Lattice Independent Component
Analysis for fMRI analysis

Manuel Grana, Maite Garcia-Sebastian,
Carmen Hernandez Grupo de Inteligencia
computacional, www.ehu.es/ccwinico

University of the Basque Country

ICANN 2009, Limassol, Cyprus,
Sept. 14, 2009



Contents

Introduction and motivation
Description of the approach

Some theoretical background

The endmember induction algorithm

Results on a case study

ICANN 2009, Limassol, Cyprus,
Sept. 14, 2009



e Current techniques for fMRI analysis

Introduction

— SPM: statistical parametric maps
e General Linear Model
e Statistical inference (t-test, F-test)
 Random Field Theory to set the test threshold

— ICA: linear source deconvolution
e Statistically independent sources

e Mixing Matrix
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Introduction

 SPM 1s a kind of supervised approach

— Experimental settings are included in the GLM
design matrix.

— Suited for block design experiments
— Not suited for event driven experiments

— The aim 1s to discover voxel sites that show
correlations of BOLD signal and the
experimental design.
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* ICA 1s a kind of unsupervised approach

Introduction

— Linear approach

— The sources correspond to an unsupervisedly
discovered design matrix

— The mixing matrix corresponds to the correlations
— Suited

* to discover patterns in the voxels activations
e for event driven experiments

 for the study of brain connectivity
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Introduction

* The Lattice Independent Component
Analysis
— Is a mixture of a linear and non-linear approach

* Linear Mixing Model

o [attice Autoassociative Memories

— Endmembers are equivalent to ICA’s
independent sources and the GLM’s design
matrix
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e Lattice Independent Component Analysis
can be suited

* to discover patterns in the voxel’s activations

Introduction

* for event driven experiments

* for the study of brain connectivity
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General description

Algorithm 4.1 Lattice Independent Component Analysis

Given a fMRI data organized as a set of time series X € RY*T, where N is the
number of voxels and 7" the time duration

[. Apply EIHA to obtain endmembers E = R**?

2. For each voxel compute the endmember abundance coefficients by ULSE,
obtaining A = RV ¢,

3. For each abundance volume A (., k) = R" detect the statistical significant
voxels as follows:

(a) Compute the empirical distribution of the abundance values

(b) Set the significance threshold to the 99% percentil value.
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Some theoretical background

e Linear Mixing Model
e [attice Autoassociative Memories

e Strong Lattice Independence
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Linear Mixing Model

M

X = E a;s; +w = Sa +w,
i=1 o _
a; > 0,i=1,... M

M :
Dz @i = L.

Convex mixture

Linear unmixing by Unconstrained Least Squares estimation

a=(STS)™' s7x.
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 Early Morphological Associative Memories

Lattlce Associlative Memories

e LAMs are associative memories built by
Lattice Matrix products

k k

Wyy = /\ {};é— « (—}{E)I} and My = \/ |:},£ < (_ng)f:| ,
£=1 £=1
where x is any of the & or [@ operators.

C—' — _‘4 ¥} B = [Cij] — C?'J' — V {aﬂ\' + bkj} H
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Latttice Autoassociative
Memories

e When X=Y we have Lattice
Autoassociative Memories (LAM).

* Appealing property: Perfect recall

Wxx®@ X = X = Mxx @ X, for any X.

* Only for noise-free patterns...
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~ Strong Lattice Independence

Definition 1. Given a set of vectors {:{1? :{F“} _ R"™ g linear minimax combination
of vectors from this set is any vector x €R!} _ which is a linear minimax sum of these

vectors: © = L {:scl, xﬁ‘} = VjEJ Af’;f:l (agj + x‘f} . where J is a finire set of indices
and agj € Ry Vy € JandV§ =1,... k.

Definition 2. T/e linear minimax span of vecrors {xl, :{k} = X C R" is the set of
all linear minimax sums of subsets of X, denoted LM S (};1? xk) :
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Strong Lattice Independence

Definition 3. Given a set of vecrors X = {:is:lT ...?xk} C R", a vector x eRY} _ is
lattice dependent if and only if © = LMS {xl, xk}. The vector x is lattice inde-
pendent if and only if it is not lattice dependent on X. The sert X is said ro be lattice
independent if and only if YA € {1,....k}, x* is lartice independent of X\, {}:::”‘} =

[xte X:e#2}.
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Strong Lattice Independence

Definition 4. A ser of vectors X = {xl, xk} C R"™ is said to be max dominant if
and only if for every A € {1, ..., k| there exists and index j € {1, ...,n} such that

F;‘..

A P N s &Y e =

xp, —xp = V (‘Eh —.1'.'2.) Vi e {1,...,n}.
e=1

Similarly, X is said to be min dominant if and only if for everv A € {1,....k} there
exists and index jy € {1, ...,n} such that

R..

A A I

xy, — = /\ (I;A .?:_é) i e{l,..,n}.
£=1
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Definition 5. A ser of lartice independent vectors {};1? ...?:{k} _ ™ is said to be

strongly lattice independent (SLI) if and onlv if X is max dominant or min dominant or
both.

