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Extensions of statistical mechanics are routinely being used to infer free energies from the work
performed over single-molecule nonequilibrium trajectories. A key element of this approach is the
ubiquitous expression dW=dt � @H�x; t�=@t, which connects the microscopic work W performed by a
time-dependent force on the coordinate x with the corresponding Hamiltonian H�x; t� at time t. Here we
show that this connection, as pivotal as it is, cannot be used to estimate free-energy changes. We discuss
the implications of this result for single-molecule experiments and atomistic molecular simulations and
point out possible avenues to overcome these limitations.
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Hamiltonians provide two key ingredients to bridge the
microscopic structure of nature with macroscopic thermo-
dynamic properties: they completely specify the underly-
ing dynamics, and they can be identified with the energy of
the system [1]. At equilibrium in a thermal bath at a
temperature T, the link with the thermodynamic properties
is established through the partition function Z �R
e��H�x�dx, which here uses the Hamiltonian H�x� in

the coordinate space x as the energy of the system and � �
1=kBT as the inverse of the characteristic thermal energy
[2]. Thermodynamic properties, such as the free-energy
G � � 1

� lnZ, play an important role because they provide
information that is not readily available from the micro-
scopic properties, including whether (�G< 0) or not
(�G> 0) a given process happens spontaneously.

The connection between work and Hamiltonian ex-
pressed through the relation d

dtW �
@
@tH�x; t�, or equiva-

lently through its integral representation W �R
t
0
@
@t0H�x�t

0�; t0�dt0, is typically used to extend statistical
mechanics to far-from-equilibrium situations [3–5]. These
relations are meant to imply that the workW performed on
a system is used to change its energy. The potential advan-
tage of this type of approach is its ability to infer thermo-
dynamic properties even when the relevant details of the
Hamiltonian are not known or when they are too complex
for a direct analysis. Experiments and computer simula-
tions can thus be performed to probe the microscopic
mechanical properties from which to obtain thermody-
namic properties. Time-dependent Hamiltonians, however,
provide the energy up to an arbitrary factor that typically
depends on time and on the microscopic history of the
system. Such dependence, as we show below, prevents this
approach from being generally applicable to compute ther-
modynamically consistent properties.

To illustrate how work and Hamiltonian fail to be gen-
erally connected, we consider a system described by the
Hamiltonian H0�x� under the effects of an external time-
dependent force f�t�. The total Hamiltonian is given by

 H�x; t� � H0�x� � f�t�x� g�t�; (1)

where g�t� is an arbitrary function of time. The function
g�t� does not affect the total force acting on the system,
F � �@H0=@x� f�t�, but it changes the Hamiltonian.
Therefore, g�t� has to be chosen so that the Hamiltonian
can be identified with the energy of the system.

In general, the arbitrary time dependence of the Hamil-
tonian, g�t�, cannot be chosen so that the Hamiltonian gives
a consistent energy. Consider, for instance, that the system,
initially at x0, is subjected to a sudden perturbation f�t� �
f0��t�, where f0 is a constant and ��t� is the Heaviside
step function. The work performed on the system W �
f0�xt � x0�, where xt � x�t� represents the value of the
coordinate x at time t, is in general different fromR
t
0
@H�xt0 ;t

0�

@t0 dt0 � �f0x0 � g�t� � g�0�, irrespective of the
explicit form of the function g�t�.

To illustrate the consequences of the lack of connection
between work and changes in the Hamiltonian, we focus on
the domain of validity of nonequilibrium work relations [3]
of the type

 he��Wi � e���GE; (2)

which have been widely used recently to obtain estimates
�GE of free-energy changes from single-molecule pulling
experiments [6] and atomistic computer simulations [7].
The promise of this type of relations is that they provide the
values of the free-energy from irreversible trajectories and
therefore do not require equilibration of the system. Yet, in
almost all instances in which this approach has been ap-
plied, the agreement with the canonical thermodynamic
results has not been complete and in some cases the dis-
crepancies have been large. The discrepancies have typi-
cally been attributed to the lack of statistics in the
estimation of the exponential average he��Wi [8].

Currently, the mathematical validity of these type of
nonequilibrium work relations appears to be well estab-
lished inasmuch as they have been derived using approxi-
mations [3,9] and mathematically rigorous methods for
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systems described by Langevin equations [4,5]. All the
derivations, however, rely in different ways on the work-
Hamiltonian connection, which as we show below prevents
them from giving general estimates of thermodynamic free
energies.

