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Abstract. Defining Lattice Computing as the class of algorithms that either construct the

computations using the lattice operators inf and sup, or use lattice theory to produce general-

izations or fusions of previous approaches, we find that a host of algorithms for data processing,

classification and signal filtering have been produced over the last decades. We give a fast and

brief review, that by no means could be exhaustive, with the aim to show, first, that this area

has been growing during the past decades, and, second, what we think are broad avenues for

future research.

1. Introduction Many computational algorithms in the diverse fields of Computer
Science, including Computational Intelligence, are defined assuming as the computational
framework the algebraic structure given by the ring of the real numbers, the addition
and the multiplication (R,+,×). However there is a parallel line of works based on other
algebraic structures, like (R,∨,+) or its dual (R,∧,+), where the role of the addition
is taken by the lattice operation inf or sup, and the multiplication role is taken by the
addition. These works have evolved into the application of Lattice Theory as a framework
to define new approaches and algorithms that either generalize previous ones [20] or
fuse existing computational paradigms [22]. We call this broad class of algorithms and
knowledge representation methods Lattice Computing. Of course, the works reviewed
didn’t refer themselves as belonging to this category.

We can, at a very abstract level, distinguish the kind of processes realized in Compu-
tational Intelligence applications and methods into three basic groups:

1. Filtering: maps of objects (i.e. signals) in a high dimensional space into objects of the
same space, i.e. F : RN → RN .
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2. Dimension reduction: maps of objects in a high dimensional space into ones in a lower
dimension space, i.e. F : RN → Rd with d << N .

3. Classification: Mapping objects in a (high dimension) space into categories, where the
construction can be done in a supervised or unsupervised (clustering) way, i.e. F : RN →
Ω with Ω = {ω1, · · · , ωc}.

There have been instances of Lattice Computing algorithms on all these categories. Lat-
tice Computing filtering approaches roughly correspond to Mathematical Morphology
applied to image and signal processing [51, 24, 25], which has been quite a successful
alternative to linear signal processing. The literature in Mathematical Morphology is
enormous and, of course, we do not attempt to review it here. In fact this success has
been the source of inspiration for researches trying to extend this approach to other Com-
putational Intelligence problems and applications closer to Artificial Intelligence classical
topics. There have been some approaches to the construction of classification systems
based on Lattice Computing ideas which fall in a no man’s land between Artificial Neu-
ral Networks and Fuzzy Systems, i.e.: [71, 52, 28]. The results reported by these classifiers
sometimes improve conventional classifiers and sometimes fall behind. There are few in-
stances of dimension reduction based on Lattice Computing ideas, may be [68, 69, 7, 9]
are the only works falling in this category.

A lattice is a partially ordered set (poset) any two of whose elements have a supremum
and an infimum. The inf and sup operations are binary relations that give, respectively,
the infimum and the supremum of any pair objects in the set. The classical reference
on Lattice Theory is the book [2]. Perhaps the first extensive work that proposed com-
putational algorithms involving the shift from the conventional ring (R,+,×) into the
algebraic structures involving lattice operations, (R,∨,+) or its dual (R,∧,+), is the
definition of the Minimax Algebra [5] in the context of planning problems. The next
historical landmark is the introduction of Mathematical Morphology [51]. Image Algebra
[48, 50] is another early attempt to define lattice computing methods devoted to im-
age processing. The Fuzzy-ART architecture [4, 3] maybe the earliest Lattice Computing
learning approach. Recent works [18, 22, 21] identify the Lattice Theory and the algebraic
structures based on lattice operators as a central concept for a whole family of methods
and applications. In short, the Lattice Computing approach has served to bridge the
gap between computational paradigms as diverse as Fuzzy Systems, morphological signal
processing and Artificial Neural Networks [10, 14, 12, 20, 58, 60, 66, 67]. In section 2 we
comment on the problems and the approaches followed to implement learning procedures
in Lattice Computing algorithms. In section 3 we comment on some of the approaches
that we find more promising and in section 4 we finish with some conclusions.

