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Concepts of everyday use such as energy, heat, and temperature have acquired a precise meaning after the
development of thermodynamics. Thermodynamics provides the basis for understanding how heat and work
are related and the general rules that the macroscopic properties of systems at equilibrium follow. Outside
equilibrium and away from macroscopic regimes, most of those rules cannot be applied directly. Here we
present recent developments that extend the applicability of thermodynamic concepts deep into mesoscopic
and irreversible regimes. We show how the probabilistic interpretation of thermodynamics together with
probability conservation laws can be used to obtain Fokkdanck equations for the relevant degrees of
freedom. This approach provides a systematic method to obtain the stochastic dynamics of a system directly
from its equilibrium properties. A wide variety of situations can be studied in this way, including many that
were thought to be out of reach of thermodynamic theories, such as nonlinear transport in the presence of
potential barriers, activated processes, slow relaxation phenomena, and basic processes in biomolecules, such
as translocation and stretching.

1. Introduction reminiscent of nonequilibrium thermodynamics, by which to

S . . . study fluctuations in nonlinear systems.
Itis still a major challenge to understand how the wide variety y y

of behaviors observed in everyday experience, such as the usual We show that the probabilistic interpretation of the density

processes of living systems, arise from the relatively simple and [°98ther with conservation laws in phase space and positiveness
small set of laws that rule the microscopic world. There are a Of global entropy changes set the basis of a theory similar to

few exceptions. Systems in the condition of equilibrium strictly nonequilibrium thermodynamics but of a much broader range

follow the rules of thermodynamidsin such cases, the intricate  ©f @pplicability. In particular, the fact that it is based on
behavior of large numbers of molecules can completely be probgbmtles instead of Qen3|t|es allows us tq con3|der meso-
characterized by a few variables that describe general averagecOPIC Systems and their fluctuations. The situations that can
properties. It is possible to extend thermodynamics to situations P€ studied with this formalism, named mesoscopic nonequilib-
that are at local equilibrium. This is the domain of validity of "uUm thermodynamics (MNET), include, among others, slow
nonequilibrium thermodynamidsDespite its generality, this r_elaxatlon processes, barrier crossing dynamics, chemical reac-
theory has notorious limitations: it is applicable only to tions, entropic driving, and nonlinear transport. These processes
macroscopic systems, for which fluctuations are not important, are in general nonlinear. From the methodological point of view,
and it operates within the linear response domain. Whereas thediven the equilibrium properties of a system, this theory provides
linear approximation is valid for many transport processes, such @ systematic and straightforward way to obtain its stochastic
as heat conduction and mass diffusion, even in the presence ofionequilibrium dynamics in terms of FokkePlanck equations.
large gradien®s*it is not appropriate for activated processesin ~ To set grounds for the development of the formalism, we
which the system immediately enters the nonlinear domain. discuss first the basic nonequilibrium thermodynamic concepts
Small system8§,such as single molecules in a thermal bath, in used in a local equilibrium description of the systems. We then
which fluctuations can be even larger than the mean values,describe how MNET provides equilibrium statistical mechanics
are beyond the scope of that theory. with a dynamics at the mesoscopic level. The key idea is to
In this feature article, we present recent advances aimed atintroduce statistical concepts in the framework of conservation
obtaining a simple and comprehensive description of the laws of nonequilibrium thermodynamics. After introducing the
dynamics of nonequilibrium systems at the mesoscopic scale.general ideas, we discuss applications to nonlinear transport
These advances have provided not only a deeper understandinghenomena and activated processes that further illustrate the
of the concept of local equilibrium but also a framework, usefulness of the approach. Applications of the use of the
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thermodynamic variables defined in each subsystem of a
conveniently partitioned system admit the same interpretation
as in equilibrium. Second, the entropy production of any isolated
system is always nonnegative. The theory attributes the devia-
tions from equilibrium to the presence of unbalanced forces,
such as electric fields or gradients, which give rise to fluxes,
such as electric or heat currents. Forces and fluxes are in a
relationship that is cause-effect compatible with the second law
of thermodynamics and with the inherent symmetries, either
macroscopic or microscopic. The dynamics follows from the
local conservation laws for the thermodynamic field quantities,
in which the fluxes are linear functions of the forces whose
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PhD degree in theoretical physics from the same university in 1979. e .
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nonequilibrium statistical physics and soft condensed matter. g1 previously has been used successfully to analyze irreversible
been Sandoval Vallarta Professor of the UAM, Mexico and Onsager processes in systems of very different natitdo illustrate

Professor of the university of Trondheim. In 2003, he was awarded PRI : : :
the Onsager medal and an Alexander von Humboldt Prize for his explicitly its method, we will apply it to the simple case of

contributions to nonequilibrium thermodynamics and to the theory of Mass diffusion in one dimensio.n.. The first step iS_ to compute
stochastic processes. Miguel Ruls Professor of condensed matter the entropy production. At equilibrium, changes in entr&y

physics at the University of Barcelona. are given by the Gibbs equation

concept of local equilibrium at the mesoscale are also discussed. TdS=dE+pdV —udMm (1)
We treat in particular inertial effects in diffusion, the slow

relaxation dynamics, and the translocation of a biomolecule. j, which the thermodynamic extensive variables are the internal
We conclude with a brief overview of other situations where energyE, the volumeV, and the mas of the system, and the
this approach has been used and with a discussion of how farntensive variables are the temperatdiethe pressure, and
away-from-equilibrium situations can be recast into a local {he chemical potentiak. All these quantities may in general
equilibrium description. depend on time. For the sake of simplicity, we assume that the
process takes place at constant temperature, energy, and volume.
Local equilibrium here means that the Gibbs equation holds
Nonequilibrium thermodynamics is a well-established clas- also for noninfinitely slow changes in the variables. It is then
sical discipline built on the grounds of two main hypotheses. possible to replace variations by time derivatives. Taking into
First, the local equilibrium hypothegdisassumes that the account the spatial dependence through a depgkyin the

2. Nonequilibrium Thermodynamics
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spatialx-coordinate i1 = fv p(X) dx), one obtains from eq 1  conventional nonequilibrium thermodynamics, as described in
the entropy production, the following section, that is able to overcome such difficulties.

ds p(X) 3. Thermodynamics and Statistics
T =~ Julxp()] = &) _ o
t at Reduction of the observational time and length scales of a

) ) o ) system usually entails an increase in the number of degrees of
The chemical potential depends explicitly on the density and, freedom that have not yet equilibrated and that therefore exert
in principle, also on the spatial coordinate (as occurs for instancean influence in the overall dynamics of the system. The
in the presence of an inhomogeneous external field). The nonequilibrated degrees of freedom will be denotedybf=

conservation law {y:i}) and may, for example, represent the velocity of a particle,
the orientation of a spin, the size of a macromolecule, or any

op_ 93 ©) coordinate or order parameter whose values define the state of

at X the system in a phase space. The characterization at the

. Lo . _ ) mesoscopic level of the state of the system follows fR(mt),
after insertion into eq 2 and integration by parts with the e probability density of finding the system at the state
assumption that the current vanishes at the boundaries, leads t%, y + dy) at timet. The entropy of the system in terms of this

probability can be expressed through the Gibbs entropy postu-

aS__ ryou late?10
T J3 3 O 4
P(y.t
The termJ denotes the flux of mass whose conjugated force is S=84 ks fP(y,t)Inﬂ dy (7
the gradient of the chemical potential. In the absence of nonlocal Peq(V)

effects, the flux is proportional to the force
where S is the entropy of the system when the degrees of

L du freedomy are at equilibrium. If they are not, there is a
J= _L& (®) contribution to the entropy that arises from deviations of the
probability densityP(y,t) from its equilibrium valuePe(y),
whereL = L[x,p(x)] is the Onsager coefficient, which can in  Which is given by
general depend on the thermodynamic variables as well as on

thex-coordinate. For a chemical potential that does not depend P ~ ex _AW(V)) ®)
explicitly on the spatial coordinate, i.ec,= u[p(x)], eq 3 with €a ks T
eq 5 can be rewritten as the well-known diffusion equdtion
HereAW(y) is the minimum reversible work required to create
p — 9 Da_P (6) that staté} kg is Boltzmann’s constant, arkis the temperature
t ox ox of the heat bath. Variations of the minimum work for a

o o ) thermodynamic system are expressed as
where the diffusion coefficient iB = L(du/dp).

