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Abstract

Plankton is the productive base of aquatic ecosystems and plays a major role in the global
control of atmospheric carbon dioxide. Nevertheless, after intensive study, the factors that drive
its spatial distribution are still far from being clear. The models proposed so far show very limited
agreement with actual data as many of their results are not consistent with 5eld observations.
Here, we show that 7uctuations and turbulent di8usion in standard prey–predator models are able
to accurately and consistently explain plankton 5eld observations at mesoscales (1–100 km). This
includes not only the spatial pattern but also its temporal evolution. We explicitly elucidate the
interplay between physical and biological factors, suggesting that the form in which small-scale
biotic 7uctuations are transferred to larger scales may constitute one of the key elements in
determining the spatial distribution of plankton in the sea.
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Understanding how complex ecosystems work often relies on simpli5ed models that
disregard many details of the actual system while retaining the essential information
[1–3]. In the case of marine ecosystems, not only the simplest approaches failed to
explain the spatial distribution of plankton populations but also more sophisticated
models were unable to account consistently for the most remarkable features [4]. Even
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Fig. 1. Transects obtained from 5eld observations for (a) phytoplankton and (b) zooplankton (redrawn from
Ref. [5]). Here Chlorophyll a is a measure of phytoplankton activity.

now, it is not clearly understood why under apparent homogeneous conditions, such as
temperature and nutrients, plankton is still patchilly distributed. This particular situa-
tion is of remarkable importance since in the absence of external sources of patchiness
the pattern must arise as a mere consequence of the interactions between the individ-
uals. The typical form of these patterns is illustrated in Fig. 1. The main trait is that
zooplankton is more patchilly distributed than phytoplankton [1,5].
The most intuitive model that can be proposed to explain plankton dynamics [2] con-

siders the population densities of prey (phytoplankton), N , and predators (zooplankton),
P:

@N
@t

= FN (N; P) + DN∇2N ; (1)

@P
@t

= FP(N; P) + DP∇2P ; (2)

where DN and DP are di8usion coeLcients; and FN and FP are functions that account
for the interaction between both species. This class of models is the most frequently
used in theories on pattern formation in ecology [2,6,7]. In the case of plankton, they
were able to display spatial heterogeneity under homogeneous conditions [8]. Zooplank-
ton, however, was less patchilly distributed than phytoplankton, in contradiction with
the observed pattern [1,8].
There are two relevant features that are not taken into account by this kind of models.

First, di8usion in the sea is not quantitatively well modeled by usual Fickian di8usion
[9]. Both types of di8usion processes will tend to spread and mix the populations,
but the speci5c form in which this is achieved is di8erent. Second, there is always an
intrinsic stochasticity associated with the dynamics of the population [10,11]. From birth
to death, all processes share some degree of chance. The way randomness manifests in
the dynamics of the individuals depends on the scale we are looking at [1]; deterministic



J.M.G. Vilar et al. / Physica A 317 (2003) 239–246 241

equations are expected to be valid in the limit of high numbers of individuals [12].
Therefore, a deterministic description may be a reasonable one for phytoplankton alone,
but this does not need to be so for zooplankton which has much fewer individuals [13].
More importantly, while phytoplankton interacts mainly with zooplankton, zooplankton
interacts also with 5sh and whales which are far from being evenly distributed.
These two additional features have been incorporated in a prey–predator model:

@N
@t

= FN (N; P)− ṽ · ∇̃N ; (3)

@P
@t

= FP(N; P)− ṽ · ∇̃P + 
(t) ; (4)

where dispersal is given by advection with a velocity 5eld ṽ [ ≡ ṽ(̃r)] that depends on
the position r̃, and where a noise term 
(t) has been included.
In general, the e8ects of the advective terms depend on the precise form of the

velocity 5eld. For some turbulent 5elds [14], the e8ect of advection can be simpli5ed
as follows: given a passive 5eld f(̃r; t) which evolves as

