/k,
was computed as a function of time after switching off the field from the
distributions of Fig. 2 for the whole system, θ ∈ (0, 2π ), and for the regions
of the angular coordinate with cos (θ ) < 0 and cos (θ ) > 0.

the angular-coordinate space with regions that transiently heat
up or cool down (Fig. 3). This behavior at the microscale, so
far away from equilibrium, strongly contrasts with the global
behavior, for which the system keeps its kinetic energy and
temperature intact as if it were at equilibrium. Thus, the sys-
tem can be viewed as being in a ghost equilibrium state, which
results from the precise statistical cancellation of the effects
of the superheated and subcooled regions.

C. Application to a gas of trapped particles

Our general results show that systems with specular sym-
metry and reflecting boundaries can also be in a ghost equi-
librium state. A prototypical such system is a gas of non-
interacting particles trapped in a parabolic potential inside a
box (Fig. 1(b)), which can be implemented explicitly by an
ensemble of polystyrene beads in the force field of an optical
trap.24 Note that, although the constituent particles do not in-
teract between them, each particle interacts with the thermal
bath. In this case, s = x corresponds to the position; u = v, to
the velocity; μ = m, to the mass; and γ , to the velocity damp-
ing. The force-dependent function is given by F(x) = −Kx/m
+ ∞(δ(x + a) − δ(x − a)), where K is the force constant of
the trap and a indicates the distance of the box walls from the
trap center.

Upon switching off the trap, the behavior of this system
along the translational coordinate closely parallels that of the
ensemble of dipoles along the angular coordinate. The sys-
tem globally maintains the Maxwell-Boltzmann distribution
intact (Fig. 4(a)), but the distribution gets wider in the region
of the translational-coordinate space close to the box walls
(Fig. 4(b)) and thinner next to the center (Fig. 4(c)). Simi-
larly, there is also sorting of the kinetic energy into different
regions so that the system heats up toward the box walls and
cools down in the central region whereas the global temper-
ature remains constant during the whole relaxation process
(Fig. 5).

In general, if the system does not have the required sym-
metries, the time evolution of the velocity distribution will not
keep the Gaussian form. This type of cases is present when
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FIG. 4. Autonomous sorting of the equilibrium translational kinetic en-
ergy into nonequilibrated degrees of freedom upon switching off the trap
for a gas of particles inside a box. In terms of the dimensionless variables
τ = t/

√
m/K , χ = x/

√
kT /K , and ν = v/

√
kT /m, the dynamics is given

by dχ /dτ = ν and dν/dτ = −γ
√

m/Kν − �(τ )χ + ∞(δ(χ + a′) − δ(χ −
a′)) + �(τ ) with

〈
�(τ )�(τ ′)

〉 = 2γ
√

m/Kδ(τ − τ ′) and a′ = a/
√

kT /K .
The translational velocity distributions are shown at different times after
switching off the trap for (a) the whole system, a′ > |χ |, and for the regions
of the translational coordinate with (b) a′ > |χ | > a′

2 and (c) a′
2 > |χ |. The

surfaces on the top-left of each graph represent the corresponding continu-
ous temporal evolution of the velocity distributions between dimensionless
time 0 and 5. The distributions were computed from 105 trajectories obtained
by integrating the corresponding equations with a second-order Runge-Kutta
method for stochastic differential equations.25 The values of the parameters
are γ

√
m/K = 0.3 and a′ = 4.

the center of the trap is not in the middle of the box, as for in-
stance when it is next to the box wall (Fig. 6(a)) with a force
term F(x) = −K(x − a)/m + ∞(δ(x + a) − δ(x − a)). In such
a case, upon switching off the trap, the velocity distribution
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FIG. 5. Local heating and cooling without global temperature changes for a
gas of trapped particles inside a box. The translational kinetic temperature,
TK = m〈v2〉/k, was computed as a function of time after switching off the trap
from the distributions of Fig. 4 for the whole system, 4 >
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becomes asymmetric before developing a shoulder that even-
tually disappears when the system approaches the new
equilibrium state (Fig. 6(b)), which clearly shows that the
relaxation process takes place far from equilibrium.

III. DISCUSSION

A major consideration in establishing the far-from-
equilibrium conditions needed to drive many important pro-
cesses at small scales is the effect of the underlying energy
sources. Our results have uncovered general conditions that
guarantee zero net thermal exchange with the environment
by maintaining the equilibrium Maxwell-Boltzmann velocity
distribution intact for the overall system, irrespective of strong
internal temperature heterogeneities.

These conditions applied explicitly to two systems as per-
vasive as an ensemble of dipoles and a gas of trapped parti-
cles, which involve diverse types of symmetries and degrees
of freedom, reveal that the presence of universal equilibrium
properties does not necessarily imply that the system is very
close to equilibrium. In both cases, there exists a new type
of states that are deep inside the nonequilibrium regime but
that, paradoxically, look as if they were exactly at equilibrium
from the global kinetic energy point of view. The self-sorting
of the kinetic energy along a coordinate space in a way that
preserves the overall Maxwell-Boltzmann velocity distribu-
tion guarantees that there is no net thermal exchange with the
environment. These findings, thus, provide new scenarios for
manipulating energy at the microscale and open up the pos-
sibility of harnessing the effects of temperature differences
along the internal structure of the system without changes in
its global temperature.
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