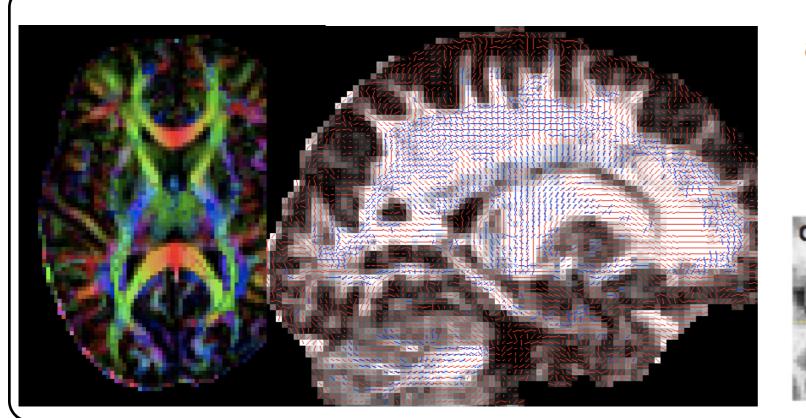
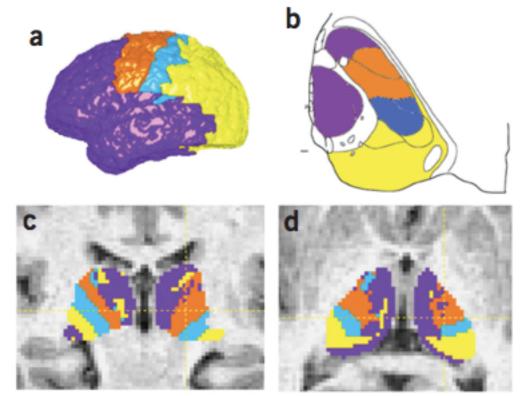


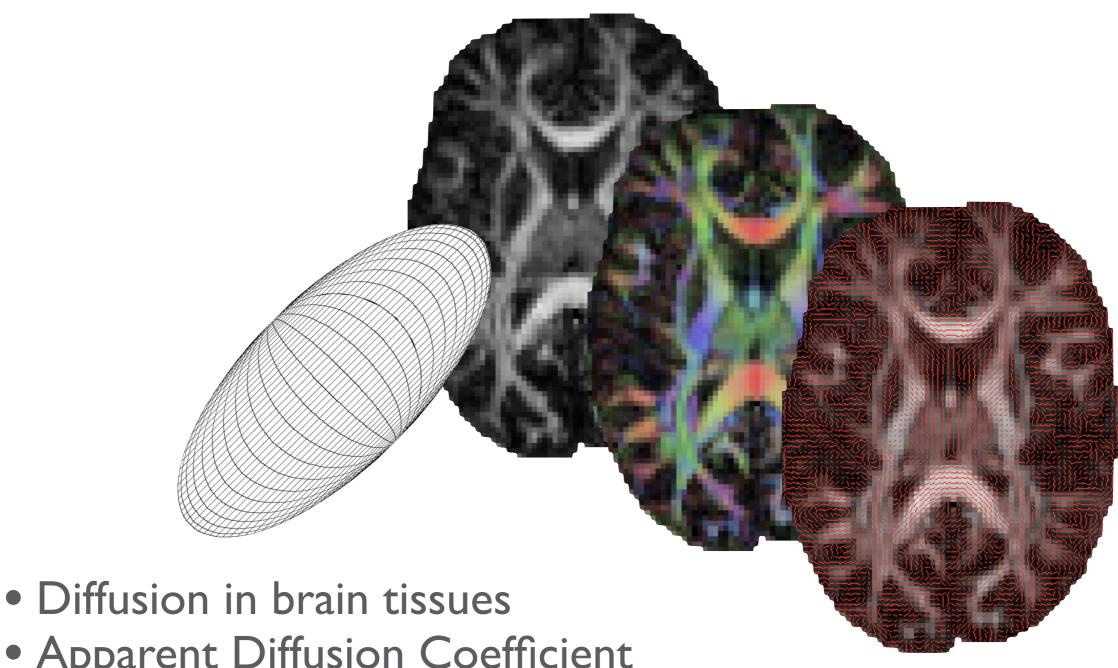
FMRIB Diffusion Toolbox

- DTI model fit
- Eddy current correction
- Voxel-Based diffusion analysis (TBSS)
- BEDPOSTX modelling crossing fibres
- PROBTRACKX propagating uncertainty in tractography





Diffusion Tensor Imaging - basic principles

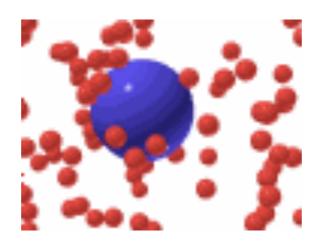


Apparent Diffusion Coefficient

- Diffusion Tensor model
- Tensor-derived measures

Diffusion - Brownian Motion

Robert Brown (1773-1858)



Molecules are in constant motion in non-zero absolute temperatures...

Diffusion = A molecular transport process that involves thermally-driven random motions

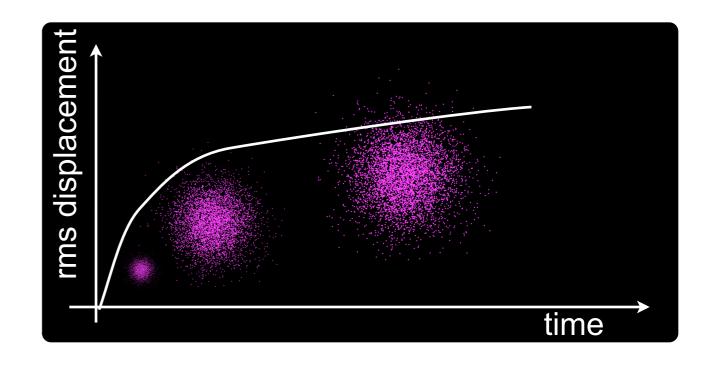
Diffusion - Brownian Motion

Albert Einstein (1879-1955)

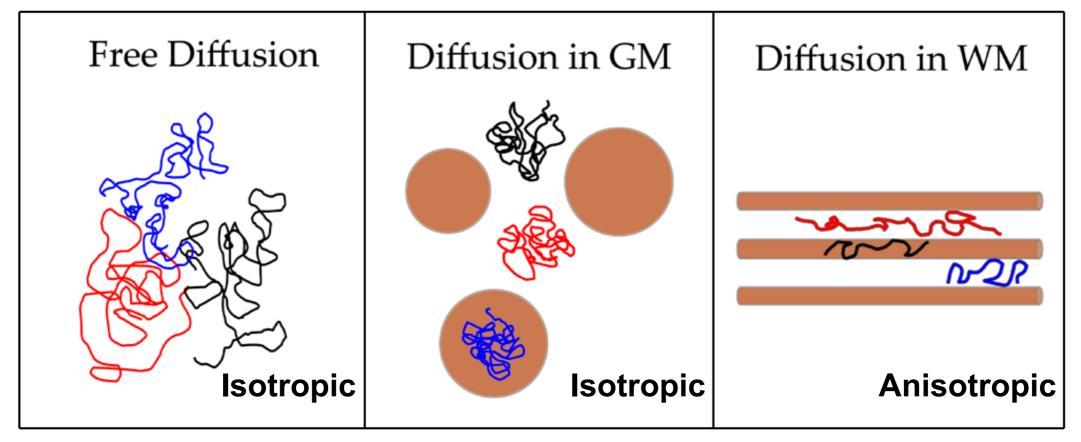
How can we describe this motion? For an ensemble of molecules, in *n*-dimensional space:

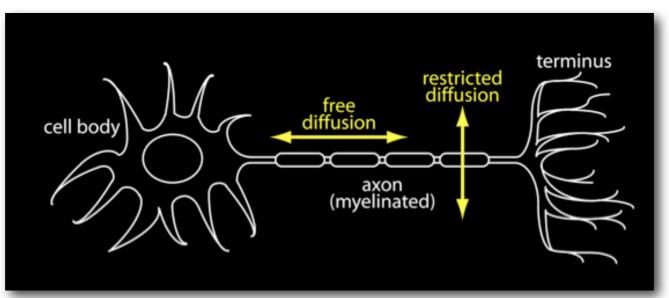
$$<$$
 x^2 $>= 2nDt$ time displacement Diffusion coefficient

Valid for a homogeneous, barrier-free medium.



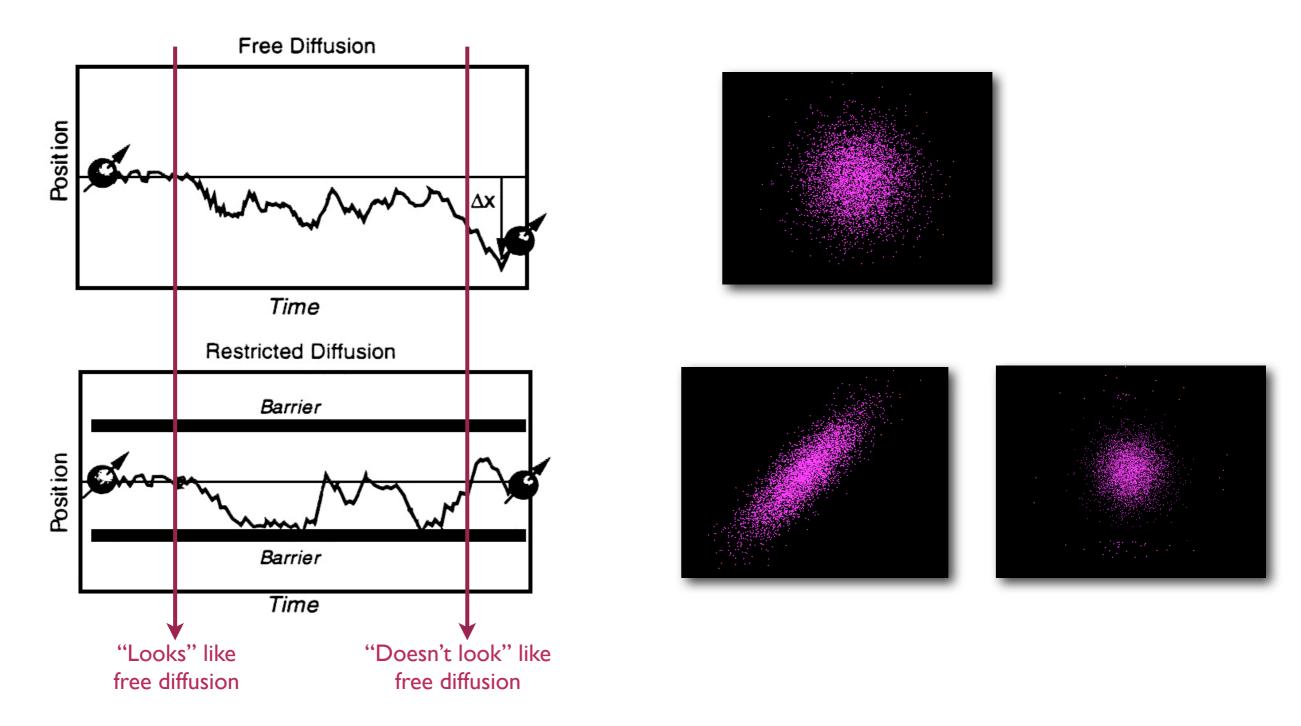
Diffusion in the Brain. Why is it Interesting?





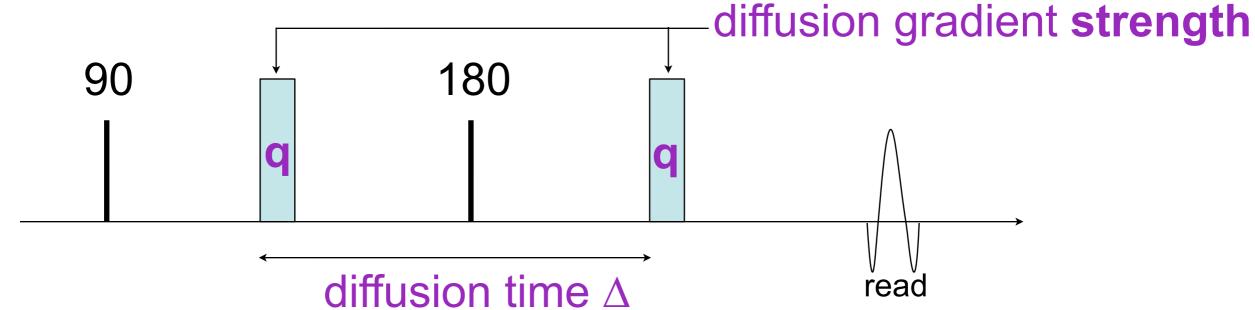
Diffusion is hindered by tissue boundaries, membranes, etc. Marker for tissue microstructure (healthy and pathology) Diffusion is anisotropic in white matter

Apparent Diffusion

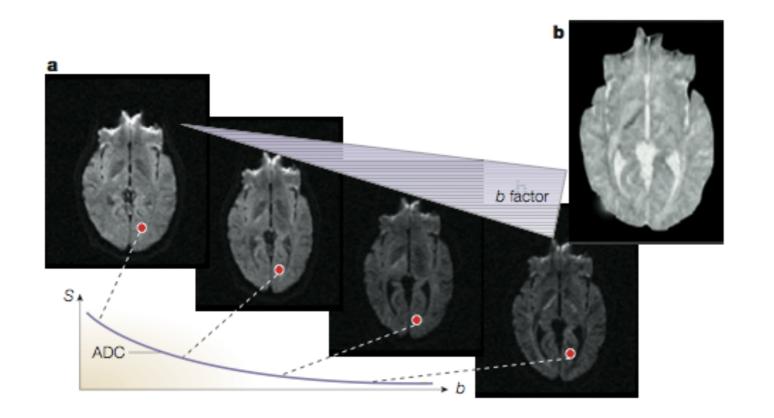


Observed diffusion in tissues depends on the experiment =
"Apparent diffusion" &
"Apparent diffusion coefficient" (ADC)

Measuring diffusion with MRI: Diffusion-Weighted MRI



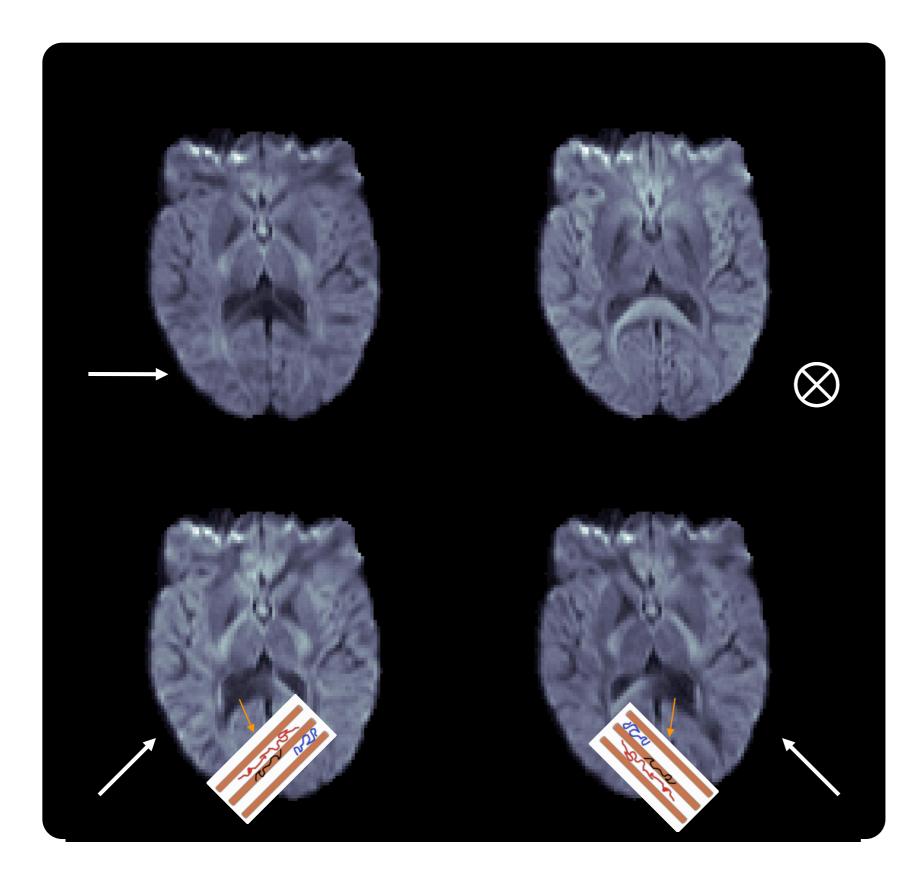
- If diffusion occurs along the direction of the applied gradient, signal is attenuated compared to the signal obtained with no diffusion gradients applied (b=0).



b value $\sim q^2.\Delta$

Summary of diffusion gradient features. Controls how much diffusion-weighted contrast we introduce to the image.

Orientation Contrast in DWI



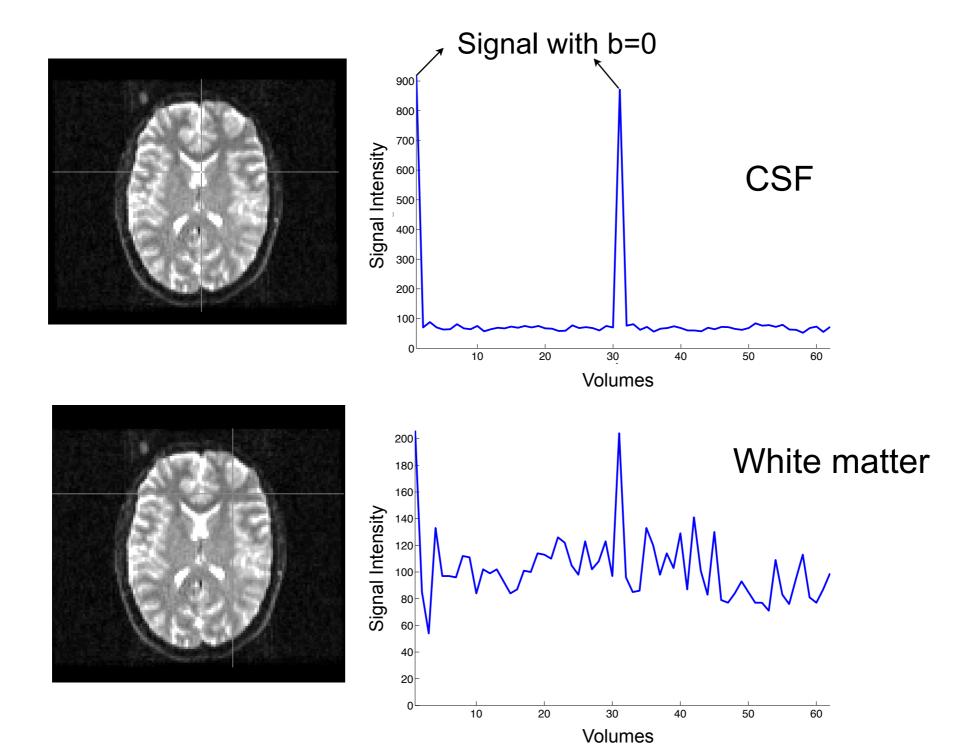
Because diffusion is anisotropic in WM, applying a gradient G along different directions **x**, gives different contrast in WM.

Anisotropic measurements in WM!

Roughly **Isotropic** in GM and CSF.

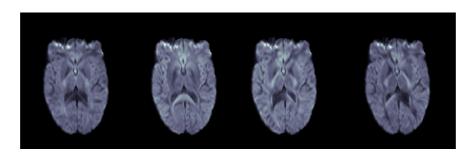
A Typical DWI Protocol

- Normally a few (at least one) b=0 volumes acquired, along with volumes at high b (~1000 s/mm²).
- Different gradient directions are applied for the high b volumes.



Diffusion Tensor Imaging (DTI)

- Apply the diffusion tensor model to a set of DWI images.



Model Assumptions

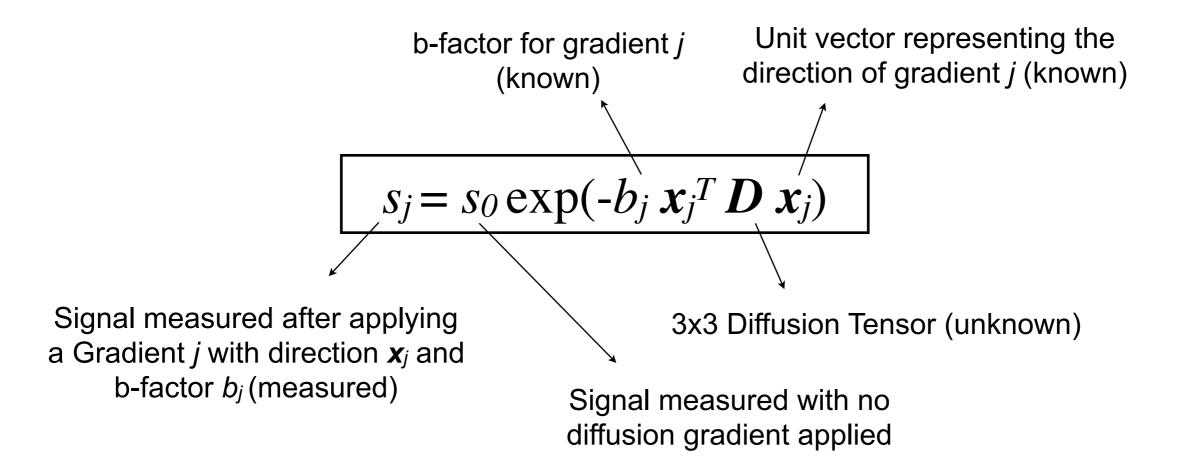
- The tensor model assumes that diffusion within tissues is Gaussian (barrier-free) diffusion! But instead of a homogeneous medium (scalar variance), assumes anisotropic behaviour (covariance).