Nonequilibrium thermodynamics uses a set of local variables AW= AE — TAS+ pAV — uAM + yAY + ...  (9)
whose global counterparts coincide with those defined at
equilibrium. This choice clearly restricts its application domain where the termyAY represents a generic work (electric,
to the macroscopic level, at typical length scales much larger magnetic, surface work...) performed on the systgrbging
than any molecular size. In such a situation, the inherent the intensive parameter aidts conjugated extensive variabfe.
molecular nature of matter can be ignored and one can adopt aThe expression of minimum reversible work (eq 9) reduces to
continuum description in terms of a few conserved fields. the different thermodynamic potentials by imposing the con-
Whereas this approximation has been extremely useful in thestraints that define those potentialor instance, for the case
characterization of many irreversible processes, it is no longer of constant temperature, volume, and number of particles, the
valid for systems defined at the mesoscale when the typical time minimum work corresponds to the Helmholtz free enefgy
and length scales are such that the presence of fluctuationsThe statistical mechanics definition of the entrcig therefore
becomes relevant. the key to connect thermodynamics with both the mesoscopic

The linear character of the constitutive relations proposed by description in terms of the probability distributid®(y,t) and
the theory should in principle be appropriate only when the the equilibrium behavior of the system. The combination of the
magnitude of the gradients is small. In practice, linear relations statistical definition of the entropy with the systematic meth-
have been proved to work well for many transport processes, odology of nonequilibrium thermodynamics results in a powerful
even in the presence of large gradients. In contrast, for activatedframework to describe the kinetics of a wide class of systems.
processes, the assumption of linearity fails. Whereas transportThis framework is outlined in the next section.
processes may perfectly operate in a linear regime, activated
processes are genuinely nonlinear and cannot be analyzed witht. Thermodynamics and Stochastic Dynamics
nonequilibrium thermodynamics. This fact has seriously limited
the application of thermodynamic theories in areas such as
chemical kinetics and biophysics in which systems accede to
nonequilibrium states via activation. A first attempt to overcome . o . :
such difficulties was pioneered by Prigogine and M&zwho Taking variations in eq 7, one obtains
extended thermodynamic concepts to irreversible phenomena P(y.1)
in systems with internal degrees of freedom. Building on these 0S= — kg féP(y,t)In :
ideas, it is possible to develop a mesoscopic extension of the Peq()/)

To describe the dynamics of the mesoscopic degrees of
freedom, the starting point is the statistical mechanics definition
of the entropy given through the Gibbs entropy postulate.

dy (10)
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The evolution of the probability density in the — space is Other cases of interest concern different thermodynamic po-

governed by the continuity equation tentials. For instance, a particularly interesting situation is the
case of a purely entropic barrier, often encountered in soft-
L (11) condensed matter and biophysics, which will be discussed in

ot dy detail in Sect. 5.1.

whereJ(y,t) is a current or density flux in the internal space It is important to stress that MNET provides a simple and
which has to be specified. Its form can be obtained by taking direct method to determine the dynamics of a system from its
the time derivative in eq 10 and by using the continuity eq 11 equilibrium properties. In particular, by knowing the equilibrium
to eliminate the probability time derivative. After a partial thermodynamic potential of a system in terms of its relevant
integration, one then arrives at variables, one could easily derive the general form of the
kinetics. The method proposed thus offers a general formalism

?j—sz — iJS dy +o able to analyze the dynamics of systems away from equilibrium.
L dy In the following section we will illustrate its applicability by
where means of some examples.

The scheme presented can be put in closer connection with
Js= kBJ|n£ nonequilibrium thermodynamics concepts. To that end, the
Peq crucial idea is the generalization of the definition of the chemical
potential to account for these additional mesoscopic variables.
We may then assume that the evolution of these degrees of
P(v t freedom is described by a diffusion process and formulate the
(r.H) SO :
——| dy (12) corresponding Gibbs equation
Ped?)

is the gntropy production. . ' 3 0S=— %fﬂ(y)éP(y,t) dy (18)
In this scheme, the thermodynamic forces are identified as

the gradients in the space of mesoscopic variables of the ) ) )

logarithm of the ratio of the probability density to its equilibrium ~ Which resembles the corresponding law proposed in nonequi-

value. We will now assume a linear dependence between fluxeslibrium thermodynamics for a diffusion process in terms of the

and forces and establish a linear relationship between them mass density of particles. Herg(y) plays the role of a
generalized chemical potential conjugated to the distribution
function P(y,t). Comparison of the Gibbs eq 18 with eq 10,

is the entropy flux, and

o=k [ J(y,t)%(ln

Iy =— kBL(V,P(y))ai(mP(%t)) (13) where the variations of the equilibrium entropy are given by
7\ Ped?) )
whereL(y,P(y)) is an Onsager coefficient, which, in general, 6Seq: - Tf“eqép(%t) dy (19)

depends on the state variabRfy) and on the mesoscopic

coordinatey. To derive this expression, locality jnspace has and ueq is the value of the chemical potential at equilibrium,

also been taken into account, for which only fluxes and forces yig|gs the identification of the generalized chemical potential
with the same value of become coupleé?

The resulting kinetic equation follows by substituting eq 13

back into the continuity eq 11: P(y.t)
P_ o 0P " u(yt) = kBTmm + teq (20)
ot ay\ %y P,

. L i or alternatively, using eq 8,
where the diffusion coefficient is defined as

ksL(y,P) u(y:t) = kgTInP(y t) + AW (21)
D) =—p— (15)
In this reformulation, the “thermodynamic force” driving this
This equation, which in view of eq 8 can also be written as  general diffusion process & L9uldy, and the entropy produc-
tion is given by

P _ 3 9P, D AW,
at 3y( dy kT 9y P) (16) 1.3
R
o J=dy (22)
is the Fokket-Planck equation for the evolution of the prob- T/ "9y

ability density iny-space. ) ) ) ) o

Under the conditions for which the minimum work is given By comparing the previous equation with eq 4, it is clear that
by the Gibbs free energ®, AW = AG = AH — TAS, where the evolution in time of the system mimics a generalized
H is the enthalpy, this equation transforms into the Fokker diffusion process over a potential landscape in the space of
Planck equation for a system in the presence of a free energymesoscopic variables. This landscape is conformed by the values

barrier: of the equilibrium energy associated to each configuragion
The treatment of a diffusion process in the framework of
P_3 -(DE + D 3AG ) (17) nonequilibrium thermodynamics can then be extended to the
at  ady \ 9y KeT 9y case in which the relevant quantity is a probability density
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instead of a mass density. The relation between entropy and
stochastic dynamics has also been discussed in a different
context in refs 14 and 15.

