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Concepts of everyday use such as energy, heat, and temperature have acquired a precise meaning after the
development of thermodynamics. Thermodynamics provides the basis for understanding how heat and work
are related and the general rules that the macroscopic properties of systems at equilibrium follow. Outside
equilibrium and away from macroscopic regimes, most of those rules cannot be applied directly. Here we
present recent developments that extend the applicability of thermodynamic concepts deep into mesoscopic
and irreversible regimes. We show how the probabilistic interpretation of thermodynamics together with
probability conservation laws can be used to obtain Fokker-Planck equations for the relevant degrees of
freedom. This approach provides a systematic method to obtain the stochastic dynamics of a system directly
from its equilibrium properties. A wide variety of situations can be studied in this way, including many that
were thought to be out of reach of thermodynamic theories, such as nonlinear transport in the presence of
potential barriers, activated processes, slow relaxation phenomena, and basic processes in biomolecules, such
as translocation and stretching.

1. Introduction

It is still a major challenge to understand how the wide variety
of behaviors observed in everyday experience, such as the usual
processes of living systems, arise from the relatively simple and
small set of laws that rule the microscopic world. There are a
few exceptions. Systems in the condition of equilibrium strictly
follow the rules of thermodynamics.1 In such cases, the intricate
behavior of large numbers of molecules can completely be
characterized by a few variables that describe general average
properties. It is possible to extend thermodynamics to situations
that are at local equilibrium. This is the domain of validity of
nonequilibrium thermodynamics.2 Despite its generality, this
theory has notorious limitations: it is applicable only to
macroscopic systems, for which fluctuations are not important,
and it operates within the linear response domain. Whereas the
linear approximation is valid for many transport processes, such
as heat conduction and mass diffusion, even in the presence of
large gradients3,4 it is not appropriate for activated processes in
which the system immediately enters the nonlinear domain.
Small systems,5 such as single molecules in a thermal bath, in
which fluctuations can be even larger than the mean values,
are beyond the scope of that theory.

In this feature article, we present recent advances aimed at
obtaining a simple and comprehensive description of the
dynamics of nonequilibrium systems at the mesoscopic scale.
These advances have provided not only a deeper understanding
of the concept of local equilibrium but also a framework,

reminiscent of nonequilibrium thermodynamics, by which to
study fluctuations in nonlinear systems.

We show that the probabilistic interpretation of the density
together with conservation laws in phase space and positiveness
of global entropy changes set the basis of a theory similar to
nonequilibrium thermodynamics but of a much broader range
of applicability. In particular, the fact that it is based on
probabilities instead of densities allows us to consider meso-
scopic systems and their fluctuations. The situations that can
be studied with this formalism, named mesoscopic nonequilib-
rium thermodynamics (MNET), include, among others, slow
relaxation processes, barrier crossing dynamics, chemical reac-
tions, entropic driving, and nonlinear transport. These processes
are in general nonlinear. From the methodological point of view,
given the equilibrium properties of a system, this theory provides
a systematic and straightforward way to obtain its stochastic
nonequilibrium dynamics in terms of Fokker-Planck equations.

To set grounds for the development of the formalism, we
discuss first the basic nonequilibrium thermodynamic concepts
used in a local equilibrium description of the systems. We then
describe how MNET provides equilibrium statistical mechanics
with a dynamics at the mesoscopic level. The key idea is to
introduce statistical concepts in the framework of conservation
laws of nonequilibrium thermodynamics. After introducing the
general ideas, we discuss applications to nonlinear transport
phenomena and activated processes that further illustrate the
usefulness of the approach. Applications of the use of the
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concept of local equilibrium at the mesoscale are also discussed.
We treat in particular inertial effects in diffusion, the slow
relaxation dynamics, and the translocation of a biomolecule.
We conclude with a brief overview of other situations where
this approach has been used and with a discussion of how far-
away-from-equilibrium situations can be recast into a local
equilibrium description.

2. Nonequilibrium Thermodynamics

Nonequilibrium thermodynamics is a well-established clas-
sical discipline built on the grounds of two main hypotheses.
First, the local equilibrium hypothesis2 assumes that the

thermodynamic variables defined in each subsystem of a
conveniently partitioned system admit the same interpretation
as in equilibrium. Second, the entropy production of any isolated
system is always nonnegative. The theory attributes the devia-
tions from equilibrium to the presence of unbalanced forces,
such as electric fields or gradients, which give rise to fluxes,
such as electric or heat currents. Forces and fluxes are in a
relationship that is cause-effect compatible with the second law
of thermodynamics and with the inherent symmetries, either
macroscopic or microscopic. The dynamics follows from the
local conservation laws for the thermodynamic field quantities,
in which the fluxes are linear functions of the forces whose
coefficients, the Onsager coefficients, satisfy reciprocity rela-
tions.

The scheme of nonequilibrium thermodynamics as sketched
previously has been used successfully to analyze irreversible
processes in systems of very different nature.6,7 To illustrate
explicitly its method, we will apply it to the simple case of
mass diffusion in one dimension. The first step is to compute
the entropy production. At equilibrium, changes in entropyS
are given by the Gibbs equation

in which the thermodynamic extensive variables are the internal
energyE, the volumeV, and the massM of the system, and the
intensive variables are the temperatureT, the pressurep, and
the chemical potentialµ. All these quantities may in general
depend on time. For the sake of simplicity, we assume that the
process takes place at constant temperature, energy, and volume.
Local equilibrium here means that the Gibbs equation holds
also for noninfinitely slow changes in the variables. It is then
possible to replace variations by time derivatives. Taking into
account the spatial dependence through a densityF(x) in the
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spatialx-coordinate (M ) ∫V F(x) dx), one obtains from eq 1
the entropy production,

The chemical potential depends explicitly on the density and,
in principle, also on the spatial coordinate (as occurs for instance
in the presence of an inhomogeneous external field). The
conservation law

after insertion into eq 2 and integration by parts with the
assumption that the current vanishes at the boundaries, leads to

The termJ denotes the flux of mass whose conjugated force is
the gradient of the chemical potential. In the absence of nonlocal
effects, the flux is proportional to the force

whereL ≡ L[x,F(x)] is the Onsager coefficient, which can in
general depend on the thermodynamic variables as well as on
thex-coordinate. For a chemical potential that does not depend
explicitly on the spatial coordinate, i.e.,µ ≡ µ[F(x)], eq 3 with
eq 5 can be rewritten as the well-known diffusion equation8

where the diffusion coefficient isD ≡ L(∂µ/∂F).
Nonequilibrium thermodynamics uses a set of local variables

whose global counterparts coincide with those defined at
equilibrium. This choice clearly restricts its application domain
to the macroscopic level, at typical length scales much larger
than any molecular size. In such a situation, the inherent
molecular nature of matter can be ignored and one can adopt a
continuum description in terms of a few conserved fields.
Whereas this approximation has been extremely useful in the
characterization of many irreversible processes, it is no longer
valid for systems defined at the mesoscale when the typical time
and length scales are such that the presence of fluctuations
becomes relevant.

