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Abstract—We present a color gradient with good color con-
stancy preservation properties. The approach does not need a
priori information or changes in color space. It is based on
the angular distance between pixel color representations in the
RGB space. It is naturally invariant to intensity magnitude,
implying high robustness against bright spots produced be
specular reflections and dark regions of low intensity.

I. INTRODUCTION

Color constancy (CC) is fundamental problem in artificial
vision [4], [9], [14], and it has been the subject of neurop-
sicological research [1], it can be very influential in Color
Clustering processes [2], [11], [6]. In the artificial vision
framework, CC assumes some color space, the illumination
chromaticity estimation [5], [13] and the separation of diffuse
and specular image components [8], [12], [15].

In the present work, we assume a physical interpretation
of the image reflectance and its behavior in the RGB space.
We use polar coordinates to specify points in the RGB space,
because we will be interested in the zenithal φ and azimuthal
angles θ, because the characterize the chromatic component
of the RGB point. We are looking for color image edge detec-
tion under a CC constraint and founded on the Dichromatic
Reflection Model (DRM).

The paper has the following structure: section II gives a
short overview of the DRM. Section III explains the relative
meaning of Color Constancy (CC) and Color Edges (CE) in the
RGB space. Section IV explain the concept of image gradient
and the naive approach to computed them in color images.
Section V gives details of our method for color gradient
detection. Section VI shows some experimental results on well
known test images. Finally, section VII gives some conclusions
and lines for future works.

II. DICHROMATIC REFLECTION MODEL (DRM)
The Dichromatic Reflection Model (DRM) was introduced

by Shafer [7]. It explains the perceived color intensity of
each pixel in the image as addition of two components,
one diffuse component D and a specular component S. The
diffuse component refers to the chromatic properties of the
observed surface, while the specular component refers to
the illumination color. Surface reflections are pixels with a
high specular component. The mathematical expression of the
model is as follows:

I(x) = md(x)D + ms(x)S, (1)

where md and ms are weighting values for the diffuse and
specular components, taking values in [0, 1].

From the DRM we can deduce some interesnting features
of the distribution of the pixels in the RGB cube. In figure 1
we illustrate the main expected effects for a single color image
(disregarding the black background) with a bright spot due to
the illumination source. According to DRM we need to know
only two colors: D corresponding to the observed surface and
S corresponding to the illumination source. Drawing a line
in the RGB cube passing over these colors and the RGB
origin (black), we obtain two chromatic lines Ld and Ls,
respectively. These two lines define a chromatic plane in RGB
illustrated as the stripped region in figure 1a. All the image
pixels must fall in this plane, discounting additive Gaussian
noise perturbations, accordgin to DRM equation 1 for image
colors D and S. Looking to the image pixel distribution inside
the chromatic plane, we obtain the plot in figure 1b, whose
axes are the chromatic lines Ld and Ls. We have that non-
specular pixels fall close to the diffuse line Ld, while specular
pixels go away from the origin and the diffuse line parallel
to the specular line Ls. There is an intensity threshold for the
pixels having a significative specular component (ms(x) >> 0
). This threshold is the albedo of the material in the scene. For
intensities greater than the albedo, pixels fall away from the
Ld diffuse line along the direcction of Ls.

Figure2 shows the pixel distribution for a synthetic image.
The RGB cube plot in 2b shows the pixel RGB color distri-
bution of the image 2a. These images confirm our previous
discussion, for a case of a single color object in the image.
When there are more than one color in the image, we can
expect several diffuse lines, so that the we can base our
image segmentation on this observation. All these lines cross
the RGB origin, therefore the pixel polar coordinates of
diffuse pixels contain much information relative to underlying
reflectance regions.

For an scene with several surface colors, the DRM equation
assumes that the diffuse component may vary spatially: I(x) =
md(x)D(x) + ms(x)S. However, the specular component
is space invariant in both cases, because the illumination
is constant for all the scene. Finally, assuming several il-
lumination colors we have the most general DRM I(x) =
md(x)D(x) + ms(x)S(x) where the surface and illumination
chromaticity are space variant.

III. COLOR CONSTANCY (CC) IN THE RGB SPACE

The CC is the mental ability to identify chromatically ho-
mogeneous surfaces under illumination changes. This mental
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Figure 1. Expected distribution of the pixels in the RGB cube according to
DRM for a single color image.