5. Applications

Transport at the mesoscale is usually affected by the presence
of forces of different nature: direct interactions between
particles, hydrodynamic interactions mediated by the solvent
and excluded volume effects. The presence of such diversity
of forces has a direct implication in the form of the energy
landscape, which may exhibit a great multiplicity of local
minima separated by barriers. Transport at those scales presents
two main characteristics: it is intrinsically nonlinear and it is
influenced by the presence of fluctuations, external driving
forces, and gradients.

The mesoscopic nonequilibrium thermodynamics theory
proposed can be used to infer the general kinetic equations of
a system in the presence of potential barriers, which in turn
can be used to obtain the expressions for the current of particles
and the diffusion coefficient. Both quantities are related to the
two first moments of the distribution function and are accessible
to the experiments. In this section we illustrate the application
of the theory to different representative situations. We will
discuss nonlinear transport processes in which the dynamics is
influenced by the presence of entropic forces and activated
processes in both homogeneous and inhomogeneous environ-
ments.

5.1. Kinetic Processes in the Presence of Entropic Forces.
Entropy and entropic forces play major roles in soft condensed
matter and biophysics where typical energies are of the order
of the thermal energy. The theory introduced in the previous
section can be easily applied to account for this situation. In Figure 1. (a) Pore geometries for OmpF porin (the grayish structure
the case of entropic forces, the minimum reversible work embedded in lipid bilayer) and-toxin channel (dots extending to the

. . " _ - . membrane-bathing solution) from ref 14. (b). Steady-state current of
introduced in eq 9 i\W = —TAS The corresponding kinetic 4 ticles through a 3D hyperboloidal cone (inset) as a model channel

equation is (see ref 12). The parametef, characterizes the aperture of the
hyperboloidal cone. The dashed line is the exact solution of the 3D
P _ 9(~9P _ DoA (23) diffusion equation, and the heavy line is the result of MNET (eq 25).
ot ay\ 9y Kkgoy

which is known as the FickJacob equatio®’ As a result of
the contraction, the effective diffusion coefficient depends on

where now the/-coordinate includes the coordinates necessary . ; )
the coordinate. Using scaling arguments one fifids

to characterize the evolution of the system under the influence
of the entropic potential. This equation constitutes the starting 1
point in the study of transport processes in the type of confined D(x) = Dom
systems that are very often encountered at sub-cellular level

and. in microfluidip appliqatiqns. The basic situatiqn of the \\here Do is the molecular diffusion coefficieny(x) defines
motion of a Brownian particle in an enclosure of varying cross- o shape of the enclosure, ands a scaling exponent whose

section was analyzed using this perspective in ref 16. The main, 5y,6 is 1/3 for the 2D case and 1/2 for the 3D case. The current
idea is that the very complicated boundary conditions of the ¢ particles through the pore and the effective diffusion
diffusion equation in irregular channels can be greatly simplified g officient depend strongly on the entropic forces related to the
by the introduction of an entropic potential that accounts for shape of the container in which particles move and can be
the space accessible for the diffusion of the Brownian particle. computed from the FickJacob equation. The results obtained

In the case of a 3D pore of cross-sectié(x), the entropic 4qre6 with the exact solution of the 3D diffusion equation over
potential can be easily calculated by contracting the 3D ,'\ide range of conditions (see Figure 1).

description and by retaining only the coordinat&he resulting Through the basic scenario presented, we can analyze the

1D equilibrium distributionPeq(x) is effects of entropic forces in the dynamics of the system. Entropic
forces are present in many situations, such as the motion of
PedX) = f Py dy dz = PyA(X) (24) macromolecules through pores, phoretic effects, transport
through ion channels, protein folding, and in general in the
where Py is the probability distribution in the absence of dynamics of small confined systertfst®
potential, assumed constant. From this result and eq 8, we then 52 Activated ProcessesActivated processes are those that
infer the expression for the entropic potentlef(x) = —kg In need a finite energy to proceed and change the system from
A(x). By substitution of this potential in eq 23 one obtains  one state to another. The paradigm of activated processes is
the crossing of a free energy barrier that separates two well-
P D(X)aA(X)p (25) differentiated states that lie at the local minima at each side of
ox  A(x) ax the barrier. The system needs to acquire energy to surmount

(26)

P_
ot~ ax| P
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#(V))

P _

D(7) &= (b( P

whereb(y) is a mobility in they-space. This equation describes
the dynamics of for an arbitrary potential and at any value of
the temperature.

It is often the case that, at the time scales of interest, the
system is mostly found in the states 1 and 2, which correspond
to the minima aty; and y,, respectively. The probability
distribution is strongly peaked at these values and almost zero
everywhere else. This happens when the energy barrier is much
higher than the thermal energy and intra-well relaxation has
already taken place. Using MNET, we will show that the

(30)

'Yl Yo Yz Y Fokker—Planck description, under these conditions, leads to a
p

Figure 2. Potential barrier as a function of the reaction coordingge.  Kinétic equation in which the net reaction rate satisfies the mass

indicates the location of the top of the barrier (transition state). action law.

The current given in eq 28 can be rewritten in terms of the

the barrier. Once the barrier is crossed, energy is released|ocal fugacity defined along the reaction coordinze) = exp
Processes such as thermal emission in semiconductors, chemica(y)/ksT as

reactions, adsorption, nucleation, and active transport through

biological membranes, share these features and, therefore, are 10z

generically referred to as activated proces8es. kBLzay (31)
It is important to emphasize the essential difference between

activated processes and the linear processes described byhich can be expressed as

nonequilibrium thermodynamics. The latter constitute the

response to the application of an external force or gradient and J= —D— (32)

may emerge, even at very low values of the applied force, in dy
the linear response regime. Contrarily, the regime in which
activated processes may take place is basically nonlinear. In
this context, we can contrast the linear Fourier, Fick, or Ohm
laws, in which the corresponding currents are proportional to
the conjugated thermodynamic forces or gradients, with the J= fzjdy =-D(z,—2)= —D(ex Ha _ ex ﬂl)
exponential laws appearing in activated processes. ! H%_T pka_T

Let us consider a general process for which a system passes (33)
from state 1 to state 2 via activation. Instances of this process
can be a chemical reaction in which a substance transforms intoThis equation can alternatively be expressed as
another, an adsorption process in which the adsorbing particle _
goes from the physisorbed to the chemisorbed state, or a J=J3,1- erkBT)
nucleation process in which the metastable liquid transforms B
into a crystal phase. Nonequilibrium thermodynamics describeswhereJ is the integrated ratdy = D exp(ui/ksT) andA = u,
the process only in terms of the initial and final positions and — w2 is the corresponding affinity. We have then shown that
is valid only in the linear response regirhéf.we consider the MNET leads to nonlinear kinetic laws. Remarkably, it is possible
process at shorter time scales, the state of the system progresto move from a linear continuous to a nonlinear discrete system;
sively transforms by passing through successive molecularthat is to say, a FokkerPlanck equation, linear in probabilities
configurations. These different configurations can be character-and in the gradient of[y,P(y)], accounts for a nonlinear
ized by a “reaction coordinatey. In this situation, one may  dependence in the affinity. This scheme has been successfully
assume that this reaction coordinate undergoes a diffusionapplied to different classical activated processes, such as
process through a potential barrier separating the initial from chemical reactiond! adsorptior?? thermal emission in semi-
the final states. The local entropy production is (see also eq conductor®, or nucleatior?? to obtain the corresponding kinetic

whereD = kgL/z represents the diffusion coefficient. We now
assumeD is constant and integrate from 1 to 2, obtaining

22) laws.
5.3. Activated Processes in Inhomogeneous Systents.
oyt = __J_/i 27) many practical instan_ces, the activated process takes place. in
T oy the presence of gradients of thermodynamic or hydrodynamic

guantities. In this situation the bath has its own nonequilibrium
dynamics which is coupled to that of the system. This is what
happens, for example, in inhomogeneous nucleation where the

from which we can infer the linear law

Jyt) = ——’Z (28) germs emerge and grow in a nonequilibrium metastable liquid.

