

CybSPEED MSCA-RISE

#777720: vision and perspectives

M. Graña
Computational Intelligence Group
University of the Basque Country

Index

- ▶ An overview of project proposal
 - Statement
 - Beneficiaries and partners
 - Experiments
- ▶ Specific research topics:
 - Dialog systems and storytelling
 - Computational neuroethology
- ▶ Conclusions and discussion

CybSPEED

Project proposal

RISE call

- ▶ RISE : Research and Innovation Staff Exchange
 - Main objective is the exchange of staff (secondments)
 - Between academia and industry
 - Working on a common research and innovation topic
- ▶ Output of the project
 - Training (secondments achieved)
 - Publications
 - Experimental results

CybSPEED proposal

- ▶ **Cyber-Physical Systems for PEdagogical Rehabilitation in Special Education**
- ▶ Aim : to advance a novel framework for
 - analysis, modelling, synthesis and implementation
 - of Cyber-Physical Systems
 - for pedagogical **rehabilitation** in special education,
- ▶ based on a combination of
 - brain-aware robotics, cognitive biometrics, computational intelligence and reasoning in
 - humanoid and non-humanoid **robots for education**.

CybSPEED proposal

- ▶ CybSPEED project emphasizes the **intrinsic-motivational** approach to **learning**
 - by designing **human-robot situations**
 - (games, pedagogical cases, artistic performances)
 - And advanced interfaces
 - (brain-computer, eye-gaze tracking and virtual reality)
- ▶ Where students **interact** with the novel technology
 - to enhance the underlying self-compensation and complementarity of brain encoding during learning.

CybSPEED proposal

- ▶ Research on three levels
 - analysis of cognitive biometrics signals,
 -
 - modeling of the learner-robot interaction and
 - development of novel instruments
 - towards an optimal design of Cyber-Physical Systems
 - for improved pedagogical rehabilitation in education

Consortium and partners

- ▶ University of the Basque Country
- ▶ Manuel Graña (coordinator)
- ▶ Computational Intelligence Group
 - Data analytics
 - Image processing
 - Neuroscience data processing
 - Social Robotics:
 - Nao story telling

- ▶ Institute of Robotics, Bulgarian Academy of Sciences
- ▶ Maya Dimitrova (original coordinator in proposal)
- ▶ Interactive robotics lab
- ▶ Social robotics for special education
 - Nao robot
 - Working with daycare centers
 - Experimental experience in children-robot interaction
 - Observation tools: kinect, EEG

- ▶ Easter Macedonia and Trace Institute of Technology
- ▶ Vassilis Kaburlasos
- ▶ Machine Learning and Lattice Computing
- ▶ Social robots in special education
- ▶ Signal processing and face recognition

- ▶ Computer Vision Centre, Autonomous University of Barcelona
- ▶ Bogdan Raducanu
 - Experts in computer vision
 - Person Monitoring
 - Face and emotion recognition

UGA

- ▶ University of Grenoble-Alpes, GIPSA-Lab and G-SCOP
- ▶ Peter Mitrouchev
- ▶ Industrial partnership experience
- ▶ Rehabilitation technologies, specif. hand
- ▶ Virtual reality technologies

PRAXIS

- ▶ Pediatric Rehabilitation Center, Kavala,
- ▶ Yannis Aggelidis
- ▶ Special education professional experts
 - Autism Spectrum Condition
 - Attention deficit
 - others

Tsevete

- ▶ Teatar Tsevete
- ▶ Experts in dramatization for educational purposes
- ▶ Design of scenarios
- ▶ Storytelling expertise

- ▶ Centre Hospitalier Universitaire de Grenoble
- ▶ Francois Motet
- ▶ Rehabilitation and muscle reeducation
- ▶ Hand surgery
- ▶ New human machine interfaces for rehabilitation

UH2C

- ▶ Hassan II University of Casablanca
- ▶ Omar Bouattane
- ▶ Signaux Systèmes Distribués et Intelligence Artificielle
- ▶ Image and signal processing
- ▶ Robotics
- ▶ Internet of things and embedded systems