2. Learning and parameter estimation Construction by learning is the induction
of the system parameters from the available data. The key to the success of the Artificial
Neural Networks paradigm is the development of easy to implement, robust (up to some
degree) methods to estimate the parameters of the system: backpropagation, competitive
learning algorithms, among others. These algorithms were designed as gradient descent
procedures for a given energy or cost function. Some Lattice Computing approaches had
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tried to follow this same pattern [28, 52, 53, 71]. For instance, [71] tries to minimize
the MSE of the output, [28] tries to maximize an equality index between the output
and the desired output of the system. The major difficulty in these approaches lies in the
discontinuity of the min and max functions. It has been avoided proposing continuous ap-
proximations to the min and max functions [28, 71, 72] that allow the derivation of closed
expressions for approximations of the gradient. Some approaches had added complica-
tions, such as the need to express the clause structure in a way that allows differentiation
in [71]. Besides the construction of classification systems, there have been works [70, 29]
that tried to define gradient descent algorithms for the estimation of the morphological
filter structural element. In fact, [30, 31] propose a class of mixed morphological/linear
systems which are trained with an algorithm analogous to the error backpropagation.
Some authors have tried to apply non-differential learning approaches, based on heuris-
tic reasoning. For instance, there have been attempts to mimic the perceptron rule for
lattice based morphological networks [37, 54]. Among the heuristic approaches, one of
the earliest and most successful is Fuzzy-ART [4, 3] which applies an ad-hoc heuristic
category growing learning procedure. The Fuzzy-ART learning procedure produces hy-
perrectangles covering the data, corresponding to the categories. These hyperrectagles
grow monotonically as the learning proceeds, only stopped by the application of the vig-
ilance parameter. Both the resolution of the result and the number of categories found
depend on this vigilance parameter. The learning process is highly dependent on the order
of presentation of the data [6], and still research is going on the setting of the algorithm
parameters. Another approach to build up systems is that of the Morphological Asso-
ciative Memories [43, 38, 62, 46, 63, 59]. It is very light computationally and does not
involve gradient descent algorithms. It consists on the morphological (lattice) analogy
to the construction of linear associative memories and Hopfield networks. Most of the
theoretical work on their behaviour have been devoted to explain their behaviour and to
understand the shape and properties of their fixed point subspaces [49, 63, 55, 56]. The
related dendritic morphological neural network [40, 44, 47] has a learning algorithm based
on the incremental refining of the covering of the sets in the classes to be discriminated.

3. Review of some approaches The goal of this review is to give a flavour of some
of the avenues of work and research in this broad area which we find most involving and
promising of future results. It can not be exhaustive, as some fields like Mathematical
Morphology have a large number of works, but we hope that it can be enough to motivate
readers to pursue works in this area.

3.1. Mathematical Morphology In image and signal processing a big class of tasks to
be solved are related to noise removal and/or to segmentation. The basic morphological
operators are the erosion and dilation operators, while the basic morphological filters are
opening and closing. Sophisticated morphological procedures like texture segmentation,
granulometries, watershed segmentation, etc. are compositions of these filters. One of
the venues of research is the definition of appropriate lattice ordering of high dimension
spaces, such are colour spaces and other vector spaces found in images, so that filters
can be generalized to them. The other venue of interest from our point of view is that of
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defining new morphological operators and filters [22, 10, 27, 26] and the approaches to es-
timate appropriate structural elements [29, 30, 31, 23]. Lattice Theory was already used to
formalize morphological operators [10]. The use of Lattice Theory in [22, 26] to generalize
the erosion and dilation operators and the rigorous construction of adjoin operator pairs
to systematically construct generalized opening and closing operators is a breakthrough
that paves the way for new research areas. The embedding of fuzzy intersection and
union norms into the morphological framework gives new fuzzy morphological openings
and closings with enhancing noise removal and edge detection properties. In the mean-
time, there have been proposals for adaptive morphological operators sometimes mixed
with linear operators, using gradient descent algorithms for structural element estimation
[29, 30, 31], and they were applied to image restoration and character recognition. An-
other example of the fusion of ideas are the Morphological Shared-weight networks [70]
that were proposed for target recognition in images. There a morphological hit-or-miss
transform is implemented through a shared-weight network and its structural elements
are adaptively estimated to obtain an optimal target recognition.