The inhomogeneities in the bath may exert a significant

where the chemical potential is, as in eq 21, given by influence in the expressions of the activation rates. The
mesoscopic theory we have proposed describes the coupled

=kgTInP+ & (29) evolution of the system and the bath by providing the hydro-

dynamic equations for the bath together with the kinetic
with ®(y) being the potential in terms of the reaction coordinate equation. To illustrate the application of the method, we will
(see Figure 2). Following the previous approach, we can obtain discuss here nucleation when the metastable phase is subjected
the Fokker-Planck equation for the dynamics pf to a temperature gradie®MT and to a velocity gradien@v.
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The case of a temperature gradient was discussed in detail in
ref 25. The kinetics of formation of clusters in the presence of
density inhomogeneities and a temperature gradient is described
by the kinetic equation

0

f. +%Jn

Wl

V- [DoVi, + Dy (34)

T

ot
which can be obtained by following the procedure indicated in
section 4. In this equatiorfg(n,x,t) is the number fraction of
clusters containingn molecules at a point of the sample at
time t, Do and Dy, are the spatial and thermal diffusion
coefficients, respectively, and}, is the rate of formation of
clusters of sizen. Therefore, the first term on the right-hand
side of eq 33 accounts for the effects of diffusion and
temperature gradients in the process of nucleation.

For the case of a velocity gradient, the corresponding kinetic

equation was obtained in ref 26.

ofe = 9
=V (g + V- (D~ Vi) + -3, (35)

wherevy is the velocity field and

- (7 0
i-|=-

D =D, W, (36)
is an effective diffusion coefficient of tensorial nature due to

the breaking of the isotropy of the system by the shear flow. (b)

The upper 0O refers to the symmetric part of the tensor. The _. . ) .

. . Figure 3. Polarizing optical micrographs of poly(ethylene terephtha-
presence of the shear rate |ntrod:uces a c:orrectlon to the Stokes late) (PET) crystallized at 24T in the absence (A) and in the presence
Einstein diffusion coefficientDgl, with 1 the unit matrix, (B) of a shearing force. As a consequence of the shearing nucleation
which depends on the strength of the shear rate, the Brownianbecomes increasingly profuse, and the shape of spherulites becomes
viscosity 7jg related to the stresses exerted by the Brownian elliptical. (From ref 22.)
motion of the clusters, and the pressyeEquation 35 thus
accounts for the effects of the shear flow on the kinetics o
nucleation. These effects are accordingly more pronounced at
high shear rates and close to the glass transition when the
viscosity increases significantly. This situation is frequently
encountered in polymer crystallization, which normally proceeds

at very large values of the shear rate. Experiments show P, L
nature: mass diffusion in the presence of inertial effects,

spherical forms of the clusters when they grow at rest and . . P
elongated forms when the metastable phase is sheared (Seéelaxatlon phenomena in glassy systems, and the nonequilibrium

. ; : - e translocation of a biomolecule through a pore.
Figure 3), in agreement with the anisotropy of the diffusion g - .
p;gLées@) n ag w ! Py s 6.1. Local Equilibrium and Inertial Effects in Diffusion.

The previously described situations can in general be found Inertial effects should be taken into account in diffusion when

in different systems undergoing activation dynamics under chtz?]nt%est_ln tht(;spatllal _(il_ensn]}/tﬁccur att_:? tlmte slcale ctompa:ja:)le
inhomogeneous conditions, as in ion channels, protein binding W't 1€ ime the velocities of the constituént elements need 1o

kinetics and diverse macromolecular transport processes, an elax to gquilibrium. In such a situation! the local eq_uilit_)rium
illustrate the important influence that the bath exerts in the assumption does not.hold, a.t.ea.lch point the velocity field is
evolution of the system. still relaxing toward its equilibrium state and the entropy

production depends on the particular form of the velocity
6. Local Equilibrium at the Mesoscale distribution. In this case, conventional nonequilibrium thermo-
Bringing together thermodynamics and stochastic dynamics dynamics is not valid.
to describe mesoscopic systems relies on the assumption of local We will show that local equilibrium can be restored if the
equilibrium. Nonequilibrium thermodynamics considers that space of variables is enlarged by incorporating the velocity as
there is local equilibrium when a system can be subdivided into an additional coordinate; both the spatial coordinateand
smaller subsystems that look homogeneous and yet macroscopicvelocity coordinatey, are needed to completely specify the state
In addition, the thermodynamic variables that characterize eachof the system. In this case, we can proceed as indicated before,
of these subsystems have to evolve sufficiently slowly compared by considering the subsystem at local equilibrium in the two-
to the microscopic time scales. dimensional spacg = (X,v).
The local equilibrium condition can be interpreted in a more ~ From equilibrium statistical mechanics we obtain that the
general context, which accounts for time scales in which not chemical potential is given by
all the fast variables have relaxed. In this new interpretation,
systems that are not in local equilibrium could equilibrate locally _ 1,
when the nonequilibrated fast variables are incorporated into ulv) = @0 + 2! +KTIn POc) (37)

f the thermodynamic description. This description requires an
increase in the number of variables and the resulting increase
of the configurational space. Thus, systems outside equilibrium
can be brought to local equilibrium in terms of the extended
set of variables. This possibility will be illustrated in the
following subsections through examples of a very different
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where the second term is the kinetic energy per unit mass of 04 : . - . : .
the constituent elements ade(x) their potential energy.
From the probability conservation law we obtain that the i oo 1=0.1
Fokker-Planck equation follows
P _ ad, 9,
X (38)
with
0, 0,
3= —Lxxa—ﬁ‘( —~ La—ﬁ (39) 1
JU LUXaX LZ/UaU (40) |

wherely, Ly, Lox, @andL,, are the Onsager coefficients.

