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Linked Multicomponent Robotic Systems

De�nition: group of robotic units physically-linked by a

non-rigid element.

Physical link introduces new non-linear dynamics and physical

constraints in the system.

Traditional control techniques are not appropriate
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Multi-Agent Reinforcement Learning

Reinforcement Learning (RL)

Set of algorithms that learn by exploring the state space S
taking actions from set A
A reward function quali�es how good the observed state is
(R : S→ R)
Goal: maximize the accumulated rewards over time

Q-Learning

Estimates the rewards to be obtained after taking action a in
state s by looking one step ahead:

Q(s,a)← Q(s,a)+α

(
r+ γ ∗max

a′

{
Q(s′,a′)−Q(s,a)

})
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Multi-Agent Reinforcement Learning

Main RL drawback: exponential growth of the state-action

space (| S×A |)
Multi-Agent Reinforcement Learning (MARL) makes it even

worse: | S×An |
L-MCRS present an additional problem: physical constraints.

Some states force simulation to stop and start over
Examples:

physical-link stretched beyond its nominal length

collision between robotic units
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Problem Statement

A set of n linked robots (each of them represented as Pi) must
carry the tip of a hose from a starting configuration to the goal

Available actions: Up, Down, Left, Right, Up-Left, Up-Right,

Down-Left, Down-Right and None

Simple hose model: line segment

Termination conditions:

A robot steps over the hose
Hose segments are stretched over nominal length
A robot gets out of the simulation world
Two robots colide

Decentralized control and local rewards based on agents'

sel�sh goal
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Example
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Figure: An example of the system: initial con�guration (Ii), current
position of the robots (Pi) and goal destination (Gi)
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Multi-Agent Coordination

For the agents to learn the best policy for each of the states,

the straightforward approach uses omniscient agents

State-action growth makes it unfeasible even in this simple

environment

Instead we use turns, so the state remains stationary during an

agent's move

Because of particularities of L-MCRS, we investigate the

behavior of agents able to observe only a few state variables:

position of the agent and its neighbours
detection of an object in adjacent cells
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Undesirable Termination Conditions

Local reward function decomposition for each agent: a goal

reward function RG : S→ R≥ 0 and several auxiliary functions

RU
i : S→ R≤ 0

RG returns a positive reward whenever the goal is reached

RU
i return a negative reward when the i-th constraint is broken
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State-Action Modular Veto approach

Assuming not all RU
i depend on all the state variables but a

subset, the original problem can be decomposed in several

concurrent modules

One of them learns how to maximize RG and the rest of

modules learn state-action pairs leading to undesired

terminations so as to veto them in the future

The reduced state space makes considerably faster learning

how to avoid them
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State-Action Modular Veto approach
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Figure: Scheme of the State-Action Modular Veto algorithm
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Results

Initial con�gurations were randomly generated

One episode was simulated for each con�guration with typical

ε−greedy exploration

Percent of succesfull con�gurations was measured with a 500
episode window
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Experiment A: No modular veto system
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Figure: Results without the modular veto system
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Experiment B: Modular veto system
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Figure: Results without the modular veto system
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Appendix

Thanks

Thank you very much for your attention.

Contact:

Borja Fernández Gauna.
Computational Intelligence Group.
University of the Basque Country (UPV/EHU).
E-mail: borja.fernandez@ehu.es
Web page: http://www.ehu.es/computationalintelligence
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