

Towards Relevant Dendritic Computing

Manuel Graña, Ana I. Gonzalez-Acuña, Computational Intelligence Group, UPV/EHU

outline

- Motivation
- Lattice kernels
- Learning lattice kernels
- Sparse Bayesian Learning
- SBL for lattice kernels: relevant dendritic computing
- Experimental Results
- Conclusions

Motivation

Dendritic computing (DC):
– Single Layer Morphological Neuron

$$\tau_j(\mathbf{x}) = p_j \bigwedge_{i \in I_j} \bigwedge_{l \in L_{ij}} (-1)^{1-l} \left(x_i + w_{ij}^l \right),$$

$$\tau (\mathbf{x}) = \bigwedge_{k=1}^{j} \tau_k (\mathbf{x}); \ \xi = 1, \dots, m.$$

Motivation

- Problems of DC
 - Ad-hoc learning algorithm
 - Overfitting
 - Lack of regularization
- Aims of the work
 - Improve generalization
 - Propose a general learning framework
 - Introduce regularization to obtain sparseness

Strategy

Define a variation of SLMN

$$\tau_{j}(\mathbf{x}) = p_{j} \bigwedge_{i \in I_{j}} \left[\pi_{ij}^{l} + (x_{i} - l_{ij}) \wedge \pi_{ij}^{u} + (u_{ij} - x_{i}) \right],$$

- Which can be assimilated to "lattice kernels"
- Apply Sparse Bayesian Learning to obtain
 - sparseness
 - generalization

Lattice kernels

Lattice kernel formulation of the SLMN

– System's response

$$\tau \left(\mathbf{x} \right) = \bigvee_{n=1}^{N} \left(\pi_n + \lambda_n \left(\mathbf{x}, \mathbf{x}_n \right) p_n \right), \quad p_n \in \{-1, 1\}$$

– Kernel response

 $\lambda_n \left(\mathbf{x}, \mathbf{x}_n \right) = \bigwedge_{i=1}^d \left[\pi_{ni}^l + \left(x_i - \left(x_{ni} - \varepsilon_{ni}^l \right) \right) \wedge \pi_{ni}^u + \left(\left(x_{ni} + \varepsilon_{ni}^u \right) - x_i \right) \right],$ $\pi_{ni}^l, \pi_{ni}^u \in \{0, \infty\} \qquad \varepsilon_{ni}^l, \varepsilon_{ni}^u \in \mathbb{R}^+.$

Learning Lattice kernels

- Algorithm 2 Monte Carlo method for the training of the SLKN Initialize randomly π (0), compute E (0) Set the initial temperature T (0) k = 0 Repeat
 - generate a random candidate configuration $\pi'(k)$
 - compute E'(k)
 - $\triangle E = E'(k) E(k)$
 - compute $P_a(\triangle E, T) = e^{\triangle E/T}$, generate random $r \sim \mathcal{U}(0, 1)$
 - if $\triangle E > 0$ or $P_a(\triangle E, T) > r$ then $\pi(k+1) = \pi'(k); E(k+1) = E(k).$
 - reduce T

Until convergence

Learning lattice kernels

Figure 1: Distribution of class 1 (blue dot region) obtained by training on the (a) XOR, (b) Gaussians centered at the XOR points, (c) the synthetic data used by Tipping [20].

Sparse Bayesian Learning

Data likelihood 2-class classification

$$P(\mathbf{t} | \mathbf{w}) = \prod_{n=1}^{N} f(y(\mathbf{x}_n; \mathbf{w}))^{t_n} \left[1 - f(y(\mathbf{x}_n; \mathbf{w}))\right]^{1-t_n}$$

• A priori of the weights

$$p(\mathbf{w} | \boldsymbol{\alpha}) = \prod_{i=0}^{N} \mathcal{N}(w_i | 0, \alpha_i^{-1}),$$

Sparse Bayesian Learning

• Hyperparameters "uninformative" a priori

$$p(\boldsymbol{\alpha}) = \prod_{i=0}^{N} \operatorname{Gamma}\left(\alpha_{i} | a, b\right),$$

 Goal: simultaneous estimation of weights and hyperparameters

$$p(\mathbf{w}, \boldsymbol{\alpha} | \mathbf{t}) = p(\mathbf{w} | \mathbf{t}, \boldsymbol{\alpha}) p(\boldsymbol{\alpha} | \mathbf{t}),$$

Sparse Bayesian Learning

Decomposed into the posterior of the weights

$$p(\mathbf{w}|\mathbf{t}, \boldsymbol{\alpha}) = \frac{p(\mathbf{t}|\mathbf{w}) p(\mathbf{w}|\boldsymbol{\alpha})}{p(\mathbf{t}|\boldsymbol{\alpha})} \propto p(\mathbf{t}|\mathbf{w}) p(\mathbf{w}|\boldsymbol{\alpha}).$$

Posterior of the hyperparameters

 $p(\boldsymbol{\alpha} | \mathbf{t}) \propto p(\mathbf{t} | \boldsymbol{\alpha}) p(\boldsymbol{\alpha}),$