We will now study how these general Onsager coefficients
are constrained by the physics of diffusion processes. First, therigure 4. Probability distribution function (solution of eq 43) when a
flux of probability in x-coordinate spacel(x) = /=, vP(X,v) concentration gradient is applied (see ref 25). At small values of the

dv, has to be recovered from the flux in the:)-space by velocity relaxation timer, the distribution function is a Gaussian (full
; ; ; & _ circles); when the relaxation time increases, the distributions shows a
E:I_?]Ztrr;g[:gg the velocity coordinatel(x) = [-.J{xv) dv. non-Gaussian behavior (hollow circles). The vertical dotted line and

arrows are guides to the eye to emphasize the asymmetric form of the
o e — ™ [L ) N k_TE L N k_TE g velocity profile forz = 10. All values are given in arbitrary units.
JrarPdo= = [ (Lal G+ B ] T el T )
(41)

] proportional to the temperature. If deviations from equilibrium
where we have used egs 37 and 39. SiRpev) can take any  are small §, = 0 andJ, = 0), the local equilibrium hypothesis

arbitrary form, the last equality holds if and onlflix=0and  ho|ds. This is the domain of the validity of Fick's law,

Ly, = —P. Second, the positiveness of the entropy production,

0 = (L t Lu)du/oxduldv + L, (0uldv)?, implies thatLy, = 9P

—L,x, Which coincides with the Onsager relatid§sThus, the J=-D3; (45)
only undetermined coefficient ls,,, which can depend explicitly

onx andu.

which is obtained directly from the equations for the fluxes. In
this case, the distribution of velocities is still Gaussian, as in
equilibrium, but now centered afx) = /_ oP(x,v) dv = /7
D/z aP(x,v)/ax dv, and the variance of the distribution is related
to the temperature. When local equilibrium holds in fhgpace
but not in thex-space § = 0 andJ, = 0), the velocity
distribution is not longer constrained to have a Gaussian form.
] = _(@ QQ+Q+Q@)P 43) In Figure 4 we have represented the probability distribution
function solution of eq 43 for the case in which an imposed
concentration gradient keeps the system outside equilibrium.
where D = KTz and 7 are the diffusion coefficient and the  When the velocity distribution relaxes very fast to the Max-
velocity relaxation time, respectively. The equation for the ellian equilibrium distribution, the probability distribution is

Previous equations can be rewritten in a more familiar form
by identifying the Onsager coefficients with macroscopic
quantities. In this way, with.,, = P/z, the fluxes read

= (v + %%)P (42)

density is given b330 a local Gaussian. On the contrary, for larger values of the
9P 9 (3 » D 9 velocity relaxation time, the Gaussian nature of the distribution
—=——uvP —(— + -+ —2—)P (44) function is lost. These non-Gaussian forms have been recently
at ox W\ox T Fd found in experiments performed with single molecétesnd

which describes the influence of inertial effects in the diffu- glasse¥ % under n.onequmbnu_m situations. . .
sion. 6.2. Translocation of a Biomolecule.Many biological

The previous example illustrates that when the variables that Processes involve the translocation of proteins or nucleic acids
would increase the entropy during the processes of interest arethrough pores or channels. One of the most common examples
considered explicitly, the local equilibrium assumption is valid IS the translocation of proteins from the cytosol to the endo-
in the space defined by such variables. By incorporating all the Plasmatic reticulum or the entry of the DNA of a bacteriophage
relevant variables into the description, it is possible to use into the cell. The simplest mechanism of translocation of a
MNET to study systems that are not as close to equilibrium as biomolecule is by simple diffusion. However, this mechanism
required by standard nonequilibrium thermodynamics. is very slow, and in many cases there are some proteins that

Let us study in more detail the concept of local equilibrium facilitate the entry of the biomolecule by binding reversibly to
in an extended space. For simplicity, we will consider the case it. The role commonly assumed to be played by these proteins
®(x) = 0. The condition of equilibrium is characterized by the was to rectify the diffusion and thus act as a Brownian ratchet:
absence of dissipative fluxes; that is to say Jpy= 0 andJ, = as soon as a given length of the biomolecule exits through the
0. Therefore, from eq 42 we obtain the well-known equilibrium pore, a protein binds to it and prevents its diffusion backward.
result that the velocity distribution is Gaussian with variance The dynamics of translocation is typically modeled by a
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diffusion equation for the lengtlx of the molecule that has
already passed through the pore

P_ 9

1 dE(n) 9P
ot ox *

T ax T o

(46)

Here,D is the diffusion coefficient of the biomolecule aid
represents the potential (of energetic or entropic origin) through
which the biomolecule diffuses. To analyze in detail the process
of translocation of nearly stiff biomolecules in the presence of
binding proteins, Brownian dynamic simulations were performed
in ref 34. It was found that particles that bind reversibly to the
chain give rise to a net force that pulls the chain into the cell

significantly faster than pure or even ratcheted diffusion. But it N=100

was also found that there are substantial nonequilibrium effects 101 vt

in the dynamics of the translocation. The force that pulls the - m Simulation D, =116

biomolecule depends strongly on how fast the translocation 8t 022000 5 o o

occurs compared to the binding of proteins. If both processes _ ,’ TN~ - °© oo o

occur at a similar time scale, the simple eq 46, whEre L sla T~

represents the potential corresponding to equilibrium adsorption :m _: A

of the proteins, was not able to describe accurately the process. o alt °

The discrepancies observed justified the need to consider the I

diffusion process in an extended space in which the dynamics I

of binding plays an important role. ”ﬁ .. " a
The nonequilibrium dynamics of translocation of a stiff chain

in the presence of binding particles was successfully described e & 10 iz 14 6

using MNET34 When translocation is fast compared to the time x (0)

it takes for the proteins to bind, the dynamics of binding plays Figure 5. (a) Snapshot of the Brownian dynamics simulation of the

a very important role. One may then consider astkariables translocation of a rigid chain into a spherical cell. The dark spheres
in this case both the length of the chain which has passeddepict the monomers of the chain, the gray spheres are the free proteins,
through the hole, and the number of proteins attached tmit, whereas the light gray spheres are the bound proteins. (b) Force driving

: L . the translocation as a function of the length of the chaimside @ is
The dynamics of translocation is thus considered as a COUpIEdthe size of the monomers of the chain). The squares and the hollow

diffusion process inx,n)-space. One can then follow the Steps  (jrcjes are the resuits of simulations fér= 100 binding proteins and
indicated in section 4 to obtain the Fokkd?lanck equation  two different values of the diffusion coefficient of the rod. The heavy

governing the evolution in time of the probability dend#fx,n,t) and the dashed lines are the predictions of MNET for these values of
Dio¢. Note that for smallDyog (i.€., slow entry of the chain, which
P 9 1 0A(X,Nn) P facilitates the equilibration of binding), the translocation force is roughly
ot = Ixrod @_ o P+ X + 4 times larger than for the other case, where translocation and binding
occur at the same time scale.
RO I D P
an "[kyT  an an (47) ics of an out-of-equilibrium system, and the success of the

MNET framework based on restoring local equilibrium in an

which provides a complete description of the kinetics of both extended space of variables.
chain entry and particle binding. Hefdis the free energyDioq The procedure described previously has also been used to
= ksT/&on, IS the spatial diffusion coefficient of the rod, with ~ analyze the role played by translational and rotational degrees
Zrod the corresponding friction coefficient am} is the kinetic of freedom of the clusters in the nucleation kinefiedt has
rate constant for the process of particle binding and unbinding, been shown that the nucleation rate is greatly influenced by
which can be approximated by the expresgar= acDo, where the dynamics of those degrees of freedom and that its expression
ais a length of order of the particle sizejs the concentration  differs from that obtained when the cluster is considered at rest
of the binding particles, and, their spatial diffusion coefficient, ~ and only the number of its constituent particles is taken into
obtained from the Smoluchowski theory of aggregation dynam- account. Experimental resuitshave corroborated this more
ics. The mean first-passage time, the mean force, and the averaggomplete scenario.
number of proteins attached to the chain can be computed from 6.3. Local Equilibrium in Slow Relaxation Systemsln the
the Langevin equations related to the FokkBtanck equation. previous subsection we have seen how the local equilibrium
The results for the average translocation force are representecconcept depends on the set of thermodynamic variables that
in Figure 5 for two different situations corresponding to fast are used. Local equilibrium can be recovered by increasing the
and slow chain entry. They agree with those obtained by meansdimensionality in the variable space where the process takes
of Brownian molecular dynamics simulations. place. Remarkably, certain features, which are considered as
When the kinetics of binding is very fast compared to the new and striking behaviors of nonequilibrium systems, such as
translocation, one then reaches an instantaneous equilibriumthe violations of the fluctuationdissipation theorem and the
adsorption corresponding to any given lengthand the fast Stokes-Einstein relation, are the result of a lack of completeness
variablen can be eliminated from eq 47. The resulting equation in the description of the processes. They can easily be explained
is then eq 46, which holds for equilibrium adsorption. This starting from the MNET description at local equilibrium in the
example reinforces the importance of considering all the extended space and then reducing the number of variables of
nonequilibrated variables for a proper description of the dynam- the system.