The free-energy difference between two states is defined
as �G � hWrevi, where Wrev is the work required to bring
the system from the initial to the final state over a quasi-
static, reversible trajectory [2]. Note that, if the system is
not macroscopic, Wrev is in general a fluctuating quantity
and �G � hWrevi � � 1

� lnhe��Wrevi. At quasiequilibrium,
the external force f�t� balances with the system force
�@H�x�=@x. After integration by the displacement, the
work done on the system over a reversible trajectory is
given by Wrev � H0�xt� �H0�x0�. Therefore, the free-
energy follows from

 �G �
ZZ

WrevPeq�xt; t�Peq�x0; 0�dxtdx0; (3)

where the equilibrium probabilities Peq are obtained, in the
usual way, from the Boltzmann distribution Peq�xt; t� �

1
Z�t� e

��H�xt;t�. To be explicit, let us consider a system in a
parabolic potential described by H0�x� �

1
2 kx

2 and g�t� �
0, with k a constant. In this case, we can compute exactly
the free-energy change,

 �G �
1

2
kx2

eq; (4)

where xeq � f�t�=k, which is positive as required for non-
spontaneous processes.

One might have been tempted to use the partition func-
tion to estimate changes in free energy according to the
expression �GZ � �

1
� ln�Z�t�=Z�0��, where Z�t� �R

e��H�x;t�dx is the time-dependent quasiequilibrium par-
tition function [3,4]. However, this relation is not thermo-
dynamically valid when changes in the Hamiltonian cannot
be associated with the work performed on the system. As a
straightforward example, consider the Hamiltonian
H�x; t� � H0�x� � g�t�. This Hamiltonian would lead to
arbitrary free-energy changes, �GZ � g�t� � g�0�, when
in fact the system remains unaltered. In this case, changes
in �GZ are not the result of any physical process but a
consequence of the mathematical description. In the case
of the parabolic potential, the use of the time-dependent
partition function leads to �GZ � �

1
2 kx

2
eq, a negative

value inconsistent with a nonspontaneous process. More
generally, the Hamiltonian H�x; t� � 1

2 kx
2 � f�t��x� ��,

where � is a constant parameter that does not affect the
dynamics of the system, leads to �GZ � kxeq���

1
2 xeq�,

which can be positive or negative depending on the value
of �. Therefore, the estimates �GZ are not suitable to
obtain typical thermodynamic properties, such as whether
or not a process happens spontaneously.

To what extent does the failure of the work-Hamiltonian
connection impact nonequilibrium work equalities? In the
case of the sudden perturbation and parabolic potential
discussed previously, it follows straightforwardly that

 he��Wi �
ZZ

e��f0�xt�x0�Peq�xt�Peq�x0�dxtdx0 � 1; (5)

which is different from e���G. The reason for this discrep-
ancy is that, under these circumstances, because of the
failure of the work-Hamiltonian connection, the identity
used to derive nonequilibrium work equalities [3],
 �

exp
�
��

Z t

0
�@H�xt0 ;t

0�=@t0�dt0
��
�
Z�t�
Z�0�

� exp����GZ�;

(6)

is not equivalent to he��Wi � e���G. It is important to
emphasize that Eq. (6) can be very useful to obtain equi-
librium partition functions from nonequilibrium changes in
the Hamiltonian, but trying to enforce the work-
Hamiltonian connection by ad hoc redefinition of work
as

R
t
0�@H�xt0 ; t

0�=@t0�dt0 [10] does not solve the physical
inconsistencies arising from the general association of
�GZ with free-energy changes, such as the dependence
of �GZ on arbitrary parameters [11]. Along these lines, it
has recently been shown that although Eq. (6) holds rigor-
ously for an expanding one-dimensional ideal gas, the free-
energy change obtained from it, �GZ, does not equal the
actual free-energy change of the system at any time [12]. In
this regard, nonequilibrium work equalities [3] hold in
terms of partition functions and Hamiltonian changes, as
expressed by Eq. (6), but they cannot be interpreted in
general in terms of thermodynamic free energies and work.