=> Instead of a scalar diffusion coefficient, use the **Diffusion Tensor: a 3x3 matrix that describes anisotropic diffusion.**

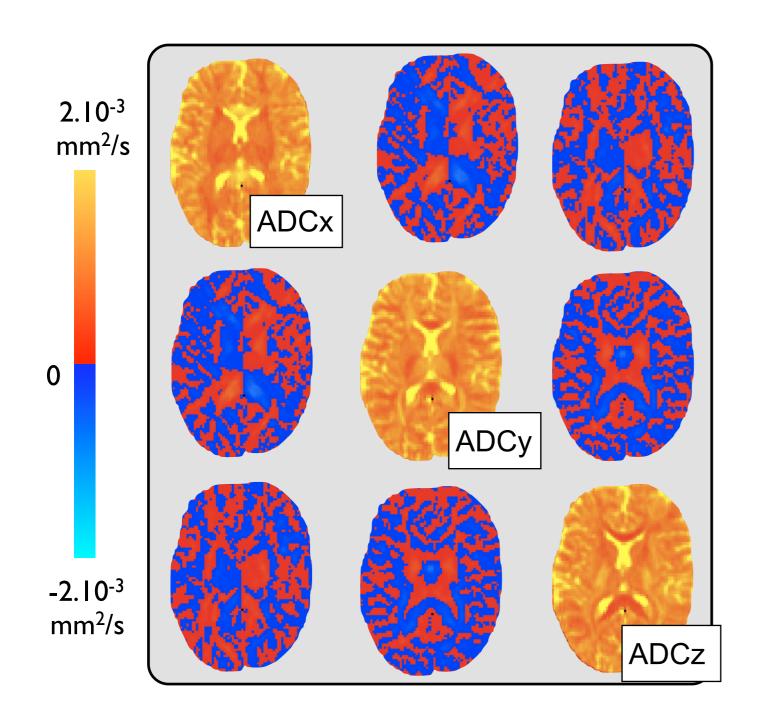
Diffusion displacements $\sim N_3$ (0, 2t**D**)

Diffusion Tensor Imaging (DTI)

Diffusion Tensor Model. In each voxel:



The Elements of the Diffusion Tensor

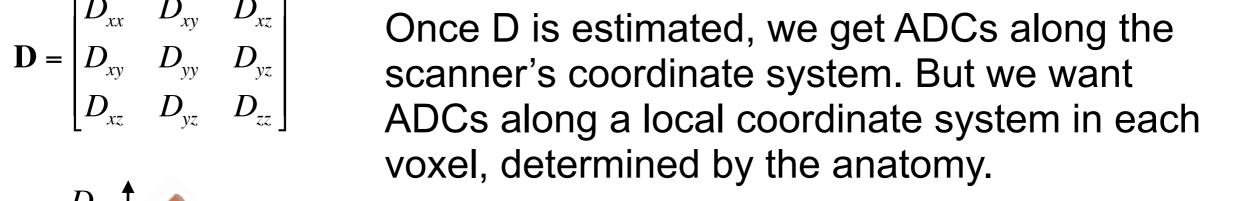


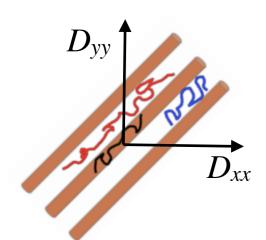
$$\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{bmatrix}$$

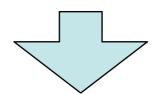
- Tensor is **symmetric** (6 unknowns)
- Diagonal Elements are proportional to the diffusion displacement variances (ADCs) along the three directions of the experiment coordinate system
- -Off-diagonal Elements are proportional to the correlations (covariances) of displacements along these directions

The Diffusion Tensor Eigenspectrum

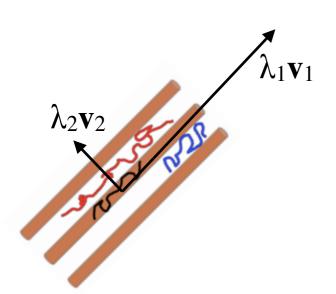
$$\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{bmatrix}$$







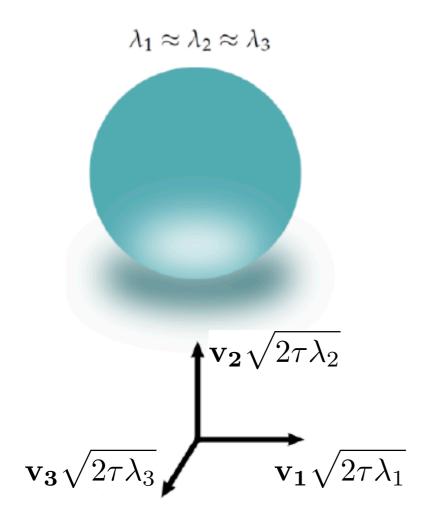
Diagonalize the estimated tensor in each voxel



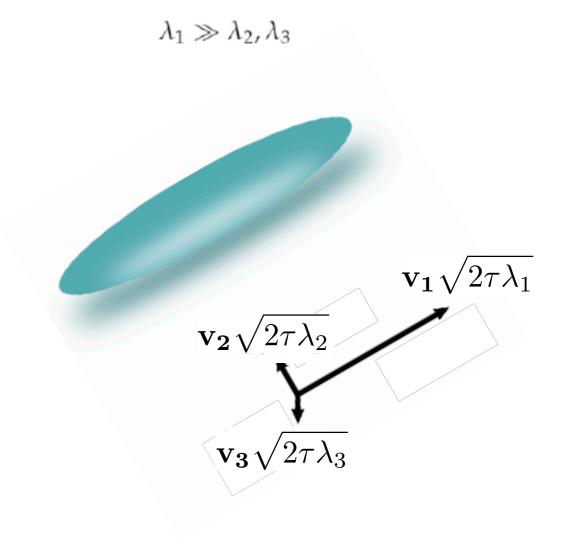
$$\mathbf{D} = \begin{bmatrix} \mathbf{v_1} | \mathbf{v_2} | \mathbf{v_3} \end{bmatrix}^T \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} \mathbf{v_1} | \mathbf{v_2} | \mathbf{v_3} \end{bmatrix}$$
eigenvectors - $\mathbf{v_1}$ =direction of max diffusivity

The Diffusion Tensor Ellipsoid

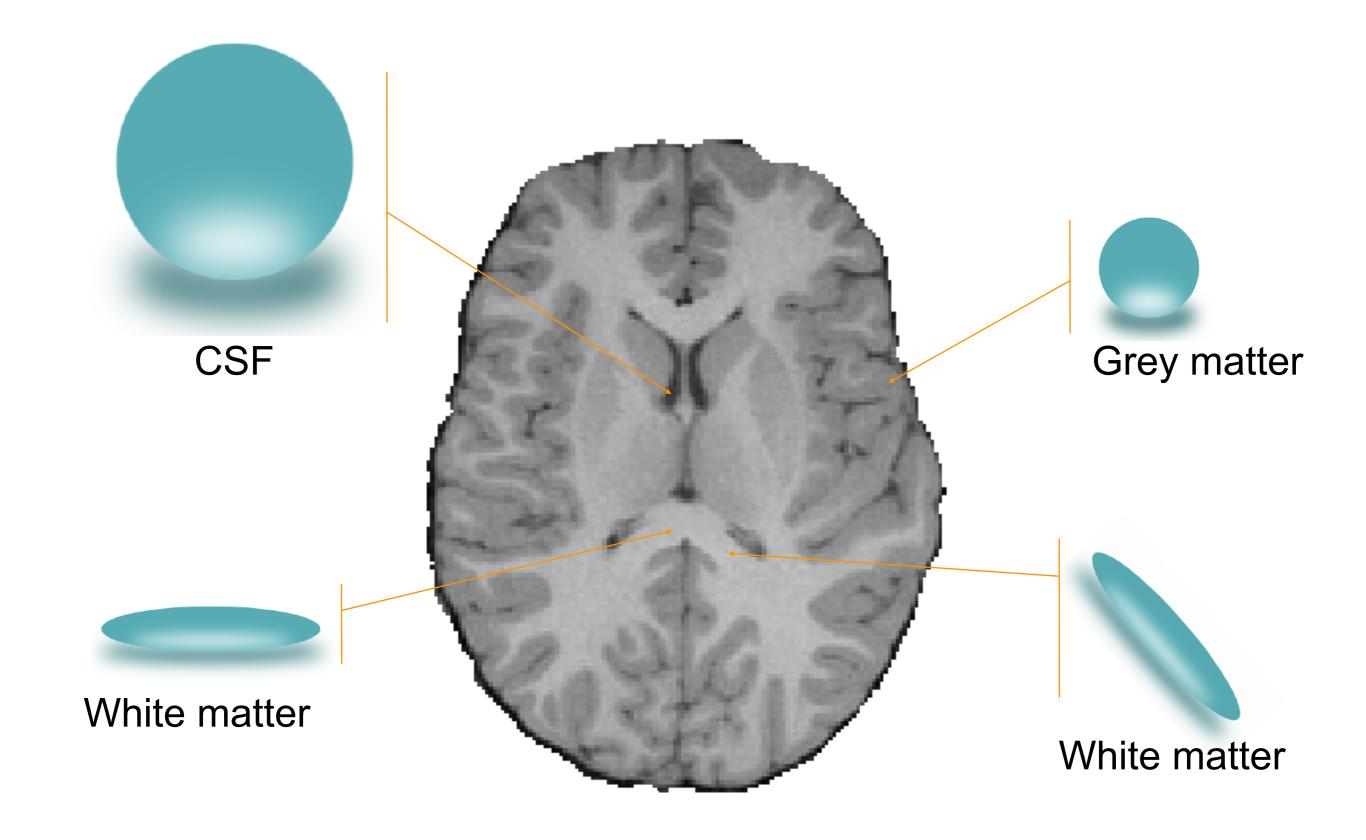
Isotropic voxel



Anisotropic voxel

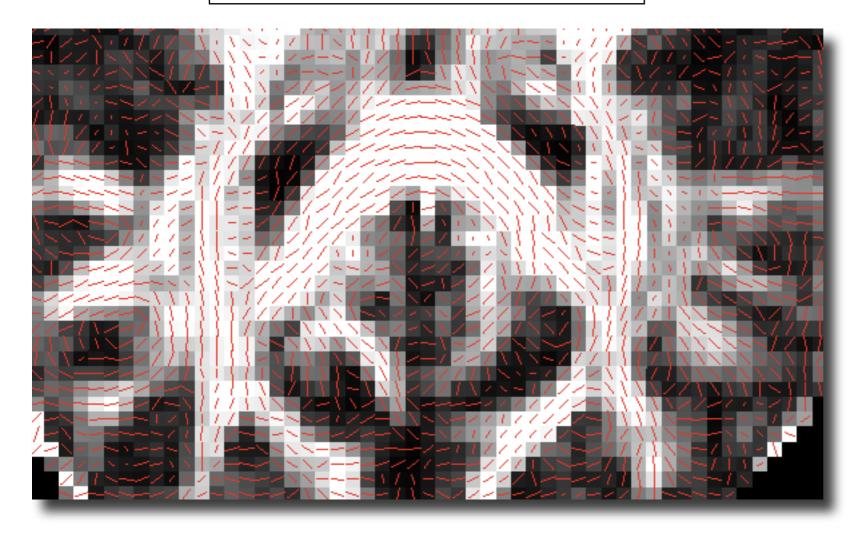


The Diffusion Tensor Ellipsoid

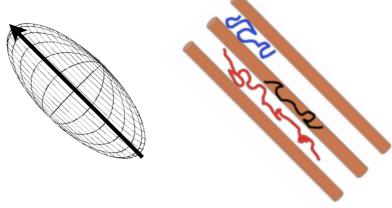


Estimates of Principle Fibre Orientation in WM

v₁ mapPrincipal Diffusion Direction



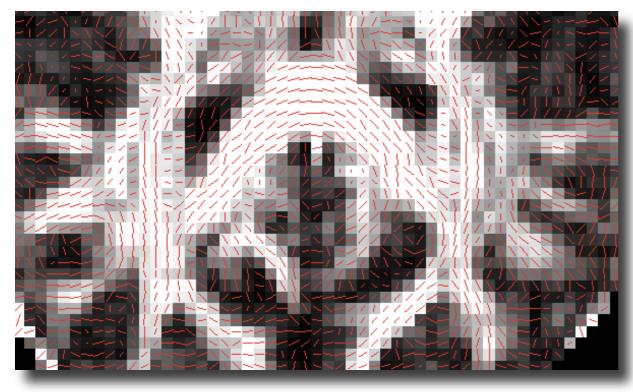
Principal Diffusion Direction

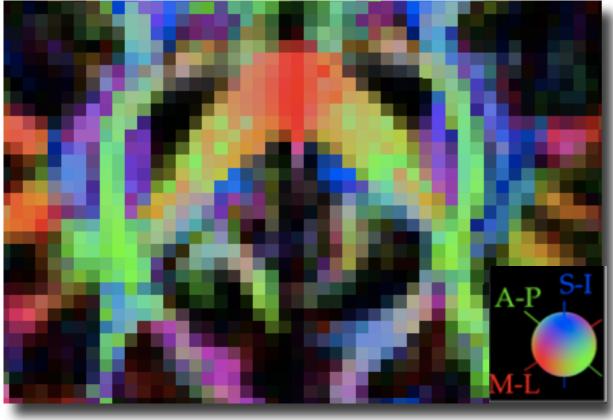


Assumption!!

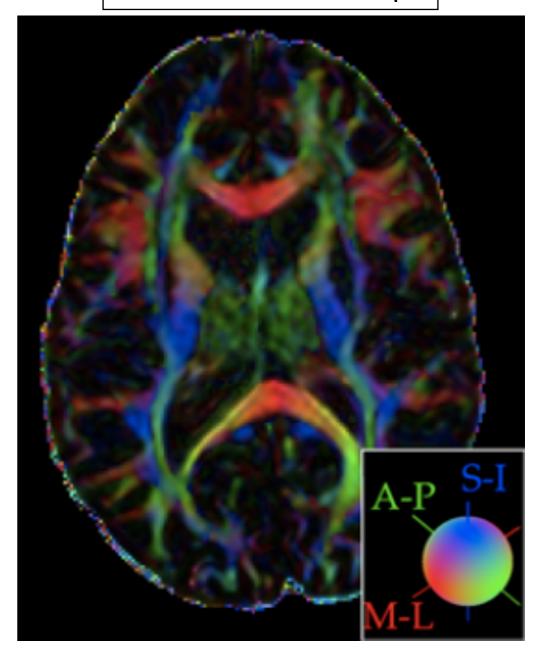
Direction of maximum diffusivity in voxels with anisotropic profile is an estimate of the major fibre orientation.

Estimates of Principle Fibre Orientation in WM

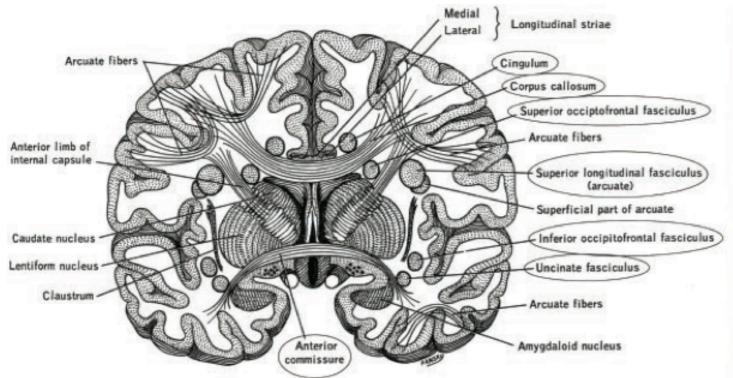


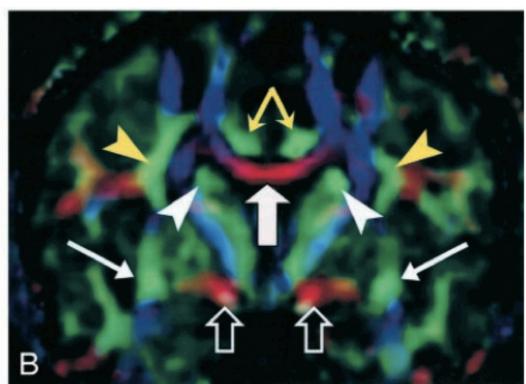


Colour-coded v₁ map



Estimates of Principle Fibre Orientation in WM





Quantitative Diffusion Maps

Fractional Anisotropy (FA) ~ Eigenvalues Variance (normalised!)

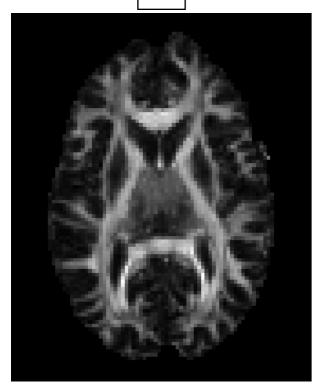
Mean Diffusivity (MD) = Eigenvalues Mean

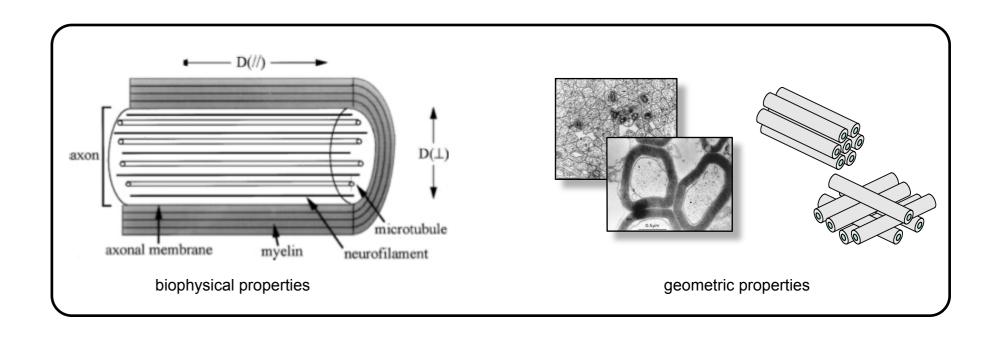
$$FA = \sqrt{\frac{3\sum_{i=1}^{3}(\lambda_i - \overline{\lambda})^2}{2\sum_{i=1}^{3}\lambda_i^2}}, \qquad FA \text{ in } [0,1]$$

$$MD = \frac{D_{xx} + D_{yy} + D_{zz}}{3} = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}$$

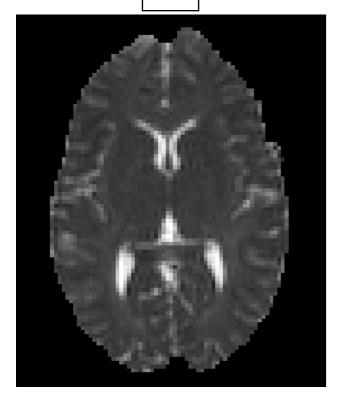
Quantitative Diffusion Maps

FA

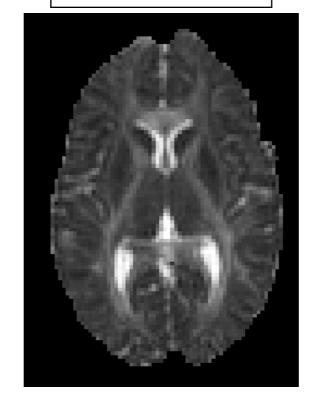




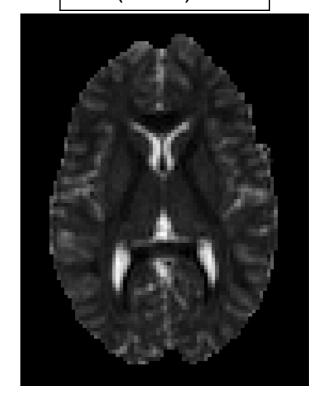
MD



Longitudinal ADC (λ_1)

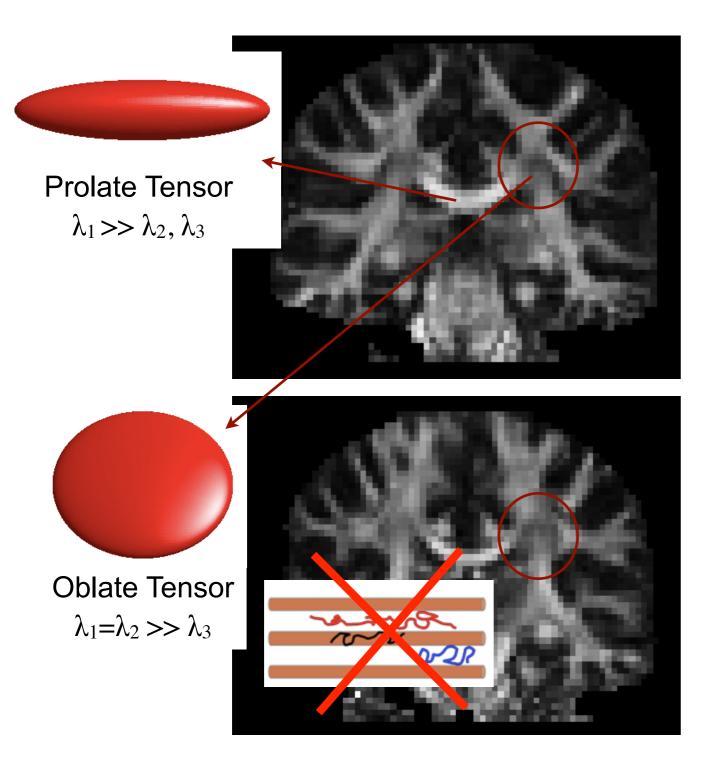


Transverse ADC $(\lambda_2 + \lambda_3)/2$



Tensor and FA in Crossing Regions

- In voxels containing two crossing bundles, the FA is artificially low and the tensor ellipsoid is pancake-shaped (oblate, planar tensor).
- FA changes difficult to interpret: Changes in one or both crossing bundles?



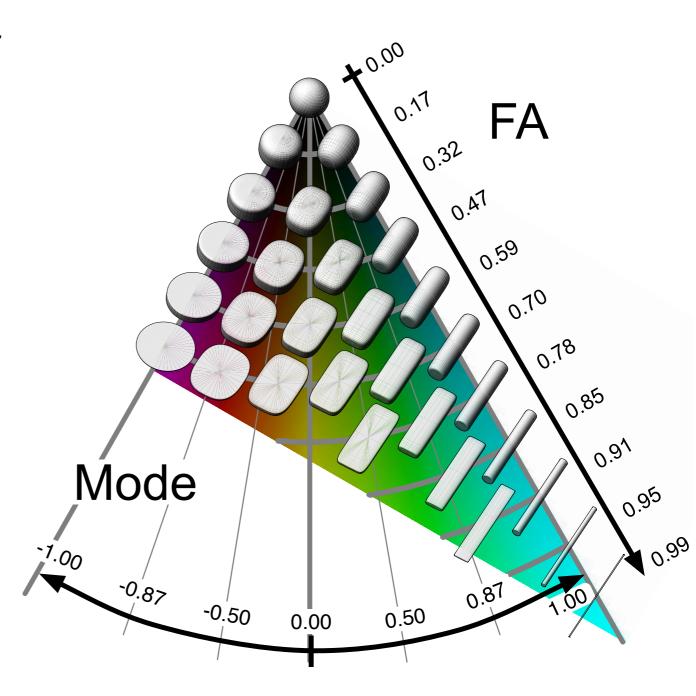
The DTI model is an oversimplification of reality

Quantitative Diffusion Maps: Tensor Mode

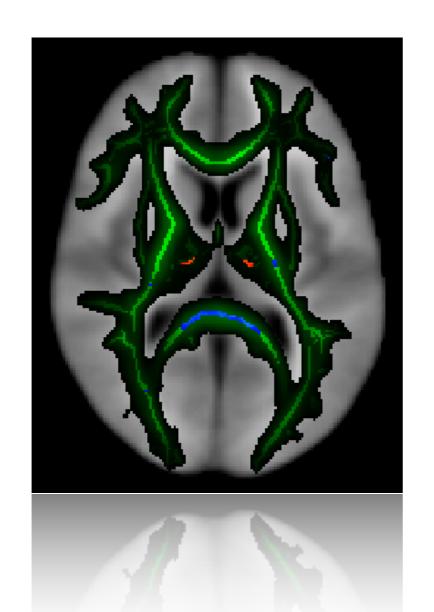
In voxels with two crossing fibres, the tensor ellipsoid tends to have a planar shape.

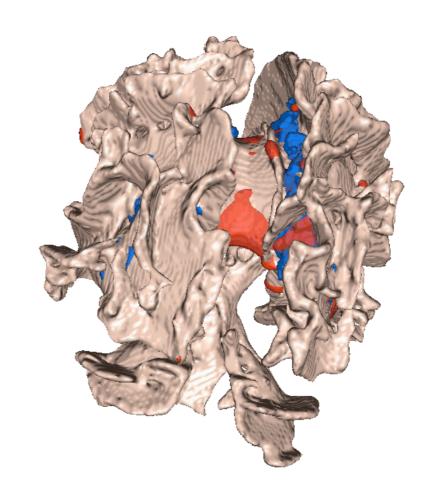
Mode

- Quantifies whether the tensor has a tubular (mode=1) (one strong fibre) or planar shape (mode=-1) (two strong fibres)?
- Estimated from the tensor eigenvalues.
- Combined with the FA can help us understand better the underlying structure, especially where ambiguities exist.



TBSS: Tract-Based Spatial Statistics

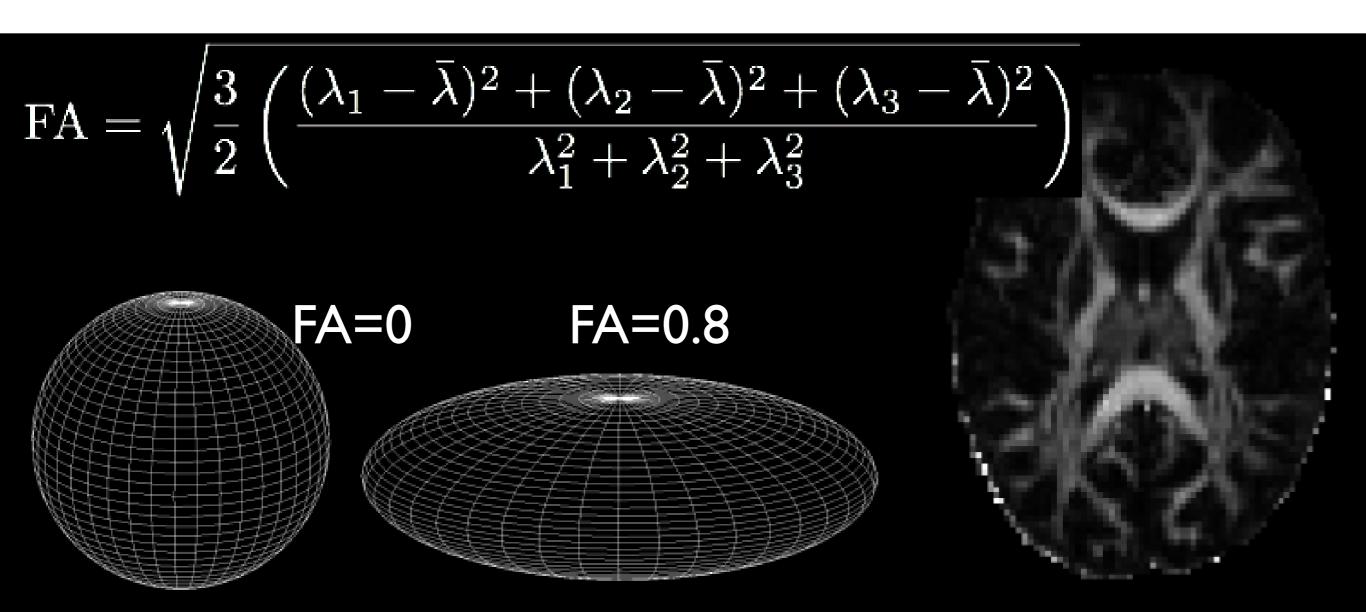




- Need: robust "voxelwise" cross-subject stats on DTI
- Problem: alignment issues confound valid local stats
- TBSS: solve alignment using alignment-invariant features:
- Compare FA taken from tract centres (via skeletonisation)

Tensor-derived parameters: Fractional Anisotropy

- FA encodes how strongly directional diffusion is
 - (derived from diffusion tensor eigenvalues)
- Hence good marker for WM integrity
 - i.e., good marker for disease, development, etc.