@f
@t

=−ṽ · ∇̃f ; (5)

the spatial Fourier transform of f(̃r; t) follows from

dfk
dt

=−D|k|�fk ; (6)

where k is the wave number and D a constant. In this case, advection can e8ectively
be viewed as a di8usion process with a di8usion coeLcient De8 (k) = D|k|2−� that
depends on the scale. In contrast to usual Fickian di8usion, the variance of the 5eld is
not proportional to t but is given by 〈r2〉 ∼ t2=�. This is the type of time dependence
observed for the dispersion of tracers in the sea [9,15], from which one can obtain the
explicit value of the parameter �.
To render our model analytically tractable, we consider the system around a stable

state. Fluctuations in zooplankton, 
, move the system away from equilibrium. If the
7uctuations are not too large, we can perform a linear expansion of FP and FN :

FN (N; P) = cN − a11N − a12P ;

FP(N; P) = cP + a21N − a22P : (7)

Here cN , cP , a11, a12, a21, and a22 are positive constants. For the simplest form
of the noise term [12], Gaussian white and uncorrelated in space [〈
(̃r; t)〉 = 0 and
〈
(̃r; t)
(̃r′; t′)〉=2�2�(̃r′ − r̃)�(t′ − t)], and for a22 ∼ 0 the variance spectra are given
by

SN (k) =
a212�

2

(D̃N + D̃P)D̃N D̃P
and SP(k) =

�2

D̃P
; (8)

where D̃N ≡ D|k|�+a11, D̃P ≡ D|k|�+a22, and �2 is the intensity of the noise source.
The assumptions involved do not substantially constrain the applicability of the results.
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When a22 is not negligible, the expressions become more involved but the qualitative
behavior is still the same. In particular, the high wave number limit remains unchanged.
On the other hand, the type of noise we have considered is quite general and can arise,
among others, from a random distribution of predators feeding on zooplankton or even
from the birth process itself [16]. Other types of noise with di8erent properties, e.g. as
those induced by turbulence [14,4], are certainly present but we assume that they are
not relevant for the spectral properties of the pattern at the mesoscales.
The variance spectra obtained from previous equations display a power-law region

with exponent −3� for the phytoplankton and −� for the zooplankton. The value of
� ∼ 0:87 inferred from di8usion in the sea [15] leads to exponents −2:6 and −0:8,
both in excellent agreement with 5eld data [1,17,18]. It is worth emphasizing that the
power law behavior appears only for suLciently high wave number (short scales); for
low wave numbers (long scales), the variance spectra is 7at, as observed in most 5eld
data [1,17,18].
In the same way, one can compute the coherence between two patterns at di8erent

times [18], which provides information about the global dynamics. For the phytoplank-
ton this quantity is given by

N (k;Ot)
N (k; 0)

=
D̃PeD̃NOt − D̃N eD̃POt

D̃P − D̃N
; (9)

where N (k;Ot) =
∫∞
0 ‖N (k; !)‖2e−i!Ot d!. This result indicates that short scales lose

their correlation faster than long ones and that eventually the whole pattern will be
decorrelated, as observed in satellite measurements [18].
In Fig. 2 we plot the typical form of the variance spectra and the squared coher-

ence for di8erent time lags. Both of them are in excellent agreement with 5eld data
[1,17–19]. Remarkably, the main properties of the pattern already appear in the linear
regime. Therefore, non-linear interactions that drive the system towards a stable state
will lead to similar results. To study this aspect in more detail, we have performed
numerical simulations for typical non-linear interactions as explained in the caption of
Fig. 3. The resulting two-dimensional spatial distribution, transects, and variance spec-
tra (shown in Fig. 3) agree with both the linear model and 5eld data. Other types of
nonlinear interactions—e.g. di8erent functional responses—as well as di8erent types of
noise—e.g. acting on zooplankton growth rate—also produce similar results (data not
shown).
Field observations indicate that the power law region of the variance spectra and

the value of the exponent of this power law are robust properties of the system; i.e.,
these properties are present under a wide variety of conditions. In our model, there
is always a power law region whose exponent does not depend on biotic factors but
is completely determined by the speci5c form in which turbulent di8usion acts on
the system. This provides a straightforward explanation of the predominance of the
observed exponents for the phytoplankton falling between −3 and −2. These are the
values that arise for 2D (� = 1) and 3D (� = 2=3) isotropic turbulence, respectively
[14]. In the sea, the value of this exponent will depend on the particular situation,
but it is reasonable to assume that it will be between those of 2D and 3D isotropic
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Fig. 2. (a) Variance spectra S(k) for prey and predators from Eqs. (1), (2), and (7). (b) Square coherence
[N (k;Ot)=N (k; 0)]2 for prey (Eq. (9)) for time lags of 1, 6; and 7 days. The values of the parameters are
D = 12, a11 = 0:3, a22 = 0:05, and � = 1. The length and time units are km and days, respectively.