The linear character of the constitutive relations proposed by
the theory should in principle be appropriate only when the
magnitude of the gradients is small. In practice, linear relations
have been proved to work well for many transport processes,
even in the presence of large gradients. In contrast, for activated
processes, the assumption of linearity fails. Whereas transport
processes may perfectly operate in a linear regime, activated
processes are genuinely nonlinear and cannot be analyzed with
nonequilibrium thermodynamics. This fact has seriously limited
the application of thermodynamic theories in areas such as
chemical kinetics and biophysics in which systems accede to
nonequilibrium states via activation. A first attempt to overcome
such difficulties was pioneered by Prigogine and Mazur,9 who
extended thermodynamic concepts to irreversible phenomena
in systems with internal degrees of freedom. Building on these
ideas, it is possible to develop a mesoscopic extension of the

conventional nonequilibrium thermodynamics, as described in
the following section, that is able to overcome such difficulties.

3. Thermodynamics and Statistics

Reduction of the observational time and length scales of a
system usually entails an increase in the number of degrees of
freedom that have not yet equilibrated and that therefore exert
an influence in the overall dynamics of the system. The
nonequilibrated degrees of freedom will be denoted byγ (≡
{γi}) and may, for example, represent the velocity of a particle,
the orientation of a spin, the size of a macromolecule, or any
coordinate or order parameter whose values define the state of
the system in a phase space. The characterization at the
mesoscopic level of the state of the system follows fromP(γ,t),
the probability density of finding the system at the stateγ ∈
(γ,γ + dγ) at timet. The entropy of the system in terms of this
probability can be expressed through the Gibbs entropy postu-
late2,10

whereSeq is the entropy of the system when the degrees of
freedom γ are at equilibrium. If they are not, there is a
contribution to the entropy that arises from deviations of the
probability densityP(γ,t) from its equilibrium valuePeq(γ),
which is given by

Here∆W(γ) is the minimum reversible work required to create
that state,11 kB is Boltzmann’s constant, andT is the temperature
of the heat bath. Variations of the minimum work for a
thermodynamic system are expressed as

where the termy∆Y represents a generic work (electric,
magnetic, surface work...) performed on the system,y being
the intensive parameter andY its conjugated extensive variable.12

The expression of minimum reversible work (eq 9) reduces to
the different thermodynamic potentials by imposing the con-
straints that define those potentials.1 For instance, for the case
of constant temperature, volume, and number of particles, the
minimum work corresponds to the Helmholtz free energyA.
The statistical mechanics definition of the entropyS is therefore
the key to connect thermodynamics with both the mesoscopic
description in terms of the probability distributionP(γ,t) and
the equilibrium behavior of the system. The combination of the
statistical definition of the entropy with the systematic meth-
odology of nonequilibrium thermodynamics results in a powerful
framework to describe the kinetics of a wide class of systems.
This framework is outlined in the next section.

4. Thermodynamics and Stochastic Dynamics

To describe the dynamics of the mesoscopic degrees of
freedom, the starting point is the statistical mechanics definition
of the entropy given through the Gibbs entropy postulate.2

Taking variations in eq 7, one obtains

T
dS
dt

) - ∫µ[x,F(x)]
∂F(x)

∂t
dx (2)

∂F
∂t

) - ∂J
∂x

(3)

T
dS
dt

) - ∫J
∂µ
∂x

dx (4)

J ) -L
∂µ
∂x

(5)

∂F
∂t

) ∂

∂x
D

∂F
∂x

(6)

S) Seq - kB ∫P(γ,t)ln
P(γ,t)

Peq(γ)
dγ (7)

Peq∼ exp(-∆W(γ)
kBT ) (8)

∆W ) ∆E - T∆S+ p∆V - µ∆M + y∆Y + ... (9)

δS) - kB ∫δP(γ,t)ln
P(γ,t)

Peq(γ)
dγ (10)
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The evolution of the probability density in theγ - space is
governed by the continuity equation

whereJ(γ,t) is a current or density flux in the internal space
which has to be specified. Its form can be obtained by taking
the time derivative in eq 10 and by using the continuity eq 11
to eliminate the probability time derivative. After a partial
integration, one then arrives at

where

is the entropy flux, and

is the entropy production.
In this scheme, the thermodynamic forces are identified as

the gradients in the space of mesoscopic variables of the
logarithm of the ratio of the probability density to its equilibrium
value. We will now assume a linear dependence between fluxes
and forces and establish a linear relationship between them

whereL(γ,P(γ)) is an Onsager coefficient, which, in general,
depends on the state variableP(γ) and on the mesoscopic
coordinatesγ. To derive this expression, locality inγ-space has
also been taken into account, for which only fluxes and forces
with the same value ofγ become coupled.13

The resulting kinetic equation follows by substituting eq 13
back into the continuity eq 11:

where the diffusion coefficient is defined as

This equation, which in view of eq 8 can also be written as

is the Fokker-Planck equation for the evolution of the prob-
ability density inγ-space.

Under the conditions for which the minimum work is given
by the Gibbs free energyG, ∆W ≡ ∆G ) ∆H - T∆S, where
H is the enthalpy, this equation transforms into the Fokker-
Planck equation for a system in the presence of a free energy
barrier:

Other cases of interest concern different thermodynamic po-
tentials. For instance, a particularly interesting situation is the
case of a purely entropic barrier, often encountered in soft-
condensed matter and biophysics, which will be discussed in
detail in Sect. 5.1.

It is important to stress that MNET provides a simple and
direct method to determine the dynamics of a system from its
equilibrium properties. In particular, by knowing the equilibrium
thermodynamic potential of a system in terms of its relevant
variables, one could easily derive the general form of the
kinetics. The method proposed thus offers a general formalism
able to analyze the dynamics of systems away from equilibrium.
In the following section we will illustrate its applicability by
means of some examples.

The scheme presented can be put in closer connection with
nonequilibrium thermodynamics concepts. To that end, the
crucial idea is the generalization of the definition of the chemical
potential to account for these additional mesoscopic variables.
We may then assume that the evolution of these degrees of
freedom is described by a diffusion process and formulate the
corresponding Gibbs equation

which resembles the corresponding law proposed in nonequi-
librium thermodynamics for a diffusion process in terms of the
mass density of particles. Hereµ(γ) plays the role of a
generalized chemical potential conjugated to the distribution
function P(γ,t). Comparison of the Gibbs eq 18 with eq 10,
where the variations of the equilibrium entropy are given by

and µeq is the value of the chemical potential at equilibrium,
yields the identification of the generalized chemical potential
as

or alternatively, using eq 8,

In this reformulation, the “thermodynamic force” driving this
general diffusion process isT-1∂µ/∂γ, and the entropy produc-
tion is given by

By comparing the previous equation with eq 4, it is clear that
the evolution in time of the system mimics a generalized
diffusion process over a potential landscape in the space of
mesoscopic variables. This landscape is conformed by the values
of the equilibrium energy associated to each configurationγ.
The treatment of a diffusion process in the framework of
nonequilibrium thermodynamics can then be extended to the
case in which the relevant quantity is a probability density