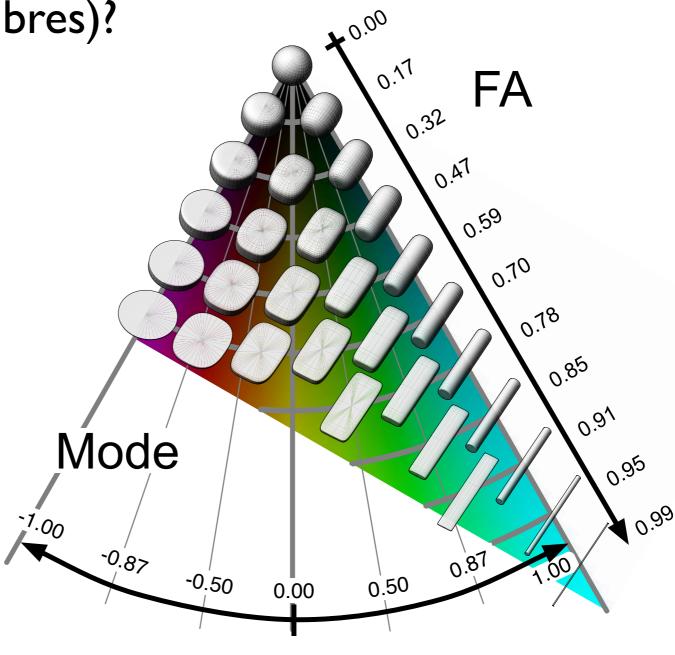


Orthogonal Tensor Invariants (Kindlmann, TMI 2007)

 Nice to have 3 orthogonal (independent) tensor-derived measures: MD, FA & "Mode"

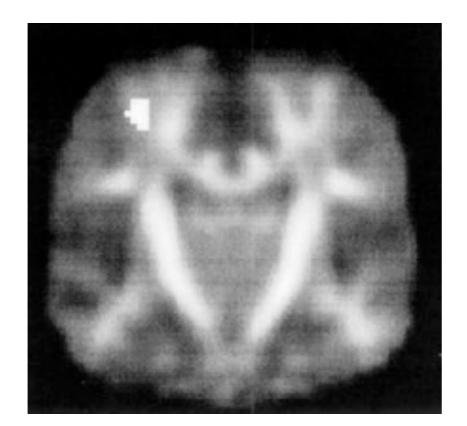
Mode: is the tensor tubular (one strong fibre) or flat-

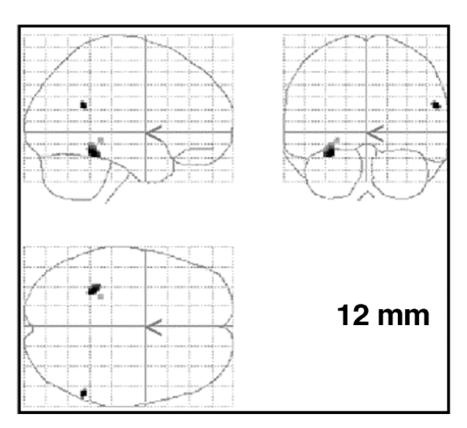
cylindrical (two strong fibres)?



VBM-style Analysis of FA

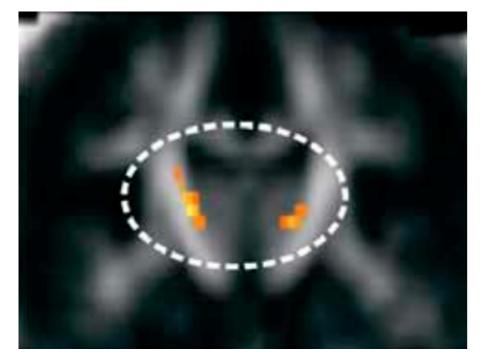
- VBM [Ashburner 2000, Good 2001]
- Align all subjects' data to standard space
- Segment -> grey matter segmentation
- Smooth GM
- Do voxelwise stats (e.g. controls-patients)
- VBM on FA [Rugg-Gunn 2001, Büchel 2004, Simon 2005]
- Like VBM but no segmentation needed

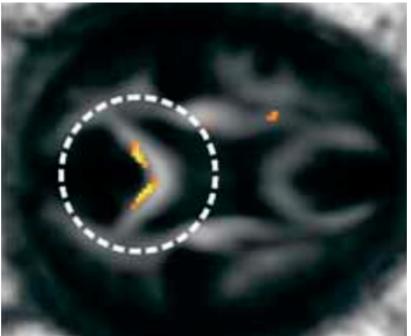


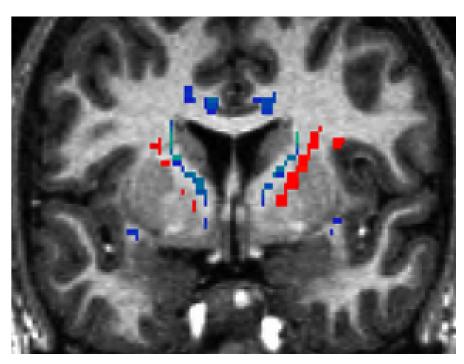


VBM-style Analysis of FA

- Strengths
 - Fully automated & quick
 - Investigates whole brain
- Problems [Bookstein 2001, Davatzikos 2004, Jones 2005]
 - Alignment difficult; smallest systematic shifts between groups can be incorrectly interpreted as FA change
 - Needs smoothing to help with registration problems
 - No objective way to choose smoothing extent



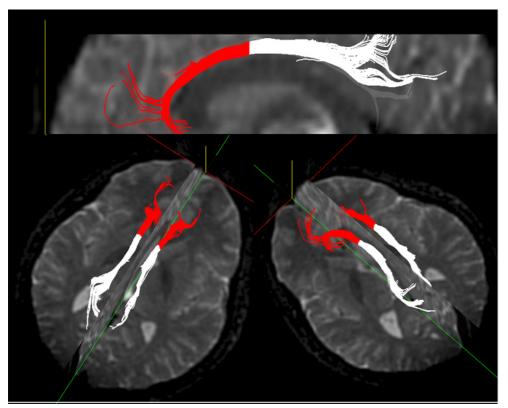


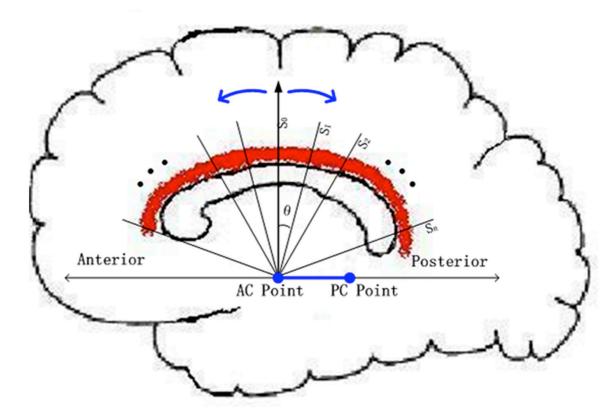


Hand-placed voxel/ROI-based FA Comparison



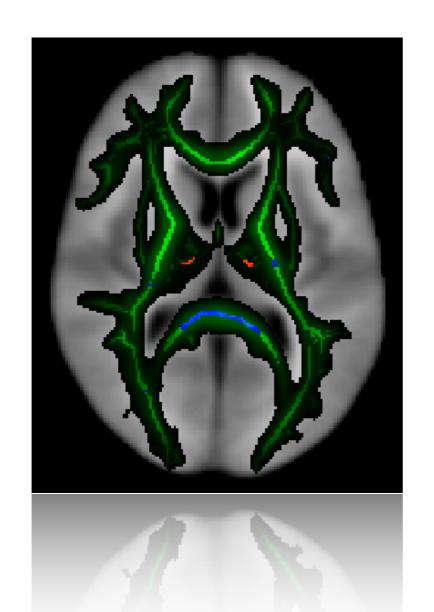
Tractography-Based FA Comparison

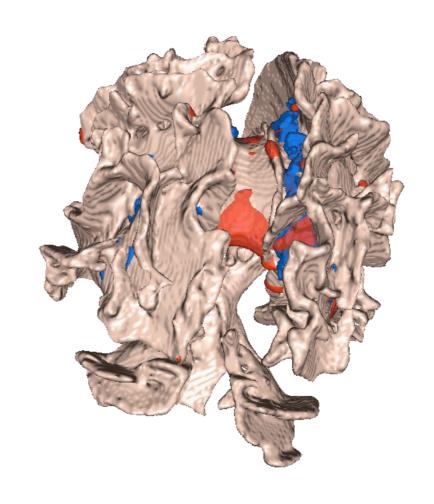




- Method [Gong 2005, Corouge 2006]
 - Define a given tract in all subjects
 - Parameterise FA along tract
 - Compare between subjects
- Strength: correspondence issue hopefully resolved
- Problems
 - Currently requires manual intervention to specify tract
 - Hence doesn't investigate whole brain
 - Projection of FA onto tract needs careful thought

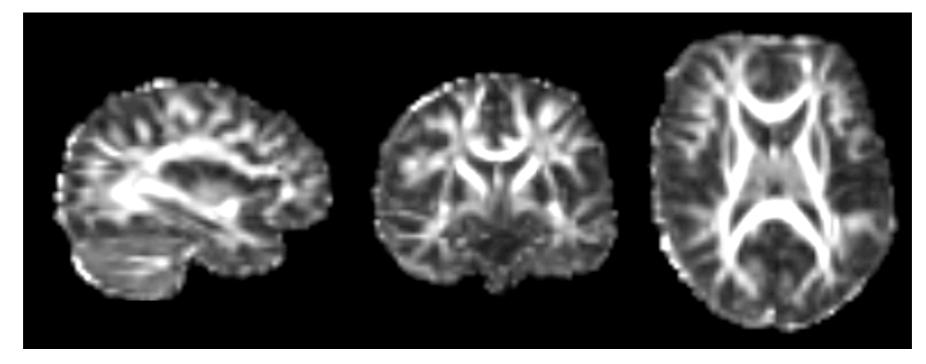
TBSS: Tract-Based Spatial Statistics

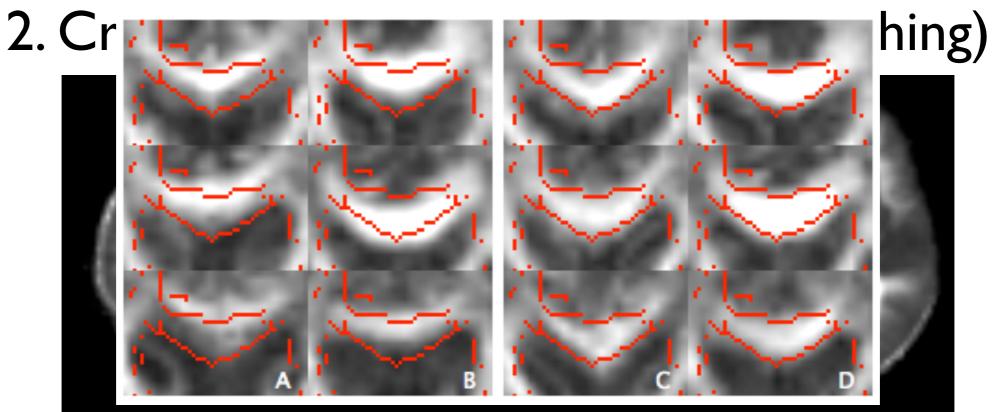




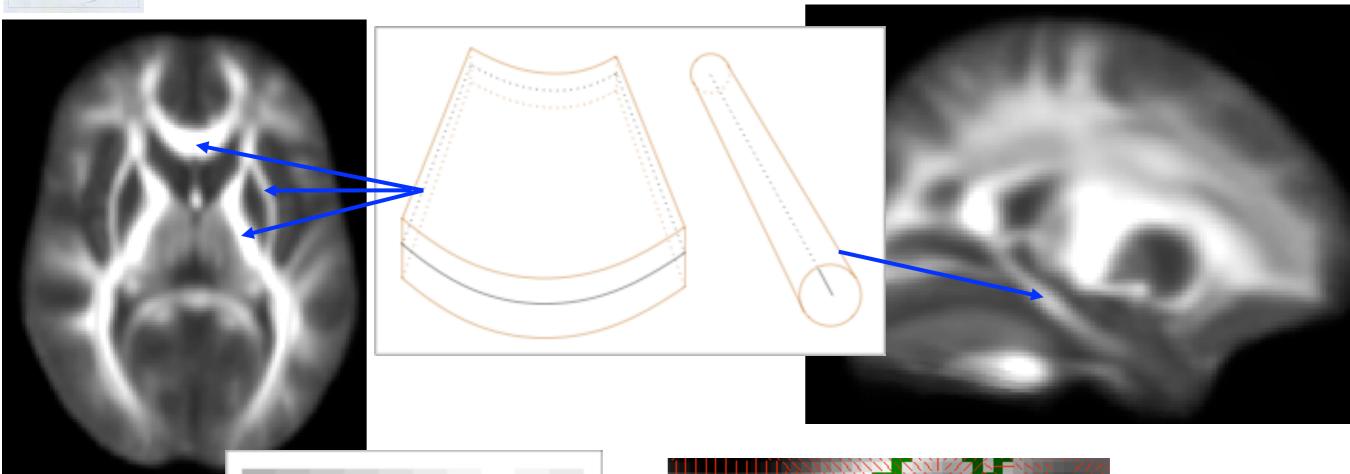
- Need: robust "voxelwise" cross-subject stats on DTI
- Problem: alignment issues confound valid local stats
- TBSS: solve alignment using alignment-invariant features:
- Compare FA taken from tract centres (via skeletonisation)

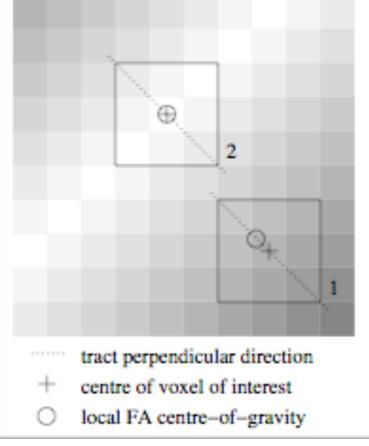
I. Use medium-DoF nonlinear reg to pre-align all subjects' FA (nonlinear reg: FNIRT)





