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CBIR systems

Recover image/multimedia information from large databases
using the own images content.

Solve traditional metadata-based problems.

Information characterized by low level features (color, textures,
shape, ...).

Compare image dissimilarities by distance functions computed
over the features.

Improve searches by user interaction (Retrieval feedback,
Active Learning).
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Hyperspectral cube
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Hyperspectral remote sensing
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Color/multispectral - Hyperspectral di�erences

Bands:

Color/Multispectral: 3-10 bands.
Hyperspectral: >100.

Spectral resolution (wavelength/bandwidth):

Color/Multispectral: order 10 (low).
Hyperspectral: order 100 (high).

Contiguity:

Color/Multispectral: irregular / overlapping.
Hyperspectral: regular / non-overlapping.
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Linear Mixing Model
Formulation

LMM

H = A ·E +η

h(x,y) = a(x,y)1 · e1 +a(x,y)2 · e2 + . . .+a(x,y)p · ep +η

where:

H is an hyperspectral image.

E is a set with the materials spectral signs (endmembers):
spectral information.

A is a set of fractional abundances images, one for each
endmember: spatial information.

η is additive noise.
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Endmembers induction

Find by automatic unsupervised methods the spectral signs
(endmembers) of the material on the image.

Each hyperspectral image Hα is characterized by its induced
set of endmembers Eα = {e1, . . . ,epα

}, where pα is the number
of induced endmembers from α-th image.
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Spectral distances

The matrix of distances between two sets of endmembers Eα

and Eβ is given by

D =
{

di j
}

; i = 1, . . . , pα ; j = 1, . . . , pβ

where di j can be, for instance, the Euclidean distance, deuc, or
the angular distance, a.k.a. Spectral Angle Mapper, dsam:
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Spectral dissimilarity

Compare two hyperspectral images Hα ,Hβ by theirs spectral
features:

s
(
Hα ,Hβ

)
≡ s
(
Eα ,Eβ

)
= (mr +mc)

(∣∣pα − pβ

∣∣+1
)

where mr and mc are the mean of the vectors of minimal
values of the distance matrix, D, computed by rows and
columns respectively.
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Evaluation metrics

The two most used evaluation measures are precision and
recall.

Precision, p, is the fraction of the retrieved images that are
relevant to the query.
Recall, q , is the fraction of retrieved relevant images respect
to the total number of relevant images in the database
according to a priori knowledge.

If we denote T the set of returned images and R the set of all
the images relevant to the query, then

p =
|T ∩R|
|T |

q =
|T ∩R|
|R|

Results are usually summarized as precision-recall or
precision-scope curves.
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Problems

Lack of ground truth knowledge (prede�ned categories):

Due to the expensive, tedious and error prone ground truth
gathering process.
Well known problem in RS classi�cation.

Users di�culties to evaluate the retrieved images giving a
positive/negative feedback:

Speci�c problem of CBIR systems in a Remote Sensing
context.
RS images are not easily interpreted by visual inspection.
RS-CBIR feedback retrieval requires domain-speci�c skills and
new interaction methodologies yet to be developed.
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Proposed strategy

Use the RS data inherent structures to simulate potential users
queries.

We propose to build the groundtruth of a potential query by a
clustering process.

Thus, the groundtruth modeled by a clustering process is a
relevant set R(qi) = {xi1, . . . ,xik,} where qi = {xi} is the query,
and images {xi1, . . . ,xik,} belong to the same cluster than xi.

The set of all the queries, Q = {qi}n
i=1, represents a simulated

family of queries whose groundtruth is given by a clustering
process.
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Hyperspectral CBIR validation

Precision and recall quality measures can be given using the
proposed relevant set R(qi) = {xi1, . . . ,xik,}.
The ideal response of a CBIR system M to a potential query qi

is a ranked list given by

fM (qi) =
{

xi′1,
. . . ,xi′k,

xi′k+1
, . . . ,xi′n

}
where

{
xi′1,

. . . ,xi′k,

}
is any permutation of the images

belonging to the relevant set R(qi).
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Hyperspectral database

We applied the Hyperspectral CBIR over a scene provided by
HyVista Corp. and DLRs optical Airborne Remote Sensing and
Calibration Facility service.

The scene is a big image of 2878 Ö 512 pixels and 125
spectral bands.

Twelve bands corresponding to water absorption bands have
been removed, remaining 113 bands.

The image has been captured over the DLR facilities in
Oberpfa�enhofen (Germany), and consist mainly of vegetation
and �elds, in addition to the DLR facilities and some small
towns buildings.

We built six datasets by cutting the scene in patches of
increasing sizes, from 8 Ö 8 pixels (23040 patches) up to 256
Ö 256 pixels (24 patches).
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Potential queries simulation

For each dataset we performed several clusterings on the
average radiance of each patch sample by means of the ELGB
clustering algorithm.

Di�erent values of the number of clusters, k = 2, . . . , 7.
The ELGB is an enhanced k-means clustering algorithm which
has a strong robustness against initial condition variations.

For each dataset and cluster, the mean and standard deviation
were calculated in order to purge those patches away from two
times the standard deviation.

Eliminating ambiguous samples.

Each clustering is assumed to be the ground truth of the
expected response to a simulated family of queries, against
which the RS-CBIR must compete.
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Results

Precision/recall curves for the di�erent datasets:

Decrease on the performance of the Hyperspectral CBIR
system as the diversity of the simulated queries, given by the
number of clusters k, increases.

The size of the images does not a�ect signi�cantly the
performance of the Hyperspectral CBIR system.
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Summary

There is a big need of new strategies to validate RS-CBIR
systems that could successfully overcome the lack of ground
truth data.

We have developed a methodology for RS-CBIR systems
quality assessment, inspired in the DAMA strategy for
unsupervised segmentation quality assessment in remote
sensing images.

Our methodology works when little or no ground truth data
are available.

We show an example of its applicability to test a Hyperspectral
CBIR system.
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