turbulence, as the available data shows [9,15]. There are also non-robust properties,
such as the region where the variance spectra turns 7at. In the model, this depends on
many factors: e.g. growth and death rate, and turbulence. Field data shows that, indeed,
the position of this region exhibits great variability and that sometimes it is not even
present in the range of scales observed.
Turbulent di8usion and noise are two obvious features that have already been con-

sidered in the context of marine ecosystems, but none of them by itself has been able
to explain the mesoscale patterns. In particular, it is well known that noise generates
variability, i.e., that noise can be a source of patchiness [20,21]. For instance, reaction–
di8usion prey–predator models with noise produce patterns that at a glance strongly
resemble those observed in the sea [22,23]. The exponents obtained (−6 for the phyto-
plankton and −2 for the zooplankton), however, are far from the observed ones. This
quantitative, but not qualitative, disagreement is due to the dependence of the e8ec-
tive di8usion coeLcient with the scale. Thus, reaction–di8usion models are unable to
integrate correctly the scale dependence of the physical properties of the environment.
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Fig. 3. Numerical simulations for a prey–predator model given by Eqs. (1) and (2), with FN (N; P) ≡
rN (1 − N=K) − cPf(N ) and FP(N; P) = P(gf(N ) − �). The functional response is f(N ) = N 2=(1 + N 2).
Here, K , c, g, r and � are positive constants. The velocity 5eld ṽ ≡ ṽ(̃r) consists of a series of vortices
distributed as in Ref. [27] and the noise is assumed to be Gaussian with zero mean and correlation function
〈
(̃r; t)
(̃r′; t′)〉=2[�P(̃r; t)]2�(̃r′− r̃)�(t′− t). Typical transects for (a) prey and (b) predators. (c) Variance
spectra for prey and predators. These results were obtained by discretizing the corresponding equations on
a 250 × 250 2D mesh [28], with periodic boundary conditions and then by using a standard method for
integrating stochastic di8erential equations [29]. The values of the parameters are r = 0:3, K = 4, c = 2,
g = 0:1, j = 0:05, and � = 3:5. The length and time units are km and days, respectively. The size of each
cell of the discretized mesh is 0:25× 0:25 Km2.

When this is taken into account, noise not only generates patterns but is also able to
produce the right ones.
Turbulence plays a somehow ambivalent role. It can act in the same way as di8usion

does (transferring variance from smaller to larger scales) and also in the opposite way
(from larger to smaller scales). These two types of processes are referred to as turbulent
di8usion and turbulent stirring, respectively. The former is the one we have considered
in our model. It was already considered in Ref. [4] together with the type of noise
that turbulence induces but without the noise that can arise from biotic factors. The
latter only plays an important role when some degree of environmental heterogeneity
is present [24]. Indeed, it has been shown that turbulent stirring can generate patterns
that resemble the observed ones if spatial heterogeneity and time delays are introduced
in the model [25]. The type of time delays introduced, however, can lead non-realistic
situations such as growing zooplankton in the absence of phytoplankton.
Finally, it is important to emphasize that in our case noise is the key element that

allows moving from the individual to the population description. Our results suggest
that zooplankton dynamics at lower scales a8ects the pattern at the mesoscale in the
same way as noise does. Considering a more detailed description is not necessary
to explain and to understand the main characteristics of the pattern. This does not
mean that the actual dynamics of zooplankton is not important at all: its growth rate,
its survival, and the intensity of noise itself depend, among other factors, on how
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zooplankton aggregates and on how it avoids its predators [26]. It rather means that
under a wide range of conditions all those intricate mechanisms will lead to patterns
with properties as those induced by noise.
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