In the case of the Hamiltonian of Eq. (1), because the
force f�t� is constant after it is instantaneously switched
on, the work performed on the system is a function of just
the initial and final equilibrium states and does not depend
explicitly on the dynamics of the system. Therefore, our
results apply to a broad variety of systems, as for instance
those that follow a Langevin dynamics given by

 

dx
dt
� �

@H
@x
� ��t� � �kx� f0��t� � ��t�; (7)

where ��t� is Gaussian white noise with zero mean and
correlation h��t���t0�i � 2

���t� t
0�. This type of stochastic

dynamics for a degree of freedom, known as the Ornstein-
Uhlenbeck process, has been shown to describe systems as
diverse as macromolecules that follow Hooke’s law,
Brownian particles, electronic devices, and mesoscopic
chemical reactions [13]. After the force f�t� is instanta-
neously switched on, the system relaxes its motion around
xeq � 0 towards its new equilibrium position xeq � f0=k
(Fig. 1). The results of numerically integrating the
Langevin equation (Fig. 2) corroborate both the change
in free energy given by Eq. (4) and the failure of the
nonequilibrium work equality shown by Eq. (5).
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An important question then arises: why do experiments
and computer simulations sometimes lead to results that
agree with nonequilibrium work equalities? Let us con-
sider a situation closer to the experimental and computa-
tional setups, with a parabolic time-dependent potential
that constrains the motion on the coordinate x:

 H�x; t� � H0�x� �
1

2
K�x� Xt�2: (8)

Here, K is a constant, and Xt is the time-dependent equi-
librium position for the constraining force. In this case,
with H0�x� �

1
2 kx

2 and X0 � 0, we also have

 �G � hWrevi �
1

2
kx2

eq; (9)

where now xeq �
K

k�K Xt.
For quasiequilibrium displacements of Xt, so that the

work is performed over reversible trajectories and W �
Wrev � H0�xt� �H0�x0�, we have

 he��Wrevi �
ZZ

e���H0�xt��H0�x0��Peq�xt; t�Peq�x0; 0�dxtdx0;

(10)

which leads to

 he��Wrevi �
e���k�k�K�=2�2k�K��x2

eq�k� K������������������������
K�2k� K�

p : (11)

This result indicates that quasiequilibrium does not guar-
antee the accuracy of the exponential estimate of the free
energy from nonequilibrium work relations. The free-

energy change �G and its exponential estimate �GE agree
with each other only for large values of K. The reason is
that, in this case, work and Hamiltonian are connected to
each other when both quasiequilibrium and large K con-
ditions are fulfilled simultaneously. Under such condi-
tions, the work-Hamiltonian connection is valid because
x 	 xeq 	 Xt implies that the rate of change of the
Hamiltonian, @H�x; t�=@t � �K�x� Xt�dXt=dt, equals
the power associated with the external force, dW=dt �
�K�x� Xt�dx=dt. Interestingly, large values of K sup-
press fluctuations and lead to quasideterministic dynamics.
Indeed, a closer look at the experimental data [6] and
computer simulations [7] indicate that the agreement be-
tween the free-energy change �G and its exponential
estimate �GE occurs mainly for relatively slow perturba-
tions that lead to quasideterministic trajectories.

Bringing thermodynamics to nonequilibrium micro-
scopic processes [14] is becoming increasingly important
with the advent of new experimental and computational
techniques able to probe the properties of single molecules
[6,7]. Our results show that the classical connection be-
tween work and changes in the Hamiltonian cannot be
applied straightforwardly to time-dependent systems. As
a result, quantities that are based on the work-Hamiltonian
connection, such as those obtained from nonequilibrium
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FIG. 2. Work functions [hWi (triangles), �GE � �
1
� lnhe��Wi

(squares), and �G � hWrevi (dotted line)] for the switching-on
of a force in a system described by a parabolic potential with
Langevin dynamics given by Eq. (7). All the averages have been
performed over 106 trajectories obtained by integrating the
Langevin equation with a standard second-order Runge-Kutta
method for stochastic differential equations [15]. The nonequi-
librium work performed over a trajectory for a given force
strength f0 is computed as W �

P
0
n�t<10�x�n�1��t � xn�t�f0

with time step �t � 10�2. The work over a reversible trajectory
is estimated as Wrev �

P
0
n�t<10�x�n�1��t � xn�t�

f0n�t
10 by re-

placing f0��t� in Eq. (7) with f0t��t�=10, a force that increases
slowly with time. The values of the parameters (in arbitrary
units) are k � 1 and � � 1.
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Time
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FIG. 1. Temporal behavior of the degree of freedom x obtained
from numerical simulations of Eq. (7). The black line is a
representative trajectory. The gray line is the average over 100
trajectories. The values of the parameters (in arbitrary units) are
k � 1, � � 1, and f0 � 3. The simulations have been performed
by integrating the Langevin equation with a standard second-
order Runge-Kutta method for stochastic differential equations
[15].

PRL 100, 020601 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 JANUARY 2008

020601-3



work relations and time-dependent partition functions,
cannot generally be used to estimate thermodynamically
consistent free-energy changes. A possible avenue to over-
come these limitations, as we have shown here, is to
identify the particular conditions for which work and
changes in the Hamiltonian are connected to each other.
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