Towards concurrent Q-Learning With Local Rewards on Linked Multi-Component Robotic Systems

Borja Fernandez-Gauna, Jose Manuel Lopez-Guede, Manuel Graña

> Computational Intelligence Group University of the Basque Country (UPV/EHU)

IWINAC 2011, La Palma

http://www.ehu.es/ccwintco

Concurrent Q-Learning on L-MCRS

HAIS 2011 1 / 15

Outline

2 Paradigmatic application: Hose transportation

Linked Multicomponent Robotic Systems

- Definition: group of robotic units physically-linked by a non-rigid element.
 - Physical link introduces new non-linear dynamics and physical constraints in the system.
- Traditional control techniques are not appropriate

Multi-Agent Reinforcement Learning

- Reinforcement Learning (RL)
 - Set of algorithms that learn by exploring the state space S taking actions from set A
 - A reward function qualifies how good the observed state is $(R:S \to \mathbb{R})$
 - Goal: maximize the accumulated rewards over time
- Q-Learning
 - Estimates the rewards to be obtained after taking action *a* in state *s* by looking one step ahead:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(r + \gamma * \max_{a'} \left\{ Q(s',a') - Q(s,a) \right\} \right)$$

http://www.ehu.es/ccwintco

Multi-Agent Reinforcement Learning

- Main RL drawback: exponential growth of the state-action space (| S×A |)
- Multi-Agent Reinforcement Learning (MARL) makes it even worse: | S×Aⁿ |
- L-MCRS present an additional problem: physical constraints.
 - Some states force simulation to stop and start over
 - Examples:
 - physical-link stretched beyond its nominal length
- collision between robotic units

http://www.ehu.es/ccwintco

Concurrent Q-Learning on L-MCRS

HAIS 2011 5 / 15

Problem Statement

- A set of *n* linked robots (each of them represented as *P_i*) must carry the tip of a hose from a starting configuration to the goal
- Available actions: Up, Down, Left, Right, Up-Left, Up-Right, Down-Left, Down-Right and None
- Simple hose model: line segment
- Termination conditions:
 - A robot steps over the hose
 - Hose segments are stretched over nominal length
 - A robot gets out of the simulation world
 - Two robots colide
- Decentralized control and local rewards based on agents' selfish goal

Example

Figure: An example of the system: initial configuration (I_i) , current position of the robots (P_i) and goal destination (G_i)

http://www.ehu.es/ccwintco

Concurrent Q-Learning on L-MCRS

HAIS 2011 7 / 15

Multi-Agent Coordination

- For the agents to learn the best policy for each of the states, the straightforward approach uses omniscient agents
- State-action growth makes it unfeasible even in this simple environment
- Instead we use turns, so the state remains stationary during an agent's move
- Because of particularities of L-MCRS, we investigate the behavior of agents able to observe only a few state variables:
 - position of the agent and its neighbours
 - detection of an object in adjacent cells

Undesirable Termination Conditions

- Local reward function decomposition for each agent: a goal reward function $R^G: S \to \mathbb{R} \ge 0$ and several auxiliary functions $R^U_i: S \to \mathbb{R} \le 0$
- R^G returns a positive reward whenever the goal is reached
- R_i^U return a negative reward when the i-th constraint is broken

State-Action Modular Veto approach

- Assuming not all R^U_i depend on all the state variables but a subset, the original problem can be decomposed in several concurrent modules
- One of them learns how to maximize R^G and the rest of modules learn state-action pairs leading to undesired terminations so as to veto them in the future
- The reduced state space makes considerably faster learning how to avoid them

State-Action Modular Veto approach

Figure: Scheme of the State-Action Modular Veto algorithm

http://www.ehu.es/ccwintco

Concurrent Q-Learning on L-MCRS

HAIS 2011 11 / 15

Results

- - Initial configurations were randomly generated
 - One episode was simulated for each configuration with typical ε - greedy exploration
 - Percent of succesfull configurations was measured with a 500 episode window

Experiment A: No modular veto system

Figure: Results without the modular veto system

http://www.ehu.es/ccwintco

Concurrent Q-Learning on L-MCRS

HAIS 2011 13 / 15

San

Experiment B: Modular veto system

Figure: Results without the modular veto system

http://www.ehu.es/ccwintco

Concurrent Q-Learning on L-MCRS

HAIS 2011 14 / 15

Appendix

Thanks

Thank you very much for your attention.

- Contact:
 - Borja Fernández Gauna.
 - Computational Intelligence Group.
 - University of the Basque Country (UPV/EHU).
 - E-mail: borja.fernandez@ehu.es
 - Web page: http://www.ehu.es/computationalintelligence

http://www.ehu.es/ccwintco

HAIS 2011 15 / 15