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Divergent Signal-to-Noise Ratio and Stochastic Resonance in Monostable Systems
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We present a class of systems for which the signal-to-noise ratio always increases when increasing the
noise and diverges at infinite noise level. This new phenomenon is a direct consequence of the existence
of a scaling law for the signal-to-noise ratio and implies the appearance of stochastic resonance in some
monostable systems. We outline applications of our results to a wide variety of systems pertaining to
different scientific areas. Two particular examples are discussed in detail. [S0031-9007(96)01331-2]

PACS numbers: 05.40.+j

Stochastic resonance (SR) [1-11] is a phenomenoiihen, the SNR is defined by SNR S(w()/Q(w() and,
wherein the response of a system to a driven periodiconsequently, has dimensions of inverse of time.
signal is enhanced at an optimized nonzero noise level. The existence of a characteristic timen our system
Although increasing the noise level in order to enablewill enable us to propose the form of the SNR through the
us to more easily detect a signal was considered countesimple scaling law

intuitive, this constitutes one of the most surprising results SNR = f(a, wor)r! 3)
of the SR. It seems obvious, however, that the signal-to- » w/(1em) l/(1+n; ' _ _
noise ratio (SNR) must go to zero as noise is increasefyherer = D k andf(a, wo7) is a dimen-

indefinitely. Contrarily, in this Letter we present a classSionless function, provided that(x) does not introduce
of systems in which the SNR always increases when th@nother characterlstl_c fume. We will suppose that for a
noise is increased and diverges at infinite noise level@iven value ofr the limit of SNR whenw, goes to zero
instead of exhibiting a maximum at a particular value®Xists. As s_uch, the following expression for small driv-
of the noise. This result implies the presence of SR ind frequencies holds

monostable systems for which a maximum in the SNR SNR= f(a,0)7 L. 4

at nonzero noise level has never been observed before.l_et us now discuss the main characteristics of our

These fi.ndir_1gs open ‘up new possib_ilities concerningmodel upon varying the exponent If n = 0, one finds
the a_ppllcatlon (.)f SR to a great variety of pr.W.S'CaI’the exact result SNR= f(a, wok ')k, which does not
chemlcal,.and biological systems. .TO be explicit, Wedepend on the noise level. Even more interesting is
have applied our results to two particular cases; namel){ e behavior obtained for the case> 0. The scaling

a fe?rromagnet]c particle and a standard model of neur f the SNR indicates that it increases when increasing
exgz_lrgablef med|:ch. " il di is d ibed bthe noise level, achieving the behavior SNRD as

€ class of sysiems we Wil dISCUss 1S described by, goes to infinity. A particular and common situation

only one relevant degr_ee of freec_iom Wh(_)se dynamics Iﬁlustrating this case corresponds to the poteritidl) =
governed by the following Langevin equation: %h(t)x“ [Fig. 1(2)], obtained when: = 1, for which

dax —h(x1 + £(r) (1) SNR increases a§/D. In Fig. 1(b) we have depicted
dt ’ the SNR corresponding t&,(x). Here the magnitude

where h(t) = k[1 + asinwot)], with k¥ and a (<1)  9iving the response of the system has been takeh =
constants,n is an integer number, and(r) is Gauss- x2. Our result is obtained from numerical simulations
ian white noise with zero mean and second momen@Y integrating the corresponding Langevin equation by
(EDE(r + 7)) = D8(7), defining the noise leved. The ~ Means of a standard second-order Runge-Kutta method
system can be characterized by the quantityhich is for stochastic differential equations [12,13]. In order to
a function of the variablex(r). This quantity is some- Verify the scaling law proposed through Eg. (4) we have
times referred to as the response to the oscillating forcdit the values of the SNR by a power law in the range of

The effect of this force may be analyzed by the power? from 1 to 1000 for the potentialV,(x). SNR is given
spectrum by aD? with b = 0.498 + 0.004 anda = 0.76 = 0.02,

27w o which is in good agreement with the theoretical value
Plw) = f d;/ wv( + 7)e @dr. (2) b= % The power spectrum correspondingVtg(x) for
0 - two values of the noise levels is shown in Fig. 1(c). Both
To this purpose we will assume that it consists ofthe signal and noise background increase when increasing
a delta function centered at the frequeney plus a D, but the signal increases faster.
function Q(w) which is smooth in the neighborhood of In spite of its simplicity, our model encompasses a great
wo and is given byP(w) = Q(w) + S(wg)d(w — wy).  variety of common situations. Around an equilibrium
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FIG. 1. (a) Potentialy;(x), V>(x), and V5(x), for the maximum value ofi(r) (solid line) and for the minimum value (dashed
line). Herek = 1, @« = 0.5, andw,/27 = 0.1. (b) Behavior of the SNR for the three potentials presented previously. (c) Power
spectrum corresponding %, (x) for D = 0.1 andD = 1000.