UCH

- ▶ University of Chile, Research center on business intelligence
- ▶ Sebastian Rios
- ▶ Big data and data analytics
- ▶ Previous experience in biotechnical projects

- ▶ Kyushu Institute of Techonology
- ▶ Hiroaki Wagatsuma
 - Brain-inspired intelligent systems,
 - neurodynamics,
 - interactive robotics and neurorobotics,
 - service robotics and
 - reinforcement learning based robotics

Topology of the project

CybSPEED

Experiments

CybSPEED experiments

- ▶ Precise experimental designs with our **actual** know-how
 - Greece (Praxis)
 - Bulgaria (IR-BAS at several locations)
 - Japan (Kyutech)
 - France (UGA)
- ▶ Ethical permissions procurement
 - **Ethics is a critical issue in European funded projects**
- ▶ Experimental setups
 - Protocols of intervention
 - Measurements and analysis

Praxis experiment

- ▶ Carried out in actual educational rehabilitation sessions
 - Good ecological validity
- ▶ Intervention
 - The child is presented with robot
 - The robot carries out simple game of passing a ball and requesting the child to put it someplace
 - Measurement: time to answer or to make eye contact.
 - **Longitudinal study**

IR-BAS exp. 1

- ▶ Children recruited in a local daycare center
- ▶ Automatic memory and attention effects in learning from a Humanoid robot
- ▶ Listening to a zoology lesson and story telling by Nao robot
- ▶ Measurement of attention by human observer
- ▶ ASC, Cerebral Palsy, General Developmental Disorder

Kyutech- IR-BAS exp.

- ▶ Students recruited ad hoc
- ▶ Automatic memory and attention effects in learning from a Humanoid robot
- ▶ Listening to a zoology lesson and story telling by Nao robot
- ▶ Measurement of attention by EEG and eye tracking

IR-BAS exp 2

- ▶ CHILDREN WITH COMMUNICATION DISORDERS
- ▶ Centre of Logopedics at Faculty of Public Health, Health Care and Sport To South-West University "Neofit Rilski" Blagoevgrad
- ▶ DayCare Center "Zdravets", Bansko
- ▶ Test: Nao versus human

IR-BAS exp. 2 (cont)

- ▶ Interactive games following spoken instructions and noises:
 - Shapes
 - Transportation means (train, auto,...)
 - Shopping
 - Emotions (sounds of)
 - Body sounds
- ▶ Measurement
 - Human observation
 - Anonymous visual (kinect depth or IR image)

Dialog systems and storytelling

Dialog systems

Dialog systems

Seq2seq dialog systems

Intelligent assistants

Apple Siri (2011)

Google Now (2012)
Google Assistant (2016)

Microsoft Cortana (2014)

Amazon Alexa/Echo (2014)

Facebook M & Bot (2015)

Google Home (2016)

Apple HomePod (2017)

Example assistant interaction

User

find a good eating place for taiwanese food

Intelligent
Agent

Good Taiwanese eating places include Din Tai Fung, Boiling Point, etc. What do you want to choose? I can help you go there.

Simple taxonomy

- ▶ Task oriented:
 - There is a desired outcome of the interaction
 - The progression to the desired end can be traced
 - Success can be measured easily
- ▶ Conversational
 - The bot is engaged in open-ended interaction
 - Searching
 - Counseling
 - Assistive for elders
 - Teaching or mentoring

Storytelling with Nao

Storytelling

- ▶ Offers a structured framework for oriented dialog
 - Aiming towards an end
 - Has a logical sequence yet it may be open
 - Repetition is always welcomed by children
 - It can be entertainment and/or training
 - It is engaging

Story Knowledge representation

- ▶ Representation of the overall structure: the plot
- ▶ Is there a prototypical structure?
 - Joseph Campbell “The hero’s journey”

Storytelling as a dynamic process

- ▶ System states
- ▶ The plot as a graph
- ▶ Transitions between states
 - Induced by the audience interaction
 - Automated walk over the plot
- ▶ Innovation and creativity?