∂P
∂t

) - ∂J
∂γ

(11)

dS
dt

) - ∫ ∂

∂γ
JS dγ + σ

JS ) kBJln
P

Peq

σ ) - kB ∫J(γ,t)
∂

∂γ(lnP(γ,t)

Peq(γ)) dγ (12)

J(γ,t) ) - kBL(γ,P(γ))
∂

∂γ(lnP(γ,t)

Peq(γ)) (13)

∂P
∂t

) ∂

∂γ(DPeq
∂

∂γ
P

Peq
) (14)

D(γ) ≡ kBL(γ,P)

P
(15)

∂P
∂t

) ∂

∂γ(D∂P
∂γ

+ D
kBT

∂∆W
∂γ

P) (16)

∂P
∂t

) ∂

∂γ
‚(D∂P

∂γ
+ D

kBT
∂∆G
∂γ

P) (17)

δS) - 1
T∫µ(γ)δP(γ,t) dγ (18)

δSeq ) - 1
T∫µeqδP(γ,t) dγ (19)

µ(γ,t) ) kBTln
P(γ,t)

Peq(γ)
+ µeq (20)

µ(γ,t) ) kBTlnP(γ,t) + ∆W (21)

σ ) -1
T∫J

∂µ
∂γ

dγ (22)
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instead of a mass density. The relation between entropy and
stochastic dynamics has also been discussed in a different
context in refs 14 and 15.

5. Applications
Transport at the mesoscale is usually affected by the presence

of forces of different nature: direct interactions between
particles, hydrodynamic interactions mediated by the solvent
and excluded volume effects. The presence of such diversity
of forces has a direct implication in the form of the energy
landscape, which may exhibit a great multiplicity of local
minima separated by barriers. Transport at those scales presents
two main characteristics: it is intrinsically nonlinear and it is
influenced by the presence of fluctuations, external driving
forces, and gradients.

The mesoscopic nonequilibrium thermodynamics theory
proposed can be used to infer the general kinetic equations of
a system in the presence of potential barriers, which in turn
can be used to obtain the expressions for the current of particles
and the diffusion coefficient. Both quantities are related to the
two first moments of the distribution function and are accessible
to the experiments. In this section we illustrate the application
of the theory to different representative situations. We will
discuss nonlinear transport processes in which the dynamics is
influenced by the presence of entropic forces and activated
processes in both homogeneous and inhomogeneous environ-
ments.

5.1. Kinetic Processes in the Presence of Entropic Forces.
Entropy and entropic forces play major roles in soft condensed
matter and biophysics where typical energies are of the order
of the thermal energy. The theory introduced in the previous
section can be easily applied to account for this situation. In
the case of entropic forces, the minimum reversible work
introduced in eq 9 is∆W ) -T∆S. The corresponding kinetic
equation is

where now theγ-coordinate includes the coordinates necessary
to characterize the evolution of the system under the influence
of the entropic potential. This equation constitutes the starting
point in the study of transport processes in the type of confined
systems that are very often encountered at sub-cellular level
and in microfluidic applications. The basic situation of the
motion of a Brownian particle in an enclosure of varying cross-
section was analyzed using this perspective in ref 16. The main
idea is that the very complicated boundary conditions of the
diffusion equation in irregular channels can be greatly simplified
by the introduction of an entropic potential that accounts for
the space accessible for the diffusion of the Brownian particle.
In the case of a 3D pore of cross-sectionA(x), the entropic
potential can be easily calculated by contracting the 3D
description and by retaining only the coordinatex. The resulting
1D equilibrium distributionPeq(x) is

where P0 is the probability distribution in the absence of
potential, assumed constant. From this result and eq 8, we then
infer the expression for the entropic potential∆S(x) ) -kB ln
A(x). By substitution of this potential in eq 23 one obtains

which is known as the Fick-Jacob equation.17 As a result of
the contraction, the effective diffusion coefficient depends on
the coordinate. Using scaling arguments one finds16

whereD0 is the molecular diffusion coefficient,y(x) defines
the shape of the enclosure, andR is a scaling exponent whose
value is 1/3 for the 2D case and 1/2 for the 3D case. The current
of particles through the pore and the effective diffusion
coefficient depend strongly on the entropic forces related to the
shape of the container in which particles move and can be
computed from the Fick-Jacob equation. The results obtained
agree with the exact solution of the 3D diffusion equation over
a wide range of conditions (see Figure 1).

Through the basic scenario presented, we can analyze the
effects of entropic forces in the dynamics of the system. Entropic
forces are present in many situations, such as the motion of
macromolecules through pores, phoretic effects, transport
through ion channels, protein folding, and in general in the
dynamics of small confined systems.18,19

5.2. Activated Processes.Activated processes are those that
need a finite energy to proceed and change the system from
one state to another. The paradigm of activated processes is
the crossing of a free energy barrier that separates two well-
differentiated states that lie at the local minima at each side of
the barrier. The system needs to acquire energy to surmount

Figure 1. (a) Pore geometries for OmpF porin (the grayish structure
embedded in lipid bilayer) andR-toxin channel (dots extending to the
membrane-bathing solution) from ref 14. (b). Steady-state current of
particles through a 3D hyperboloidal cone (inset) as a model channel
(see ref 12). The parameterη0 characterizes the aperture of the
hyperboloidal cone. The dashed line is the exact solution of the 3D
diffusion equation, and the heavy line is the result of MNET (eq 25).

D(x) ) D0
1

(1 + y′(x)2)a
(26)

∂P
∂t

) ∂

∂γ(D∂P
∂γ

- D
kB

∂∆S
∂γ

P) (23)

Peq(x) ) ∫P0 dy dz ) P0A(x) (24)

∂P
∂t

) ∂

∂x(D(x)
∂P
∂x

-
D(x)

A(x)

∂A(x)
∂x

P) (25)
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the barrier. Once the barrier is crossed, energy is released.
Processes such as thermal emission in semiconductors, chemical
reactions, adsorption, nucleation, and active transport through
biological membranes, share these features and, therefore, are
generically referred to as activated processes.20

It is important to emphasize the essential difference between
activated processes and the linear processes described by
nonequilibrium thermodynamics. The latter constitute the
response to the application of an external force or gradient and
may emerge, even at very low values of the applied force, in
the linear response regime. Contrarily, the regime in which
activated processes may take place is basically nonlinear. In
this context, we can contrast the linear Fourier, Fick, or Ohm
laws, in which the corresponding currents are proportional to
the conjugated thermodynamic forces or gradients, with the
exponential laws appearing in activated processes.

Let us consider a general process for which a system passes
from state 1 to state 2 via activation. Instances of this process
can be a chemical reaction in which a substance transforms into
another, an adsorption process in which the adsorbing particle
goes from the physisorbed to the chemisorbed state, or a
nucleation process in which the metastable liquid transforms
into a crystal phase. Nonequilibrium thermodynamics describes
the process only in terms of the initial and final positions and
is valid only in the linear response regime.2 If we consider the
process at shorter time scales, the state of the system progres-
sively transforms by passing through successive molecular
configurations. These different configurations can be character-
ized by a “reaction coordinate”γ. In this situation, one may
assume that this reaction coordinate undergoes a diffusion
process through a potential barrier separating the initial from
the final states. The local entropy production is (see also eq
22)

from which we can infer the linear law

where the chemical potential is, as in eq 21, given by

with Φ(γ) being the potential in terms of the reaction coordinate
(see Figure 2). Following the previous approach, we can obtain
the Fokker-Planck equation for the dynamics ofγ

whereb(γ) is a mobility in theγ-space. This equation describes
the dynamics ofγ for an arbitrary potential and at any value of
the temperature.