• Uniformative prior implies that is enough to compute $p(\mathbf{t} | \alpha)$

 Data likelihood based on the lattice kernels model

A T

$$P(\mathbf{t} | \boldsymbol{\pi}, \boldsymbol{\varepsilon}) = \prod_{n=1}^{N} f(\tau(\mathbf{x}_{n}; \boldsymbol{\pi}, \boldsymbol{\varepsilon}))^{t_{n}} [1 - f(\tau(\mathbf{x}_{n}; \boldsymbol{\pi}, \boldsymbol{\varepsilon}))]^{1-t_{n}},$$

Spike and slab prior of the parameters

$$p(\boldsymbol{\varepsilon}|C,\boldsymbol{\alpha}) = \prod_{n=1}^{N} \prod_{i=1}^{d} \prod_{k \in \{l,u\}} \left[(1-C) \,\delta\left(\left(\varepsilon_{ni}^{k} \right)^{-1} \right) + C \mathcal{E}\left(\varepsilon_{ni}^{k} \left| \left(\alpha_{ni}^{k} \right)^{-1} \right) \right],$$

• It is possible to formulate the log-posterior of the weights

$$\log p\left(\varepsilon \left| \mathbf{t}, C, \boldsymbol{\alpha} \right.\right) = \sum_{n=1}^{N} \left[t_n \log y_n + (1 - t_n) \log \left[1 - y_n\right]\right] \\ - \sum_{\left\{n, i, k \mid \pi_{ni}^k = 0\right\}} \left[\log \left(\alpha_{ni}^k\right) + \varepsilon_{ni}^k \left(\alpha_{ni}^k\right)^{-1}\right] \\ + \sum_{\left\{n, i, k\right\}} \left[\delta \left(\pi_{ni}^k\right) \log C + \left(1 - \delta \left(\pi_{ni}^k\right)\right) \log \left(1 - C\right)\right]$$

Relevant dendritic computing

Algorithm 3 The Sparse Bayesian Learning applied to the SLKN

- 1. Initialize hyperparameters at uninformative values $\alpha_{ni}^k = Nd, C = 0.5$
- 2. Search for the most probable weights $(\varepsilon, \pi)_{MP}$ maximizing by Monte-Carlo Methods the log-posterior of equation (20)

$$\boldsymbol{\varepsilon}_{MP} = \arg\max_{(\boldsymbol{\varepsilon}, \boldsymbol{\pi})} \log p\left(\boldsymbol{\varepsilon} \mid \mathbf{t}, \boldsymbol{\pi}, C, \boldsymbol{\alpha}\right)$$

where $y_n = f(\tau(\mathbf{x}_n; \boldsymbol{\pi}, \boldsymbol{\varepsilon}))$.

- 3. Update the hyperparameters $\alpha_{ni}^{k,\text{new}} = (\varepsilon_{ni}^k)_{MP}^{-1}$.
- 4. Set relevant parameters: set $\pi_{ni}^k = \infty$ if $\alpha_{ni}^k < \epsilon$.

5.
$$C = 1 - \left| \left\{ \alpha_{ni}^k < \epsilon \right\} \right| / 2Nd$$

6. Test convergence. If not converged, repeat from step 2.

Experimental results

dataset	#train	#test	dimension	Best error result reported
flare solar	666	400	9	32.43 + / - 1.82
breast	200	77	9	24.77 + / - 4.63
titanic	150	2051	3	22.58 + / -1.18
thyroid	140	75	5	4.20 +/- 2.07
heart	170	100	13	15.95 + / - 3.26
diabetes	468	300	8	23.21 + /- 1.63
german	700	300	20	23.61 + / - 2.07
synth	250	1000	2	—

Table 1: Information about the experimental classification datasets

Experimental results

dataset	RVM	SLKN	SLKN-G	SBL-SLKN
flare solar	0.65(.68)	0.56(0.55)	0.55(0.55)	0.62(0.62)
breast	0.73(0.75)	0.74(0.99)	0.73(0.99)	0.74(0.95)
$\operatorname{titanic}$	0.77(0.8)	0.33(0.29)	0.33(0.29)	0.74(0.70)
$\operatorname{thyroid}$	0.88(0.91)	0.92(0.99)	0.91(0.99)	0.92(0.98)
heart	0.80(0.89)	0.72(1)	0.67(1)	0.77(0.98)
diabetes	0.76(0.79)	0.74(0.94)	0.75(0.98)	0.75(0.94)
german	0.79(0.76)	0.78(1)	0.73(1)	0.78(0.98)
synth	0.90(0.87)	0.86(0.86)	0.87(0.86)	0.89(0.9)

Table 2: Classification Accuracy results on the test (train) partition

Conclusions

- Lattice kernel classification model
- Trained with Monte Carlo Methods
- Application of Sparse Bayesian Learning,
- Results on benchmark datasets are promising
- Less sparse than RVM results

• Thank you for your attention