Attention assessment

- ▶ First requirement for interaction
- ▶ Assessing by the robot
 - Auditive cues
 - Visual cues
 - Response time from the robot

Robot acting

- ▶ The robot needs to enact the story
 - Text to speech with emphasis and prosody
 - Gesture generation
 - Gesture + voice language description
 - Text to gesture + voice
- ▶ Acting
 - Dramatic pause
 - Audience querying and interaction

Modeling the audience

- ▶ Assessing plot understanding from
 - Queries from the robot to the audience
 - Questions from the audience
- ▶ Rewriting the story on the fly
 - Simplification
 - Reformulation
 - Explanations

Computational neuroethology

Contents

- ▶ Some definitions
- ▶ Elements of computational neuroethology
- ▶ Example study
- ▶ Resources and Commercial solutions

Ethology

- ▶ Ethology: study of animal behavior
 - phenomenological, causal, ontogenetic, and evolutionary aspects
 - Its relation with brain function is increasingly interesting
 - its **core** is the description and characterization of behavior,
 - typically of intact freely moving animals in their natural environment.
 - Increasingly quantitative

Observation

- ▶ A **human** observer,
 - rather than simply writing down a **description** of what he or she sees,
 - will **score** incidents of specific behaviors
 - defined according to certain generally accepted **criteria**
- ▶ Computational **support** improves accurate observation
 - Interactive video annotation
 - Statistical data processing

Human observation limitations

- ▶ It is slow
- ▶ It is imprecise and subjective
- ▶ It is low dimensional
- ▶ It is limited by the properties of human vision system
- ▶ It is limited by human language
- ▶ It is dull, extremely boring work

Computational ethology

- ▶ Sensing: i.e. Computer vision
 - Segmentation of objects
 - Tracking
 - Identification of sequences
- ▶ Data analysis and interpretation: i.e. Machine learning
 - Supervised Learning:
 - Learning from examples selected by the human operator
 - Unsupervised Learning
 - Clustering: discovery of aggregations of similar patterns

Example 1

- »» Toward a Science of Computational Ethology
David J. Anderson and Pietro Perona
Neuron 84, October 1, 2014

Target species

- ▶ *Drosophila melanogaster*. Vinegar fly
 - dyadic (pairwise) interactions such as male-female courtship and male-male aggression,
 - higher-dimensional interactions within large (>10) groups of flies
 - How are they encoded in DNA?
- ▶ Courtship: (highly variable) series of actions
 - Humans use an aggregate measure: “courtship index” (CI)
 - similar CI values may reflect different underlying behaviors

Sequence of **human observer-defined** actions in courtship behavior.
The actions may **vary** in their duration and the length of the interval
between them. The sequence is **not necessarily irreversible**.

A Orienting

B Tapping

C 'Singing'

D Licking

E Attempting copulation

F Copulation

Neuron 2014 84, 18-31 DOI: (10.1016/j.neuron.2014.09.005

Summary of Steps in the Automated Analysis of Social Behavior

Each of the four steps (detection, tracking, action detection, and behavior analysis) requires **validation** by comparison to **manually** scored ground truth. The ethogram illustrates different behaviors performed during male-male and male-female social interactions.

Neuron 2014 84, 18-31DOI: (10.1016/j.neuron.2014.09.005

Increasing the throughput of behavioral analysis

Eight different behaviors (A) were automatically scored from video recordings of 20 flies walking in an arena. (B) Two minute trajectory of a single male fly detected among 20 in the arena. (C) Upper: raster plot for behaviors exhibited during the trajectory in (B); lower: translational and angular velocities superimposed on a 30 s segment of the raster plot. (D) Behavioral “vectors” for female, male, and *fru¹/fru¹* mutant male flies. Each column represents a single fly and each row a single behavior.