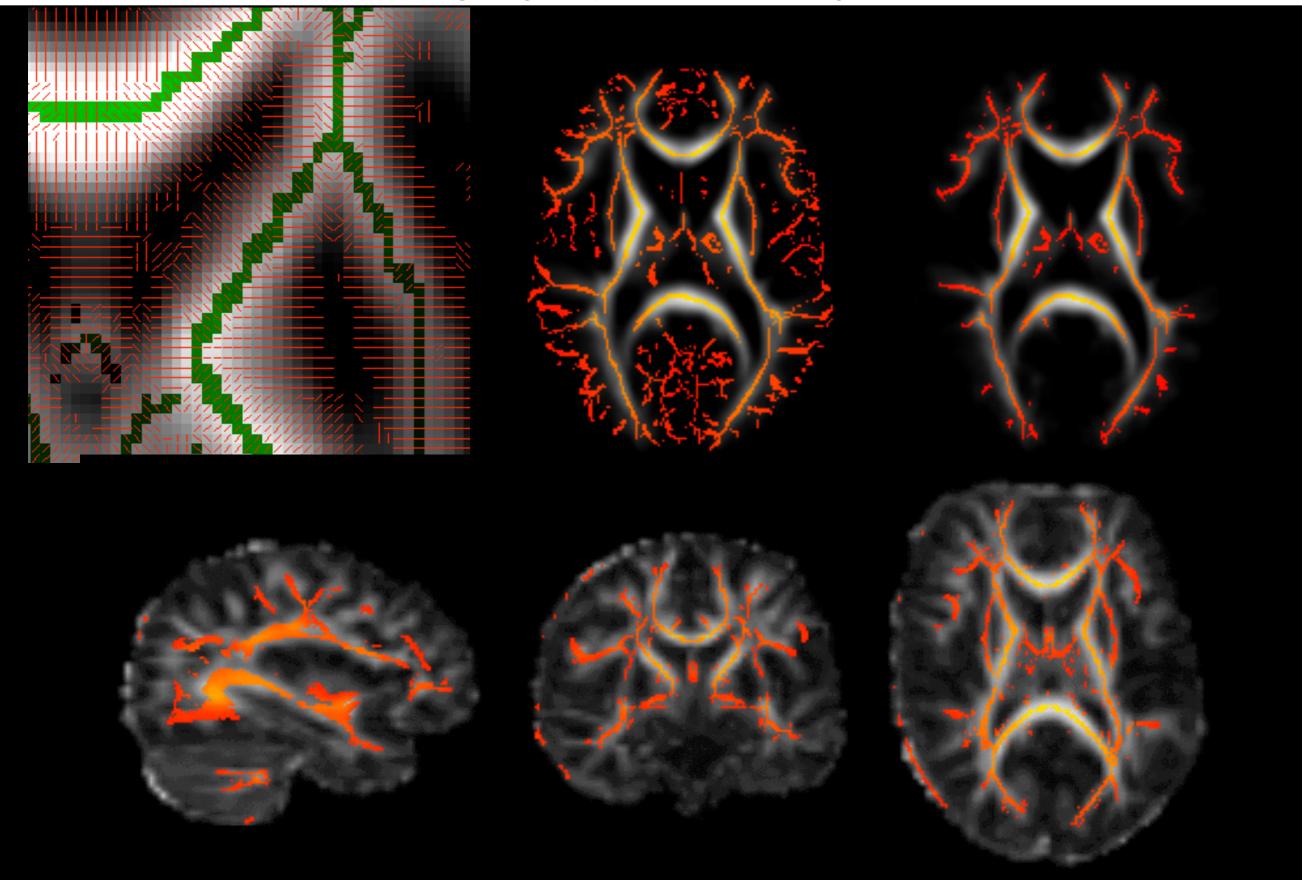
2. "Skeletonise" Mean FA





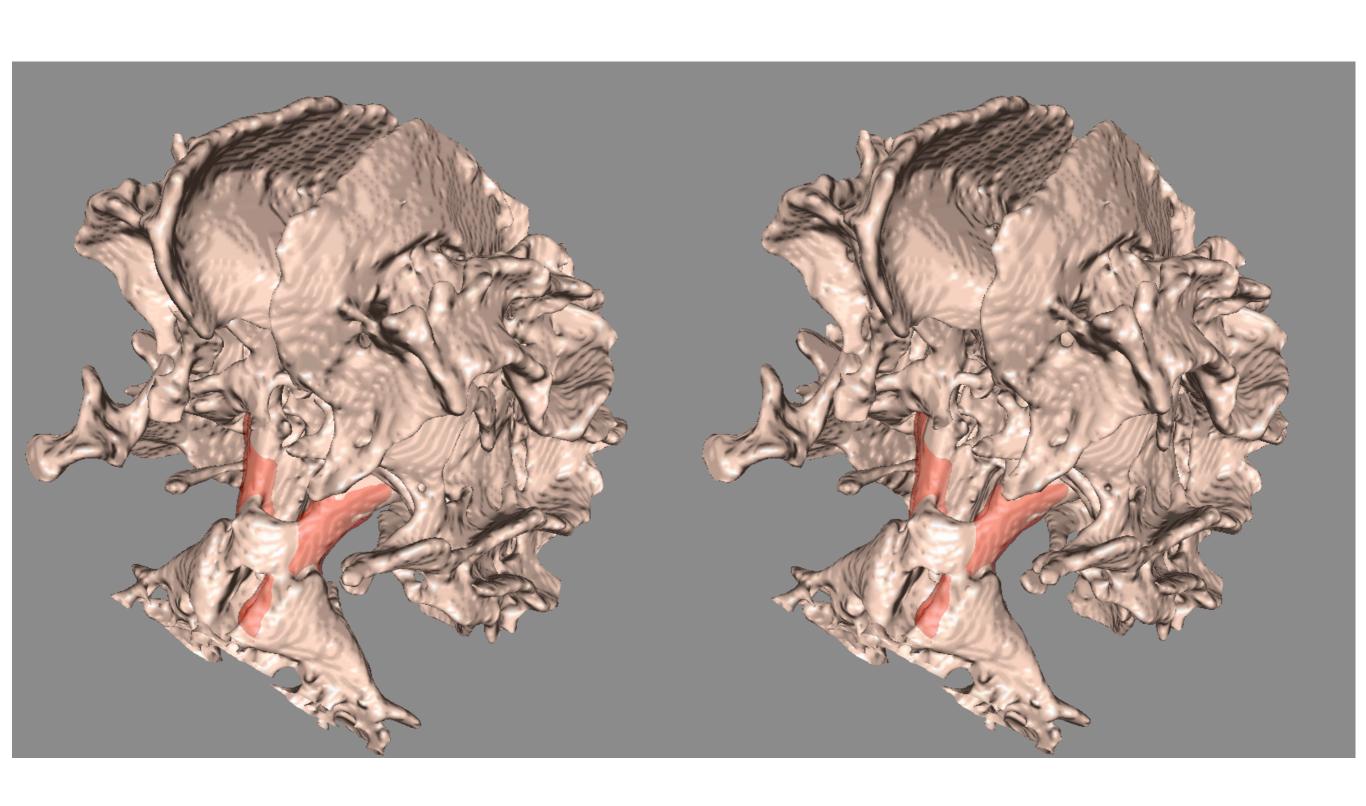
3. Threshold Mean FA Skeleton

giving "objective" tract map



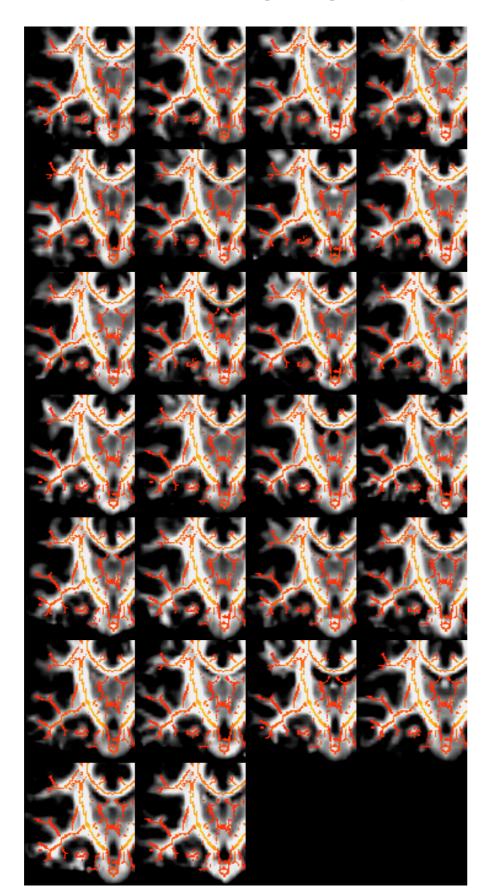
3. Threshold Mean FA Skeleton

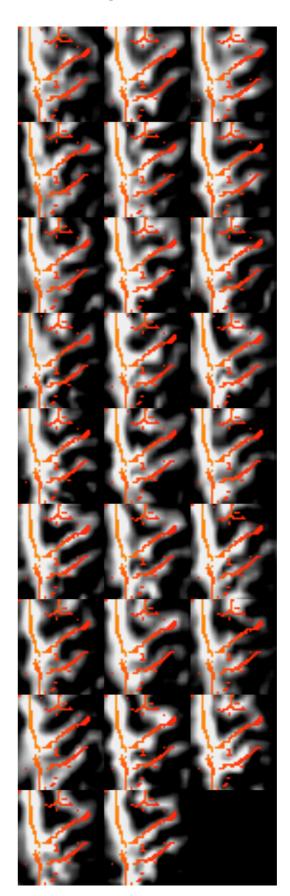
giving "objective" tract map



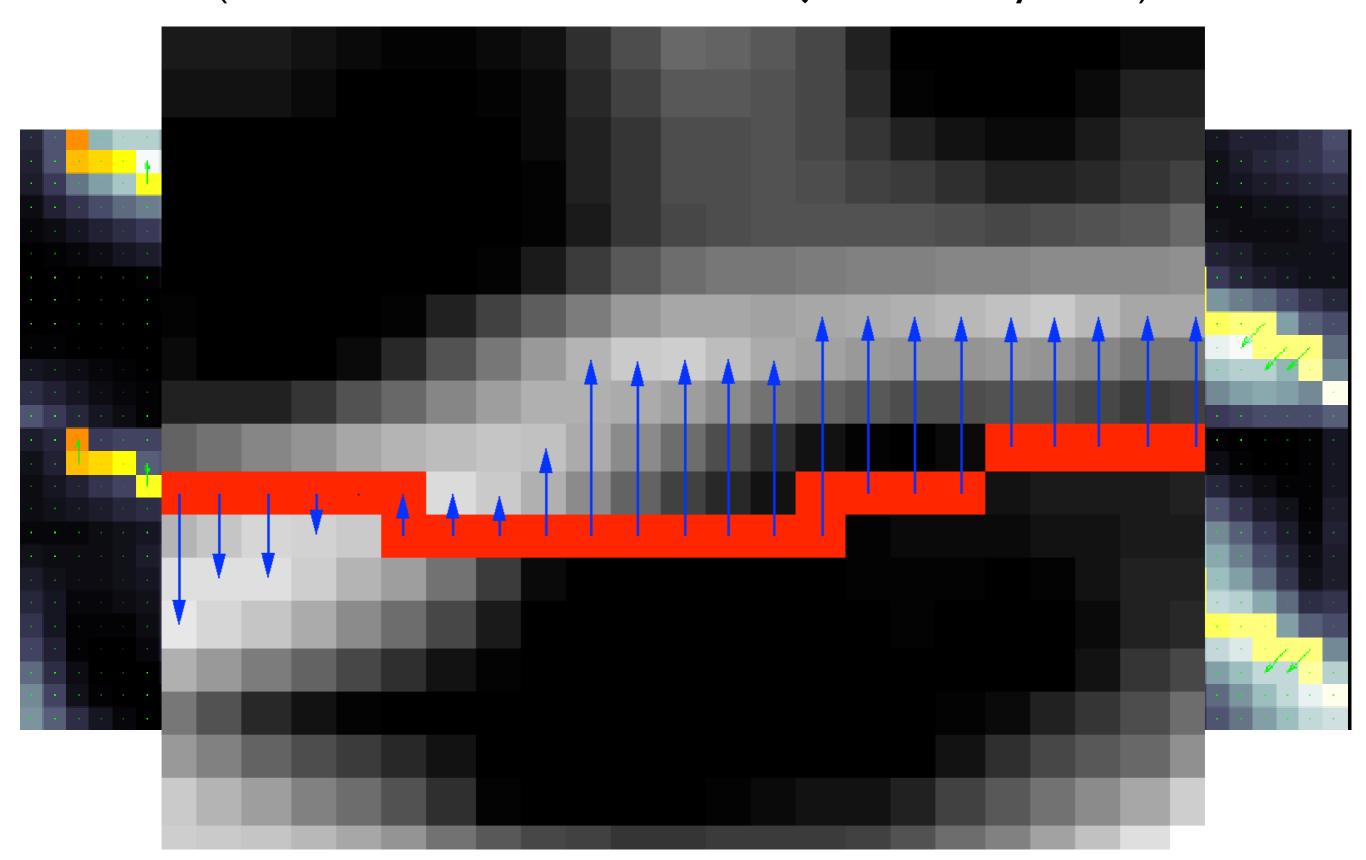
3. Threshold Mean FA Skeleton

giving "objective" tract map

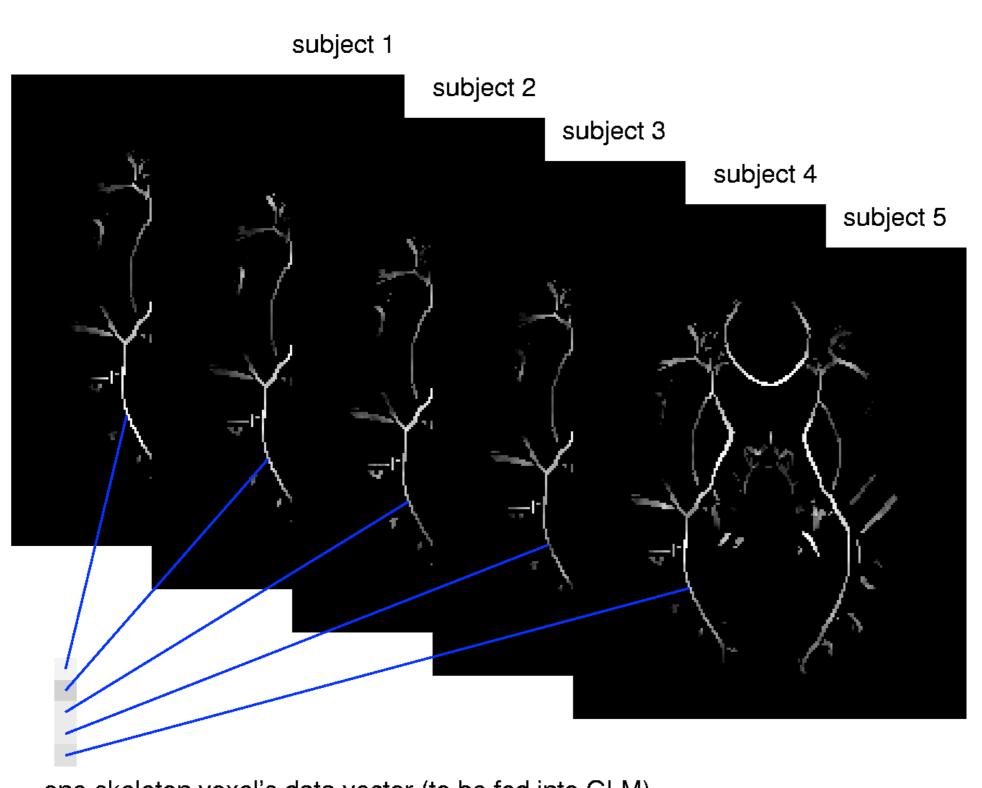


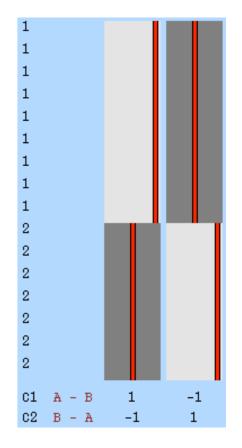


4. For each subject's warped FA, fill each point on the mean-space skeleton with nearest maximum FA value (i.e., from the centre of the subject's nearby tract)



5. Do cross-subject voxelwise stats on skeleton-projected FA 6. Threshold, (e.g., permutation testing, including multiple comparison correction)



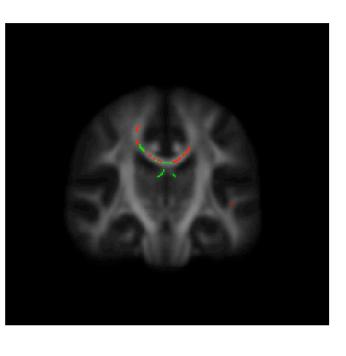


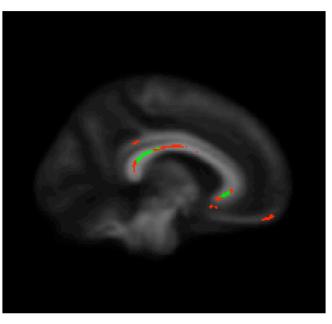
1 group mean 1 0
2 reaction time 0 1

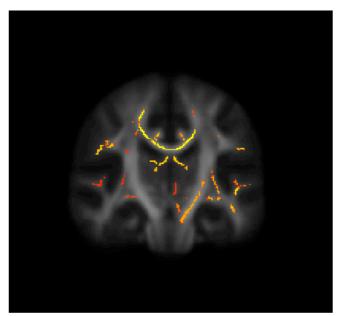
one skeleton voxel's data vector (to be fed into GLM)

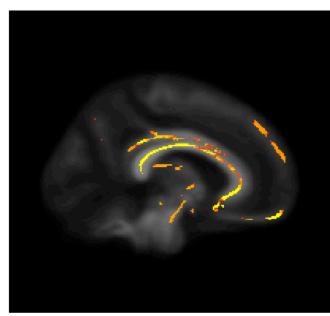
TFCE for TBSS

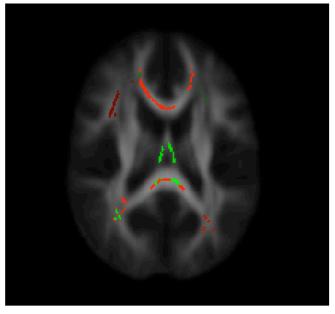
controls > schizophrenics p<0.05 corrected for multiple comparisons across space, using randomise



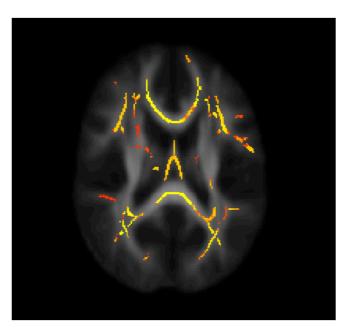








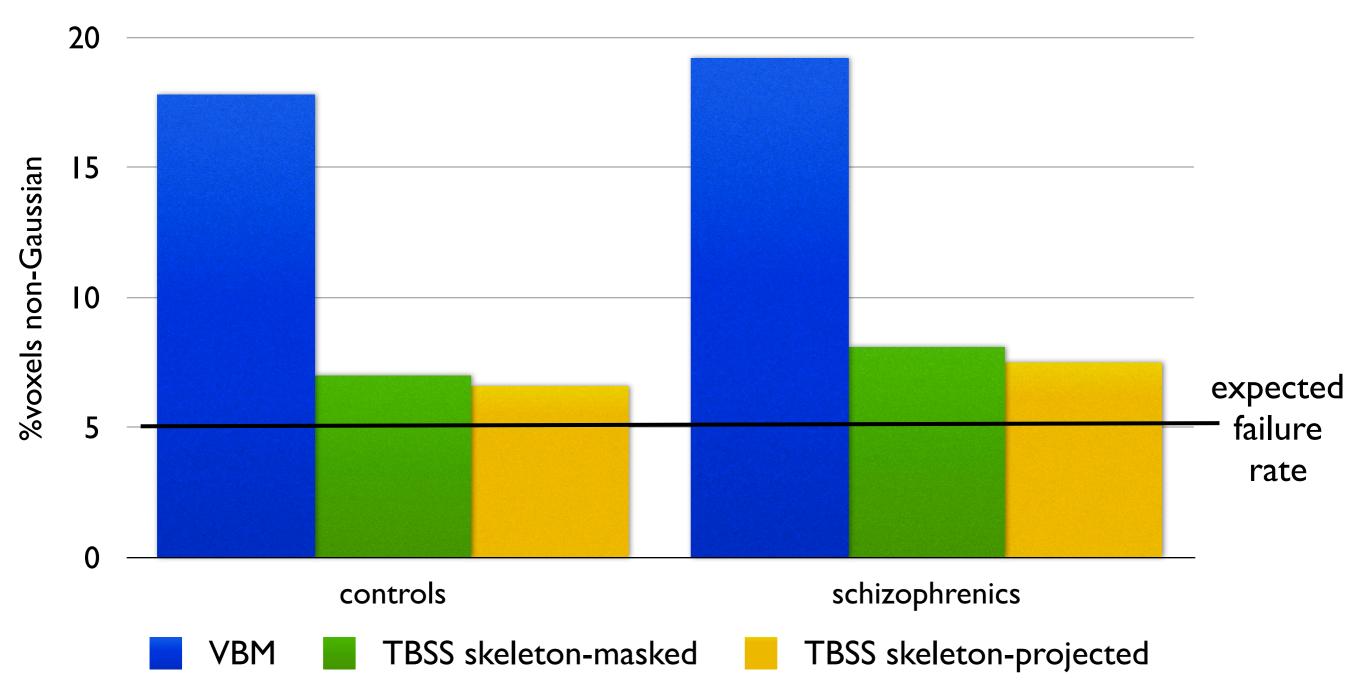
cluster-based: cluster-forming threshold = 2 or 3



TFCE

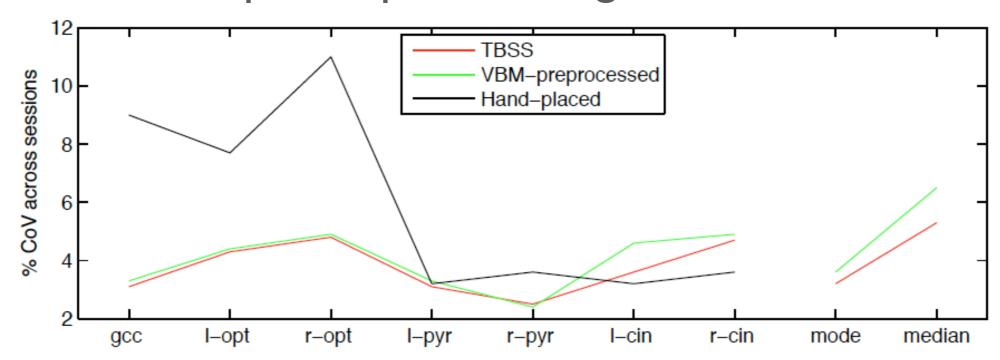
Testing for Gaussianity

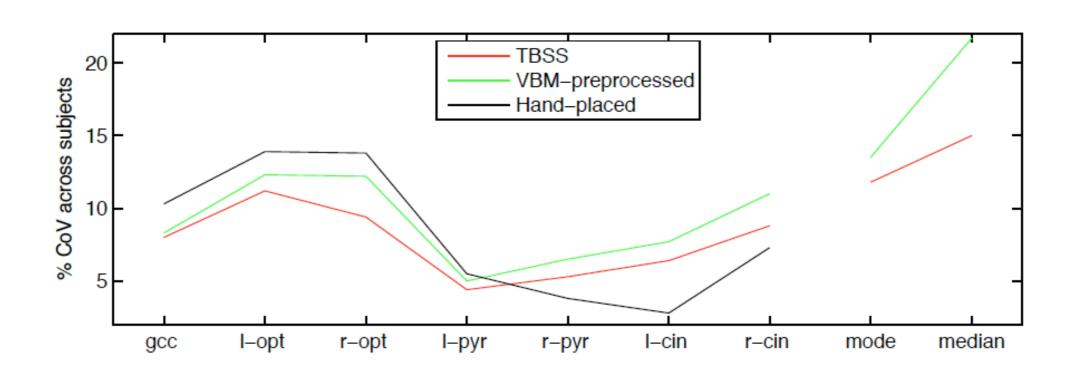
- 36 controls & 33 schizophrenics (Mackay)
- Test each voxel across subjects for Gaussianity using Lilliefors at 5%
- No smoothing with any preprocessing method



Repeatability Tests

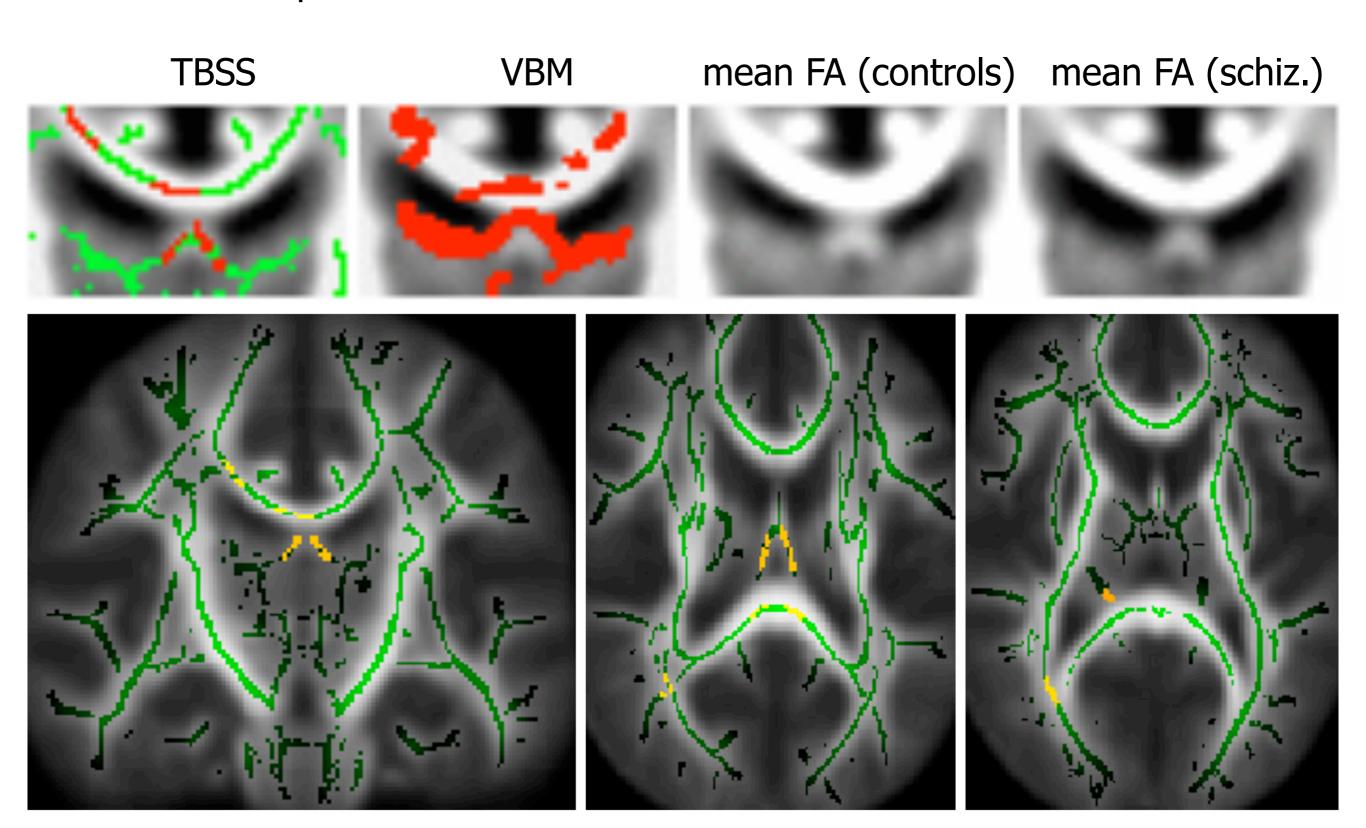
- 8 controls scanned twice each
- Measure %CoV across sessions & subjects
- Test hand-placed points and global mode & median





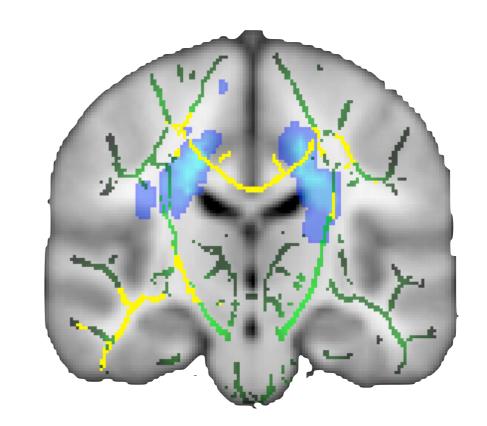
Schizophrenia (Mackay)

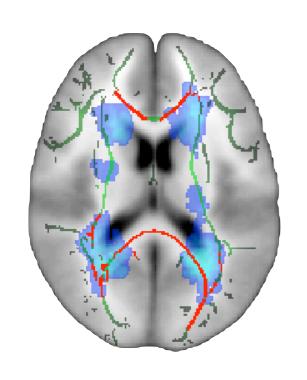
TBSS & VBM show reduced FA in corpus callosum & fornix VBM shows spurious result in thalamus due to increased ventricles in schiz.

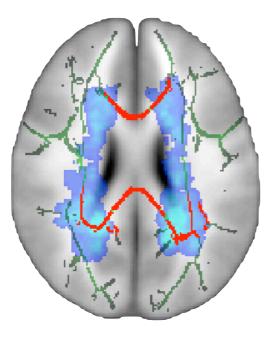


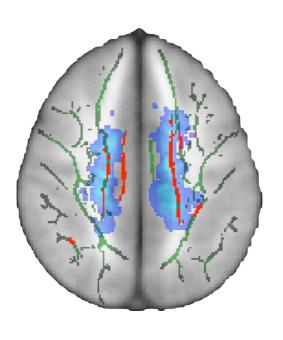
Multiple Sclerosis (Cader, Johansen-Berg & Matthews)

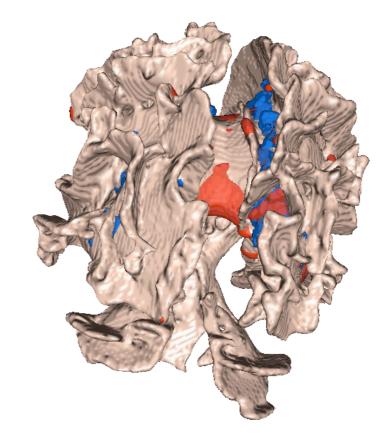
- 15 MS patients
- Yellow = -ve corr. FA vs EDSS
- Blue = group lesion probability (50%)
- Red = -ve corr. FA vs lesion volume
 Note reduced FA away from lesions



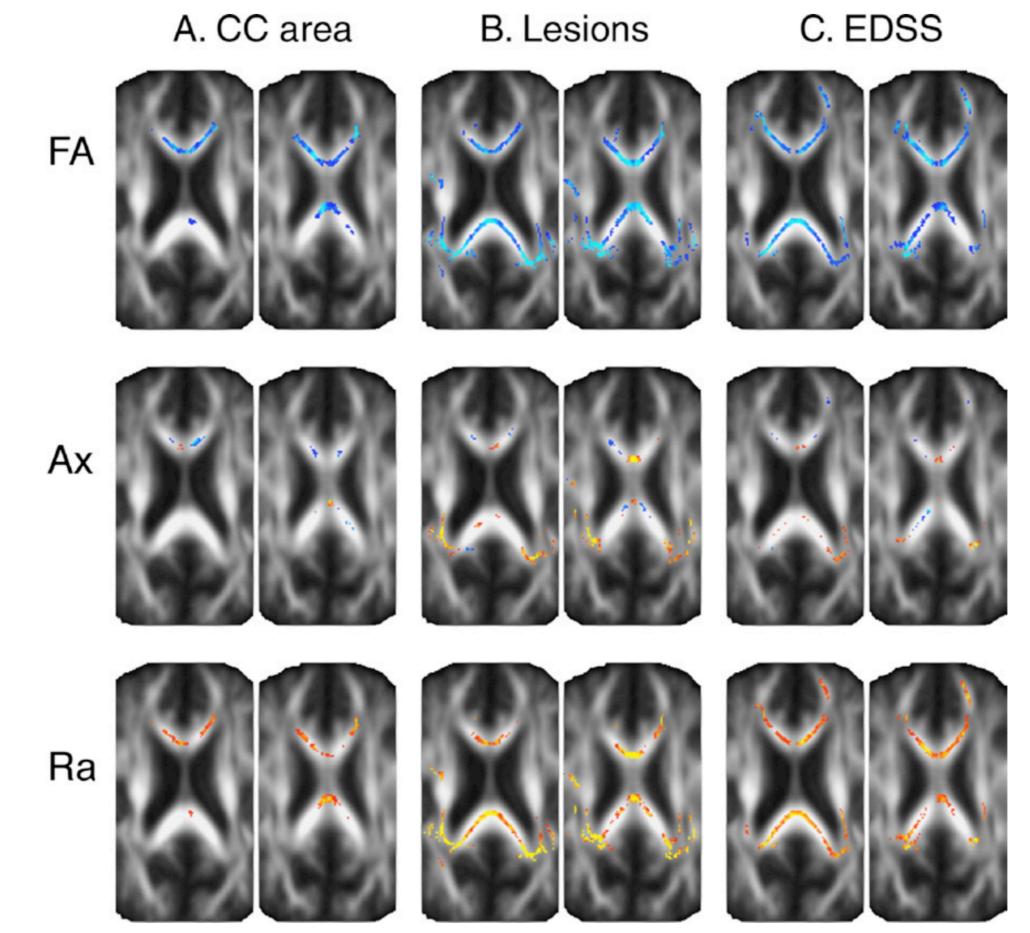




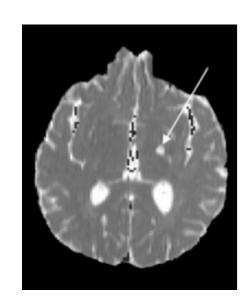




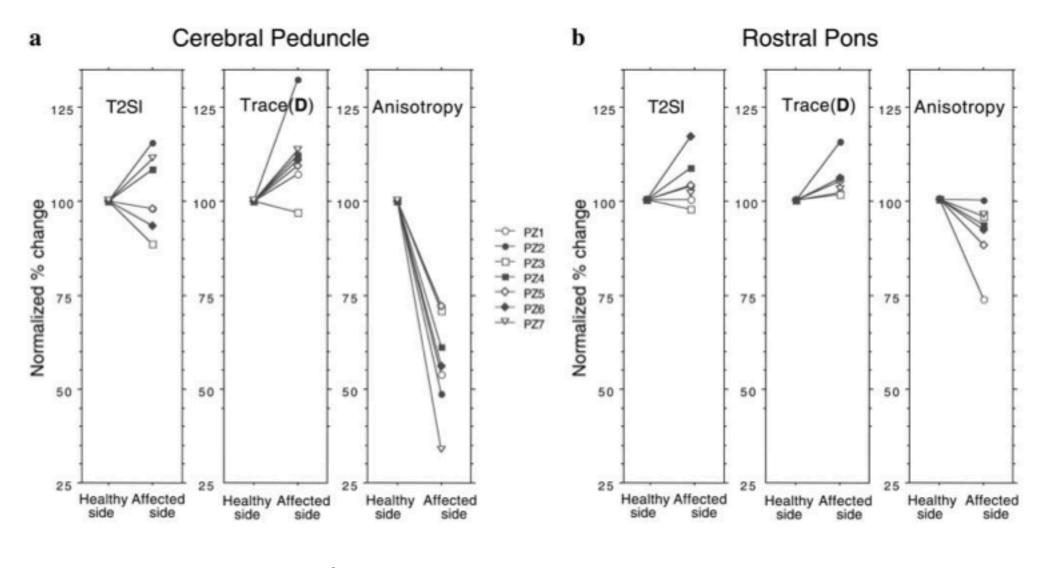
Multiple Sclerosis (Cader, Johansen-Berg & Matthews)



Crossing fibres



Lesion in the internal capsule



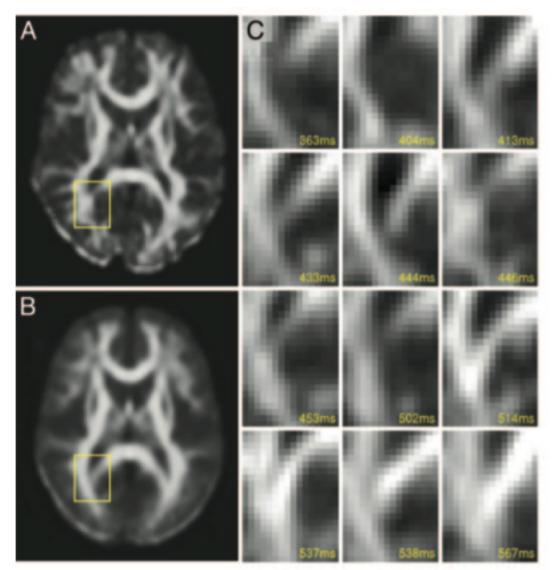
no crossing fibres

crossing fibres

Wallerian degeneration along the cortico-spinal tract. The effect is "washed out" in crossing fibre regions.