Conjecture 1. [17]If X = {};1? xk} — IR™ is strongly lattice independent then X
1s affinely independent.
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o, Algorithm 4.2 Endmember Induction Heuristic Algorithm (ETHA)

]

L

i

1. Shift the data sample to zero mean
() =Ff(i)— p;i=1,..,n}

. Initialize the set of endmembers £ = {e! = {* (i*)} where ¢* is a randomly
picked sample index. Initialize the set of lattice independent binary signa-
tures X = {x'} where x' = b (e'). The initial set of endmember sample
indices is I = {i*}.

. Construct the LAM’s based on the lattice independent binary signatures:
*"I":{XX and H"rxx.

. For each pixel £° (z)

(a) Compute the noise corrections sign vectorst+ (i) = b (f “(1) + a-E})
and f~ (i) = b (f*(i) —a@)

(b) Compute y* = Myx @ £+ (i)

(c) Compute y~ = Wyy @ £~ (1)

(d) If y~ & X ory— & X then f° (i) is a new endmember to be added to

E', execute once 3 with the new E and resume the exploration of the
data sample. Add : to the set of indices [.

(e) If y* € X, let k be the index in E of the corresponding endmember.
If £¢ (i) > e* then execute step 4g.

(f) If y— € X, let k be the index in E' of the corresponding endmember.
If £ (i) < e* then execute step 4¢.

(g) The new data sample is more extreme than the stored endmember, then
substitute e* in E with £¢(¢). Index i substitutes the corresponding
index in 1.

5. The output set of endmembers is the set of original data vectors

{f(7) : ¢ € I} corresponding to the sign vectors selected as members of £.
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- A Case Study

Data noise 1s removed by adequate preprocessing

Whole brain BOLD/EPI images were acquired on a
modified 2T Siemens MAGNETOM Vision system.
— There are 64x64x64 voxels of size 3mm X 3mm X 3mm.

— The data acquisition took 6.05s, with the scan-to-scan repeat time
(RT) set arbitrarily to 7s., 96 acquisitions were made (RT=7s) in
blocks of 6, 1.e., 16 blocks of 42s duration.

Successive blocks alternated between rest and auditory
stimulation, starting with rest.

— Auditory stimulation was bi-syllabic words presented binaurally at
a rate of 60 per minute.

We have discarded the first 10 scans.
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* We have computed
— An standard SPM study

— A fastICA
e Activation 1s detected by 99% percentil thresholding

Case study

— Our Lattice Independent Component Analysis
e Aim
— Test that our approach behaves camparably
stablished approaches in well known datasets

ICANN 2009, Limassol, Cyprus, 19
Sept. 14, 2009



000
T T I \‘! M« LN
A ﬂt I II I | M | | h |
s -t 1‘ “' -su00 | | I] i l F” | \I‘ lJ -rooof |1 | I'| 'l "] ||I !
L] ] 40 it} uy o 20 a0 & ] a o 20 a0 By oy
000 2000 2000 2000
1000 1 19001 o 1000 i 1000 '., |1' | !1| 1
A “” \ ("”r O A I.J f A YV {im i ll'"l I‘ II I|r |
) W: |I'J|,] |lllll.'. I “Jh ||‘ur|||\||‘| _m:] | L‘J'J ||| .'” V“J” ~| ll' _1w:| | \/ | . h ||| I||I | Ill.ml _m: 1] .I|| h | || ‘
=000 2000 u | =200 =200 |I
00 0 ' 000
1000 10 || I’I||Irl 1 "1 ||II|'I| z 000 L 1 )
u \ | I .'M |J ]/ |‘\| 0 -,m.-_;'l'.ll IL-l A |_,J Ium.ll |-",J'|||JJ H“».“J |II~I_.‘r 0 |I| ll,».l|"||”|r|‘|*'l ﬂ".._‘llll"ill« LY
~ 10K . L =100 T Ii
o ¢ ® 2w @ ® I R R

Fig. 1. Eleven endmbers detected by EIHA over the lattice normalized time series of the whole

3D volume.
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Fig. 3. Eleven time series sources detected by fastICA over the lattice normalized time series of
the whole 3D volume.
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Lattice
Independent
Component
Analysis

Fig. 2. Detected task related activations for endmember #9 from figure 1. White voxels corre-

spond to abundance values above the 99% percentile of the distribution of the abundances for this
endmember on the whole volume.
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fastlICA
activation

Fig. 4. Detected task related activations for source #6 from figure 3. White voxels correspond
to mixing values above the 99% percentile of the distribution of the mixing coefficients for this
source on the whole volume.
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Standard
Analysis
by

SF‘M[T?E} SPM
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Conclusions

o Lattice Component Analysis (LICA) finds
activations in good agreement with SPM

 LICA has good agreement with results
given by fastiCA
* Further work:

— Comparisons with other ICA approaches using
quantitative performance measures

— Application to event experimental designs

ICANN 2009, Limassol, Cyprus, 25
Sept. 14, 2009