Numbers at top refer to experiment and number of flies tracked.

tracking systems to measure the individual trajectories of dozens of flies simultaneously in an arena

Neuron 2014 84, 18-31 DOI: (10.1016/j.neuron.2014.09.005

Neuroethology

- ▶ Looking for correlations between
 - behavior observation and
 - neuronal structure and activity
- ▶ Traditional works:
 - neural anatomy differences between species, genres, etc
 - Relation between brain size in frogs and ambient weather seasonality
- ▶ Recent works:
 - Neural activity differences: EEG, fMRI

Ethology and brain science

- ▶ **In summary**, the clever use of
 - virtual reality, machine learning, and miniaturized recording devices
- ▶ has the potential to **dramatically increase our understanding** of how neuronal activity **underlies** cognition and behavior.
- ▶ This path can be enabled by developing **technologies** to
 - quantify and interpret animal behavior,
 - at **high temporal and spatial resolution**,
 - **reliably, objectively, over long periods of time**,
 - under a broad set of conditions, and
 - in combination with **concurrent measurement and manipulation of neuronal activity**
 - Brain manifesto
 - P 36 <http://www.nih.gov/science/brain/2025/index.htm>

new technologies for mapping, monitoring, and manipulating neural activity based on genetic targeting of specific neuron subtypes

study of aggression in *Drosophila*

temperature-dependent manipulations of neuronal activity to identify a small cluster of neurons that controls aggression

Neuron 2014 84, 18-31 DOI: (10.1016/j.neuron.2014.09.005)

→ beyond correlation to establish causal relationships between neural circuit activity and behavior.

→ critically dependent on the ability to assess **quantitatively**, and with a high degree of **spatiotemporal precision**, the **behavioral consequences** of neural circuit manipulations

Example 2

- »» Neuroethological studies of fear, anxiety, and risky decision-making in rodents and humans
[Current Opinion in Behavioral Sciences](#) Volume 5, October 2015 , Pages 8-15

Highlights

- ▶ Neuroscience has ignored the natural conditions under which anti-predation evolved.
- ▶ Survival circuits underlie dynamic threat reactions and decisions-making actions.
- ▶ Threat signals flow through corticolimbic to midbrain circuits.
- ▶ Ethologically inspired paradigms provide an insightful window into fear and anxiety.

Predator-prey scenarios

Experiment design

Example 3

» Challenge

[https://paris-saclay-cds.github.io/
autism_challenge/](https://paris-saclay-cds.github.io/autism_challenge/)

IMPAC

IMaging-PsychiAtry Challenge: predicting autism

A data challenge on Autism Spectrum Disorder detection

Deadline: July 1, 2018 - 8 pm (UTC)

44

Days

16

Hours

32

Minutes

32

Seconds

⌚ A big data challenge

.DataVisualization

Brain images from more than 2000 individuals

Patient vs Control distribution

Gender distribution

Age distribution

Image

Multimodal imaging data

Structural MRI

- Preprocessed with FreeSurfer and FSL
- Gray matter volume, area, and thickness
- Average for each Desikan cortical parcel.

Functional MRI

- Resting state fMRI
- Time series extracted on different atlases

An experimental setting for neuroethological human robot interaction

Too far from ecological validity in special educational needs!

Commercial products

Noldus

ANIMAL BEHAVIOR

HUMAN BEHAVIOR

CONSULTING

ABOUT NOLDUS

SUPPORT

Blog

Innovative solutions for behavioral research

Powerful software tools, fully integrated labs, expert consultancy.

Trust our 27 years of experience to make your project a success.

"You make our lives easy and each new version of EthoVision is testimony to the fact that the company is frankly put, the best at its game in the world."

DR. D. WOLMARANS, NORTH-WEST UNIVERSITY, SOUTH AFRICA

Conclusions

- ▶ CybSPEED involves quite diverse beneficiaries and partners
- ▶ We are in the consolidation starting phase
 - Solving bureaucratic issues
 - Translating general statements of the project proposal into precise working lines

Conclusions

- ▶ We are carrying out experiments using our current know-how
- ▶ We are developing new tools for
 - Smart interaction
 - Behavior measurement
 - Correlation of behavior measurement and neural activity

Discussion

- ▶ Bringing Computational Neuroethology into the school
 - Ethics questions
 - Technological questions
 - Scientific questions