state most systems may be approximated by a parabolic The divergence of the SNR is due to the fact that the
potential. Thus fom = 0 our model describes a system potential is unbounded. It is obvious that for a bounded
around an equilibrium state in a force field whose intensitypotential the noise can completely destroy the response
varies periodically in time. A physical realization of such of the system. An important consequence follows from
a system could be a dipole under an oscillating field. Fothe previous results: If the SNR grows for low noise
n = 0, however, the SNR is independent®f In order level (when the potential around the minimum can be
to understand the behavior of the SNR,ass increased approximated by a potential liké/; or V3) and the

we must take into account the corrections to the parabolipotential is bounded (which implies that SNR goes to
approximation. Commonly, these corrections are giverzero for large noise) then the SNR exhibits a maximum,
by a term proportional ta*. Two particular realizations thus indicating the appearance of SR. To illustrate this
of this situation have been analyzed numerically resultingpoint we report results of numerical simulations for the
in an increase of the SNR [Fig. 1(b)] with the noise dynamics of a ferromagnetic particle [17—19] under an
level. For V,y(x) = h(;)(%XZ + %x“) [Fig. 1(a)], which  external magnetic field and with energy of anisotropy
basically corresponds to a potential that around thé(r)sin* ¢, with 6 being the angle between the magnetic
minimum grows faster than a parabolic one, we expectoment and the axis of easy magnetization. The external
that the SNR is an increasing function of the noise, sincénagnetic field is then applied in the direction of the
for low noise level the potential behaves éﬁ(t)xz, easy axis of magnetization and its intensity is as high as
whereas for high noise level afl,gh(t)x“. A slightly the system becomes mono;table. The dynar_nlcs of Fhe
different potential isVs(x) — %xz + %h(t)xét [Fig. 1(a)], magnetization may be described by the Langevin equation

which differs from the previous one only in the behavior a0 _ sing — h(r)sir® 0 cosd + £(1) (5)

at low noise level. Since under this circumstance this dt '

potential reduces toi—x2 and, consequently, it is not where the first term on the right hand side accounts for
modulated byi(r), SNR goes to zero for lowb. For the interaction with an external magnetic field, the second
n = 1, our model describes the dynamics of a systenfor the anisotropic effects, and the third is a noise source
at the critical point of both the pitchfork and Hopf due to a random field or to thermal fluctuations. The
bifurcations [14], occurring in many systems including, toparameteri(t) is assumed to be oscillatory, the reason
mention just a few [15,16], chemical reactions, models obeing, for example, the presence of oscillations of the
populations, convection in liquids, lasers, and instabilitiegressure of the medium surrounding the particle. The
in semiconductors. response of the system is now given by @éps.e., by
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the magnetization. For low noise, the potential [Fig. 2(a)]describing the dynamics of the spatial average of the
and the magnetization reduces écﬁz + %h(t)e“ and transmembrane potentidl. Here C is the membrane

1 — 162, respectively. Therefore our previous resultsc@pacitanceR is the membrane resistance, amdis
apply to this case. The corresponding SNR is shown it external current applied to the net. The nonlinear
Fig. 2(b) and exhibits a maximum at a finite noise level.term ¢(U) is proportional to the gain of the neuron and
This result clearly shows the existence of an optimafccounts for its mean firing rate. Its form is usually taken
noise level for which the system is more sensible tot0® be a sigmoidal, e.g.,

periodic changes of the environment. In Fig. 2(c) we have H(U) = (1 + e 7U=0)~1 @
represented the power spectrum for some values of the . . o o
noise level. Measurements of the SNR of a ferromagneti@here v is a constant, fixing the sensitivity to excitation
particle under an external magnetic field and with energyf the populationé is the threshold mean voltage, and
of anisotropy have been performed in Ref. [20]. Although® 1S @ parameter depending on the structure of the net
the experimental conditions are slightly different from the@nd the characteristics of the neuron. We will consider
ones of our example a maximum in the SNR is alsothat the (_external current a_lpplled to the net fluctuat_es
found. Further experiments, similar to the ones reporte@Nd that it may be approximated by a Gaussian white
in [20], could be carried out to corroborate the remaining?0ise [P(1)) =0 and (P(1)P(r + 7)) = D4(7)]. The

predictions of our model. potential function [Fig. 3(a)] corresponding to the variable
The next example to be considered corresponds to & IS given by

standard model of a neural excitable medium. This model (1 __, 5 & (U—06)

characterizes the activity generated in a slab of neural V(v) = C ER vs - ;In(l te ) G

tissue comprising a very large number of closely packedl_ . .

; : he membrane resistand® can be modified through
and coupled nerve cells [21-23]. We will consider the ; o . :
case of all-to-all connectivity in which spatial dependenceSmall changes in the permeability of a suitable ion. Let us

may be ignored. The model of neural excitable mediunfFonsider that this modification is periodic in time. There
is given by the f(.)IIowing equation [21]: exists a range of parameters for which the neurons of the

net are not excited, i.el/ = 0, consequently this state

dU is not affected by small variations &t. The situation

_ _p-—1 ! . n '
¢ dr RTU+ ¢U) + P, (6) changes drastically with the addition of noise. For small
a
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FIG. 2. (a) Potential energy of the ferromagnetic particle [Eq. (5)] as a functighfof the maximum value oh(r) (solid line)
and for the minimum (dashed line). The parameters are taken0.3, « = 3/2, and w,/27 = 0.1. (b) SNR for the previous
values of the parameters obtained through computer simulations. (c) Power spectim=for0s, 0.15, 0.35, and1.
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