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Abstract. We present in this work a robust color transformation which has been 
applied succesfully to natural scenes allowing the fast and precise segmentation of 
regions  corresponding  to  color  landmarks  under  uncontrolled  lightning.  The 
process  is  grounded  in  the  the  Dichromatic  Reflexion  Model  (DRM) and  the 
properties of the RGB space. 
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1   Introduction
Robust and fast detection of color regions is one of the typical artificial vision 

problems.  Given  our  color  perception,  color  clustering  is  not  an  appropriate 
approach most of the times. Among the various color spaces, the HSV and CIE 
L*a*b [1] are the ones closest to human perception. We work on the RGB space, 
where the DRM model is defined [2].

The need to detect color regions steems from its conventional use in signaling: 
red for danger, blue and green for informative, yelow for danger advice. Also Red, 
Green and Blue are the basic colors in the RGB space unit cube. All the remaining 
colors are represented as linear combinations of these colors. 

In robotic contexts, working on artificial environments, we must benefit from 
this information source by the robust detection of signaling symbols drawn in the 
basic colors. A critical problem is removing the reflections in the image, which 
interfere with the observed surface. The two goals of the color image processes are 
identified  as:  efficient  color  detection  and  reflection  removal.  We present  an 
efficient solution to these problems on the RGB space, using the idea of Specular 
Free images [3,6].

In the following, section 2 presents a brief explanation of the DRM model and 
its justification in the RGB space. We present our method in section 3. We present 
some experimental results in section 4. We give our conclusions and further work 
lines in section 5.

2  Some properties of the RGB cube and the DRM
Human chromatic perception is the resul of biological evolution along millions 

of  years.  The  mental  interpretation  of  colors  is  subject  to  subjective  aspects: 
philosophical,  cultural  and evolution.  We can say that  the  human beings  have 
developed individual color perception traits. However we have a consensus on the 
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basic color interpretation which is represented in the color space used for their 
representation. The HSV color space is one that matches the human perception 
better than the RGB space. The pair Hue-Saturation defines the chromatic space, 
while V is the light intensity. 

2.1 Some properties of RGB
The most used color space is RGB. From the computational point of view, and 

the artficial vision one, the RGB space has the following interesting properties: 

1. It is the default color representation space for all the machines, from 
perception (Bayer's mosaic) up to the monitor visualization. 

2. The vertices of the unit RGB cube represent the primary colors (red, 
blued, green),  the secondary colors (yellow, cyan, magenta) and the 
black and white colors. The ones most used in signalization. 

3. The reflections or brights are characterized in the RGB cube for its 
proximity to the black-white diagonal. 

4. The Dichromatic Reflection Model (DRM) has  been defined in  the 
RGB space.

2.2 Dichromatic Reflection Model (DRM)
The DRM was introduced by Shafer [2], explaining each point of the observed 

surface as the sum of two components: a diffuse component D and an specular 
component S, as can be appreciated in figure [1]. The diffuse component refers to 
the chromatic properties of the observed surface, while the specular component 
refers to the light  color. Reflections in the surface have a great  content  of  the 
specular component. 

Algebraically, DRM is expressed as  Ix=mdxD+msxS where  md and  ms are 
weighting values for the diffuse and specular components, respectively, and their 
values are in the range between 0 and 1. Therefore, a surface with homogeneous 
chromatic features can be expressed as the sum of two colors, its own and the 
illumination color. In figure 1 the shadowed region represents the convex region of 
the plane dc⊓ containing all the possible colors expressed by the above equation. 
For an scene with several colors, it will be expressed as Ix=mdxD(x+msxS, where 
D depends on the spatial  localization  x.  However, still  S is independent of the 
spatial localization  x, assuming that the illumination chromaticity is constant for 
all the scene. Finally, the complete model is expressed as Ix=mdxD(x)+msxS(x) 
where both chromaticities depend on the spatial localization: several surface and 
illumination colors. 



Fig. 1. Dichromatic Reflection Model

2.3 RGB features from the DRM point of view 
The DRM expresses the color of each pixel as the sum of a difuse and specular 

components.  Most  authors  assume  a  uniform  illumination  as  a  problem 
simplification.  This  simplification  is  correct,  because  most  of  the  times  the 
illumination  color  is  close  to  the  pure  white.  However,  working  in  constant 
illumination chromaticity, we can obtain it used several methods [4,5].

We can classify image pixels into:

• Diffuse pixels: showing the observed surface color, with an almost null 
specular component. 

• Specular  pixels:  whose  specular  component  is  much  bigger  than  the 
diffuse component. 

Placement of difuse and specular pixels is qualitative different in the RGB cube. 
Let us focus on the proximity of pixels to the black-white cube diagonal, defined 
as Lw:r,g,b=P+su; s R∀ ∈  where P=0,0,0 and u=[1,1,1] . Given a uniform color 
region, without any specular component, its representation in the RGB cube would 
be a line, the diffuse chromaticity line for this region. However, due to noise, it 
appears as an elongated point cloud.

Given a uniform color region, with high specular component, from the DRM 
point of view, it must appear as a line parallel to line Lw or approaching it. Again, 
due to noise, an elongated pint cloud appears. Specular image regions have RGB 
representations far from the color space origin. 

Finally,  a  uniform color  region  (color  constancy)  with  some non negligible 
specular  component  must  show a  V  shape.  The  point  cloud  beginning  in  the 
coordinate origin and go away from line Lw contain the diffuse points, while the 



ones close to it are the specular ones. Using this knowledge, we can penalize the 
specular component and magnify the diffuse component. 