Feature Article J. Phys. Chem. B, Vol. 109, No. 46, 20051511

Consider a system with different characteristic time and length under a temperature gradient at local equilibritirf3 In any
scales whose energy landscape exhibits many local minimaother case, the fluctuatierdissipation theorem is not fulfilletf.
separated by potential barriers. The presence of barriers cause$his holds, even in simple systems subjected to an external
slow relaxation of the system. In the two-state model, the driving force, as a Brownian particle in a periodic potertial
minimal relaxation model, one assumes that the relaxation or in a shear flow'* Recent investigations in systems with
process consists of two main steps: a fast equilibration processmemory’ have established a hierarchical connection between
in the well followed by a slow relaxation in which the state of mixing, the ergodic hypothesis and the fluctuatiatissipation
the system jumps from one potential well to the other. The statestheorent’® The validity of a fluctuatior-dissipation relation,
of the system can be parametrized by the values of a reactionits experimental verification, and its connection with mixing
coordinate that varies continuously from the initial to the final have been reviewed in refs 49 and 50.
state, passing through a sequence of nonequilibrium states. It 6.4. Nonequilibrium Temperatures. The theory presented
is then plausible to assume that the system evolves via aenables us to analyze the meaning of temperature in situations
diffusion process iny-space. Assuming local equilibrium in  far away from equilibrium. To this end let us consider the case
y-space, variations of the entropy related to changes in theof a diffusion process in the presence of inertial effects, as
probability density are given through the Gibbs eq 18. Following discussed in section 6.1. In such a process, the tempeidiye
the steps indicated in section 4 we will then arrive at the at which the entropy production would be zero is giveCby
corresponding FokkerPlanck equation, similar to eq 16 and

from it to its associated Langevin equation 1 1 ( aln p(x,y)) (53)
dy ' ) T(x,v) vm\ v
T= 90+ (48)

This equation can be rewritten in a form similar to that of the
whereJ' is a random contribution to the diffusion current, which  equilibrium temperature:
has zero mean and satisfies the fluctuatidissipation theorem

1 0s(xw)

T(x,v) oe(v)
The fact that in many instances the time of the intra-well
relaxation is much smaller than that of the inter-well relaxation wheres; = —kg In P(x,2) is the configurational entropy and
is used to justify the reduction of the number of variables of &) =mv%/2 is the kinetic energy. The definition of an effective
the system by eliminating the fast variables and by keeping just temperaturd(x,») is, however, not unique. If we taley — v)
the values of the populations at each well, namalyand ns. instead ofe(v), with o the average velocity, the resulting
One then says that the system evolves via activation. Undertemperature would be that of local equilibrium. This local
this approximation, the dynamics of the system can be describedequilibrium temperature will give a nonzero entropy production.
through the kinetic equatiéh In general, becausgx,v) is a function of bothx andv, given
a pointx in space, there is no temperature at which the system
would be at equilibrium, i.e.T(x,v) = T(x). If an effective
temperature at a pointwere defined, it would depend on the
way the additional coordinate is eliminated. Thus, ambiguities
whereJ" is the random current in the new description whose in far-from-equilibrium quantities arise when considering a
correlation is given by lower dimensional space than the one in which the process is
actually occurring. This is to some extent similar to what
DOIG1)0= (k. My kMot —t)  (51) happens with effective temperatures defined through fluctua-
tion—dissipation theorems. In such cases, the effective temper-
which clearly shows that the correlation is not given by a ature can depend on the scale of observation. It is interesting
fluctuation—dissipation theorem. Only when fluctuations take to point out that all of these effective temperatures, despite their
place around equilibrium states, in which detail balance holds possible analogies with the equilibrium temperature, do not have
(k-m® = k-nz*9, does the previous relation reduce to the to follow the usual thermodynamic rules because the system is

W'(y,03(' t) 0= 2DIP(y HIB(y — y)ot — 1)  (49) (54)

dn, dn, 5 50
o @ e kn = J() (50)

fluctuation-dissipation theorem not actually at equilibrium at temperatuiéx). The previous
ot eq ) interpretation of an effective temperature is consistent with its
YOIty = 2k n, "ot — t) (52) characteristics obtained from the two-state model discussed in

L section 6.3. For an activated process in which the description
We can then conclude that the drastic elimination of the fast js performed in terms of the initial and final state, the

variables makes the fluctuatienlissipation relation break down.  temperature inferred from a fluctuatieulissipation relation is

In contrast, it holds when both relaxation processes are not a robust quantity because it depends on the observable and
considered. Following similar arguments one can show that the o the initial conditions of the systef.Thus, a possible
Stokes-Einstein relation, in which the diffusion coefficient is thermodynamics in which thermal effects are characterized by

proportional to the inverse of the viscosity, does not apply to effective temperatures would not have a consistent formulation.
supercooled colloidal suspensions with slow relaxatfoi.

The existence of a fluctuatierdissipation relation, according
to the previous result, relies on an equilibrium st&ter more
generally, on a local equilibrium state. In fluctuating hydrody-
namics theory, the fluctuatierdissipation theorem is assumed MNET provides a thermodynamic basis to the stochastic
to have the same form as in equilibrium but with the local dynamics of systems outside equilibrium and shows that
temperature replacing the equilibrium temperature. Its validity thermodynamic concepts can be applied at mesoscopic scales,
has been corroborated in light scattering experiments in a fluid where it was believed that thermodynamic arguments were of

7. Additional Applications and Comparison with Other
Theories
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no use. MNET gives information not only about the evolution is useful to analyze the properties of nonequilibrium quantum
of the probability distribution function but also about the thermal systems and to elucidate the role played by dissipation in their
and mass exchange processes between the system and the ba#wolution.

