On Spatial Regularization for Semisupervised Hyperspectral Image Segmentation Using Hybrid Extreme Rotation Forest

Borja Ayerdi and Manuel Graña

Computational Intelligence Group UPV-EHU, Spain

WHISPERS 2013

- 2 Computational Methods
- 3 Semisupervised classification and regularization
 - 4 Experimental results
- 5 Conclusions and future work

2 Computational Methods

3 Semisupervised classification and regularization

4 Experimental results

5 Conclusions and future work

- The generation of thematic maps from hyperspectral images by
 - classification of the pixel spectra.
- Scarcity of labeled information
 - semi-supervised training
- Combining both spatial and spectral processing.

We propose:

- Spectra classification.
 - Hybrid Extreme Rotation Forest (HERF)
- A semisupervised training,
 - k-means clustering and image spatial neighborhood.
- Spatial regularization
 - most frequent class in the neighborhood.

2 Computational Methods

3 Semisupervised classification and regularization

4 Experimental results

5 Conclusions and future work

General Pipeline

- Heterogenous ensemble of classifiers
 - Extreme Learning Machines (ELM)
 - Decision Trees
- Partial adaptation to the problem domain

For $i = 1 \dots L$

Computation of rotation matrix R_i^{α} :

- Partition F into K random subsets: $F_{i,j}$; $j = 1 \dots K$
 - For *j* = 1 . . . *K*
 - Let $X_{i,j}$ be the data set X for features in $F_{i,j}$.
 - C_{i,j} obtained applying PCA on X_{i,j}
 - Compose $R_{i,j}^{\alpha}$ using matrices $C_{i,j}$.
- Decide if D_i is a DT or an ELM
- Train classifier D_i on training set (XR_i^{α}, Y) .

Classification Phase

Decision by majority voting For a given \mathbf{x}^{test} , $d_i = D_i(x^{test}R_i^{\alpha})$ $c^{test} = \max_i \{d_i, i = 1, \dots, L\}$

2 Computational Methods

3 Semisupervised classification and regularization

- Experimental results
- 5 Conclusions and future work

input
$$X_L = \{ (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_L, y_L) \}$$

- initial HERF classifier $C_L : \mathbb{R}^d \to \Omega$, $C(\mathbf{x}_i) = \hat{y}_i$.
- **2** K-means: k_i the cluster assigned to sample \mathbf{x}_i .
- O_j (r) spatial neighborhood of x_j ∈ X_L of radius r
 extended training set X_{L+U} = X_L ∪ X_U

 $X_{U} = \{ (\mathbf{x}_{i}, y_{j}) | \mathbf{x}_{i} \in \mathcal{N}_{j}(r) \land k_{i} = k_{j} \text{for some } \mathbf{x}_{j} \in X_{L} \}.$

semisupervised classifier C_{L+U} : ℝ^d → Ω
 classify whole image: Ŷ = {ŷ_i = C_{L+U} (x_i)}^N_{i=1}.

() most frequent class inside the spatial neighborhood of each pixel:

$$\widetilde{y}_i = \arg \max_{y} |\{\widehat{y}_j \in \mathcal{N}_i(r)\}|.$$

2 Computational Methods

3 Semisupervised classification and regularization

4 Experimental results

5 Conclusions and future work

Real hyperspectral image data sets collected by AVIRIS sensor.

- $\bullet\,$ Indian Pines -> 145 $\times\,$ 145 pixels, 224 spectral bands and 16 classes.
- $\bullet\,$ Salinas C -> 217 $\times\,$ 512 pixels, 224 spectral bands and 16 classes.
- Salinas A -> 83 \times 86 pixels, 224 spectral bands and 6 classes.

Comparative results

- Multinomial Logistics Regression (MLR) with active learning¹
- We use the same size of the seed training set and validation by 100 Markov runs

¹Jun Li, J.M. Bioucas-Dias, and A. Plaza, "Semisuper- vised hyperspectral image segmentation using multino- mial logistic regression with active learning," IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 11, pp. 4085 –4098, Nov. 2010.

Table : Results on the Salinas A data set at each step of the algorithm and corresponding results in the comparing publication.

SALINAS A	Our Method	MLR
Classification (L=18)	48.90 (18.00)	-
Classification $[(L=18) + U]$	95.1 (2.41)	90.86
Segmentation $[(L=18) + U]$	99.13 (1.26)	96.74

Table : Results on the Salinas C data set at each step of the algorithm and corresponding results in the comparing publication.

SALINAS C	Our Method	MLR
Classification (L=128)	81.18 (2.35)	81.97
Classification $[(L=128) + U]$	86.64 (1.30)	82.40
Segmentation [(L=128) + U]	93.34 (1.58)	89.61

Table : Results on the Indian Pines data set at each step of the algorithm and corresponding results in the comparing publication.

INDIAN PINES	Our Method	MLR
Classification (L=160)	51.96 (4.90)	63.19
Classification $[(L=160) + U]$	66.78 (3.03)	63.44
Segmentation $[(L=160) + U]$	79.38 (4.04)	75.60

Visual results - Salinas A

Figure : Visualization of classification results on Salinas A using 18 labeled samples. (a) After supervised classification with OA=97.58%. (b) After spatial regularization with OA=99.78%.

Visual results - Salinas C

Figure : Visualization of classification results on Salinas C using 128 labeled samples. (a) After supervised classification with OA=88.22%. (b) After spatial regularization with OA=91.80%.

Visual results - Indian Pines

Figure : Visualization of classification results on Indian Pines. using 160 labeled samples. (a) After supervised classification with OA=66.03%. (b) After spatial regularization with OA=78.46%.

2 Computational Methods

3 Semisupervised classification and regularization

Experimental results

• New semisupervised approach involving

- semisupervised training based on spectral clustering and spatial neighborhood
- two forms of spatial regularization,
 - Selection of unlabled samples
 - Regularization over the final image segmentation
- an innovative hybrid ensemble classifier HERF.

Computationally inexpensive

- classifiers used have quick learning algorithms and
- the regularization processes are computationally cheap.

22 / 23

Thank you for your attention.

www.ehu.es/ccwintco

Borja Ayerdi and Manuel Graña (UPV/EHU)

WHISPERS 2013

www.ehu.es/ccwintco 23 / 23