3 Method
Being interested in pure color regions, we expect their color representation in 

the RGB cube far from the line  Lw .  On the other hand, we want to penalize 
specular regions, those close to line Lw and far from the coordinate system origin. 

A main feature of line Lw is that the three components of its points are equal 
r=g=b; r,g,b [0,1]∀ ∈ .  For  pixels  close to this  region,  we  r g b; r,g,b [0,1]≅ ≅ ∀ ∈ . 
As the pixels fall away from this line, the differences among their components are 
greater. We use this difference as the intensity of the processed image. As we want 
to preserve the chromatic information, only the intensity is modified, boosting the 
diffuse pixels and nullifying the specular pixels. The new intensity of the pixels is 
computed  as  difference  between  the  maximum  and  minimum  of  their  RGB 
components:

Intensity=maxr,g,bI-minr,g,b(I)

This  intensity  replaces  the  V  component  in  the  HSV  representation,  thus 
preserving  the  chromatic  content  of  the  pixel.  We  show  in  algorithm  1  an 
implementation in SciLab.

Algorithm 1 SF2
//I is a RGB image
// IR is the transformed image

Function IR = SF2(I)
New_Intensity = (max(I,3) – min(I,3));
Imghsv = rgb2hsv(I);
Imghsv(:,:,3) = New_Intensity;
IR = rgb2hsv(Imghsv);

Endfunction

3.1 Application
The  SF2  image,  the  one  obtained  after  the  described  transformation,  is 

characterized by the absence of reflections, substituted by dark spots. Also the 
difuse regions are boosted in the image. With an straightforward analysis we can 
find all the diffuse regions. 

4 Experiments
We have performed experiments in three different contexts: first the detection of 

markers  in  real  scenes,  other  with  synthetic  images,  and  the  last  about  the 



detection of robots in real time. All the results can be viewed in the following web 
address: http://www.ehu.es/ccwintco/index.php/SMC

4.1 Mark detection
The definition of the experiment is as follows:

1. Context:
a) Place: a lab corridor, with artificial illumination of diverse intensity 

and uniform color.
b) Markers are DIN A4 sheets of different colors: red, cyan, yelow and 

blue.
c) Standard webcam Phillips SPC 900NC/00

2. Experiment: From each image (recorded in a MPEG file) we find the SF2 
images, and there we find the markers.

In figure 5 we have thre images from the described scenario. The ones on the 
left are the closest ones to the camera, the ones on the right are the farthest ones. 
Notice variations in illumination along the corridor. In figure 3 we show the SF2 
images as follows: left corresponding to the middle one in figure 5 , middle after 
the analysis of the intensity and to the right a zoom of the previous one, showing 
that one mark is missing. In table 1 we show the detections performed on each 
mark, where 'x' means good detection and '+' incomplete detection.

Fig. 2. Natural images

Fig. 3. SF2 images

Mileston
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Distance 
in meters

2,6 4 6 8.4 10.8 12.8 14.5 17.3 20.7 26.2 31.7 36 41.9 46 50

Label 1 x x x x x x x x x x x + x
Label 2 x x x x x x +
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Label 3 x x x x x x x x x x x x + X
Label 4 x x x x x x x x x +

Table 1. Measures

4.2 Synthetic images 
The  above  color  transformation  has  been  applied  to  natural  and  synthetic 

images.  Synthetic  images have the advantage that  we know with precision the 
color and geometry of the surface, as well as the illumination color. In figure 4 we 
show some of these images, in the top row we place the original image and on the 
bottom the computed SF2 images. First image is a monochromatic image, with a 
green surface. The second is a Voronoi tesselated surface painted with random 
colors.  Last  image is  a  bichromatic  oval.  We observe that  SF2 images remove 
completely all the reflections, cancelling the specular component. In the Voronoi 
tesselated  ring  surface,  besides  canceling  brights  spots,  colors  have  been 
enhanced.

The SF2 method has been ideated for robotic contexts. In figure 5 we show 
results  on three natural images. The two first ones are customary marks in the 
previously described experiement, and the last one is used by other researchers in 
the literature of specular correction. The first two scenes show the magnification 
of the markers in the image. In the last case we see that the bright spots are cleanly 
removed, respecting original color.

Fig. 4. Synthetic images



Fig. 5. Natural images

4.3 Real robot detection 
The last experiment is the detection of small robots (SR1) in a real scene and 

real  time.  The  robots  are  yellow color  against  a  yelowist  background,  making 
visual  detection tricky. The floor  is  very  bright  with  many bright  spots  fromt 
above illumination.  Besides,  robot's  upper  part  contains  the  printed  board and 
some fixing for the cable being carried. The robots have lots of shadows, thus only 
a small part of the robot can be clearly detected as pure yellow. Figure 6 contains 
three images: first the capture from the scene, second its SF2 image, third the SF2 
image  intensity  analysis  to  detect  the  robots.  The  web  address 
http://www.ehu.es/ccwintco/index.php/SMC contains the original video. We must 
point out that illumination is not constant, there are doors, windows, etc.

Fig. 6. Robots detection

5 Conclusions and further work
The  work  presented  here  proposes  a  method  for  color  detection  in  images, 

characterized by:

1. Being fast and efficient.
2. Removes the specular component. 



3. Magnifies  color,  preserving  scene  chromaticity,  modifying  only  the 
intensity.

4. Can work in real time.

Other methods for the removal of the specular component are based on iterative 
methods that render them unsuitable for real time processing. In the future we will 
work on the color constancy problem and the color edge detection from the DRM 
point of view. 
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