(a)

(b)
Figure 2. Distribution of pixels in the RGB space

ability is still an open neupsicological research topic [10]. The
CC property is inversely proportional to the color discontinuity
represented by the color edges (CE). In essence, given a
chromatic image gradient, low intensity gradient magnitude
corresponds to CC and high magnitude to CE. In the HSI and
HSV color spaces, chromaticity is identified with the pair (H,
S) and the I or V variable represents the intensity. We have
observed that chromaticity in the RGB space is characterized
by a straight line crossing the RGB space’s origin, determined
by the φ and θ angles of the polar coordinates of the points
over the line, by plotting on the RGB space a collection of
color points that have constant HS components and variable

intensity I component. The plot of the pixels in a chromatically
uniform image region appear as straight line in the RGB
space. We denote Ld this diffuse line. If the image has surface
reflection bright spots, the plot of the pixels in these regios
appear as another line Ls intersecting Ld.

For diffuse pixels (those with a small specular weight
ms(x)) the zenithal φ and azimuthal θ angles are almost
constant, while they are changing for specular pixels, and dra-
matically changing among diffuse pixels belonging to different
color regions. Therefore, the angle between the vectors repre-
senting two neighboring pixels Ip and Iq, denoted ∠ (Ip, Iq),
reflects the chromatic variation. For two pixels in the same
chromatic regions, this angle is ∠(Ip, Iq) = 0 because they
will be colinear in RGB space.

IV. GRADIENT OPERATORS

The notion of CC is closely related to the response to the
gradient operators [3]. Regions of constant color must have
low gradient respose, while color edges must have a strong
gradient response. To set the stage for our chromatic gradient
proposition, we must recall the definition of the image gradient

G[I(i, j)] =
[

Gi

Gj

]
=

[ ∂
∂iI(i, j)
∂
∂j I(i, j)

]
, (2)

where f(i, j) is the image function at pixel (i, j). For edge
detection, the usual convention is to examine the gradient
magnitude:

G (I) = |Gi| + |Gj |. (3)

For color images, the basic approach to perform edge detection
is to drop all color information, computing the intensity
Intensity = (Red+Green+Blue)/3 (sometimes computed
as Intensity = .2989 ∗Red + .587 ∗Green + .114 ∗Blue),
and then convolve the intensity image with a pair of high-
pass convolution kernels to obtain the gradient components
and gradient magnitude. The most popular edge detectors are
the Sobel and the Prewitt detectors, illustrated in figure 3
because we will build our own operators following a similar
pattern structure. To take into account color information, the
easiest approach is to apply the gradient operators to each
color band image and to combine the results afterwards:
G(I) = [G(Ir) + G(Ig) + G(Ib)]/3 . Figure 4 illustrates
these ideas. It can be appreciate how the gradient magnitude
amplifies noise on one hand when we combine the color band
gradient magnitudes, and how the color edge is not detected by
the edge operator applied to the intensity image, because the
two color regions have quite near intensity values. The edge
magnitude computed by the straighforward approaches is also
misled by the specular suface reflections, which highlighted
as can be appreciated in figure 4(d).

V. PROPOSED METHOD

We first discuss how do we build a distance between color
pixel values which preserves chromatic coherence and, thus,
color consistency. Then we formulate the gradient operators
which are consistent with this color distance.
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Figure 3. Convolution kernels for the (a) Sobel and (b) Prewitt edge detection
operators.

(a)

(b)

(c)

(d)
Figure 4. (a) Original synthetic RGB image, (b) Intensity image, (c)
Gradient magnitude computed on the intensity image, (d) gradient magnitude
combining the gradient magnitudes of each color band

A. A chromatic coherent RGB pixels distance

First, we convert the RGB cartesian coordinates of each
pixel to polar coordinates, withe the black color as the RGB
space origin. Let us denote the cartesian coordinate image as
I =

{
(r, g, b)p ; p ∈ N2

}
and the polar coordinate as P =

{
(φ, θ, l)p; p ∈ N2

}
, where p denotes the pixel position. In

this second expression, we discard the l because it does not
contain chromatic information. For a pair of image pixels p
and q, the color distance between them is defined as:

∠(Pp, Pq) =
√

(θq − θp)
2 + (φq − φp)

2, (4)

that is, the color distance corresponds to the euclidean distance
of the Azimuth and Zenith angles of the pixel’s RGB color
polar representation. This distance is not influenced by the
intensity and, thus, will be robust against specular surface
reflections.