3.2. Morphological Associative Memories The works on Image Algebra [48, 45, 50]
were the prelude to the proposal of morphological neural networks, in the form of morpho-
logical perceptron [54, 37, 40] and of associative memories [43, 38, 42]. They were proposed
for the storage of binary and gray patterns, with the aim of recovering the original clean
image from noisy copies, which is an image restoration process. Also grayscale morphologi-
cal associative memories are used in [61] to pre-process the data prior to classification with
a simple Nearest Neighbour approach. The good properties of Morphological Autoassocia-
tive Memories (later renamed Lattice Autoassociative Memories) were hindered by their
sensitivity to specific kinds of noise (erosive or dilative noise), so that a big deal of effort
was addressed to obtain robust versions [41, 58, 46, 62, 63, 59, 57, 61, 36, 39, 64, 65]. These
efforts produced a new kind of memories in the frontier between associative morpholog-
ical memories and fuzzy systems. Our own works on spectral unmixing of hyperspectral
images [8, 7] have led to the use of the convex coordinates produced by unmixing process
as features for classification purposes [7, 68, 69]. The sample data points are expressed
relative to the so-called endmembers in hyperspectral image processing. The idea of end-
member is that they represent instances of pure elements, so that all the other elements
in the image correspond to mixtures of these pure elements. Endmembers are vertices
of a polygonal convex set covering data cloud. This is a new kind of feature extraction
that we think deserves further research. It happens that Autoassociative Morphological
Memories have specific noise sensitivities that allow the detection of endmembers in the
data from hyperspectral images. Working ways to enhance the robustness of Associative
Morphological Memories against all kinds of noise [36, 64, 65] led to the definition of
“morphological independence” and latter to “lattice independence” which turns out to
be related to affine independence [49], a condition to be fulfilled by sets of endmembers.
This justifies an algorithm exploiting the Autoassociative Morphological Memories sen-
sitivities to extract the endmembers from the data sample previously proposed in [7]. It
is possible also to obtain these endmembers trough the construction of the Autoassocia-
tive Morphological Memories [49]. The dendritic neuron [44, 47] is a further development
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of the Morphological Neural Netwoks were the biological model is a dendrite and the
learning procedure is an incremental procedure that is shown to converge, with some
similarities to the Fuzzy-ART learning algorithm.

3.3. Fuzzy Lattice Neurocomputing The Fuzzy Lattice Neurocomputing paradigm
[15, 18, 32, 33] arises from the generalization of Fuzzy-ART [4, 3]. The generalization
comes from the use of a general measure of inclusion and definition of the vigilance
parameter in terms of the diagonal of the generalized object. The general data structure
that allows the modelling of several classical structures is called Fuzzy Interval Number
[11, 34]. It allows the manipulation of rather different data objects in a common lattice
framework. These ideas have matured to propose lattice computing as a framework for
new inference systems [13] and for new version of well known algorithms, such as the
the grSOM (granular SOM) [20], the grARMA (granular ARMA) [12], the unification of
SOM and ART algorithms [19]. The authors also propose FLNMAP as the generalization
of the supervised Fuzzy ARTMAP.

The works on Fuzzy Lattice Neurocomputing had a lot of applications in classification
and prediction: bone drilling for epidural anaesthesia [16], text classification [35], sugar
production prediction[17], air quality monitoring [1]. The FIN structure is a promising
way to produce new generalized algorithms able to deal with heterogeneous data struc-
tures, different from the conventional Euclidean spaces.

4. Conclusions The aim of this paper was to give a glimpse of the computational
field composed of algorithms that employ in any way sup and inf operators and can
be, therefore, put into the framework of lattice theory. We have taken the liberty to
call it Lattice Computing. The focus on Lattice Theory and lattice operators reveals
the existence of a profound parallelism between areas as divergent as Fuzzy Systems,
Mathematical Morphology, Min-max Algebra and Artificial Neural Networks, which still
may be the source of new contributions and enhacements to existing methods.
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