It is often the case that, at the time scales of interest, the
system is mostly found in the states 1 and 2, which correspond
to the minima atγ1 and γ2, respectively. The probability
distribution is strongly peaked at these values and almost zero
everywhere else. This happens when the energy barrier is much
higher than the thermal energy and intra-well relaxation has
already taken place. Using MNET, we will show that the
Fokker-Planck description, under these conditions, leads to a
kinetic equation in which the net reaction rate satisfies the mass
action law.

The current given in eq 28 can be rewritten in terms of the
local fugacity defined along the reaction coordinatez(γ) ≡ exp
µ(γ)/kBT as

which can be expressed as

whereD ) kBL/z represents the diffusion coefficient. We now
assumeD is constant and integrate from 1 to 2, obtaining

This equation can alternatively be expressed as

whereJh is the integrated rateJ0 ) D exp(µ1/kBT) andA ) µ1

- µ2 is the corresponding affinity. We have then shown that
MNET leads to nonlinear kinetic laws. Remarkably, it is possible
to move from a linear continuous to a nonlinear discrete system;
that is to say, a Fokker-Planck equation, linear in probabilities
and in the gradient ofµ[γ,P(γ)], accounts for a nonlinear
dependence in the affinity. This scheme has been successfully
applied to different classical activated processes, such as
chemical reactions,21 adsorption,22 thermal emission in semi-
conductors23, or nucleation,24 to obtain the corresponding kinetic
laws.

5.3. Activated Processes in Inhomogeneous Systems.In
many practical instances, the activated process takes place in
the presence of gradients of thermodynamic or hydrodynamic
quantities. In this situation the bath has its own nonequilibrium
dynamics which is coupled to that of the system. This is what
happens, for example, in inhomogeneous nucleation where the
germs emerge and grow in a nonequilibrium metastable liquid.
The inhomogeneities in the bath may exert a significant
influence in the expressions of the activation rates. The
mesoscopic theory we have proposed describes the coupled
evolution of the system and the bath by providing the hydro-
dynamic equations for the bath together with the kinetic
equation. To illustrate the application of the method, we will
discuss here nucleation when the metastable phase is subjected
to a temperature gradient∇T and to a velocity gradient∇v.

Figure 2. Potential barrier as a function of the reaction coordinate.γ0

indicates the location of the top of the barrier (transition state).

σ(γ,t) ) -1
T

J
∂µ
∂γ

(27)

J(γ,t) ) -L
T
∂µ
∂γ

(28)

µ ) kBT ln P + Φ (29)

∂P
∂t

) ∂

∂γ(b(γ)P(γ)
∂µ(γ)
∂γ ) (30)

J ) -kBL
1
z
∂z
∂γ

(31)

J ) -D
∂z
∂γ

(32)

Jh ≡ ∫1

2
J dγ ) -D(z2 - z1) ) -D(exp

µ2

kBT
- exp

µ1

kBT)
(33)

Jh ) J0(1 - eA/kBT)
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The case of a temperature gradient was discussed in detail in
ref 25. The kinetics of formation of clusters in the presence of
density inhomogeneities and a temperature gradient is described
by the kinetic equation

which can be obtained by following the procedure indicated in
section 4. In this equation,fc(n,x,t) is the number fraction of
clusters containingn molecules at a pointx of the sample at
time t, D0 and Dth are the spatial and thermal diffusion
coefficients, respectively, andJn is the rate of formation of
clusters of sizen. Therefore, the first term on the right-hand
side of eq 33 accounts for the effects of diffusion and
temperature gradients in the process of nucleation.

For the case of a velocity gradient, the corresponding kinetic
equation was obtained in ref 26.

wherev0 is the velocity field and

is an effective diffusion coefficient of tensorial nature due to
the breaking of the isotropy of the system by the shear flow.
The upper 0 refers to the symmetric part of the tensor. The
presence of the shear rate introduces a correction to the Stokes-
Einstein diffusion coefficientD01BB, with 1BB the unit matrix,
which depends on the strength of the shear rate, the Brownian
viscosity ηbB related to the stresses exerted by the Brownian
motion of the clusters, and the pressurep. Equation 35 thus
accounts for the effects of the shear flow on the kinetics of
nucleation. These effects are accordingly more pronounced at
high shear rates and close to the glass transition when the
viscosity increases significantly. This situation is frequently
encountered in polymer crystallization, which normally proceeds
at very large values of the shear rate. Experiments show
spherical forms of the clusters when they grow at rest and
elongated forms when the metastable phase is sheared (see
Figure 3), in agreement with the anisotropy of the diffusion
process.27

The previously described situations can in general be found
in different systems undergoing activation dynamics under
inhomogeneous conditions, as in ion channels, protein binding
kinetics and diverse macromolecular transport processes, and
illustrate the important influence that the bath exerts in the
evolution of the system.

6. Local Equilibrium at the Mesoscale
Bringing together thermodynamics and stochastic dynamics

to describe mesoscopic systems relies on the assumption of local
equilibrium. Nonequilibrium thermodynamics considers that
there is local equilibrium when a system can be subdivided into
smaller subsystems that look homogeneous and yet macroscopic.
In addition, the thermodynamic variables that characterize each
of these subsystems have to evolve sufficiently slowly compared
to the microscopic time scales.

The local equilibrium condition can be interpreted in a more
general context, which accounts for time scales in which not
all the fast variables have relaxed. In this new interpretation,
systems that are not in local equilibrium could equilibrate locally
when the nonequilibrated fast variables are incorporated into

the thermodynamic description. This description requires an
increase in the number of variables and the resulting increase
of the configurational space. Thus, systems outside equilibrium
can be brought to local equilibrium in terms of the extended
set of variables. This possibility will be illustrated in the
following subsections through examples of a very different
nature: mass diffusion in the presence of inertial effects,
relaxation phenomena in glassy systems, and the nonequilibrium
translocation of a biomolecule through a pore.

6.1. Local Equilibrium and Inertial Effects in Diffusion.
Inertial effects should be taken into account in diffusion when
changes in the spatial density occur at a time scale comparable
with the time the velocities of the constituent elements need to
relax to equilibrium. In such a situation, the local equilibrium
assumption does not hold; at each point the velocity field is
still relaxing toward its equilibrium state and the entropy
production depends on the particular form of the velocity
distribution. In this case, conventional nonequilibrium thermo-
dynamics is not valid.