B. Chromatic coherent gradient operators
We will formulate a pair of Prewitt-like gradient convolution

operations on the basis of the above distante. Note that the
∠(Pp, Pq) distance is always positive. Note also that the
process is non linear, so we can not express it by convolution
kernels. The row convolution is defined as

CGR (P (i, j)) =
1∑

r=−1

∠ (P (i− r, j + 1) , P (i− r, j − 1)) ,

and the column convolution is defined as

CGC (P (i, j)) =
1∑

c=−1

∠ (P (i + 1, j − c) , P (i− 1, j − c)) ,

so that the color distance between pixels substitutes the
intensity substraction of the Prewitt linear operator. The color
gradient image is computed as:

CG(P ) = CGR (P ) + CGC (P ) (5)

VI. EXPERIMENTAL RESULTS

To demonstrate the efficiency of our proposed approach, we
will show three experimental results. Two of the experiments
are done on synthetic images whose ground truth is know.

Figure 5 contains two synthetic images 5(a) and 5(b)
which are chromatically identical. The image in figure 5(a) hs
constant intensity inside each color region, while the image in
figure 5(b) contains a central square with lower intensity (0.8),
preserving the chromatic content of figure 5(a). Applying the
Prewitt operator to each color band of figure 5(b) we obtain
the detection swhon in figure 5(c), while applying our color
edge detection of equation (5) we obtain the detection in figure
5(d). It is clear that our approach has superior Color Constancy
properties and an improved intensity invariant detection of
color edges.

The second computational experiment was performed on
the image shown in figure 4(a). This image has a strong
specular reflection region, and two color regions with a black
background. We have tested a Sobel like and a Prewitt like
variation of the basic schema of equation (5). The figure 6
gives the results of the RGB band combined detection and our
approach. It can be appreciated that our approach discovers
the edge even in very dark areas, it is also robust against
specular reflections, which the linear operators do confound
with color edges. The color edge between the two regions is
better detected in both cases by our approach.

Final results are given on a natural image, shown in figure
7. This image contains many color regions, with specular
reflections, shadows and light effects. Figure 8 shows the
results of the linear operators based on the Sobel and Prewitt
masks. Besides the lower response of the Prewitt operator, it
can be appreciated the high sensitivity to specular reflections
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(a)

(b)

(c)

(d)
Figure 5. Results of the color edge detection on a synthetic image with
nine uniform chromatic regions and a variation of intensity. (a) Original color
distribution, (b) lower intensity central square, (c) Prewitt detection on RGB
bands, (c) our approach in equation (5).

and low color constancy. All bright spots are interpreted as
color edges. In the figure 9 we show the results of our approach
under two variations of the neighborhood considered. The 4
neighborhood follows the same pattern of equation 5 but over
a reduced set of neighboring pixels. Again our approach is
very robust against specular reflectance. Bright spots do not
appear to be detected. Dark regions of the image are equalized
in their results relative to brighter regions. A very significative
result is the detection of color edges even in the almost black
background. A drawback that appears in our approach is the
high spurious detection in the black background. This is due
to the high angular variations induced by noise. It could be
avoided by a simple intensity thresholding.

VII. CONCLUSIONS AND FURTHER WORK

We have presented an innovative chromatic gradient com-
putation, which is chromatically coherent, preserves the Color
Constancy and gives good detection of Color Edges. The
method is grounded in the DRM which is a widely accepted

(a) (b)
Sobel

(c) (d)
Prewitt

Figure 6. Color edge on the synthetic image of fig. 4(a) with two color
regions. (a) The Sobel operator over the RGB bands with specular component,
(b) our approach in a Sobel-like structure, (c) the Prewitt linear operator, (d)
our approach in a Prewitt like structure.

Figure 7. Natural image

image model for reflectance analysis. Our method is intensity
invariant, and, thus, is robust against the bright spots of spec-
ular reflections. It does not imply or need color segmentation,
on the contrary can provide good color region separation with
little assumptions. It works on the RGB space, which the most
common color processing space.

In the future we will try to apply this approach to robust
reflectance analysis, helping to provide good separation of
color regions as the starting point for diffuse and specular
component separation. It can provide the basis to build good a
priori mappings for Bayesian methods using Random Markov
Field modeling tools.
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