Dictionary based hyperspectral retrieval

Miguel A. Veganzones¹, Mihai Datcu², Manuel Graña¹

¹Grupo de Inteligencia Computacional Basque Country University (UPV/EHU), Spain

²German Aerospace Agency (DLR), Germany

ICPRAM 2012, Algarve (Portugal)

Prof. Manuel Graña (UPV/EHU)

www.ehu.es/computationalintelligence

ICPRAM2012 1 / 32

Outline

Prof. Manuel Graña (UPV/EHU)

Motivation

- Compare hyperspectral images by Dictionary-based distances.
 - Approximation to the Normalized Compression Distance (NCD) based on compression factors -> computational expensive.
 - Grounded in the Normalized Information Distance (NID) based on Kolmogorov complexity -> uncomputable in a Turing sense.
- Apply to a Hyperspectral Content-Base Image Retrieval System (Hyperspectral CBIRS).
 - Experimental study in a real hyperspectral scene.

Kolmogorov complexity

- The conditional Kolmogorov complexity of a signal x given a signal y, K(x|y), is the length of the shortest program running in an universal Turing machine, that outputs x when fed with input y.
- The Kolmogorov complexity of x, K(x), is the length of the shortest program that outputs x when fed with the empty signal λ, that is, K(x) = K(x|λ).

Normalized Information Distance

 The information distance, E (x, y), is an universal metric distance defined as the length of the shortest binary program in a Turing sense that, from input x outputs y, and from input y outputs x.

$$E(x,y) = \max \left\{ K(x|y), K(y|x) \right\}$$
(1)

• The normalized information distance, NID(x, y), is defined as:

$$NID(x,y) = \frac{E(x,y)}{\max\{K(x),K(y)\}}$$
(2)

• Non-computable in a Turing sense due to $K(\cdot)$.

Prof. Manuel Graña (UPV/EHU)

www.ehu.es/computationalintelligence

Normalized Compression DIstance

 The normalized compression distance, NCD(x, y), is a computable version of (2) based on a given compressor, C.

$$NCD(x,y) = \frac{C(xy) - \min \{C(x), C(y)\}}{\max \{C(x), C(y)\}}$$

where $C(\cdot)$ is the length of a compressed signal by using compressor C, and xy is the signal resulting of the concatenation of signals x and y.

- If the compressor C is normal, then the NCD is a quasi-universal similarity metric.
- Computationally expensive due to C(xy).

(3)

Dictionary distances

- Distances based on the codewords of the dictionaries extracted by means of dictionary-based compressors, such as the LZW for text strings.
- This dictionary approach only requires set operations to calculate the distance between two signals given that the dictionaries have been previously extracted.
- Thus, dictionary distances are suitable for mining large image databases where the dictionaries of the images in the database can be extracted off-line.

Proposed Hyperspectral CBIR system

Prof. Manuel Graña (UPV/EHU)

www.ehu.es/computationalintelligence

ICPRAM2012 8 / 32

Dictionary-based compression

- Given a signal x, a dictionary-based compression algorithm looks for patterns in the input sequence from signal x.
- These patterns, called words, are subsequences of the incoming sequence.
- The compression algorithm result is a set of unique words called *dictionary*.
- The dictionary extracted from a signal x is hereafter denoted as D(x), with D(λ) = Ø only if λ is the empty signal.
- The union and intersection of the dictionaries extracted from signals x and y are denoted as D(x∪y) and D(x∩y) respectively.

Dictionary distances

• Normalized Dictionary Distance (NDD):

$$NDD(x,y) = \frac{D(x \cup y) - \min \{D(x), D(y)\}}{\max \{D(x), D(y)\}},$$

• Fast Dictionary Distance (FDD):

$$FDD(x,y) = \frac{D(x) - D(x \cap y)}{D(x)}.$$
(5)

- NDD and FDD are both normalized admissible distances satisfying the metric inequalities.
- Thus, they result in a non-negative number in the interval [0,1], being zero when the compared files are equal and increasing up to one as the files are more dissimilar.

(4

Experimental data CBIR performance meassures Experimental methodology

Outline

Prof. Manuel Graña (UPV/EHU)

www.ehu.es/computationalintelligence

ICPRAM2012 11 / 32

Experimental data CBIR performance meassures Experimental methodology

HyMap scene

- The hyperspectral HyMAP data was made available from HyVista Corp. and German Aerospace Center's (DLR) optical Airborne Remote Sensing and Calibration Facility service.
- The sensed scene corresponds to the radiance captured by the sensor in a flight line over the facilities of the DLR center in Oberpfaffenhofen (Germany) and its surroundings, mostly fields, forests and small towns.
- The data cube has 2878 lines, 512 samples and 125 bands; and the pixel values are represented by 2-bytes signed integers.