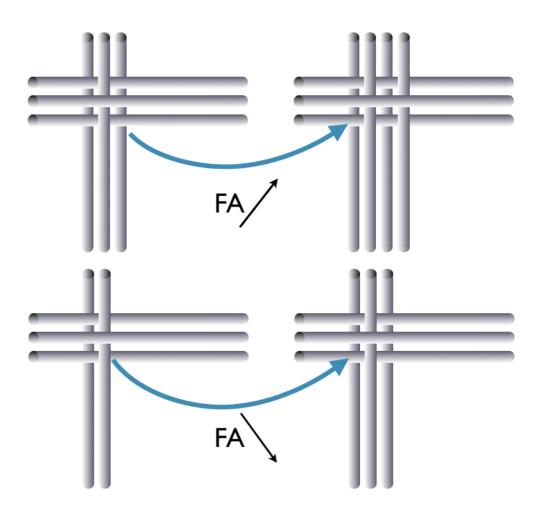
Pierpaoli et al, 2001

Crossing fibres



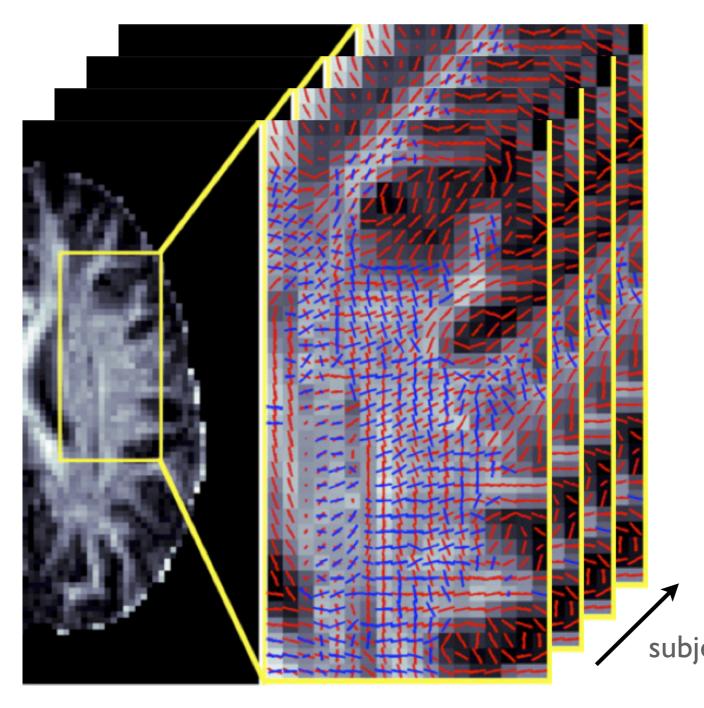
Tuch et al, 2005

FA decreases dramatically with increasing performance at a visio-motor task. Crossing fibres?



Simplified illustration: the same underlying effect (increased fibre density) gives \neq FA effects depending on xfibre architecture

Matching fibres across space and subjects

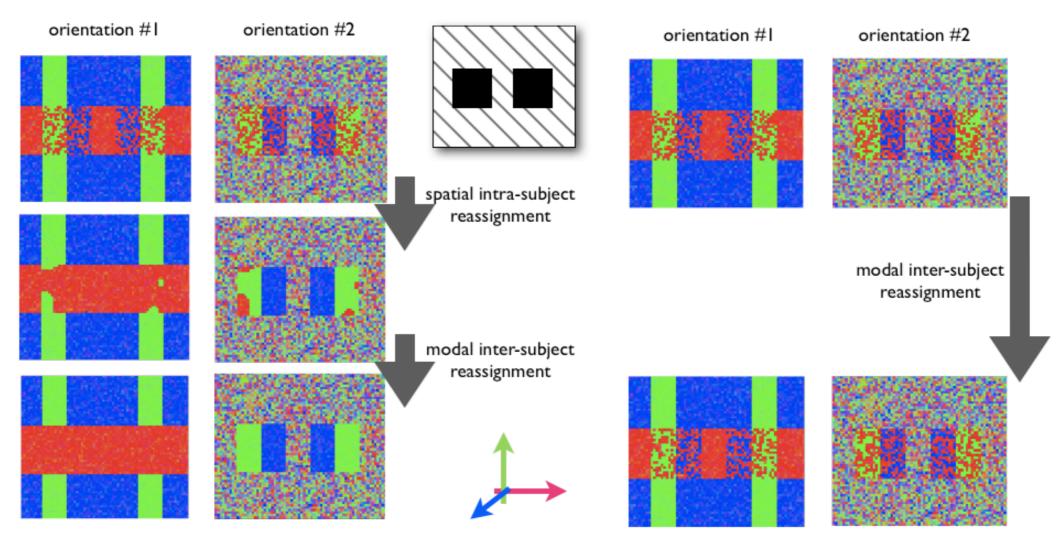


data =
$$f_1.S_1 + f_2.S_2 + Iso$$

Do the red fibres always refer to the SLF across subjects?

Do the blue fibres always refer to the callosal connections across subjects?

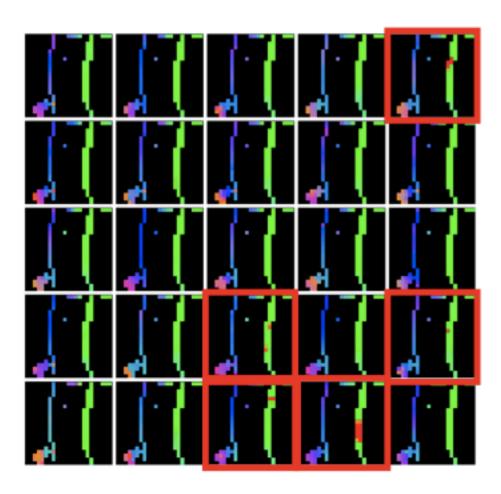
Relabelling fibres across space and subjects

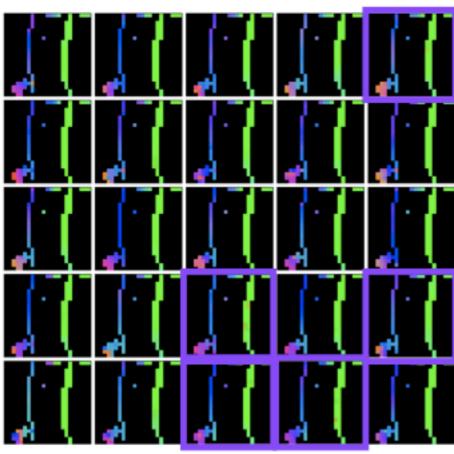


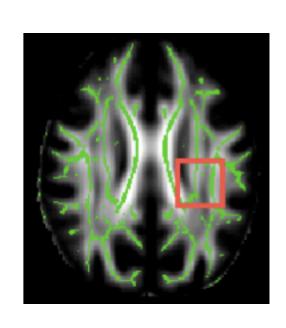
Across space: front propagation - nearby voxels are more likely to have same labels - better spatial statistics

Across subjects: match to the subject-wise mode - better sensitivity and specificity

Relabelling fibres across space and subjects



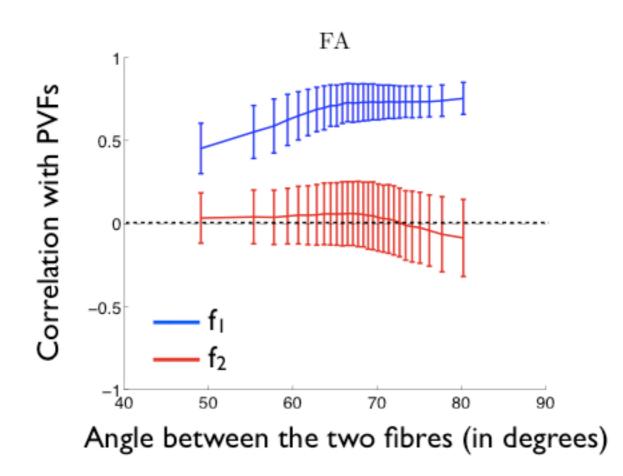




before relabelling

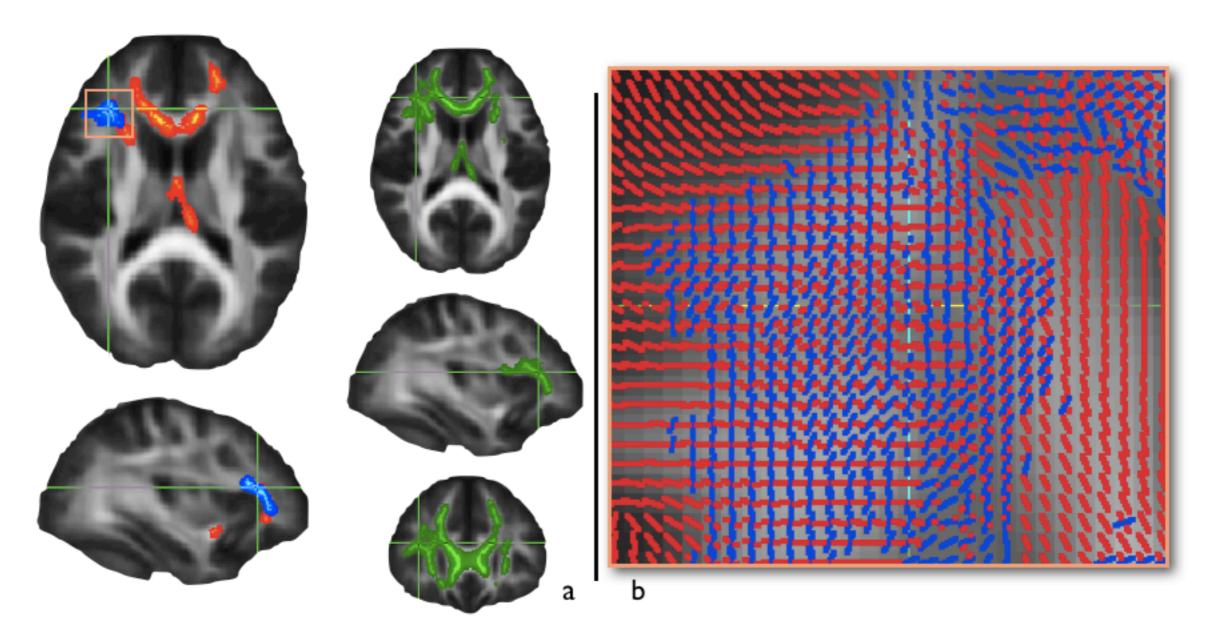
after relabelling

FA vs PVFs



FA correlates with major fibre, but not with minor one

Example



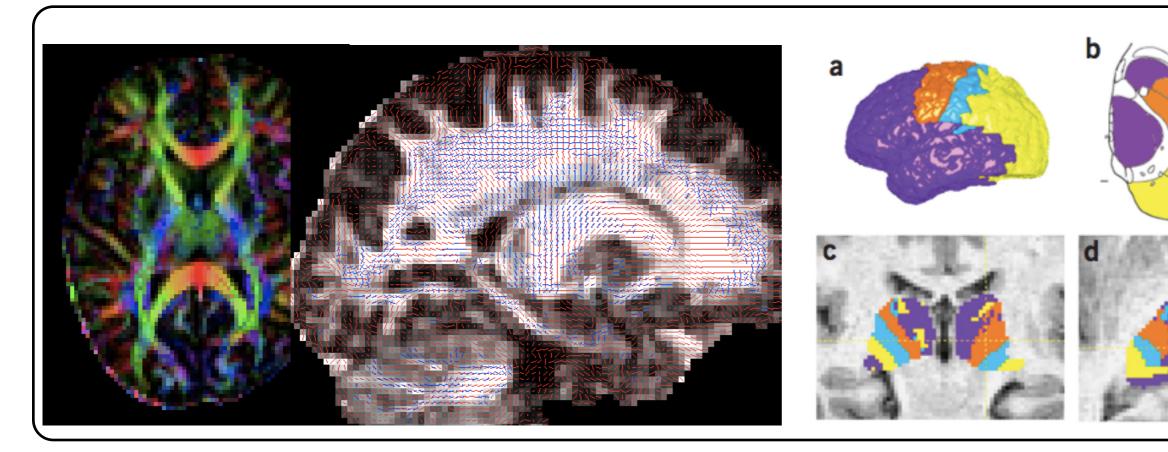
65 subjects - negative correlation with age FA more sensitive (but maybe less specific) f_1 vs age in red, f_2 vs age in blue we can associate age correlation with the frontal connections in blue

TBSS - Conclusions

- Attempting to solve correspondence/smoothing problems
- Less ambiguity of interpretation / spurious results than VBM
- Easier to test whole brain than ROI / tractography
- Limitations & Dangers
 - Interpretation of partial volume tracts still an issue
 - Crossing tracts?
- Future work
 - Use full tensor (for registration and test statistic)
 - Use other test statistics (MD, PDD, width)
 - Multivariate stats (across voxels and/or different diffusion measures) & discriminant (ICA, SVM)

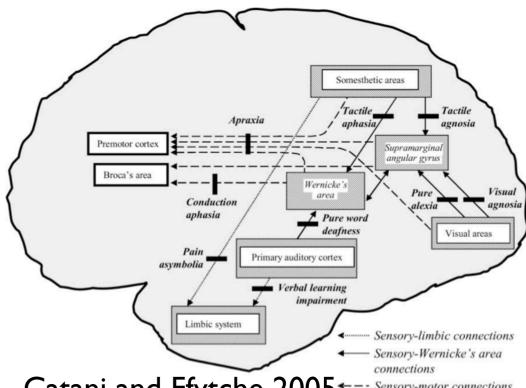
FMRIB Diffusion Toolbox

- DTI model fit
- Eddy current correction
- Voxel-Based diffusion analysis (TBSS)
- BEDPOSTX modelling crossing fibres
- PROBTRACKX propagating uncertainty in tractography



Connectivity - Why do we care?

- White matter (dys)connectivity is thought to form the substrate for many different neurological and psychiatric disorders.

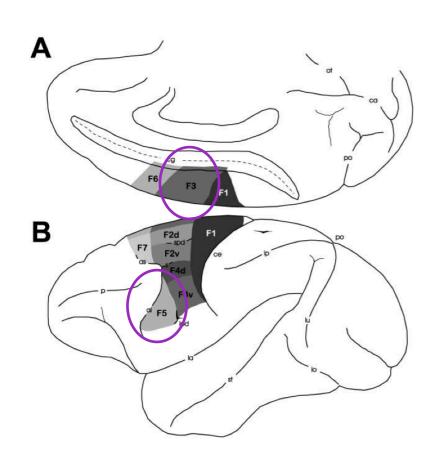


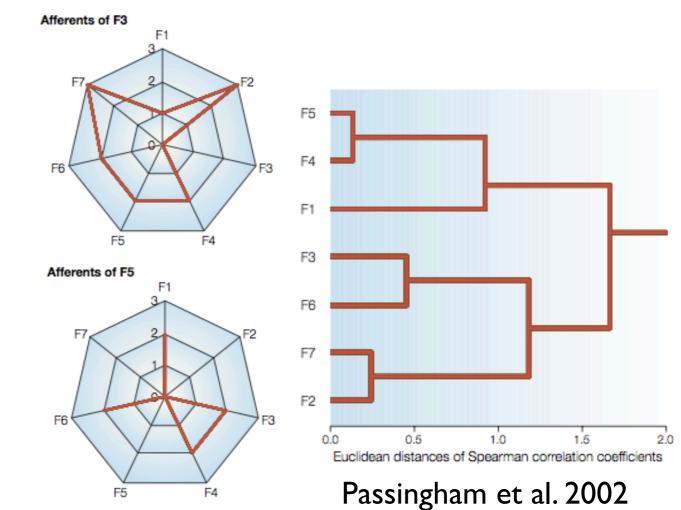
Catani and Ffytche 2005 --- Sensory-motor connections

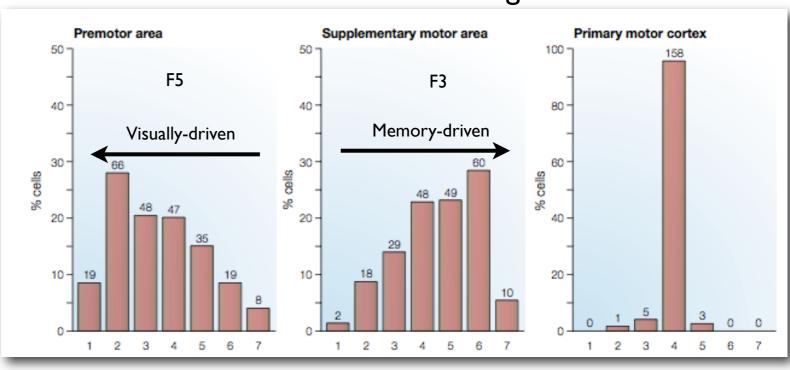
Connectivity - Why do we care?

- Connections constrain function

 Different regions have distinct connectivity fingerprints



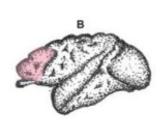


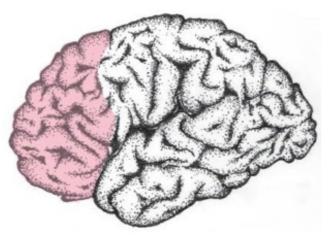


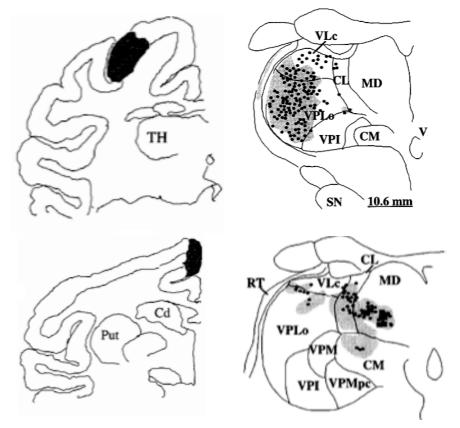
Investigating connectivity

Tracer studies in non-human

animals







Rouiller et al 1998

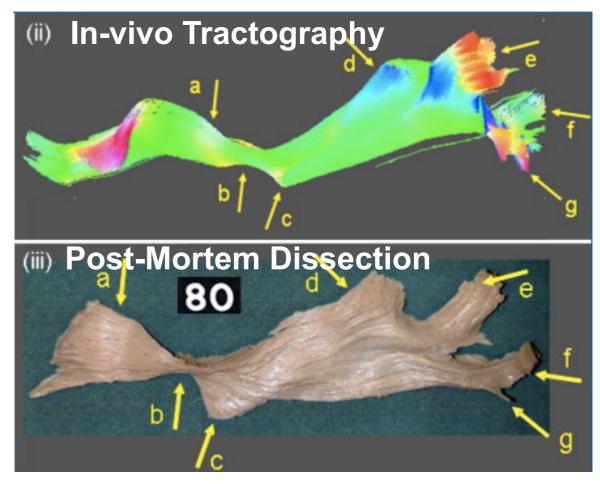
In human

Post-mortem dissection reveals large tracts Post-mortem histology shows degeneration after remote lesions

Post-mortem

What does tractography offer?

- + non-invasive
- + in-vivo
- + whole brain
- + can address new questions



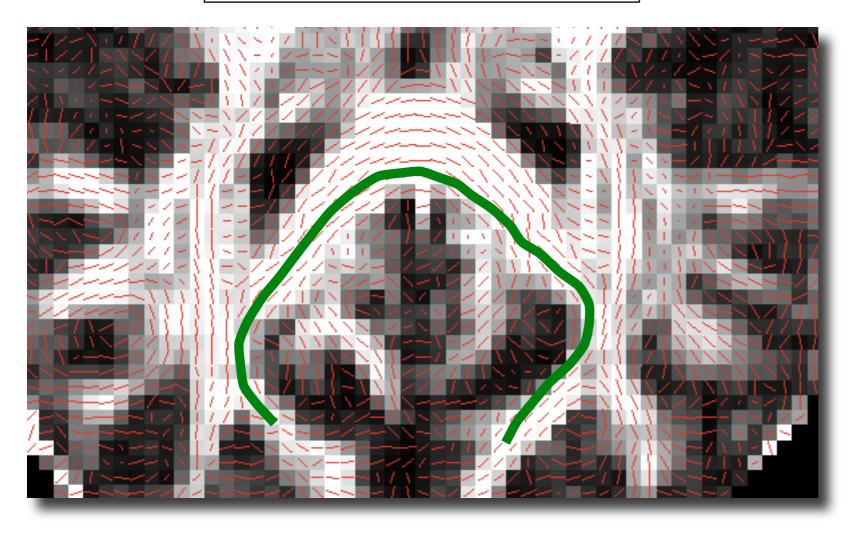
Lawes et al. 2008

...But

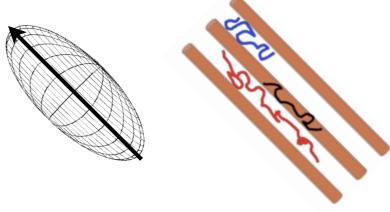
- low resolution (large bundles)
- indirect (diffusion paths)
- error prone (MRI is noisy)
- difficult to interpret quantitatively

Estimates of Principle Fibre Orientation in WM

v₁ mapPrincipal Diffusion Direction



Principal Diffusion Direction

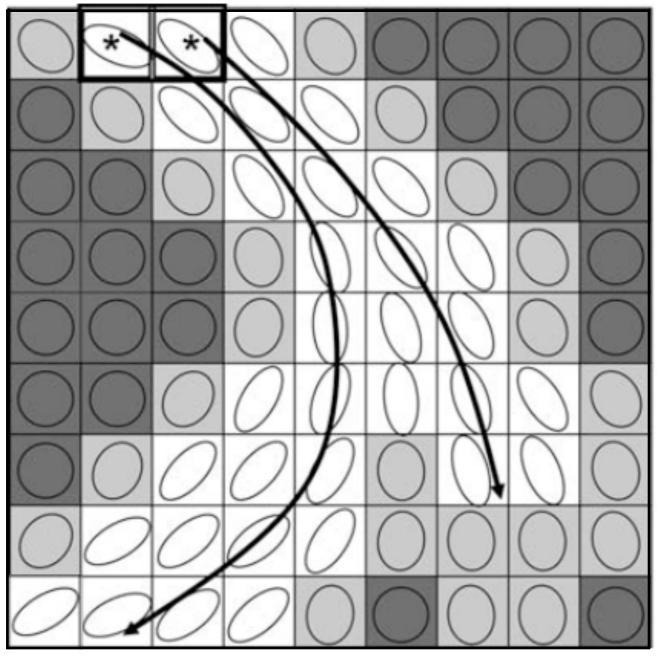


Assumption:

Direction of maximum diffusivity (in anisotropic voxels) is an <u>estimate</u> of the major fibre orientation.

DTI Streamline Tractography

Seed region



following v₁

Effectively, we solve numerically the differential equation:



Position along a curve

Principal eigenvector **v**₁ at position **r**(s)

Starting Position

Benefits:

- Established numerical integration methods
- Control error propagation using more complex schemes (e.g. Runge-Kutta)

DTI Streamline Tractography

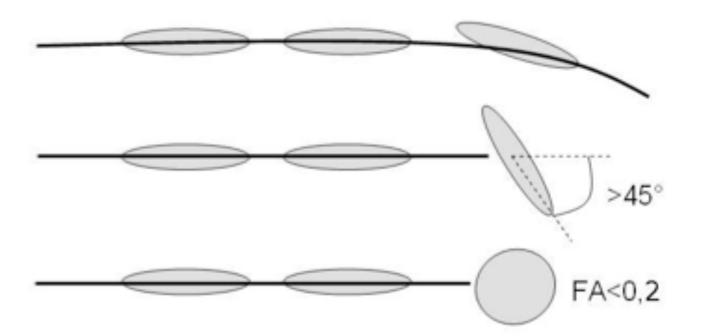
But When to Stop? Heuristics to avoid error propagation.

+ Knowledge of the anatomy

Curvature Change Threshold: To avoid crossings of boundaries and very bended trajectories, impose a smoothness criterion.

Anisotropy Threshold: To avoid propagating in regions where \mathbf{v}_1 is meaningless.

