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Introduction

Linked Multicomponent Robotic Systems

@ Definition: group of robotic units physically-linked by a
non-rigid element.

@ Physical link introduces new non-linear dynamics and physical
constraints in the system.

o Traditional control techniques are not appropriate
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Introduction

Multi-Agent Reinforcement Learning

@ Reinforcement Learning (RL)

e Set of algorithms that learn by exploring the state space S
taking actions from set A

o A reward function qualifies how good the observed state is
(R:S—R)

e Goal: maximize the accumulated rewards over time

@ Q-Learning

e Estimates the rewards to be obtained after taking action a in
state s by looking one step ahead:

O(s,a) < Q(s,a)+ o (r—i— ¥ * IIZ’«IIX{Q(S/’Q/) 4 Q(s,a)})
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Introduction

Multi-Agent Reinforcement Learning

e Main RL drawback: exponential growth of the state-action
space (| SxA|)

e Multi-Agent Reinforcement Learning (MARL) makes it even
worse: | S x A" |

@ L-MCRS present an additional problem: physical constraints.

e Some states force simulation to stop and start over
o Examples:

o physical-link stretched beyond its nominal length
e collision between robotic units
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Paradigmatic application: Hose transportation

Problem Statement

A set of n linked robots (each of them represented as £;) must
carry the tip of a hose from a starting configuration to the goal
@ Available actions: Up, Down, Left, Right, Up-Left, Up-Right,
Down-Left, Down-Right and None

@ Simple hose model: line segment
@ Termination conditions:

A robot steps over the hose

Hose segments are stretched over nominal length
A robot gets out of the simulation world

Two robots colide

@ Decentralized control and local rewards based on agents’
selfish goal
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Paradigmatic application: Hose transportation

Example

Source

Figure: An example of the system: initial configuration (I;), current
position of the robots (P;) and goal destination (G;)
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Paradigmatic application: Hose transportation

Multi-Agent Coordination

@ For the agents to learn the best policy for each of the states,
the straightforward approach uses omniscient agents

@ State-action growth makes it unfeasible even in this simple
environment

@ Instead we use turns, so the state remains stationary during an
agent’'s move

@ Because of particularities of L-MCRS, we investigate the
behavior of agents able to observe only a few state variables:

e position of the agent and its neighbours
o detection of an object in adjacent cells
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Paradigmatic application: Hose transportation

Undesirable Termination Conditions

@ Local reward function decomposition for each agent: a goal
reward function R® : § — R > 0 and several auxiliary functions

RV:S—-R<O
@ RY returns a positive reward whenever the goal is reached
o RY return a negative reward when the i-th constraint is broken
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Paradigmatic application: Hose transportation

State-Action Modular Veto approach

o Assuming not all RY depend on all the state variables but a
subset, the original problem can be decomposed in several
concurrent modules

@ One of them learns how to maximize RC and the rest of
modules learn state-action pairs leading to undesired
terminations so as to veto them in the future

@ The reduced state space makes considerably faster learning
how to avoid them
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Paradigmatic application: Hose transportation

State-Action Modular Veto approach
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Figure: Scheme of the State-Action Modular Veto algorithm
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Experiments

Results

@ Initial configurations were randomly generated

@ One episode was simulated for each configuration with typical
€ — greedy exploration

@ Percent of succesfull configurations was measured with a 500
episode window
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Introduction Paradigmatic application: Hose transportation Experiments

Experiment A: No modular veto system
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Figure: Results without the modular veto system
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Introduction Paradigmatic application: Hose transportation Experiments

Experiment B: Modular veto system
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Figure: Results without the modular veto system
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Appendix

Thanks

Thank you very much for your attention.

o Contact:

Borja Ferndndez Gauna.

Computational Intelligence Group.

University of the Basque Country (UPV/EHU).

E-mail: borja.fernandez@ehu.es

Web page: http://www.ehu.es/computationalintelligence
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