We will show that local equilibrium can be restored if the
space of variables is enlarged by incorporating the velocity as
an additional coordinate; both the spatial coordinate,x, and
velocity coordinate,V, are needed to completely specify the state
of the system. In this case, we can proceed as indicated before,
by considering the subsystem at local equilibrium in the two-
dimensional spaceγ ) (x,V).

From equilibrium statistical mechanics we obtain that the
chemical potential is given by

Figure 3. Polarizing optical micrographs of poly(ethylene terephtha-
late) (PET) crystallized at 240°C in the absence (A) and in the presence
(B) of a shearing force. As a consequence of the shearing nucleation
becomes increasingly profuse, and the shape of spherulites becomes
elliptical. (From ref 22.)

µ(x,V) ) Φ(x) + 1
2

V2 + kT ln P(x,V) (37)
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where the second term is the kinetic energy per unit mass of
the constituent elements andΦ(x) their potential energy.

From the probability conservation law we obtain that the
Fokker-Planck equation follows

with

whereLxx, LxV, LVx, andLVV are the Onsager coefficients.
We will now study how these general Onsager coefficients

are constrained by the physics of diffusion processes. First, the
flux of probability in x-coordinate space,J̃x(x) ≡ ∫-∞

∞ VP(x,V)
dV, has to be recovered from the flux in the (x,V)-space by
contracting the velocity coordinate:J̃x(x) ≡ ∫-∞

∞ Jx(x,V) dV.
Therefore,

where we have used eqs 37 and 39. SinceP(x,V) can take any
arbitrary form, the last equality holds if and only ifLxx ) 0 and
LxV ) -P. Second, the positiveness of the entropy production,
σ ) (LxV + LVx)∂µ/∂x∂µ/∂V + LVV(∂µ/∂V)2, implies thatLxV )
-LVx, which coincides with the Onsager relations.28 Thus, the
only undetermined coefficient isLVV, which can depend explicitly
on x andV.

Previous equations can be rewritten in a more familiar form
by identifying the Onsager coefficients with macroscopic
quantities. In this way, withLVV ) P/τ, the fluxes read

where D ≡ kTτ and τ are the diffusion coefficient and the
velocity relaxation time, respectively. The equation for the
density is given by29,30

which describes the influence of inertial effects in the diffu-
sion.

The previous example illustrates that when the variables that
would increase the entropy during the processes of interest are
considered explicitly, the local equilibrium assumption is valid
in the space defined by such variables. By incorporating all the
relevant variablesγ into the description, it is possible to use
MNET to study systems that are not as close to equilibrium as
required by standard nonequilibrium thermodynamics.

Let us study in more detail the concept of local equilibrium
in an extended space. For simplicity, we will consider the case
Φ(x) ) 0. The condition of equilibrium is characterized by the
absence of dissipative fluxes; that is to say, byJx ) 0 andJV )
0. Therefore, from eq 42 we obtain the well-known equilibrium
result that the velocity distribution is Gaussian with variance

proportional to the temperature. If deviations from equilibrium
are small (Jx * 0 andJV ) 0), the local equilibrium hypothesis
holds. This is the domain of the validity of Fick’s law,

which is obtained directly from the equations for the fluxes. In
this case, the distribution of velocities is still Gaussian, as in
equilibrium, but now centered atVj(x) ) ∫-∞

∞ VP(x,V) dV ) ∫-∞
∞

D/τ ∂P(x,V)/∂x dV, and the variance of the distribution is related
to the temperature. When local equilibrium holds in theγ-space
but not in thex-space (Jx * 0 and JV * 0), the velocity
distribution is not longer constrained to have a Gaussian form.
In Figure 4 we have represented the probability distribution
function solution of eq 43 for the case in which an imposed
concentration gradient keeps the system outside equilibrium.
When the velocity distribution relaxes very fast to the Max-
wellian equilibrium distribution, the probability distribution is
a local Gaussian. On the contrary, for larger values of the
velocity relaxation time, the Gaussian nature of the distribution
function is lost. These non-Gaussian forms have been recently
found in experiments performed with single molecules31 and
glasses32,33 under nonequilibrium situations.

6.2. Translocation of a Biomolecule.Many biological
processes involve the translocation of proteins or nucleic acids
through pores or channels. One of the most common examples
is the translocation of proteins from the cytosol to the endo-
plasmatic reticulum or the entry of the DNA of a bacteriophage
into the cell. The simplest mechanism of translocation of a
biomolecule is by simple diffusion. However, this mechanism
is very slow, and in many cases there are some proteins that
facilitate the entry of the biomolecule by binding reversibly to
it. The role commonly assumed to be played by these proteins
was to rectify the diffusion and thus act as a Brownian ratchet:
as soon as a given length of the biomolecule exits through the
pore, a protein binds to it and prevents its diffusion backward.
The dynamics of translocation is typically modeled by a
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Figure 4. Probability distribution function (solution of eq 43) when a
concentration gradient is applied (see ref 25). At small values of the
velocity relaxation timeτ, the distribution function is a Gaussian (full
circles); when the relaxation time increases, the distributions shows a
non-Gaussian behavior (hollow circles). The vertical dotted line and
arrows are guides to the eye to emphasize the asymmetric form of the
velocity profile for τ ) 10. All values are given in arbitrary units.
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∂P
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(45)

Feature Article J. Phys. Chem. B, Vol. 109, No. 46, 200521509



diffusion equation for the lengthx of the molecule that has
already passed through the pore

Here,D is the diffusion coefficient of the biomolecule andE
represents the potential (of energetic or entropic origin) through
which the biomolecule diffuses. To analyze in detail the process
of translocation of nearly stiff biomolecules in the presence of
binding proteins, Brownian dynamic simulations were performed
in ref 34. It was found that particles that bind reversibly to the
chain give rise to a net force that pulls the chain into the cell
significantly faster than pure or even ratcheted diffusion. But it
was also found that there are substantial nonequilibrium effects
in the dynamics of the translocation. The force that pulls the
biomolecule depends strongly on how fast the translocation
occurs compared to the binding of proteins. If both processes
occur at a similar time scale, the simple eq 46, whereE
represents the potential corresponding to equilibrium adsorption
of the proteins, was not able to describe accurately the process.
The discrepancies observed justified the need to consider the
diffusion process in an extended space in which the dynamics
of binding plays an important role.

The nonequilibrium dynamics of translocation of a stiff chain
in the presence of binding particles was successfully described
using MNET.34 When translocation is fast compared to the time
it takes for the proteins to bind, the dynamics of binding plays
a very important role. One may then consider as theγ variables
in this case both the length of the chain which has passed
through the holex, and the number of proteins attached to it,n.
The dynamics of translocation is thus considered as a coupled
diffusion process in (x,n)-space. One can then follow the steps
indicated in section 4 to obtain the Fokker-Planck equation
governing the evolution in time of the probability densityP(x,n,t)

which provides a complete description of the kinetics of both
chain entry and particle binding. HereA is the free energy,Drod

) kBT/úrod, is the spatial diffusion coefficient of the rod, with
úrod the corresponding friction coefficient andDn is the kinetic
rate constant for the process of particle binding and unbinding,
which can be approximated by the expressionDn ) acD0, where
a is a length of order of the particle size,c is the concentration
of the binding particles, andD0 their spatial diffusion coefficient,
obtained from the Smoluchowski theory of aggregation dynam-
ics. The mean first-passage time, the mean force, and the average
number of proteins attached to the chain can be computed from
the Langevin equations related to the Fokker-Planck equation.
The results for the average translocation force are represented
in Figure 5 for two different situations corresponding to fast
and slow chain entry. They agree with those obtained by means
of Brownian molecular dynamics simulations.