Anatomical criteria (e.g. reach grey matter)



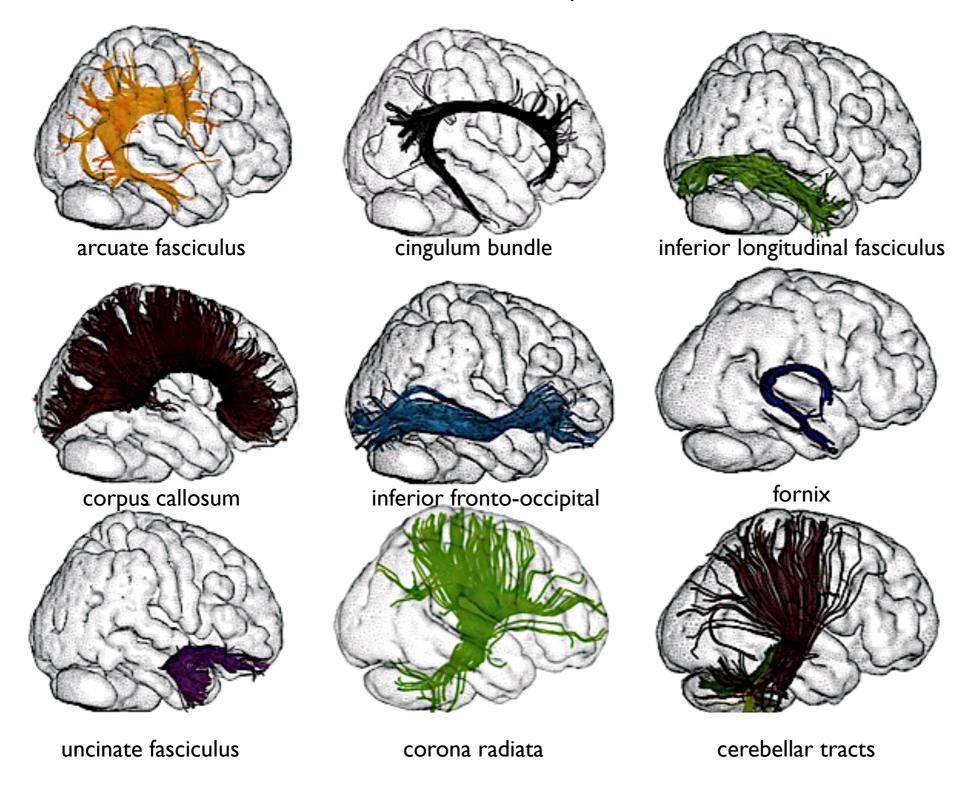
DTI Streamline Tractography Summary

- Use the major axis of the DTI ellipsoid as a fibre orientation estimate.

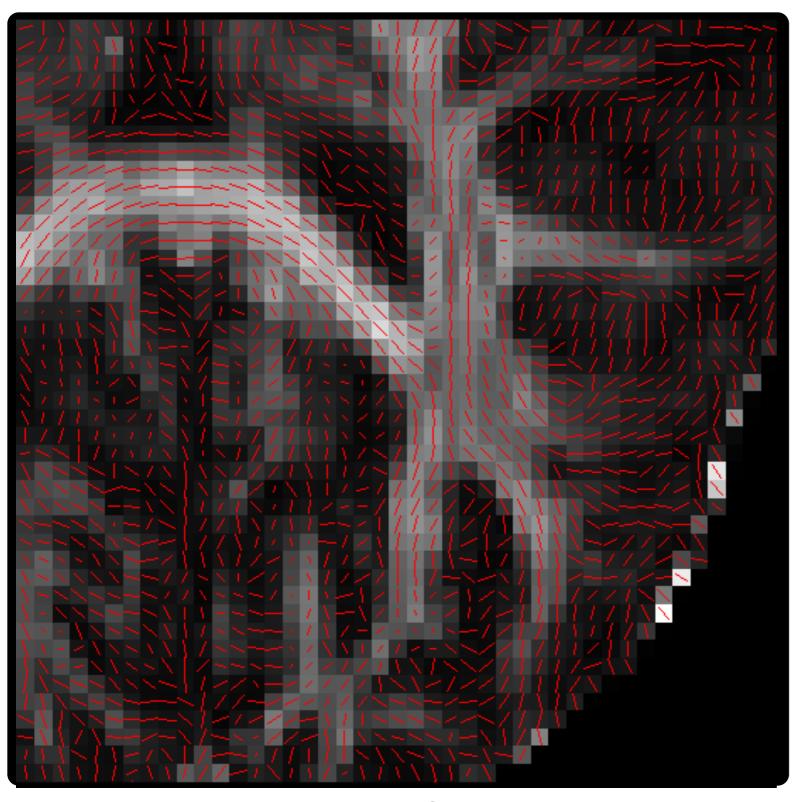
- Propagate curves within this vector field until empirical thresholds are exceeded.

- Major fibre bundles can be reconstructed.

Streamline tractography can dissect major bundles



But How Confident Are We?



Fibre orientations from DTI

DWI is very noisy.

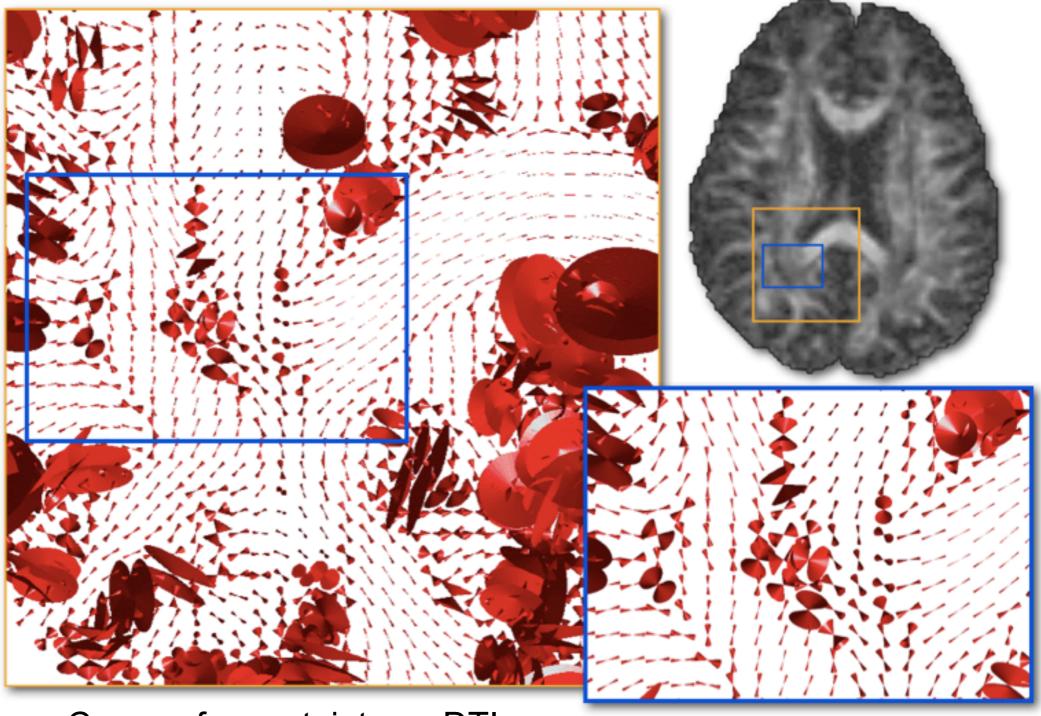
If we scan a subject repeatedly, will we get the same result?

Uncertainty on Fibre Orientation Estimates

Repeat an acquisition many times and obtain the variability in **v**₁ from the different datasets.

Uncertainty Sources

- Noise
- Modelling errors



Cones of uncertainty on DTI v₁

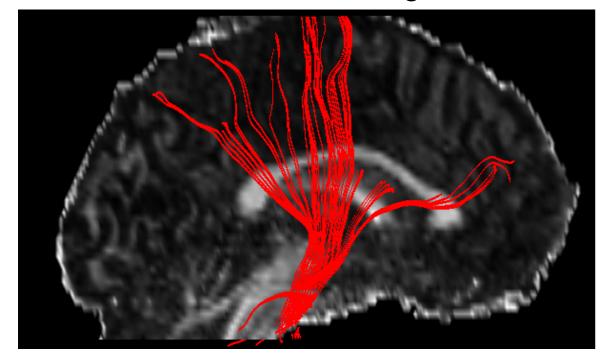
Reproducibility of Tracking Results

Repeat an acquisition many times and repeat streamline tracking.

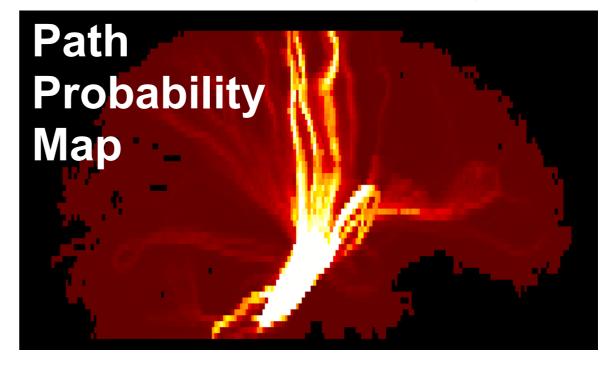
Due to uncertainty in **v**₁, curves will not perfectly overlap

Create a map that shows the degree of overlap across the trials.

Streamlines from a single dataset



Map that shows where results across datasets overlap



Low Reproducibility

High Reproducibility

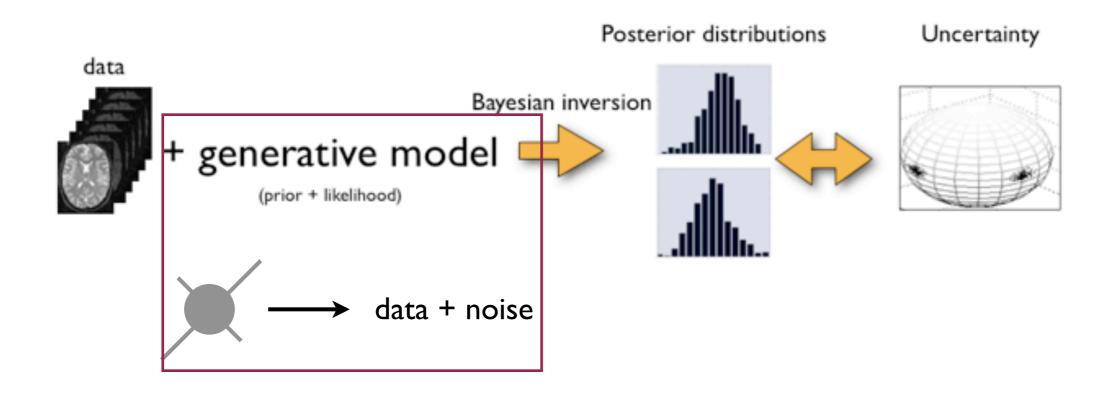
Probabilistic Tractography

- We normally have one dataset per subject, not many.
- Probabilistic Tractography as a two-step process:
- a) Use DWI data and a model to infer a fibre orientation and its uncertainty in each voxel.
- b) Use the estimates and the uncertainty to build a path probability map to a seed.

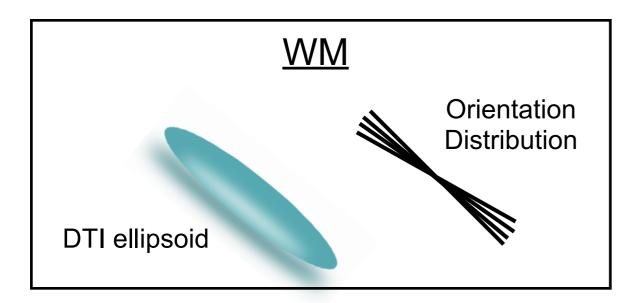
How can we estimate uncertainty?

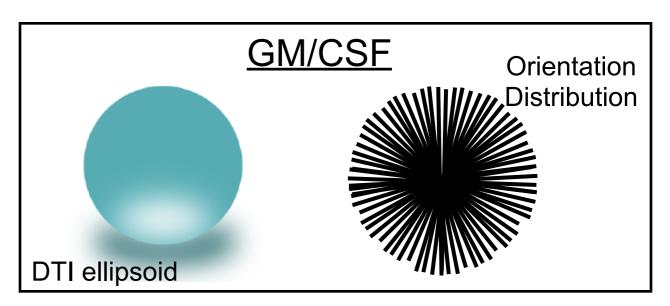
- Remember ... a long time ago in the world of fMRI ...
- We estimated two things:
 - A cope file (the parameters)
 - A varcope file (uncertainty in these parameters)
- We estimated our parameters, and their uncertainty from a single dataset.
- Can we do a similar thing with Diffusion parameters?
 - In the context of GLM, we have analytic formulas
 - For diffusion (especially orientations) we don't

Quantifying Uncertainty Bayesian Modelling (FDT BedpostX)

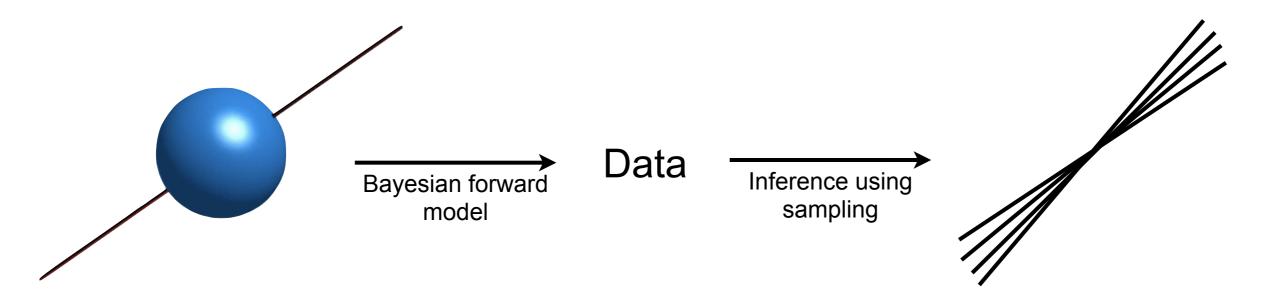


- Uncertainty can be quantified from a single data set
- Instead of a single orientation estimate, infer a distribution of orientations in each voxel.

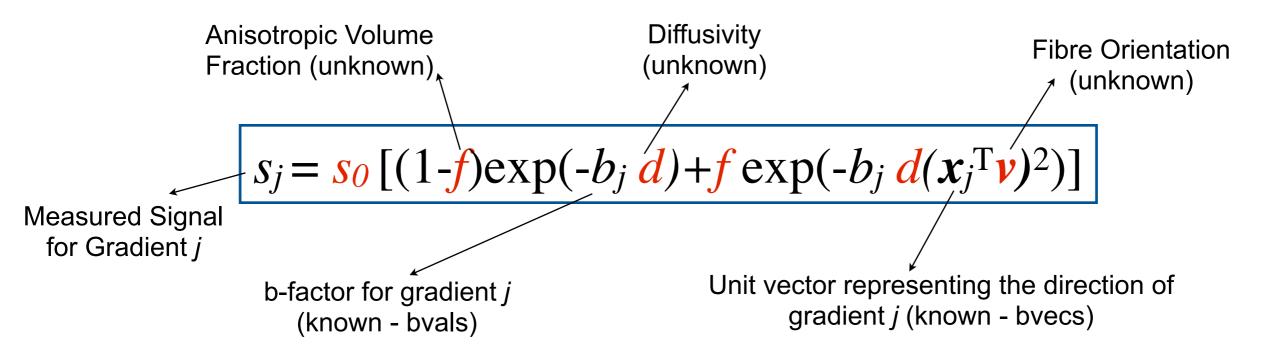


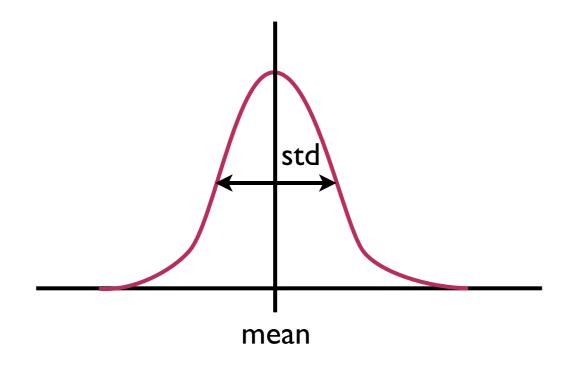


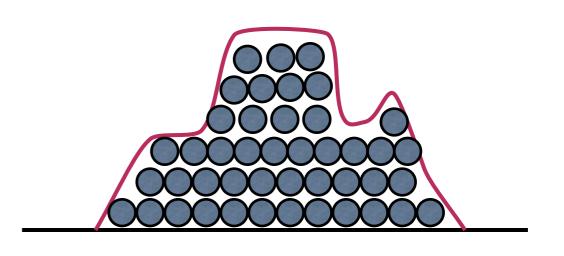
Diffusion Model in FDT BedpostX



- * Simple model of local diffusion (ball and stick). Alternative to DTI model.
 - A single anisotropic direction (stick) with isotropic background diffusion (ball)
 - Direction modelled explicitly and separated from isotropic partial volumes
 - Can be easily extended to model multiple orientations within a voxel.



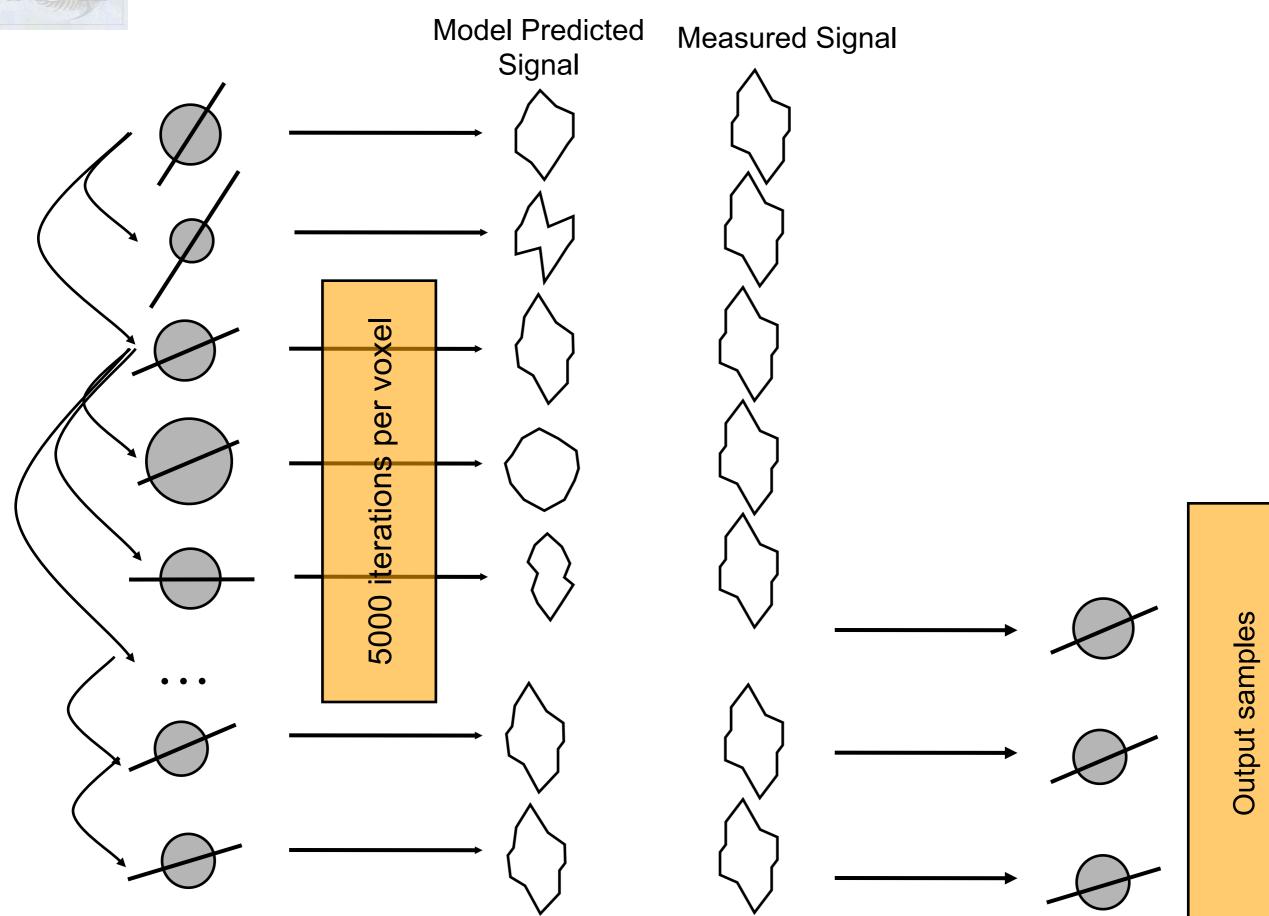




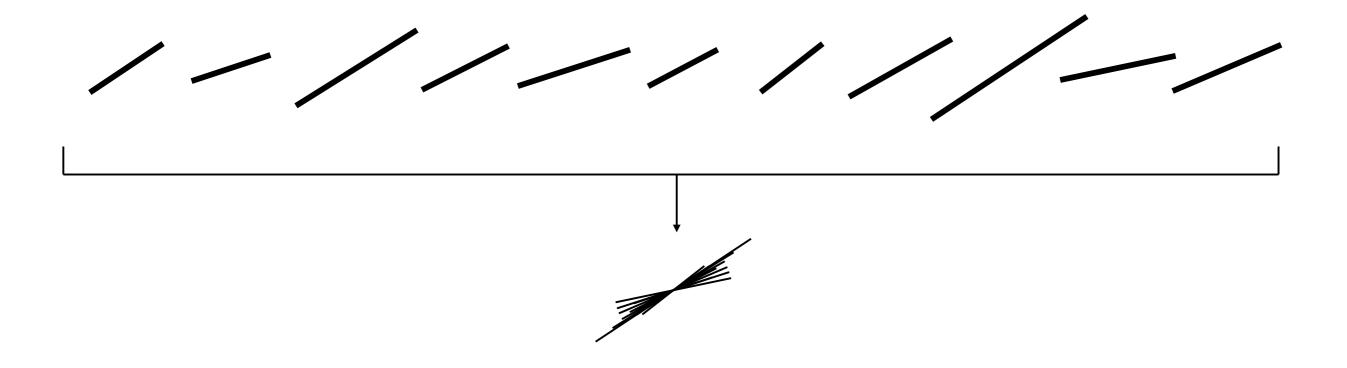
Distribution entirely characterised by a few parameters

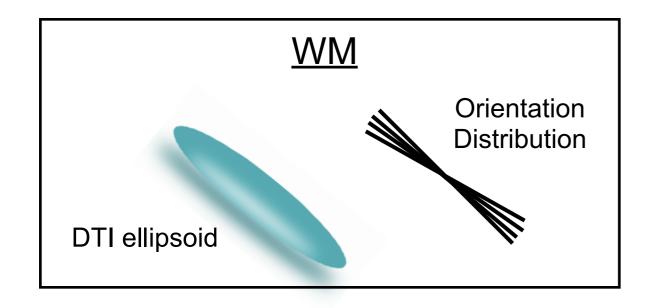
Complex distribution approximated using samples

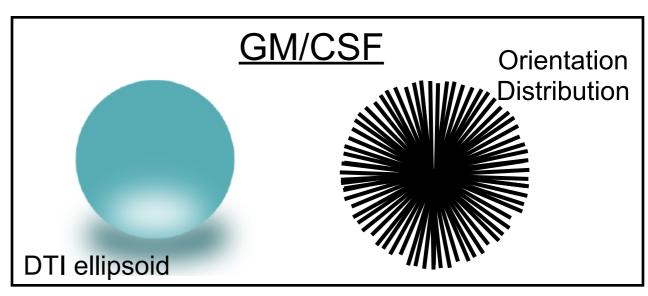
Metropolis Hastings MCMC Sampling



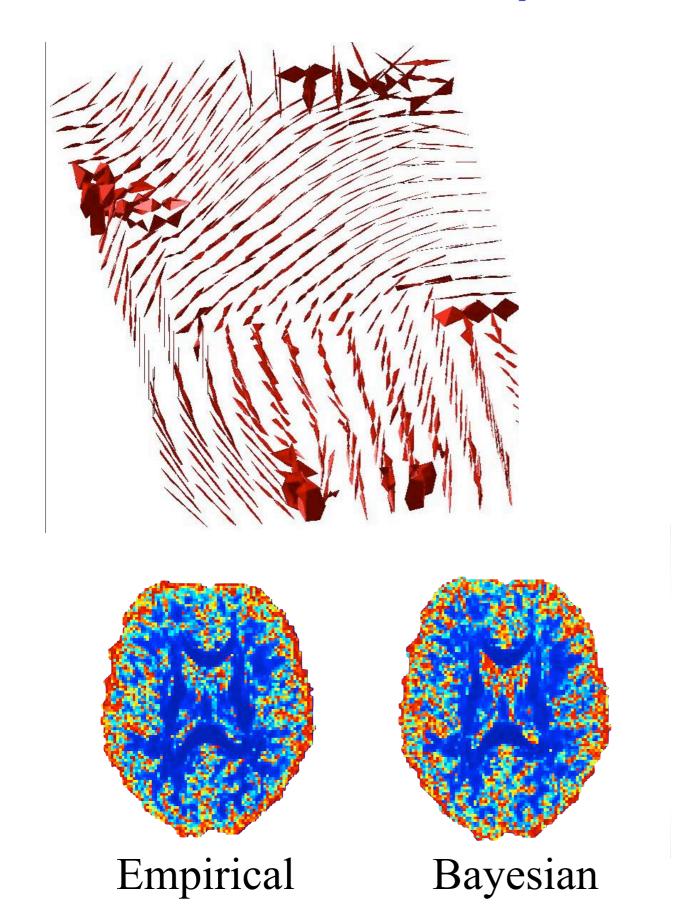
Output in Each voxel = Distributions of Parameters

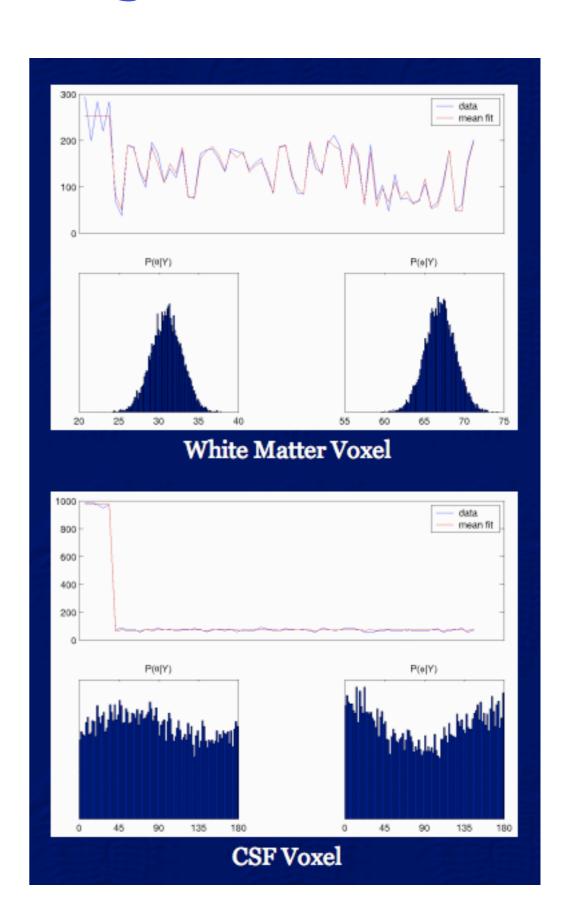






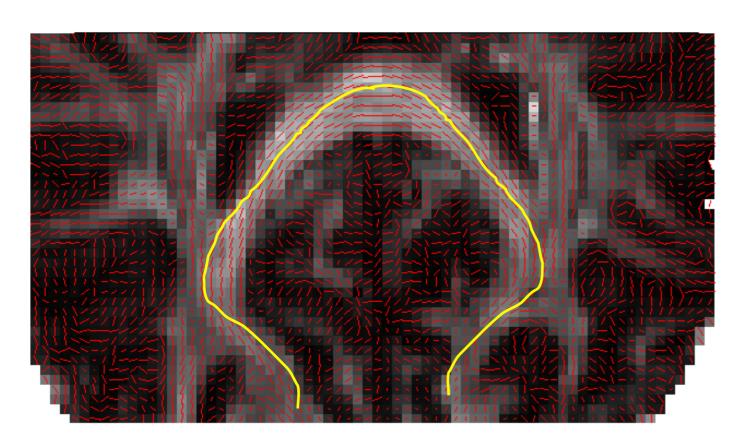
Uncertainty from a single dataset



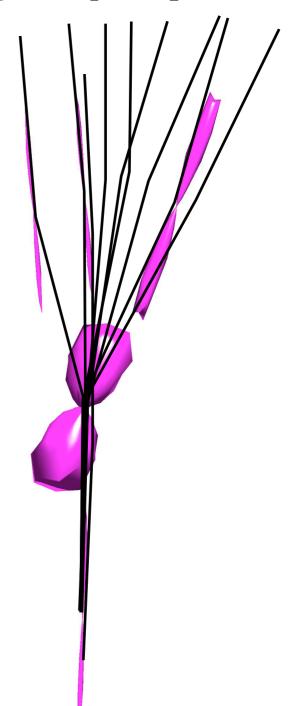


Probabilistic tractography

 But now, we no longer have a single direction at each voxel. How can we do tractography?



