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“The aeroplane will never fly.”

—Lord Kelvin, 1892
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Wright brothers: the first flight on Dec. 17, 1903
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“Heavier-than-air flying 
machines are impossible.”

—Lord Haldane, Minister of War, Britain, 1907
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How to build a flying machine?

Aviation
technology

Ornithology

Flapping wings
and feathers!
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How do birds fly?

Aviation
technology

Ornithology

Rockets or
balloons!
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Bridging the gap

Theoretical
neuroscience,

Bayesian decision
theory

Machine
learning, neural

networks

Experimental
neuroscience

Physics,
aerodynamics

Aviation
technology

Ornithology

Intelligent things Flying things
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Intact

cerebellum

and sober

Cerebellar

lesion or
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What: Figuring out how the brain works.
How: Building brains for robots = system-level modelling,

implementing a whole vertebrate/mammalian brain.
Why: Because we can.

Computational neuroscience group
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ZenRobotics Ltd.

www.zenrobotics.com

Harri Valpola

Pilot Project: Robots for Waste 
Recycling
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Target application: hand-eye 
coordination for robots
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Pilot plant
Scheduled to be in production in 2011
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Jack the Gripper
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Our main strengths in research

Neuroscience � machine learning / AI / neural nets
���� robotics in unstructured environments

Cognitive architecture : the organisation of the 
whole brain

• Cerebral cortex
• Basal ganglia
• Cerebellum
• Hippocampus
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Cerebral cortex

• Selection of useful information (attention and 
learning)
– Unsupervised learning: from raw data to abstract 

concepts (sensory and motor)
– Segmentation of objects

• Planning and simulation
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Cerebral cortex: a network of 
interacting modules

• Small areas of cortex recognise their inputs
• The areas share this information and bias their decisions 
• Selective attention emerges from the dynamics

primary input

contextual input

local inhibition
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Now we have methods for:

• Learning features (DSS, etc.)
• Learning correlation structures
• Integration, segmentation and selection of 

information
• Abstraction: low-level sensory and motor �

more abstract sensory and motor

• [work in progress]: learn and perceive relations 
between objects

• [future work]: simulation and planning
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Independent component analysis (ICA) for 
natural images

• ICA is an example of 
..unsupervised learning.

• Can learn something like 
.. V1 simple cells.

=s1 + s2 +…+ sn

http://www.cis.hut.fi/projects/ica/imageica/
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Model for correlation structure

• Recurring template:

Low−level

features

Context

relation
Context−dependent
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Model for correlation structure

• Key problem: how to learn this efficiently?

Abstract

concept

Low−level

features

Abstract

concept

Low−level

featuresRelation

Regular neural nets Model for correlation structure
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Segmentation: grouping features to 
objects

• Long-range 
associations are 
stronger between 
correlated features

• Anatomical basis for 
segmentation, Gestalt 
principles

• Dynamical model: 
features of the same 
object become 
synchronised
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Attention vs. interpretation

• The same mechanism 
can select information 
and choose between 
consistent explanations

http://ilab.usc.edu/classes/2002cs564/lecture_notes/06-Schemas.ppt
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Example of abstraction: case 
pendulum

• Task: swinging up a pendulum with 
a weak motor � needs multiple 
back-and-forth swings (torque in 
phase with angular velocity)

• Low-level sensory input: sin θ, 
cos θ, dθ/dt

• Low-level motor output: torque force 
acting on the joint



2.12.2009
Computational Neuroscience Group,
Helsinki University of Technology

Learning sensory abstraction by slow 
feature analysis

• Exploration (generating data): keep flipping the 
torque direction randomly

• Find a feature which changes the slowest �
mechanical energy

• This is the feature which
best predicts the success
in the task (emotions)

Low-level sensory

Abstract sensory (what)

Emotions
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The resulting “what” feature
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Abstract motor features

• Time derivative of the slow feature is a good 
candidate for a relevant action: maybe 
something important was done?

• Change in mechanical energy =
acceleration / deceleration

Low-level sensory

Abstract sensory (what)Abstract motor

Emotions
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Correlation structure between low-
level and abstract motor features

• Search for latent variables which represents the 
mapping between low-level and abstract motor 
features

Low-level motor Low-level sensory

Abstract sensory (what)Abstract motor

Emotions

Abstract sensory (how)
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Learn to predict the “how” feature

• The relevant missing latent variable turns out to 
be essentially dθ/dt

• With the model, control can be lifted from 
controlling the torque to controlling acceleration 
/ deceleration

Low-level motor Low-level sensory

Abstract sensory (what)Abstract motor

Emotions

Abstract sensory (how)
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The resulting “how” feature
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12/6/2009

Thank you!

www.zenrobotics.com