When the kinetics of binding is very fast compared to the
translocation, one then reaches an instantaneous equilibrium
adsorption corresponding to any given lengthx, and the fast
variablen can be eliminated from eq 47. The resulting equation
is then eq 46, which holds for equilibrium adsorption. This
example reinforces the importance of considering all the
nonequilibrated variables for a proper description of the dynam-

ics of an out-of-equilibrium system, and the success of the
MNET framework based on restoring local equilibrium in an
extended space of variables.

The procedure described previously has also been used to
analyze the role played by translational and rotational degrees
of freedom of the clusters in the nucleation kinetics.35 It has
been shown that the nucleation rate is greatly influenced by
the dynamics of those degrees of freedom and that its expression
differs from that obtained when the cluster is considered at rest
and only the number of its constituent particles is taken into
account. Experimental results36 have corroborated this more
complete scenario.

6.3. Local Equilibrium in Slow Relaxation Systems.In the
previous subsection we have seen how the local equilibrium
concept depends on the set of thermodynamic variables that
are used. Local equilibrium can be recovered by increasing the
dimensionality in the variable space where the process takes
place. Remarkably, certain features, which are considered as
new and striking behaviors of nonequilibrium systems, such as
the violations of the fluctuation-dissipation theorem and the
Stokes-Einstein relation, are the result of a lack of completeness
in the description of the processes. They can easily be explained
starting from the MNET description at local equilibrium in the
extended space and then reducing the number of variables of
the system.
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) ∂

∂x
D [ 1

kBT
∂E(n)
∂x

P + ∂P
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Figure 5. (a) Snapshot of the Brownian dynamics simulation of the
translocation of a rigid chain into a spherical cell. The dark spheres
depict the monomers of the chain, the gray spheres are the free proteins,
whereas the light gray spheres are the bound proteins. (b) Force driving
the translocation as a function of the length of the chainx inside (σ is
the size of the monomers of the chain). The squares and the hollow
circles are the results of simulations forN ) 100 binding proteins and
two different values of the diffusion coefficient of the rod. The heavy
and the dashed lines are the predictions of MNET for these values of
Drod. Note that for smallDrod (i.e., slow entry of the chain, which
facilitates the equilibration of binding), the translocation force is roughly
4 times larger than for the other case, where translocation and binding
occur at the same time scale.
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Consider a system with different characteristic time and length
scales whose energy landscape exhibits many local minima
separated by potential barriers. The presence of barriers causes
slow relaxation of the system. In the two-state model, the
minimal relaxation model, one assumes that the relaxation
process consists of two main steps: a fast equilibration process
in the well followed by a slow relaxation in which the state of
the system jumps from one potential well to the other. The states
of the system can be parametrized by the values of a reaction
coordinate that varies continuously from the initial to the final
state, passing through a sequence of nonequilibrium states. It
is then plausible to assume that the system evolves via a
diffusion process inγ-space. Assuming local equilibrium in
γ-space, variations of the entropy related to changes in the
probability density are given through the Gibbs eq 18. Following
the steps indicated in section 4 we will then arrive at the
corresponding Fokker-Planck equation, similar to eq 16 and
from it to its associated Langevin equation

whereJr is a random contribution to the diffusion current, which
has zero mean and satisfies the fluctuation-dissipation theorem

The fact that in many instances the time of the intra-well
relaxation is much smaller than that of the inter-well relaxation
is used to justify the reduction of the number of variables of
the system by eliminating the fast variables and by keeping just
the values of the populations at each well, namelyn1 andn2.
One then says that the system evolves via activation. Under
this approximation, the dynamics of the system can be described
through the kinetic equation37

whereJr is the random current in the new description whose
correlation is given by

which clearly shows that the correlation is not given by a
fluctuation-dissipation theorem. Only when fluctuations take
place around equilibrium states, in which detail balance holds
(kfn1

eq ) krn2
eq), does the previous relation reduce to the

fluctuation-dissipation theorem

We can then conclude that the drastic elimination of the fast
variables makes the fluctuation-dissipation relation break down.
In contrast, it holds when both relaxation processes are
considered. Following similar arguments one can show that the
Stokes-Einstein relation, in which the diffusion coefficient is
proportional to the inverse of the viscosity, does not apply to
supercooled colloidal suspensions with slow relaxation.38,39

The existence of a fluctuation-dissipation relation, according
to the previous result, relies on an equilibrium state,40 or more
generally, on a local equilibrium state. In fluctuating hydrody-
namics theory, the fluctuation-dissipation theorem is assumed
to have the same form as in equilibrium but with the local
temperature replacing the equilibrium temperature. Its validity
has been corroborated in light scattering experiments in a fluid

under a temperature gradient at local equilibrium.41-43 In any
other case, the fluctuation-dissipation theorem is not fulfilled.44

This holds, even in simple systems subjected to an external
driving force, as a Brownian particle in a periodic potential45

or in a shear flow.46 Recent investigations in systems with
memory47 have established a hierarchical connection between
mixing, the ergodic hypothesis and the fluctuation-dissipation
theorem.48 The validity of a fluctuation-dissipation relation,
its experimental verification, and its connection with mixing
have been reviewed in refs 49 and 50.

6.4. Nonequilibrium Temperatures.The theory presented
enables us to analyze the meaning of temperature in situations
far away from equilibrium. To this end let us consider the case
of a diffusion process in the presence of inertial effects, as
discussed in section 6.1. In such a process, the temperatureT̃(x,V)
at which the entropy production would be zero is given by30

This equation can be rewritten in a form similar to that of the
equilibrium temperature:

wheresc ) -kB ln P(x,V) is the configurational entropy and
e(V) ) mV2/2 is the kinetic energy. The definition of an effective
temperatureT̃(x,V) is, however, not unique. If we takee(V - Vj)
instead of e(V), with Vj the average velocity, the resulting
temperature would be that of local equilibrium. This local
equilibrium temperature will give a nonzero entropy production.
In general, becauseT̃(x,V) is a function of bothx andV, given
a pointx in space, there is no temperature at which the system
would be at equilibrium, i.e.,T̃(x,V) * T̃(x). If an effective
temperature at a pointx were defined, it would depend on the
way the additional coordinate is eliminated. Thus, ambiguities
in far-from-equilibrium quantities arise when considering a
lower dimensional space than the one in which the process is
actually occurring. This is to some extent similar to what
happens with effective temperatures defined through fluctua-
tion-dissipation theorems. In such cases, the effective temper-
ature can depend on the scale of observation. It is interesting
to point out that all of these effective temperatures, despite their
possible analogies with the equilibrium temperature, do not have
to follow the usual thermodynamic rules because the system is
not actually at equilibrium at temperatureT̃(x). The previous
interpretation of an effective temperature is consistent with its
characteristics obtained from the two-state model discussed in
section 6.3. For an activated process in which the description
is performed in terms of the initial and final state, the
temperature inferred from a fluctuation-dissipation relation is
not a robust quantity because it depends on the observable and
on the initial conditions of the system.37 Thus, a possible
thermodynamics in which thermal effects are characterized by
effective temperatures would not have a consistent formulation.