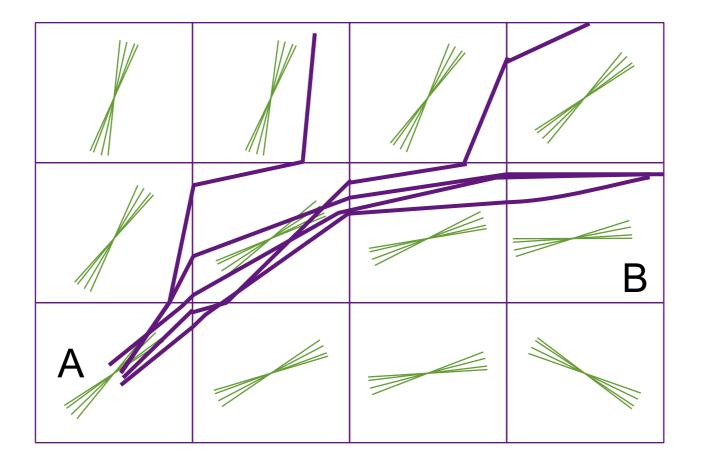
'Streamlining'



Probabilistic tractography

Behrens et al, 2003, Parker et al. 2003, Hagmann et al 2003, Jones et al. 2004

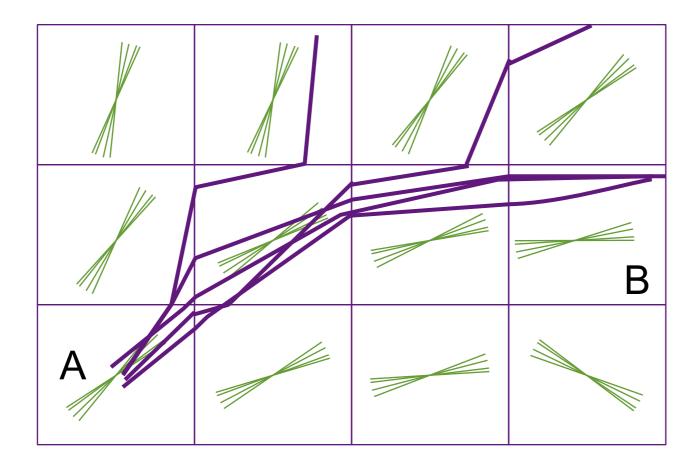
Probabilistic Tractography - Propagating the Uncertainty



Behrens et al, 2003 Parker et al, 2003

- Propagate N streamlines from a seed, but for each propagation step choose randomly an orientation from the underlying distribution.
- Build a spatial distribution of curves that mimics the overlapped results from multiple deterministic tracking on multiple scans

Probabilistic Tractography - Propagating the Uncertainty



Behrens et al, 2003 Parker et al, 2003

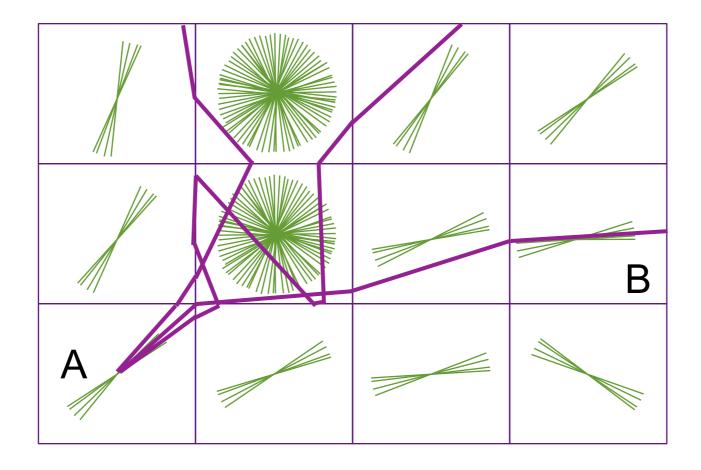
Define the degree of overlap at each location B, as:

$$P_{AB} = M/N$$

M:number of streamlines that go through B N: total streamlines generated from A

This is the probability of a curve starting at A and going through B.

Probabilistic Tractography - Propagating the Uncertainty



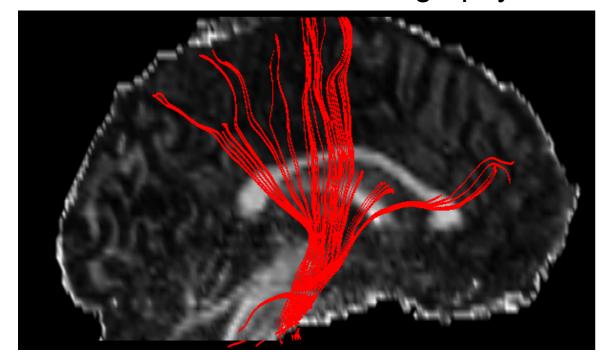
Behrens et al, 2003 Parker et al, 2003

- Can now propagate through isotropic regions (e.g. GM).
- Do not need to stop when anisotropy is low, as in deterministic tracking.
 - The high uncertainty will be reflected in the probability map.
 - -Still impose a curvature threshold to avoid swirled trajectories.

Path Probability Map

- Recall that it assesses how reproducible results are
- Often called "connection probability", "connectivity index", "connectivity strength". But it does not quantify how strong a connection is...
- Rather, how robust it is against noise

Deterministic Tractography



Probabilistic Tractography

Low Probability

High Probability

What is a quantitative measure of connectivity?

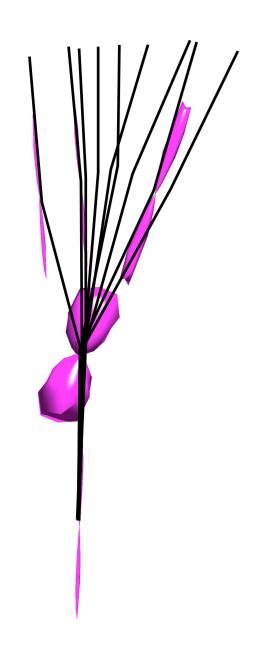
- Number of axons connecting 2 areas?
- Proportion of axons from a seed that reach a target?
- "Integrity" of the connecting white matter ...
 - Effective conductivity?
 - –Degree of myelination?
 - -Packing density?
- What are we measuring?
 - -The probability that the **dominant** path through the <u>diffusion field</u> passes through this region.

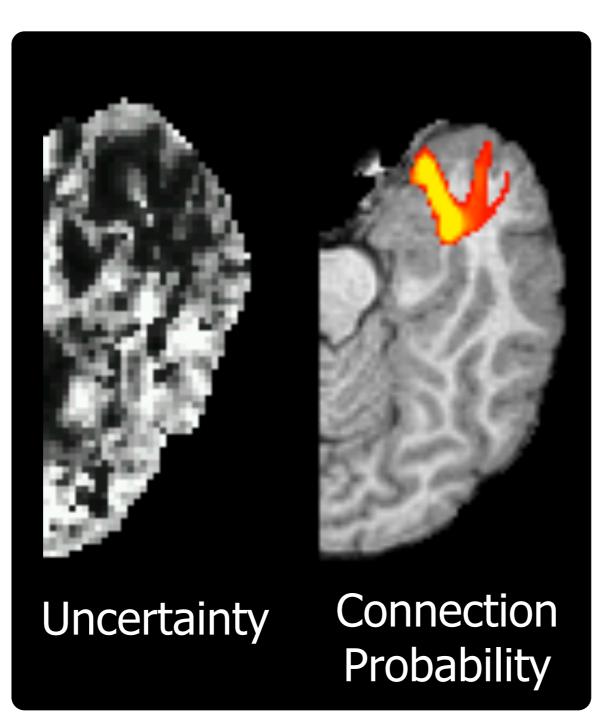
Probabilistic Streamline Tractography Summary

- Needs apart from orientation estimates, an estimate of their uncertainty. Does not need to be the ball and stick model, the DTI model can be used instead!

- Propagate streamlines repeatedly from a seed, but the orientation field is no longer deterministic. In each propagation step choose randomly an orientation from the underlying distribution.
- A connection probability value>=0 can be obtained from a seed A to any voxel in the brain B. This assesses the reproducibility of the path from A to B, along which water molecules preferably diffuse.

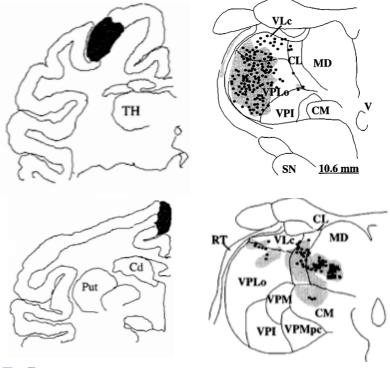
Probabilistic Tractography



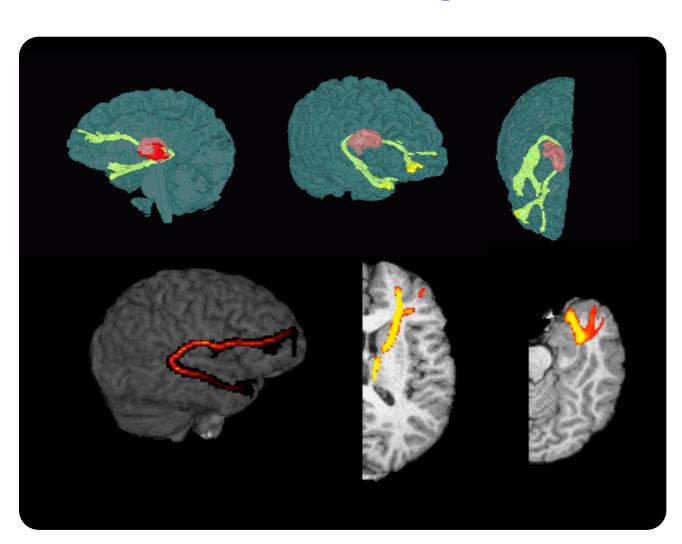


- Allows you to track into regions of low anisotropy, eg grey matter
- Provides
 quantitative
 probability of
 connection from A
 to B

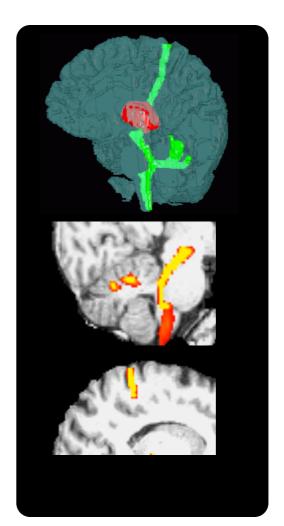
Thalamic connections with cortex



MD -> PFC



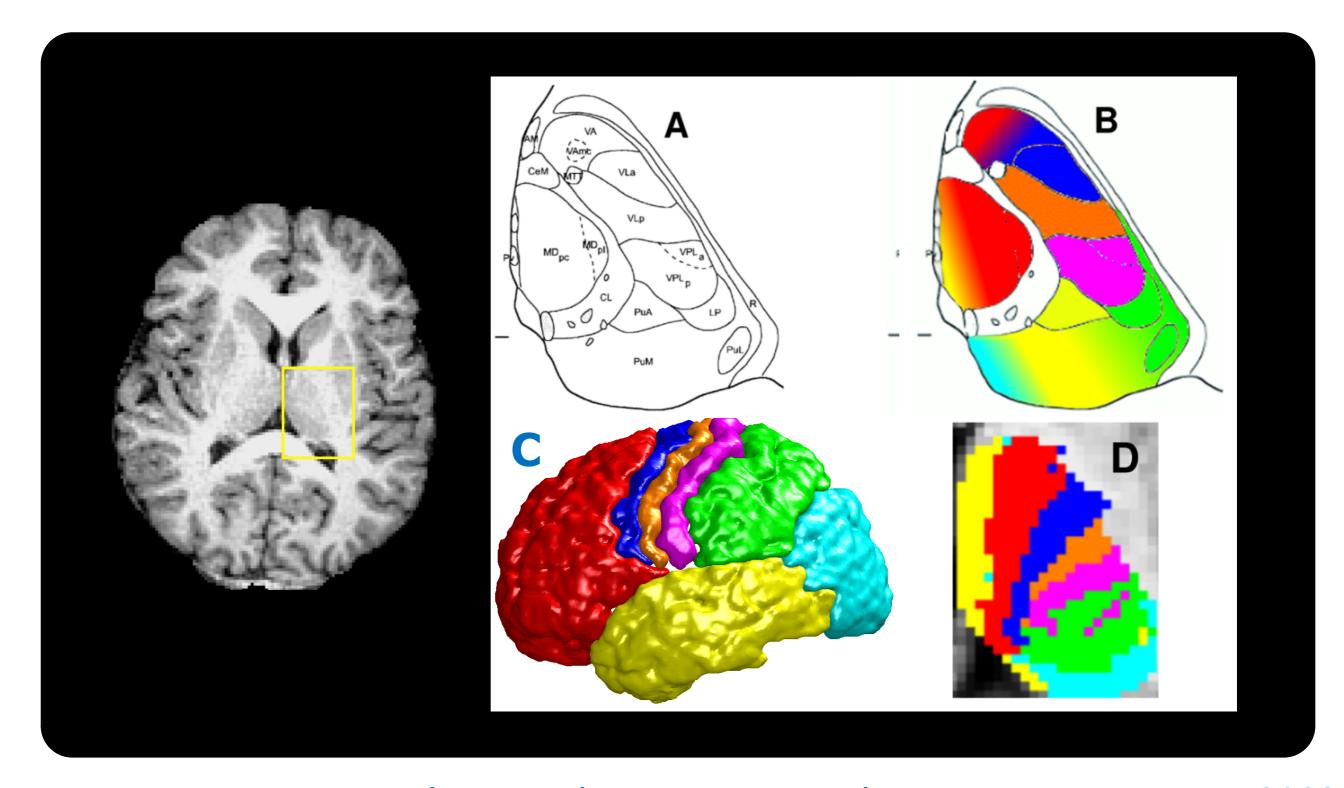
VL -> M1



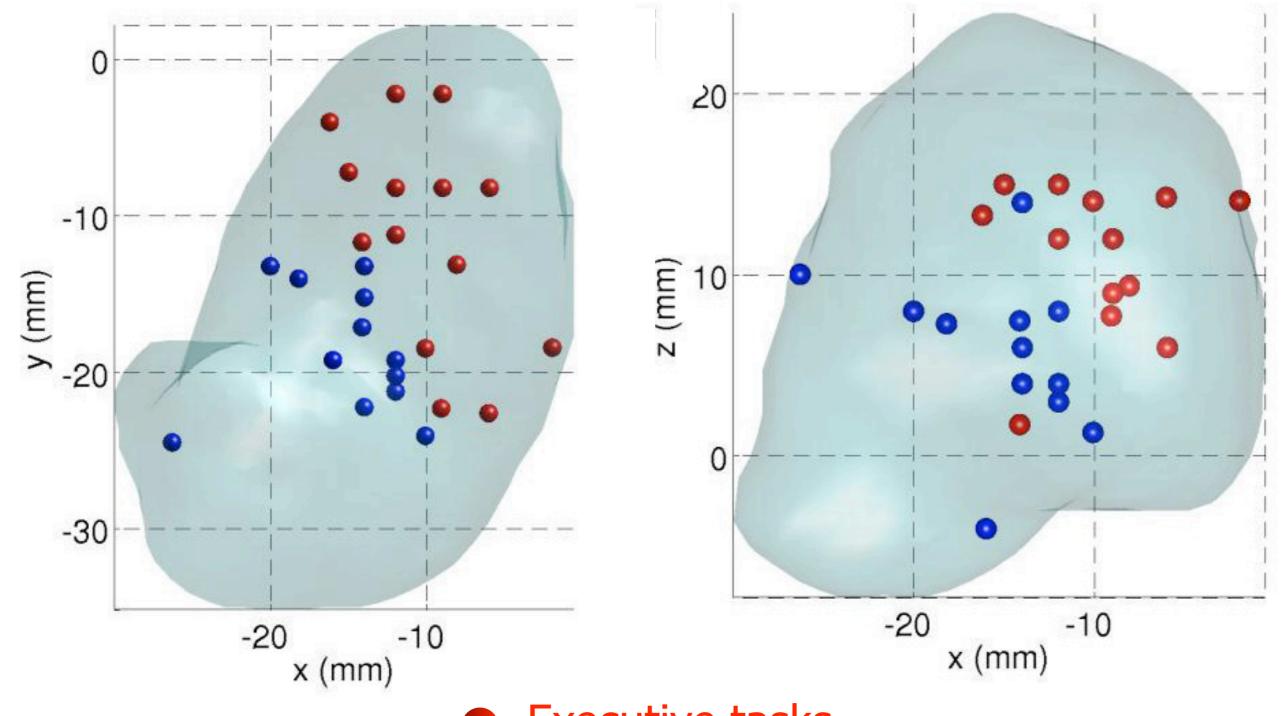
Rouiller et al 1998

Behrens et al 2003

Connectivity-based classification of thalamic voxels produces clusters

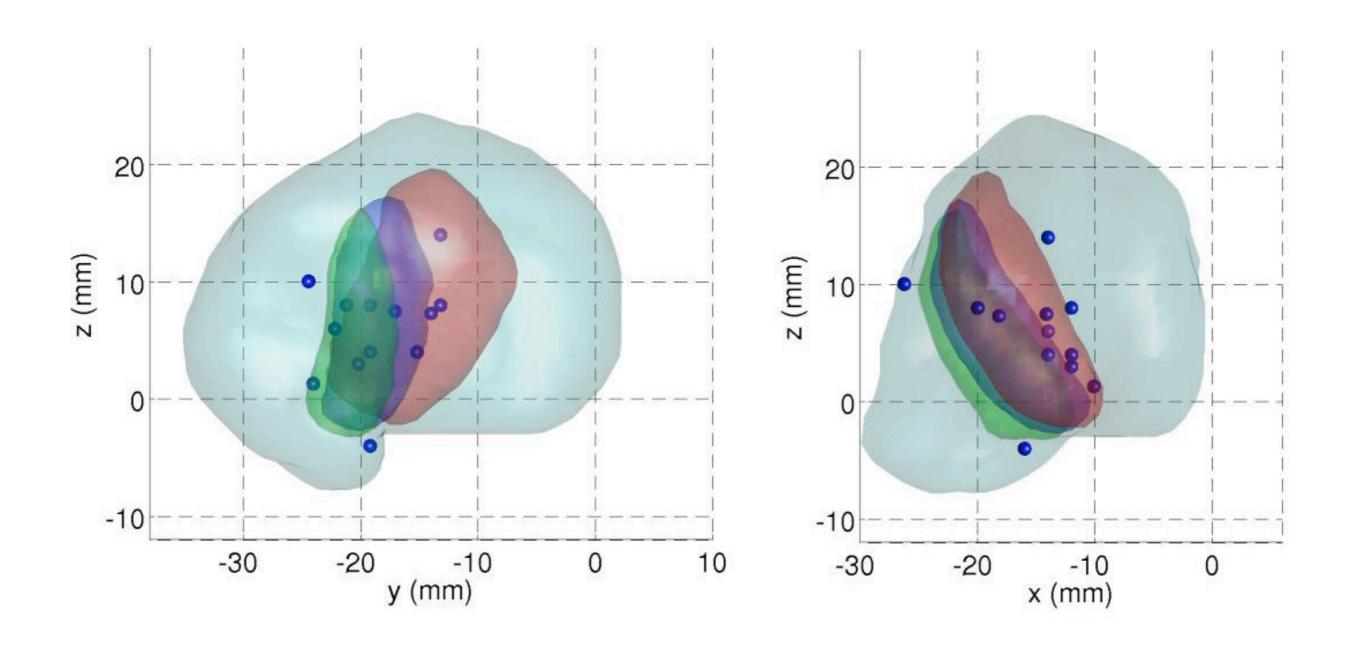


Functional validation: meta-analysis of FMRI activations within thalamus

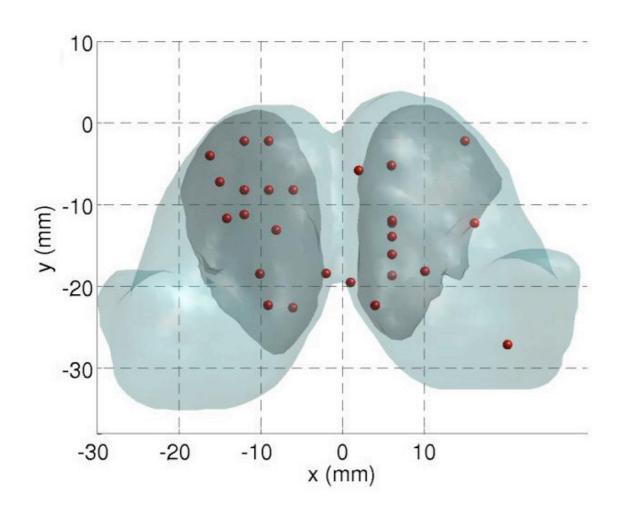


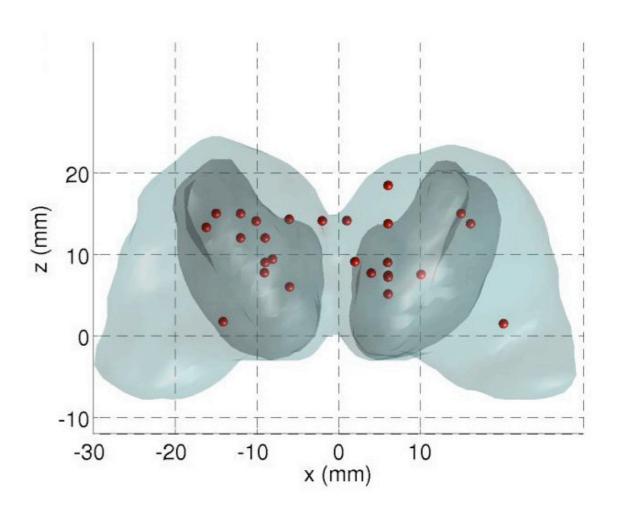
- Executive tasks
- Motor tasks

Correspondence between functional activations and connectivity-defined volumes: motor tasks