These processes are the subject of great interest nowadays and 7.2. Comparison with Other Theories. There are many

are being intensively studied in small systems with the purpose situations in which the general results obtained with MNET

of analyzing the validity of the thermodynamic concepts in encompass the results derived by other approaches, such as
situations in which the fluctuations become very important. The kinetic and stochastic process theories and projection operator
kinetic equations for systems as clusters, single molecules, ortechniques. Our purpose in this section is to discuss some of
mesostructures can be obtained through MNET in very generalthese situations showing the generality of the MNET formalism.

situations, including the ones in which the system is subjected  Kinetic Theory MNET provides in general kinetic equations
to driving forces or gradients or those in which it evolves of the FokkerPlanck type. The FokkerPlanck equation
through potential barriers of any kind. obtained with MNET for a dilute suspension of Brownian
7.1. Additional Applications. MNET has also been applied particles under a temperature gradféntoincides with that
to other situations involving systems of very different nature. derived from kinetic theor§®°The case of a velocity gradient
In the next paragraphs we will discuss very briefly the main has also been studiéfiThose equations can also be obtained
achievements. with MNET for higher concentrations when direct and hydro-

Activated DynamicsAs shown in section 5.2, MNET makes ~dynamic interactions are relevafit*as in the case of semidilute
it possible to account for the intrinsic nonlinear behavior of the and concentrated polymer solutioffsHydrodynamic interac-
activated dynamics. In the study of activated processes, it hastions are introduced through the matrix of Onsager coefficients,
been used to derive the ButieVolmer equation of electro- which is proportional to the Oseen tensor. Direct interactions
chemistry8! originally formulated under empirical grounds. C€OMe into the description through a contribution to the chemical
MNET has also been used to study phase transitions at potential. For'polymers in thc—; concentrated regime, the Fekker
interfaces, such as evaporation and condensation phenéfena, F/anck equation expressed in terms of the monomer concentra-
and to analyze active transport through biological membranes o0 field’? has the same form as that proposed in the classical
in which ions take large amounts of energy from the hydrolysis

monograph of Doi and Edward3.For a Brownian particle
of ATP to move from low to high concentrations through protein

moving in a granular flo## in a homogeneous cooling state,
channel$3 In this process, the diffusion current is a nonlinear the resulting FokkerPlanck equation is the same as that derived
function of the chemical potential differences of the ions at both

from the kinetic of gases with inelastic collisioffs.
sides of the membrane. Stochastic ProcesseShe scheme presented provides a
phenomenological procedure to derive the Fokkelanck

applied to the study of growth phenomena driven by surface equation describing the dy_namlcs Of mesoscopic sys%%ﬂﬁs_s
formalism can be useful in cases in which the complexity of

) " . )
tension effects! MNET provides expressions for the growth the system or the nonequilibrium nature of the environment

rates which erend on geometric parameters of the aggregatesmakes a detailed description of the problem impractical.
such as their volume or surface, or on the number of the

. . . . Representative examples are the kinetic processes discussed in
56 . i -
constltuen(;_smglei partlclefjé. t_The_y tz;:re obtained frogwbtht(; sections 5.3 and 6.2. The theory also applies to nonlinear
corrésponding entropy production in tn€ space spanned by thos ransport systems in the presence of memory effects that are
parameters. An interesting example also involving nucleation

h | < th £ ol I introduced through the time dependence of the Onsager coef-
Fioﬁggmena at early stages Is the case of polymer crystalliza-f;iens76 | these cases the FokkePlanck equations have the

same form as those obtained from Langevin and master
Nonequilibrium Steady State8NET has been used to  equations. As an example, the resulting generalized Fekker
analyze the peculiar characteristics of systems at nonequilibriumplanck equation, related to the generalized Langevin equation,
steady state¥, providing a mesoscopic thermodynamic frame- coincides with that obtained in ref 77 for non-Markovian
work from which one derives equations of state of systems systems with Gaussian noise.
outside equilibriun®® A statistical mechanical model leading Projection OperatorsBrownian motion in the presence of
to the existence of a stationary state was proposed in ref 60.external gradients has also been studied by means of projector
The pressure of a sheared suspension of Brownian particlespperators® For the case of a temperature gradient, the Fokker
obtained from the kinetic part of the pressure tensor shows apjanck equations obtained with projector operdforand
nonanalytical dependence on the shear rate. Its form is the sam@NETS7 are identical. Nonlinear Langevin equations for the
as that previously obtained for liquids from projection opera- moments of the distribution function can be derived from the
tor* and from kinetic theory?® The thermodynamics of  Fokker-Planck equation obtained with MNET when the On-
nonequilibrium steady states of single Brownian macromolecules sager coefficients depend on the state variali@ée resulting
have been investigated in ref 64, also by means of an entropyequations coincide with those obtained from projector opera-
production, leading to the formulation of a mesoscopic theory tors79
for single macromolecules consistent with the second law. A Langein Descriptions.The relationship between the Lan-
steady-state thermodynamics for molecular motor proteins hasgevin equation and the laws of thermodynamics was discussed
been formulated in ref 65. in ref 80. This formalism, known as stochastic energetics, has
Quantum SystemsvINET has also been brought to the been applied to energy transduction processes and to the
quantum regime. MNET provides a master equation for the characterization of nonequilibrium steady st&fe&.mesoscopic
density matrix of the system, which is obtained from the entropy nonequilibrium thermodynamic formalism for the Langevin
production in a manner similar to the classical case. It has beenequation has also been proposed and applied to single macro-
applied to spin systems to rederive the Bloch equations and tomolecules*#2In the approach we have presented, the Langevin
harmonic oscillators to obtain a quantum mechanical Langevin equation is straightforwardly connected to thermodynamics
equatiorf® The formulation of the theory in the quantum domain through its FokkerPlanck equation.

Aggregation and Growth PhenomedNET has also been
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7.3. Advantages of MNET.In the previous paragraphs, we 8. The Actual Meaning of Being “Far Away from
have shown that MNET encompasses the results obtained byEquilibrium”
means of other more complex nonequilibrium statistical me- .
chanics theories. A distinctive feature of MNET is that it  1he Presence of unbalanced thermodynamic forces moves
provides a straightforward formalism to implement the dynamics € System away from equilibrium. How far can these forces
of nonequilibrium systems from the knowledge of their equi- move the system away from equilibrium, as discussed in the
librium properties. The advantages of using MNET become classic monographdepends not only on the values of the force _
especially manifest when there are dynamic processes Ofb_ut also on the nature of the process. .For transport processes in
different nature taking place simultaneously, as for instance simple systems, such as heat conduction (Fourier law) and mass

when the system is subjected to fluctuations and exchanges hea?IifoSion (Fick law), local equilibrium typically holds, even

or mass with a nonequilibrium environment that has its own wher_1 the systems are subject_ed to large or even very large
dynamics. In such cases, the Langevin and the FokRe&mck gradients’ We have seen in section 4 that the prol:.)abllllty.current
equations are not a mere extension of those formulated foralso obeys a linear law: the FokkePlanck equation is linear

simpler situations and must be derived by means of a nonequi-i&iadrﬁscc;g):; nsé::ur?:c?gsss;?i?t iﬁ]ar; tl)s t];\ac:sg%rgs:sqlcl:llltl)t;rzlel#\rgs.s
librium statistical mechanics theory. MNET uses a systematic Y y imply

and simple method through which those equations can easilyto equilibrium. on the_contrqry, for .the Wide class of activated
be obtained. The cases of the translocation of a biomolecule PrOceSses discussed in section 6, linearity breaks down already

: - L oo o at small values of the affinity, which seems to imply that local
and of the Brownian motion in a nonequilibrium fluid discussed

. . . equilibrium is lost almost immediately.

previously are illustrative examples. In the former, the Fokker -
Planck equation contains two currents corresponding to the two _The results of the ”_‘_e”?Od we have presented |nd|ca§e that
relevant dynamic variables. In the latter, the imposed gradient existence of local eql.““b.”um depends on the.set of variables
not only affects the intensity of the noise but also the form of usgd in the charact.erlzatmr.l. As ShO\.Nn n section 5.2, Wh.e’.“.a”
the kinetic equation by adding a new term that is responsible actlva_ted process is described notjust in terms qf the initial
for thermal diffusion. and_ 'fln_al states but thro_ugh its reaction cc_)ordlnate, local