7. Additional Applications and Comparison with Other
Theories

MNET provides a thermodynamic basis to the stochastic
dynamics of systems outside equilibrium and shows that
thermodynamic concepts can be applied at mesoscopic scales,
where it was believed that thermodynamic arguments were of

dγ
dt
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no use. MNET gives information not only about the evolution
of the probability distribution function but also about the thermal
and mass exchange processes between the system and the bath.
These processes are the subject of great interest nowadays and
are being intensively studied in small systems with the purpose
of analyzing the validity of the thermodynamic concepts in
situations in which the fluctuations become very important. The
kinetic equations for systems as clusters, single molecules, or
mesostructures can be obtained through MNET in very general
situations, including the ones in which the system is subjected
to driving forces or gradients or those in which it evolves
through potential barriers of any kind.

7.1. Additional Applications. MNET has also been applied
to other situations involving systems of very different nature.
In the next paragraphs we will discuss very briefly the main
achievements.

ActiVated Dynamics.As shown in section 5.2, MNET makes
it possible to account for the intrinsic nonlinear behavior of the
activated dynamics. In the study of activated processes, it has
been used to derive the Butler-Volmer equation of electro-
chemistry,51 originally formulated under empirical grounds.
MNET has also been used to study phase transitions at
interfaces, such as evaporation and condensation phenomena,52

and to analyze active transport through biological membranes
in which ions take large amounts of energy from the hydrolysis
of ATP to move from low to high concentrations through protein
channels.53 In this process, the diffusion current is a nonlinear
function of the chemical potential differences of the ions at both
sides of the membrane.

Aggregation and Growth Phenomena.MNET has also been
applied to the study of growth phenomena driven by surface
tension effects.54 MNET provides expressions for the growth
rates which depend on geometric parameters of the aggregates,
such as their volume or surface, or on the number of the
constituent single particles.55,56 They are obtained from the
corresponding entropy production in the space spanned by those
parameters. An interesting example also involving nucleation
phenomena at early stages is the case of polymer crystalliza-
tion.57

Nonequilibrium Steady States.MNET has been used to
analyze the peculiar characteristics of systems at nonequilibrium
steady states,58 providing a mesoscopic thermodynamic frame-
work from which one derives equations of state of systems
outside equilibrium.59 A statistical mechanical model leading
to the existence of a stationary state was proposed in ref 60.
The pressure of a sheared suspension of Brownian particles
obtained from the kinetic part of the pressure tensor shows a
nonanalytical dependence on the shear rate. Its form is the same
as that previously obtained for liquids from projection opera-
tors61 and from kinetic theory.62,63 The thermodynamics of
nonequilibrium steady states of single Brownian macromolecules
have been investigated in ref 64, also by means of an entropy
production, leading to the formulation of a mesoscopic theory
for single macromolecules consistent with the second law. A
steady-state thermodynamics for molecular motor proteins has
been formulated in ref 65.

Quantum Systems.MNET has also been brought to the
quantum regime. MNET provides a master equation for the
density matrix of the system, which is obtained from the entropy
production in a manner similar to the classical case. It has been
applied to spin systems to rederive the Bloch equations and to
harmonic oscillators to obtain a quantum mechanical Langevin
equation.66 The formulation of the theory in the quantum domain

is useful to analyze the properties of nonequilibrium quantum
systems and to elucidate the role played by dissipation in their
evolution.

7.2. Comparison with Other Theories. There are many
situations in which the general results obtained with MNET
encompass the results derived by other approaches, such as
kinetic and stochastic process theories and projection operator
techniques. Our purpose in this section is to discuss some of
these situations showing the generality of the MNET formalism.

Kinetic Theory.MNET provides in general kinetic equations
of the Fokker-Planck type. The Fokker-Planck equation
obtained with MNET for a dilute suspension of Brownian
particles under a temperature gradient67 coincides with that
derived from kinetic theory.68,69The case of a velocity gradient
has also been studied.46 Those equations can also be obtained
with MNET for higher concentrations when direct and hydro-
dynamic interactions are relevant,70,71as in the case of semidilute
and concentrated polymer solutions.72 Hydrodynamic interac-
tions are introduced through the matrix of Onsager coefficients,
which is proportional to the Oseen tensor. Direct interactions
come into the description through a contribution to the chemical
potential. For polymers in the concentrated regime, the Fokker-
Planck equation expressed in terms of the monomer concentra-
tion field72 has the same form as that proposed in the classical
monograph of Doi and Edwards.73 For a Brownian particle
moving in a granular flow74 in a homogeneous cooling state,
the resulting Fokker-Planck equation is the same as that derived
from the kinetic of gases with inelastic collisions.75

Stochastic Processes.The scheme presented provides a
phenomenological procedure to derive the Fokker-Planck
equation describing the dynamics of mesoscopic systems.10 This
formalism can be useful in cases in which the complexity of
the system or the nonequilibrium nature of the environment
makes a detailed description of the problem impractical.
Representative examples are the kinetic processes discussed in
sections 5.3 and 6.2. The theory also applies to nonlinear
transport systems in the presence of memory effects that are
introduced through the time dependence of the Onsager coef-
ficients.76 In these cases the Fokker-Planck equations have the
same form as those obtained from Langevin and master
equations. As an example, the resulting generalized Fokker-
Planck equation, related to the generalized Langevin equation,
coincides with that obtained in ref 77 for non-Markovian
systems with Gaussian noise.

Projection Operators.Brownian motion in the presence of
external gradients has also been studied by means of projector
operators.78 For the case of a temperature gradient, the Fokker-
Planck equations obtained with projector operators78 and
MNET67 are identical. Nonlinear Langevin equations for the
moments of the distribution function can be derived from the
Fokker-Planck equation obtained with MNET when the On-
sager coefficients depend on the state variables.76 The resulting
equations coincide with those obtained from projector opera-
tors.79

LangeVin Descriptions.The relationship between the Lan-
gevin equation and the laws of thermodynamics was discussed
in ref 80. This formalism, known as stochastic energetics, has
been applied to energy transduction processes and to the
characterization of nonequilibrium steady states.81 A mesoscopic
nonequilibrium thermodynamic formalism for the Langevin
equation has also been proposed and applied to single macro-
molecules.64,82In the approach we have presented, the Langevin
equation is straightforwardly connected to thermodynamics
through its Fokker-Planck equation.
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7.3. Advantages of MNET.In the previous paragraphs, we
have shown that MNET encompasses the results obtained by
means of other more complex nonequilibrium statistical me-
chanics theories. A distinctive feature of MNET is that it
provides a straightforward formalism to implement the dynamics
of nonequilibrium systems from the knowledge of their equi-
librium properties. The advantages of using MNET become
especially manifest when there are dynamic processes of
different nature taking place simultaneously, as for instance
when the system is subjected to fluctuations and exchanges heat
or mass with a nonequilibrium environment that has its own
dynamics. In such cases, the Langevin and the Fokker-Planck
equations are not a mere extension of those formulated for
simpler situations and must be derived by means of a nonequi-
librium statistical mechanics theory. MNET uses a systematic
and simple method through which those equations can easily
be obtained. The cases of the translocation of a biomolecule
and of the Brownian motion in a nonequilibrium fluid discussed
previously are illustrative examples. In the former, the Fokker-
Planck equation contains two currents corresponding to the two
relevant dynamic variables. In the latter, the imposed gradient
not only affects the intensity of the noise but also the form of
the kinetic equation by adding a new term that is responsible
for thermal diffusion.