Prof. Manuel Graña (UPV/EHU)

www.ehu.es/computationalintelligence

ICPRAM2012 12 / 32

Experimental data CBIR performance meassures Experimental methodology

HyMap patches and categories

- We cut the scene in patches of 64 × 64 pixels size for a total of 360 patches.
- We grouped the patches by visual inspection in five rough categories:
 - The three main categories: 'Forests', 'Fields' and 'Urban Areas'.
 - A 'Mixed' category for those patches that presented more than one of the three main categories.
 - A 'Others' category for those patches that didn't represent any of the above or that were not easily categorized by visual inspection.
- The number of patches per category are: (1) Forests: 39, (2) Fields: 160, (3) Urban Areas: 24, (4) Mixed: 102, and (5) Others: 35.

Experimental data CBIR performance meassures Experimental methodology

HyMap datasets

- We defined three datasets:
 - Dataset 1: patches belonging to the three main categories: Forests, Fields and Urban Areas.
 - Dataset 2: we added patches from the fourth category: Mixed.
 - Dataset 3: contains the patches from all five categories.
- Datasets present an increase in complexity.

Experimental data CBIR performance meassures Experimental methodology

Outline

Prof. Manuel Graña (UPV/EHU)

www.ehu.es/computationalintelligence

ICPRAM2012 15 / 32

Experimental data CBIR performance meassures Experimental methodology

Precision-Recall curves

- Precision, *p*, is the fraction of the returned images that are relevant to the query.
- Recall, q, is the fraction of returned relevant images respect to the total number of relevant images in the database according to a priori knowledge.
- If we denote T the set of returned images and R the set of all the images relevant to the query, then

$$p = \frac{|T \cap R|}{|T|} r = \frac{|T \cap R|}{|R|}$$

- Precision and recall follow inverse trends when considered as functions of the scope of the query.
 - Precision falls while recall increases as the scope increases.

Experimental data CBIR performance meassures Experimental methodology

Average PR curves

- To evaluate the overall performance of a CBIR system, the Average Precision and Average Recall are calculated over all the query images in the database.
- For a query of scope k, these are defined as:

$$\bar{p}_{k} = \frac{1}{N} \sum_{\alpha=1}^{N} p_{k}(H_{\alpha})$$
(6)

$$\bar{r}_k = \frac{1}{N} \sum_{\alpha=1}^{N} r_k(H_\alpha).$$

Prof. Manuel Graña (UPV/EHU)

www.ehu.es/computationalintelligence

ICPRAM2012 17 / 32

Experimental data CBIR performance meassures Experimental methodology

Normalized Rank

- The Normalized Rank is a performance measure used to summarize system performance into an scalar value.
- The normalized rank for a given image ranking Ω_{α} , denoted as $\operatorname{Rank}(H_{\alpha})$, is defined as:

$$\operatorname{Rank}(H_{\alpha}) = \frac{1}{NN_{\alpha}} \left(\sum_{i=1}^{N_{\alpha}} \Omega_{\alpha}^{i} - \frac{N_{\alpha}(N_{\alpha}-1)}{2} \right), \quad (8)$$

where N is the number of images in the dataset, N_{α} is the number of relevant images for the query H_{α} , and Ω_{α}^{i} is the rank at which the *i*-th image is retrieved.

• This measure is 0 for perfect performance, and approaches 1 as performance worsens, being 0.5 equivalent to a random retrieval.

Experimental data CBIR performance meassures Experimental methodology

Average Normalized Rank

- 001010101010101000111 1010101010
 - The average normalized rank, ANR, for the full dataset is given by:

$$ANR = \frac{1}{N} \sum_{\alpha=1}^{N} \operatorname{Rank}(H_{\alpha}).$$
 (9)

Prof. Manuel Graña (UPV/EHU)

Experimental data CBIR performance meassures Experimental methodology

Outline

Prof. Manuel Graña (UPV/EHU)

www.ehu.es/computationalintelligence

ICPRAM2012 20 / 32

Dac

Experimental data CBIR performance meassures Experimental methodology

Experiments

- We independently test the NCD, the NDD and the FDD distances in three CBIR experiments corresponding to each of the three previously defined datasets.
- Each hyperspectral image is first converted to a text file in two ways: pixel-wise and band-wise.
- The NDD and FDD are calculated using the dictionaries extracted by the LZW compression algorithm.
- The NCD is calculated by CompLearn software using default options, that is BZLIB compressor.

Experimental data CBIR performance meassures Experimental methodology

CBIR experiment

- For each hyperspectral image H_{α} in a dataset we calculate the dissimilarity measure between H_{α} and each of the remaining images in the dataset using a selected distance.
- These dissimilarities are represented as a vector $\mathbf{s}_{\alpha} = [s_{\alpha 1}, \ldots, s_{\alpha N}]$, where N is the number of images in the dataset and $s_{\alpha,\beta}$ is the dissimilarity between the images H_{α} and H_{β} , with $\alpha, \beta = 1, \ldots, N$.