To illustrate explicitly the influence of a nonequilibrium equilibrium hold§. Increasmg th? d|m¢n3|onallty of '-[he space
environment in the dynamics of the system. we consider of thermod_ynamlc variables, by including as many d|me_n_S|qns
Brownian motion in a temperature gradient. The effects of the as nonequilibrated degrees of freedom, leads to local equilibrium

} i . A in the enlarged space and allows the use of nonequilibrium
gradient on the probability current of a Brownian particle can

. . oe thermodynamics at shorter time scales in which fluctuations are
directly be.mferrgd from the ent.ropy'producuon n t.he space of g present. We can thus conclude that many kinetic processes,
mesoscopic variables by taking into account its Onsager

; ~ such as nucleation, chemical reactions or active transport, which
poupllng to the heat current. The form of the probability current 56 peen assumed to be far away from equilibrium because of
IS their intrinsic nonlinear nature, take place at local equilibrium
when a finer description is adopted.
ju _ LuTVT/TZ . kBLuuaiﬂln(P/Pqu) (55) 8.1. An Example: Single Macromolecule.To further
u illustrate how systems brought outside equilibrium may be
) ) ) ) considered at local equilibrium in an extended space, we will
wherel is the velocity of the Brownian particle, theterms  stdy the case of a macromolecule in a solvent at constant
are Onsager coefficients anleq is the local equilibrium  temperature subjected to an external driving force. In addition
distribution functior?” The presence of particles, in tumn, o the position of its center of mass the macromolecule is
modifies the heat current through the system. This effect can characterized by an additional fluctuating variailewhich
also be analyzed through the entropy production. The resulting might represent, for instance, its size or its orientation. For small
heat current is values of the force, local equilibrium ixtspace holds in such
a way that we can formulate the Gibbs equation expressed now

jq =L VT/T? — kg fLTu%ln(P/Pm ) d (56) in differential form

Tds(x) = —u(x) dp(x) — F dO(x) (58)
where the Onsager coefficients obey the Onsager relatign
= —Ly1. These equations clearly show the existence of a whereF is the force andd(X) is the average value of the
coupling between the two irreversible processes present in theyariable defined as
system: probability diffusion and heat conduction. The resulting
Fokker-Planck equation

() = [OP(x,0) do (59)
P _ d _ P\ vy o ) _ . )
S Ut VPt (PU + kgT ﬁ) +tTag PVT with P(x,0) being the probability distribution and(x,0) its
(57) conjugated chemical potential. Let us now assume that the
driving force increases in such a way that the system is no longer
with 8 being the friction coefficient of the particles anda in local equilibrium in x-space. The way to restore local

coefficient related to the Onsager coefficiegt, coincides with equilibrium is to increase the dimensionality by considering the
that obtained from kinetic theof}.The Fokker-Planck equation  fluctuating variable as an independent variable and defining
and the evolution equation for the temperature field provide a the Gibbs equation as

complete description of the heat exchange process in the system.

This example illustrates the way in which MNET can systemati- T ds(x,0) = —u(x,0) dP(x,0) (60)
cally be used to analyze heat exchange processes between the

system and its environment in the presence of fluctuations. Proceeding as in section 6, one could obtain from this equation
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the corresponding FokkeiPlanck equation, which would

describe the dynamics of the macromolecule in the extended

space.

9. Conclusions

A typical way to study nonequilibrium mesoscopic systems
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relevant to the mesoscopic scale. Such microscopic theories aré-€tt: 2003 94, 048102.

fundamental to understand how the macroscopic and mesoscopiGs;
behavior arise from the microscopic dynamics. On the downside,

(20) Hanggi, P.; Talkner, P.; Borkovec, MRev. Mod. Phys199Q 62,

(21) Pagonabarraga, |.] fz-Madrid, A.; RubiJ. M. Physica A1997,

they usually involve specialized mathematical methods that 237 205.

prevent them to be generally applicable to complex systems;
and more importantly, they use much detailed information that ,qg°
is lost during the coarse-graining procedure and that is actually

(22) Pagonabarraga, I.; Ryl M. Physica A1992 188 553.
(23) Gomila, G.; Peez-Madrid, A.; RubiJ. M. Physica A1996 233

(24) Reguera, D.; Rupd. M. J. Chem. Phys1998 109 5987.

not needed to understand the general properties of the meso- (25) Reguera, D.; Ribd. M. J. Chem. Phys2003 119, 9877.

scopic dynamics.

(26) Reguera, D.; Rupd. M. J. Chem. Phys2003 119 9888.
(27) Myung, H. S.; Yoon, Y. J.; Yoo, E. S.; Kim, B. C.; Im, S. &.

The approach we have presented here starts from theapp polym. Sci2001 80, 2640.

mesoscopic equilibrium behavior and adds all the dynamic
details compatible with the second principle of thermodynamics
and with the conservation laws and symmetries that are present,
in the system. Thus, given the equilibrium statistical thermo-

dynamics of a system, it is straightforward to obtain Fokker

(28) Onsager, LPhys. Re. 1931, 37, 405; 1931, 38, 2265.

(29) Ruby J. M.; Peez-Madrid, A.Physica A1999 264, 492.

(30) Vilar, J. M. G.; RubiJ. M. Proc. Natl. Acad. SciU.S.A.2001, 98,
081.

(31) Liphardt, J.; Dumont, S.; Smith, S. B.; Tinoco, |.; Bustamante, C.
Science2002 296, 1832.

Planck equations for its dynamics. The dynamics is characterized  (32) Buisson, L.; Bellon, L.; Ciliberto, SJ. Phys.: Condens. Matter

by a few phenomenological coefficients, which can be obtaine

d 2003 15, S1163.

(33) Buisson, L.; Cicotti, M.; Bellon, L.; Ciliberto, Sroc. SPIE Int.

for the particular situation of interest from experiments or from soc. Opt. Eng2004 5469 150.

microscopic theories, and describes not only the deterministic

properties but also their fluctuations.
We have shown explicitly the applicability of these meso-

(34) Zandi, R.; Reguera, D.; Rudnick, J.; Gelbart, W.Roc. Natl.
Acad. Sci. U.S.A2003 100(15), 8649.

(35) Reguera, D.; Rubd. M. J. Chem. Phys2001, 115 7100.

(36) Viisanen, Y.; Strey, R.; Reiss, H. Chem. Phys1993 99, 4680.

scopic thermodynamics methods to a broad variety of situations, viisanen, Y.; Strey, R.; Reiss, F200Q 112, 8205.

such as activated processes in the nonlinear regime, inertial
effects in diffusion, and transport in the presence of entropic 357

(37) Peez-Madrid, A.; Reguera, D.; Ribi. M. Physica A2003 329,

(38) Peez-Madrid, A.; Reguera, D.; RGUpbd. M. J. Phys.: Condens.

forces. It is important to point out that there are many ater2004 14, 1651.
mesoscopic systems that have been studied with the methods (39) Rubs) J. M.; Santamaria-Holek, |.; Bez-Madrid, A.J. Phys.:

of statistical thermodynamié&The dynamics of most of those

systems still remains poorly understood. Our approach opens
the way to study their dynamics in terms of kinetic equations

of the FokkerPlanck type.
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