To illustrate explicitly the influence of a nonequilibrium
environment in the dynamics of the system, we consider
Brownian motion in a temperature gradient. The effects of the
gradient on the probability current of a Brownian particle can
directly be inferred from the entropy production in the space of
mesoscopic variables by taking into account its Onsager
coupling to the heat current. The form of the probability current
is

whereub is the velocity of the Brownian particle, theL terms
are Onsager coefficients andPleq is the local equilibrium
distribution function.67 The presence of particles, in turn,
modifies the heat current through the system. This effect can
also be analyzed through the entropy production. The resulting
heat current is

where the Onsager coefficients obey the Onsager relationLTu

) -LuT. These equations clearly show the existence of a
coupling between the two irreversible processes present in the
system: probability diffusion and heat conduction. The resulting
Fokker-Planck equation

with â being the friction coefficient of the particles andγ a
coefficient related to the Onsager coefficientLuT, coincides with
that obtained from kinetic theory.68 The Fokker-Planck equation
and the evolution equation for the temperature field provide a
complete description of the heat exchange process in the system.
This example illustrates the way in which MNET can systemati-
cally be used to analyze heat exchange processes between the
system and its environment in the presence of fluctuations.

8. The Actual Meaning of Being “Far Away from
Equilibrium”

The presence of unbalanced thermodynamic forces moves
the system away from equilibrium. How far can these forces
move the system away from equilibrium, as discussed in the
classic monograph,2 depends not only on the values of the force
but also on the nature of the process. For transport processes in
simple systems, such as heat conduction (Fourier law) and mass
diffusion (Fick law), local equilibrium typically holds, even
when the systems are subjected to large or even very large
gradients.3 We have seen in section 4 that the probability current
also obeys a linear law: the Fokker-Planck equation is linear
and describes situations that can be far from equilibrium.
Linearity does not necessarily imply in those cases closeness
to equilibrium. On the contrary, for the wide class of activated
processes discussed in section 6, linearity breaks down already
at small values of the affinity, which seems to imply that local
equilibrium is lost almost immediately.

The results of the method we have presented indicate that
existence of local equilibrium depends on the set of variables
used in the characterization. As shown in section 5.2, when an
activated process is described not just in terms of the initial
and final states but through its reaction coordinate, local
equilibrium holds. Increasing the dimensionality of the space
of thermodynamic variables, by including as many dimensions
as nonequilibrated degrees of freedom, leads to local equilibrium
in the enlarged space and allows the use of nonequilibrium
thermodynamics at shorter time scales in which fluctuations are
still present. We can thus conclude that many kinetic processes,
such as nucleation, chemical reactions or active transport, which
have been assumed to be far away from equilibrium because of
their intrinsic nonlinear nature, take place at local equilibrium
when a finer description is adopted.

8.1. An Example: Single Macromolecule.To further
illustrate how systems brought outside equilibrium may be
considered at local equilibrium in an extended space, we will
study the case of a macromolecule in a solvent at constant
temperature subjected to an external driving force. In addition
to the position of its center of massx, the macromolecule is
characterized by an additional fluctuating variableθ, which
might represent, for instance, its size or its orientation. For small
values of the force, local equilibrium inx-space holds in such
a way that we can formulate the Gibbs equation expressed now
in differential form

whereF is the force andΘ(x) is the average value of theθ
variable defined as

with P(x,θ) being the probability distribution andµ(x,θ) its
conjugated chemical potential. Let us now assume that the
driving force increases in such a way that the system is no longer
in local equilibrium in x-space. The way to restore local
equilibrium is to increase the dimensionality by considering the
fluctuating variableθ as an independent variable and defining
the Gibbs equation as

Proceeding as in section 6, one could obtain from this equation

JBu ) LuT∇T/T2 - kBLuu
∂

∂ub
ln(P/Pleq) (55)

JBq ) LTT∇T/T2 - kB∫LTu
∂

∂ub
ln(P/Pleq) dub (56)

∂P
∂t

) -ub ‚ ∇P + â ∂

∂ub
‚ (Pub + kBT

∂P
∂ub) + γ

T
∂

∂ub
‚ P∇T

(57)

T ds(x) ) -µ(x) dF(x) - F dΘ(x) (58)

Θ(x) ) ∫θP(x,θ) dθ (59)

T ds(x,θ) ) -µ(x,θ) dP(x,θ) (60)
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the corresponding Fokker-Planck equation, which would
describe the dynamics of the macromolecule in the extended
space.

9. Conclusions

A typical way to study nonequilibrium mesoscopic systems
is to use microscopic theories and proceed with a coarse-graining
procedure to eliminate the degrees of freedom that are not
relevant to the mesoscopic scale. Such microscopic theories are
fundamental to understand how the macroscopic and mesoscopic
behavior arise from the microscopic dynamics. On the downside,
they usually involve specialized mathematical methods that
prevent them to be generally applicable to complex systems;
and more importantly, they use much detailed information that
is lost during the coarse-graining procedure and that is actually
not needed to understand the general properties of the meso-
scopic dynamics.

The approach we have presented here starts from the
mesoscopic equilibrium behavior and adds all the dynamic
details compatible with the second principle of thermodynamics
and with the conservation laws and symmetries that are present
in the system. Thus, given the equilibrium statistical thermo-
dynamics of a system, it is straightforward to obtain Fokker-
Planck equations for its dynamics. The dynamics is characterized
by a few phenomenological coefficients, which can be obtained
for the particular situation of interest from experiments or from
microscopic theories, and describes not only the deterministic
properties but also their fluctuations.

We have shown explicitly the applicability of these meso-
scopic thermodynamics methods to a broad variety of situations,
such as activated processes in the nonlinear regime, inertial
effects in diffusion, and transport in the presence of entropic
forces. It is important to point out that there are many
mesoscopic systems that have been studied with the methods
of statistical thermodynamics.5 The dynamics of most of those
systems still remains poorly understood. Our approach opens
the way to study their dynamics in terms of kinetic equations
of the Fokker-Planck type.
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(44) Pérez-Madrid, A.J. Chem. Phys.2005, 122, 214914.
(45) Reimann, P.; van den Broeck, C.; Linke, H.; Ha¨nggi, P.; Rubı´, J.
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