Experimental data CBIR performance meassures Experimental methodology

CBIR experiment (II)

- We can define the ranking of the dataset relative to the query image, $\Omega_{\alpha} = [\omega_{\alpha,t} \in \{1, ..., N\}; t = 1, ..., N]$, as the set of image indexes ordered according to increasing values of their corresponding entries in the dissimilarity vector \mathbf{s}_{α} .
- That is, we sort in increasing order the components of s_α, and the corresponding rendering of image indexes constitute Ω_α, so that s<sub>α,ω_{α,t} ≤ s<sub>α,ω_{α,t+1}.
 </sub></sub>

Experimental data CBIR performance meassures Experimental methodology

CBIR performance

- For each hyperspectral image H_{α} , a query $Q_k(H_{\alpha})$ is formulated returning the k most similar (less dissimilar) images H_{β} in the dataset relative to the image H_{α} , where k is the scope of the query and takes values in the range $1 \le k \le N$.
- The groundtruth for a query image H_{α} is a ranking, Ω_{α}^{GT} , given by the a-priori categorization made by visual inspection.
- This way, the relevant set for a query patch H_{α} is formed for all those patches belonging to its same category $\mathscr{C}(\alpha)$.

Prof. Manuel Graña (UPV/EHU)

Experimental data CBIR performance meassures Experimental methodology

CBIR performance (II)

• Given a query $Q_k(H_\alpha)$, the set of returned images $T_k(H_\alpha)$ and the set of relevant images $V_k(H_\alpha)$ are defined as follows:

$$T_{k}(H_{\alpha}) = \Omega_{\alpha,k} = \left[\omega_{\alpha,p} \text{ s.t. } s_{\alpha,\omega_{\alpha,p}} \leq s_{\alpha,\omega_{\alpha,k}}\right]$$
(10)

$$V_{k}(H_{\alpha}) = \Omega_{\alpha}^{GT} = [\beta \text{ s.t. } \mathscr{C}(\beta) = \mathscr{C}(\alpha)]$$
(11)

where $\mathscr{C}(\gamma)$ indicates the category to which the patch H_{γ} belongs.

• Now $T_k(H_\alpha)$ and $V_k(H_\alpha)$ can be used to calculate the average precision and recall measures of the system, as well as the average normalized rank.

Precision-Recall curves

Prof. Manuel Graña (UPV/EHU)

www.ehu.es/computationalintelligence

ICPRAM2012 26 / 32

PR curves conclusions

- In all the experiments NDD outperforms the other distances independently of the image to text string conversion ordering used.
- NCD outperforms FDD showing that the lack of a normalization factor in the FDD is an important issue.
- The band-wise NDD gives the best performance in all the experiments, due to the high correlation on consecutive bands.
- However, surprisingly, the band-wise ordering shows a bad performance for low recall values using FDD and NCD, improving as the recall values increase up to performances similar to the pixel-wise ordering.

PR curves conclusions (II)

- In general, the performance decreases smoothly as we include hardest categories, yielding still good precision-recall values for the NDD function.
- Also, NCD presents a general lower precision compare to dictionary-based distances, although its performance decreases more slowly than the performances of NDD and FDD as we add more difficult categories.

Prof. Manuel Graña (UPV/EHU)

Average Normalized Rank Experiment 3

	ANR		
Category	FDD	NDD	NCD
Forests	0.065	0.049	0.162
Fields	0.323	0.235	0.315
Urban Areas	0.011	0.013	0.107
Mixed	0.246	0.254	0.318
Ot hers	0.197	0.232	0.425
Average	0.169	0.156	0.266
Pixe	-wise o	rdering	101

	ANR		
Category	FDD	NDD	NCD
Forests	0.130	0.061	0.304
Fields	0.369	0.164	0.226
Urban Areas	0.006	0.008	0.674
Mixed	0.254	0.250	0.360
Ot hers	0.177	0.210	0.570
Average	0.187	0.139	0.427
Dand	, mico o	rdaring	

Band-wise ordering

Prof. Manuel Graña (UPV/EHU)

www.ehu.es/computationalintelligence

ICPRAM2012 29

29 / 32

ANR conclusions

- ANR results confirms the average outperform of NDD over FDD and NCD, although FDD slightly outperforms NDD in some cases.
- Interestingly, ANR can partially explain the effect in the FDD and NCD precision-recall curves using band-wise ordering for low recall values:
 - FDD is having problems retrieving the 'Fields' category.
 - NCD is having problems retrieving the 'Forests' and 'Urban Areas' categories.
- Further experiments must be conduced to give a better explanation to why band-wise ordering affects so much FDD and NCD performance.

Summary

- We have introduced a hyperspectral CBIR System using dictionaries.
- The dictionaries approach solves the computational cost problem by approximating NCD using dictionaries extracted offline from each of the database images.
- Results using real hyperspectral datasets show that the NDD outperforms the FDD and the NCD.
- In order to extract the dictionaries (or compress the signals for the NCD) the arrangement of the image data affects severelly the performance of the FDD and NCD similarity functions.
 - Further experiments must be conduced to find an explanation of that unexpected effect.
- Generally, we can conclude that the presented results validate the use of dictionaries for hyperspectral image retrieval.

Thanks for your attention

- Miguel A. Veganzones: miguelangel.veganzones@ehu.es
 - Prof. Manuel Graña: manuel.grana@ehu.es
 - Prof. Mihai Datcu: mihai.datcu@dlr.de
 - Grupo de Inteligencia Computacional: www.ehu.es/computationalintelligence