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* Hoses are quite common in construction sites:

Motivation

— Shipyards
— Building sites
* They transport
— Water
— Power
— Ailr
— Fluids of other kind
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e Problem statement

— Design of a control strategy for a multirobot system
composed of a collection of cooperative robots
manipulating the hose

e Desired features

— Distributed: the local decisions are based on local
knowledge

Motivation

— Self-sensing: able to determine its actual configuration

— Adaptive: able to perform under uncertain and new
environmental conditions
e Able to sense the environment
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* Long term research plan

— Assuming global perfect knowledge
e Model hose dynamics

Motivation

* Derive adaptive control rules

— Assuming perfect local knowledge
e Model local hose dynamics
e Local control rules

— Incorporate communication noise

— Incorporate local sensing

* Integrate local models from uncertain local and remote sensing
information
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Motivation

* Scope of the paper
— Introducing the geometrical model of the hose
— Giving an adaptive rule for configuration
modification
e Based on global knowledge

e Without taking into account internal dynamics

— Giving some hints about the introduction of the
internal dynamics in the system model
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~— Hose geometrical modeling

e Splines
— Give a continuous description along the
unidimensional object

— Geometrically Exact Dynamic Splines (GEDS)
* Accounts for the rotation of the hose at each point

e Exhaustive and rigorous mechanical analysis exist
for this kind of systems.

— Def: piecewise polynomial functions
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e Splines: a set of
control points are
parameters of the
curve

Hose geometrical modeling

¢
P2 .

P4

P1®

Fig. 1. Cubic spline with six control points
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Fig. 2. Hose modelled with cubic splines
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e We assume

Hose geometrical modeling

— Constant section diameter
— Transversal sections not deformed

— No internal dynamics in the initial model
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e GEDS model qg=(c,0) = (x,y,2,0)

— The hose 1s described by a collection of
traversal sections
e centers  c(?)

e orientations

Fig. 3. Beam
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Hose geometrical modeling

* The spline model

b; 18 the basis function of the control point g;.

lbq;(u) - qi, u € [o, L].
s arclength
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Basic control

e Goal: to give an adaptive rule for the
transition between hose configurations

* No internal dynamics
e Spline model

* Robots placed at regular intervals along the
hose
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Basic control

Fig. 4. Multirobot configuration for the hose control
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* Derivative of hose points relative to control
poIints

Basic control
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- Basic control

 Dynamic dependence of individual robot
speed on the variation of the spline control
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e Objective function: distance between actual
and desired control point positions

Basic control

D(g) =) la—ql
1=1
 Minimized by gradient descent

""" =q — A\V(D(q))

ICONIP 2008, Auckland New
Zealand, november 26, 2008



e Let it be u(t) the position of the spline

control point

du
i —VD(u(t))

Basic control
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* The multi robot dynamics that move the
hose to the desired configuration is given by

gr(s) = Jri.u(s)

|

i (5) :{ Jri{—2eT=¢ (u(0) —u.)}, 5 € [0,1)
T w(l) = ux, u(l) =0

Basic control
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* The relationship between the external and
the internal forces 1s given by eq.

9 T -
d (LT) =Fi _ r_{T_ , Vi E {L...,ﬂ}-

Internal dynamics

[

e I : external forces
e U: hose potential energy
e T: kinetic energy
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e External forces

Internal dynamics

— F, streching force
Fg
— 'p tension torque F=|Fr|.
- Fp
— I'g curve torque
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Internal dynamics

Fig. 5. Potential energy induced forces on the hose
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Internal dynamics

e Potential energy

Hokke matrix . H

tension vector =
stretching tension e,
torsion ten sion =

curve tension £y,

-
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e Kinetic energy

Internal dynamics

000
0p0O Inertial matrix
000
000 Iy
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 We arrive to a matrix expression of the external
forces needed to reach the desired configuration

Internal dynamics

F=MA-F

where
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On going work

* Integrate the internal dynamics into the
basic multirobot control

* Development of stmulation models
e Design of physical realizations

— Gripping

— Sensing: the hose and the environment

— Communication
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* Design of the decentralized control system

Further work

* Design cooperative sensing strategies

* Design of experimental settings and tasks
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* Thanks for your attention
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