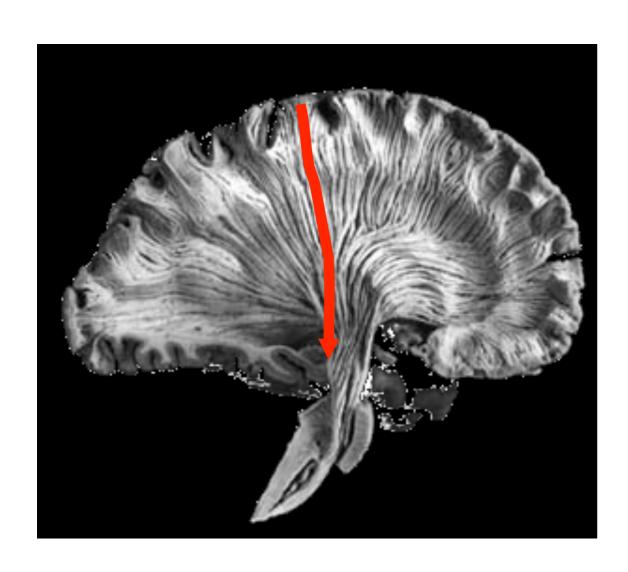
Correspondence between functional activations and connectivity-defined volumes: executive tasks

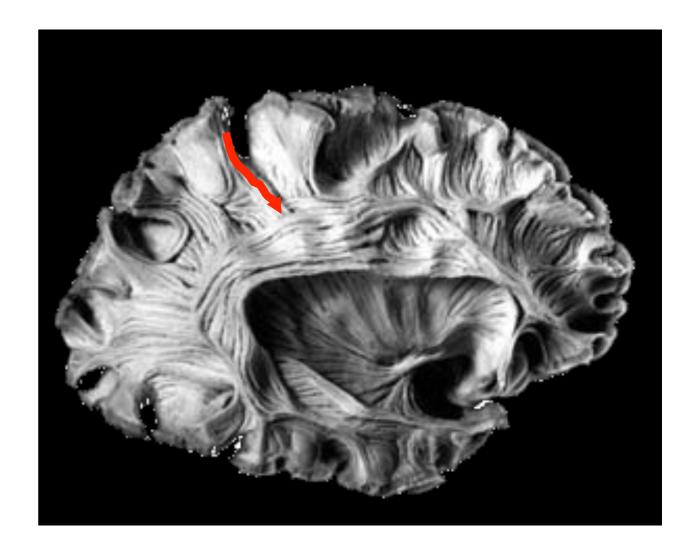




Modelling Complex Fibre Architectures

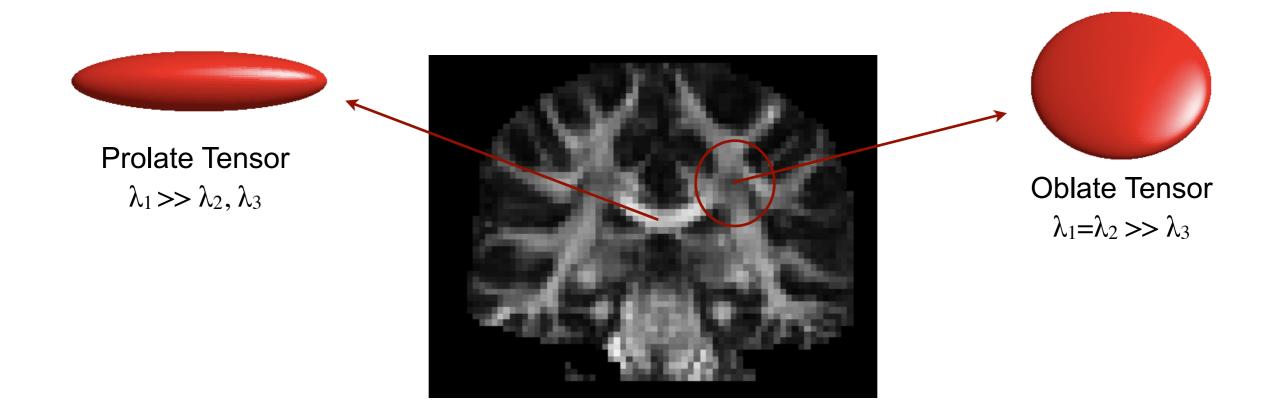
So far model and infer one fibre orientation per voxel. What happens if we want to track through crossing regions?





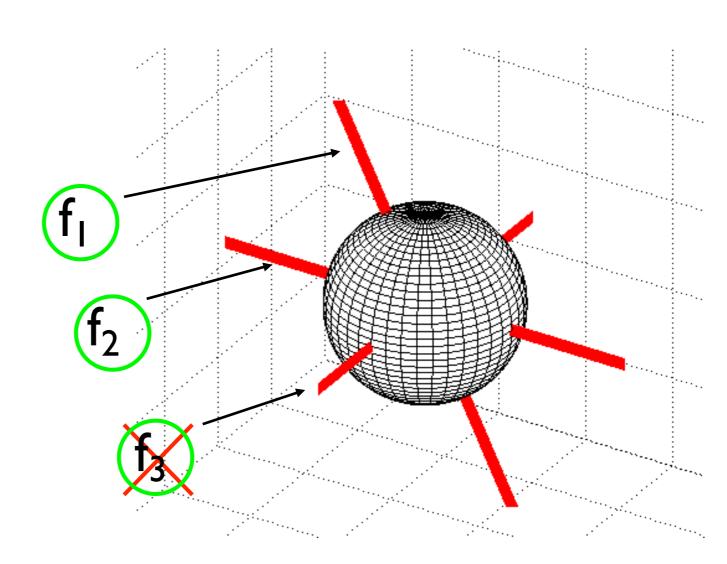
The DTI Model is Not Good in Crossing Regions

- In voxels containing two crossing bundles, the tensor ellipsoid is pancake-shaped (oblate, planar tensor).
- In these areas, DTI e₁ is meaningless.



Modelling Complex Fibre Architectures - Use the Ball and Stick Model

- Simply add more sticks to the model
- Estimate uncertainty for each orientation (stick) modelled.
- Model selection problem: One, two or more fibres within a voxel?
- Automatic Relevance
 Determination: Only estimate
 complexity that is supported by the
 data



Modelling Complex Fibre Architectures

Automatic Relevance Determination (A.R.D.)

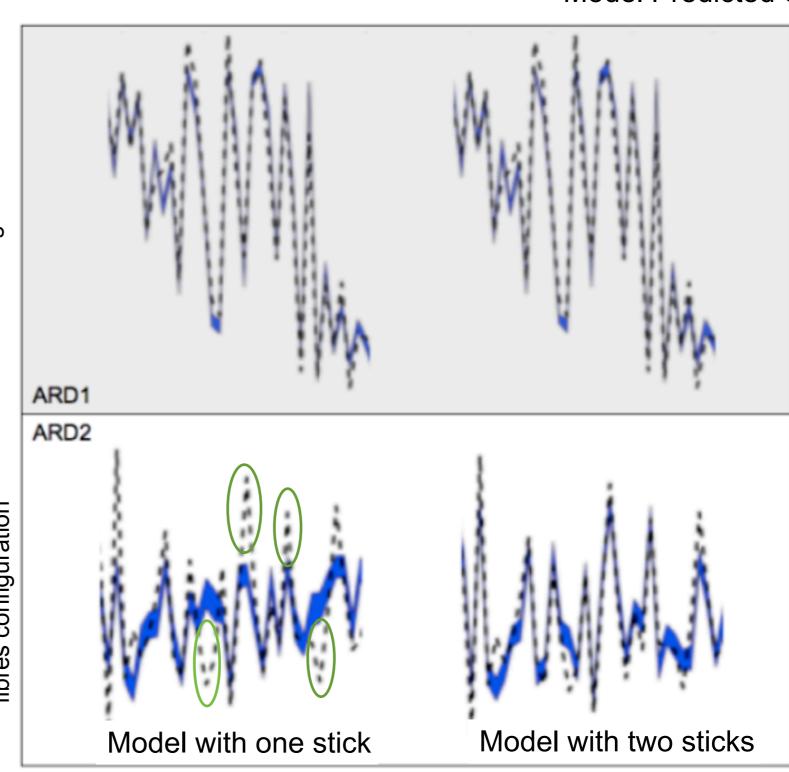
Measured SignalModel Predicted Signal

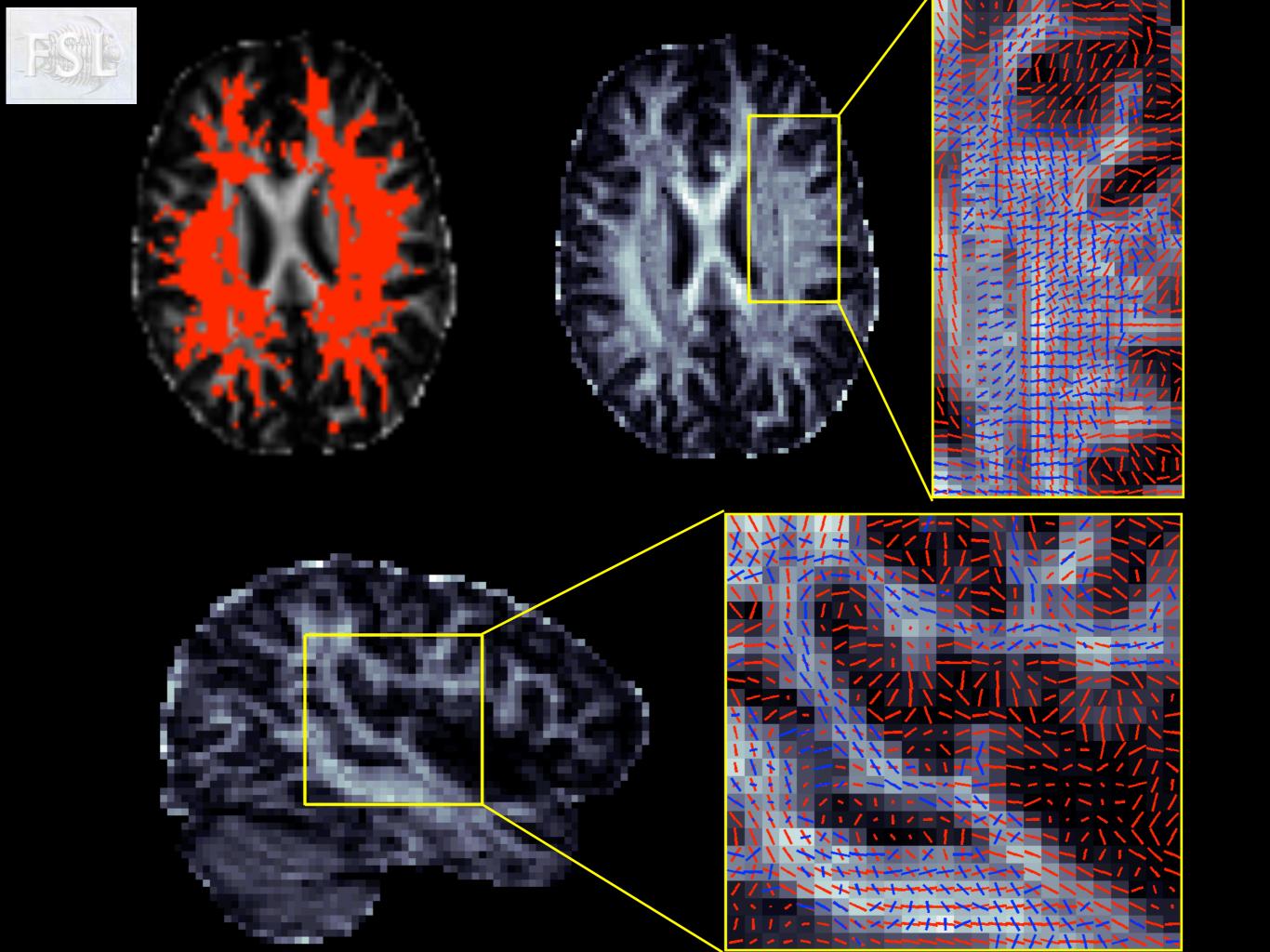
No benefit from including a 2nd fibre
 => 2nd volume fraction goes to zero

Measured signal is explained better by more complex model => 2nd volume fraction is non-zero

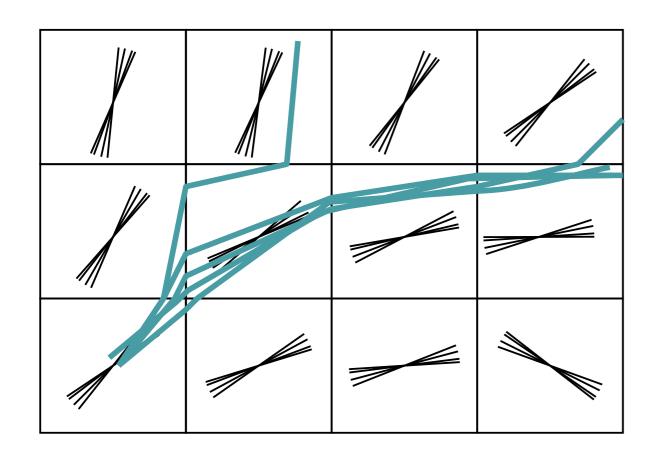
Signal for one fibre configuration

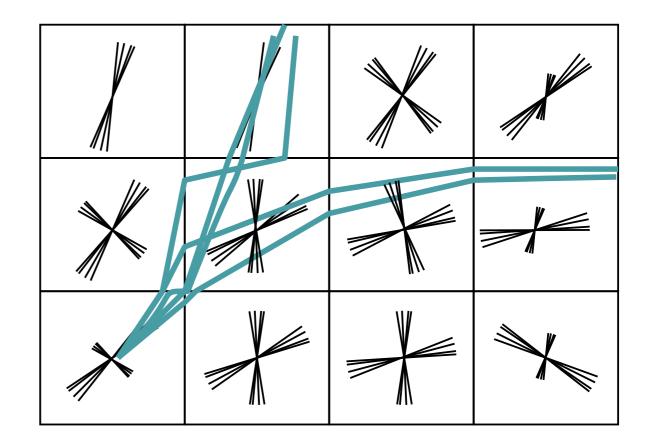
Signal for two crossing fibres configuration





Probabilistic Tractography in Multi-Fibre Fields



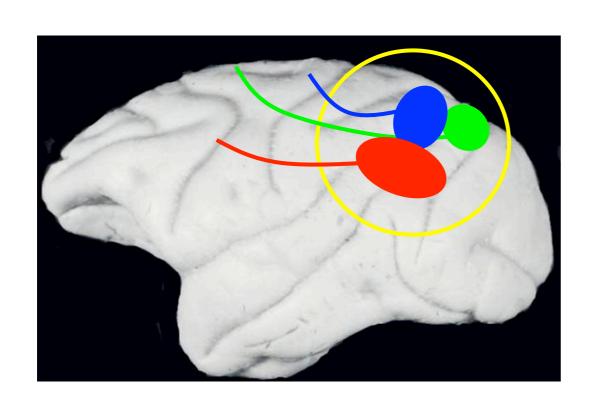


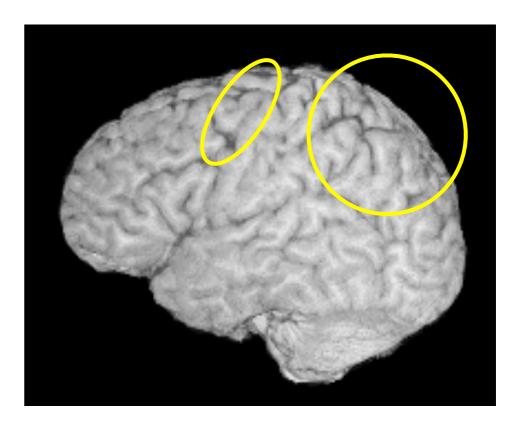
Behrens et al, 2003, Parker et al. 2003, Hagmann et al 2003, Jones et al. 2004

Parker & Alexander 2003, Behrens et al, 2007

When multiple fibre populations exist in a voxel, choose the one that is most compatible with the incoming trajectory.

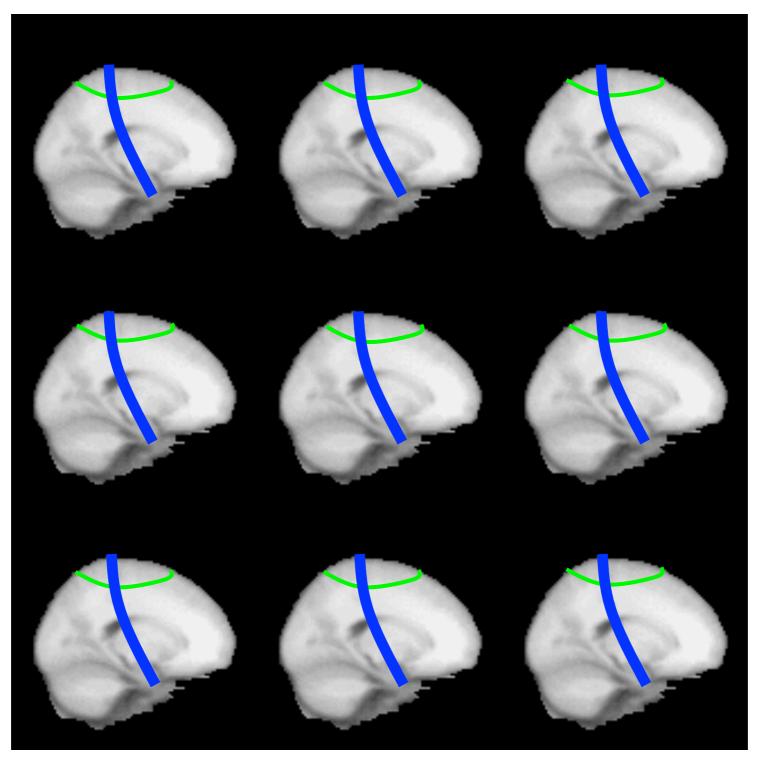
Parieto-premotor connections





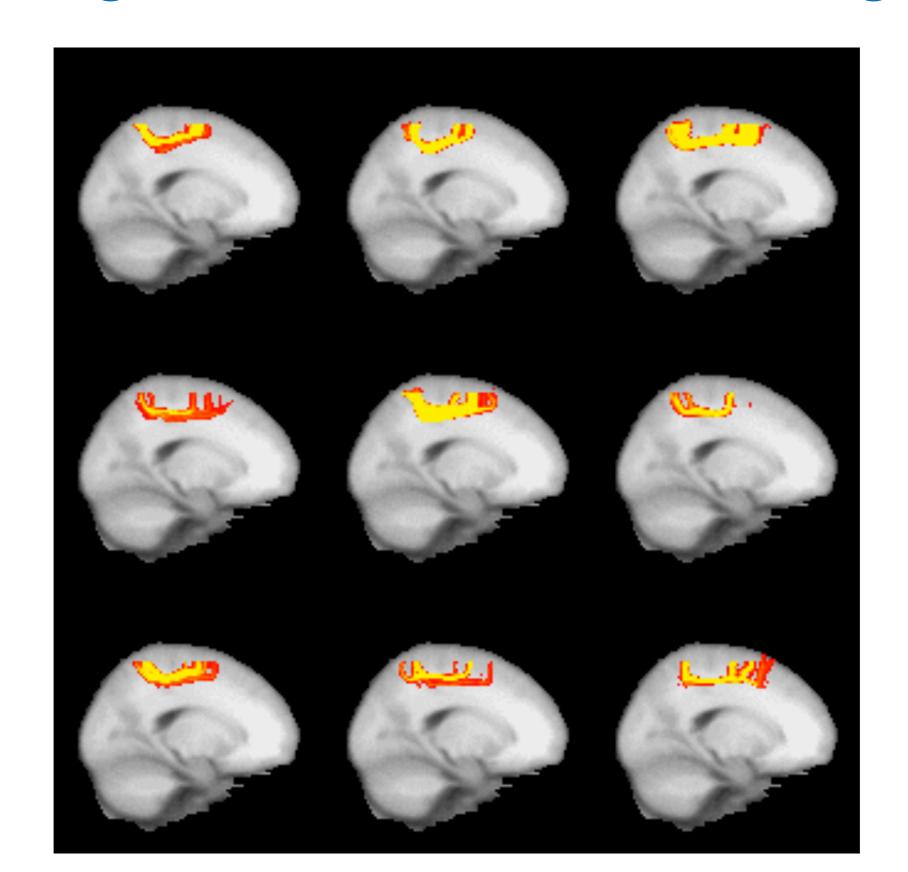
Posterior PL <->Anterior PMC
Anterior PL <-> Posterior PMC
Lateral PL <-> Frontal Eye Fields

But....

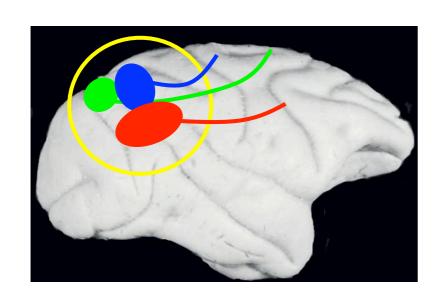


Tracking Parietal -> Medial premotor regions in 9 subjects

Using multi-fibre modelling.



Topography of premotor connections in parietal lobe.

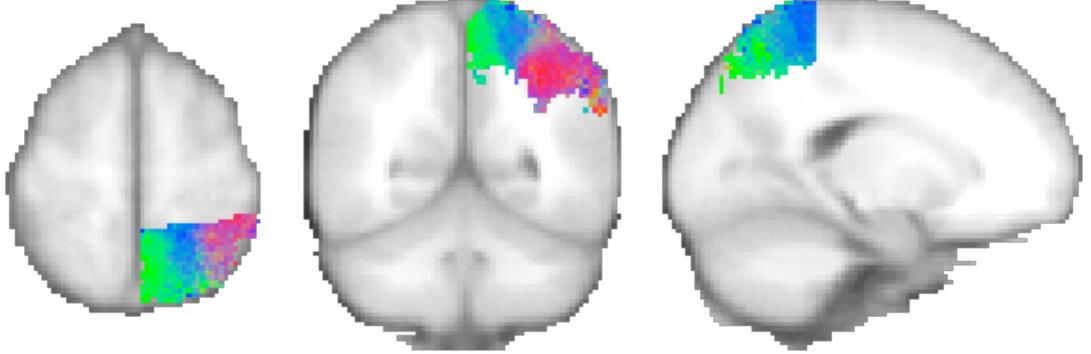


Average of 9 subjects.

Tracking from parietal

To:

Anterior Premotor Posterior Premotor Frontal Eye Fields

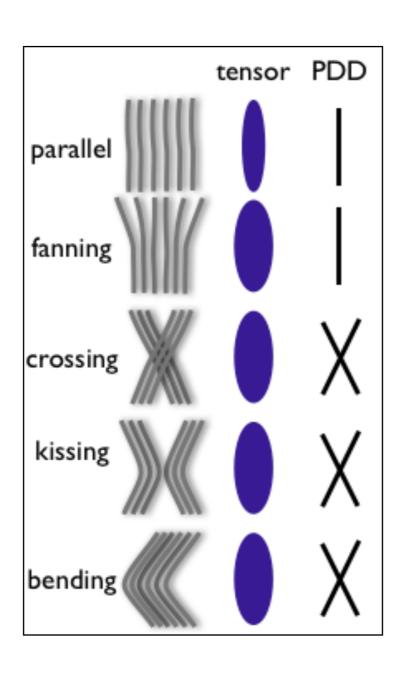


Behrens and Rushworth

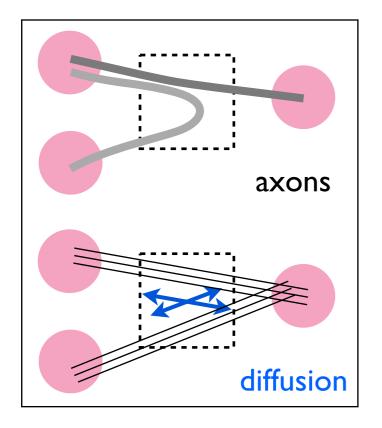
Errors in tractography

- Modelling errors
- Measurement noise errors
- Algorithmic errors

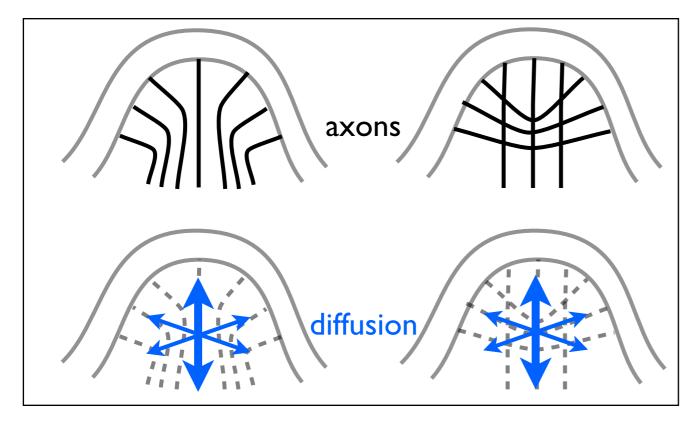
Is the direction of least hindrance to diffusion a good proxy for fibre orientation?



mapping between axon geometry and diffusion profile can be ambiguous



In the white matter: jumping between tracts

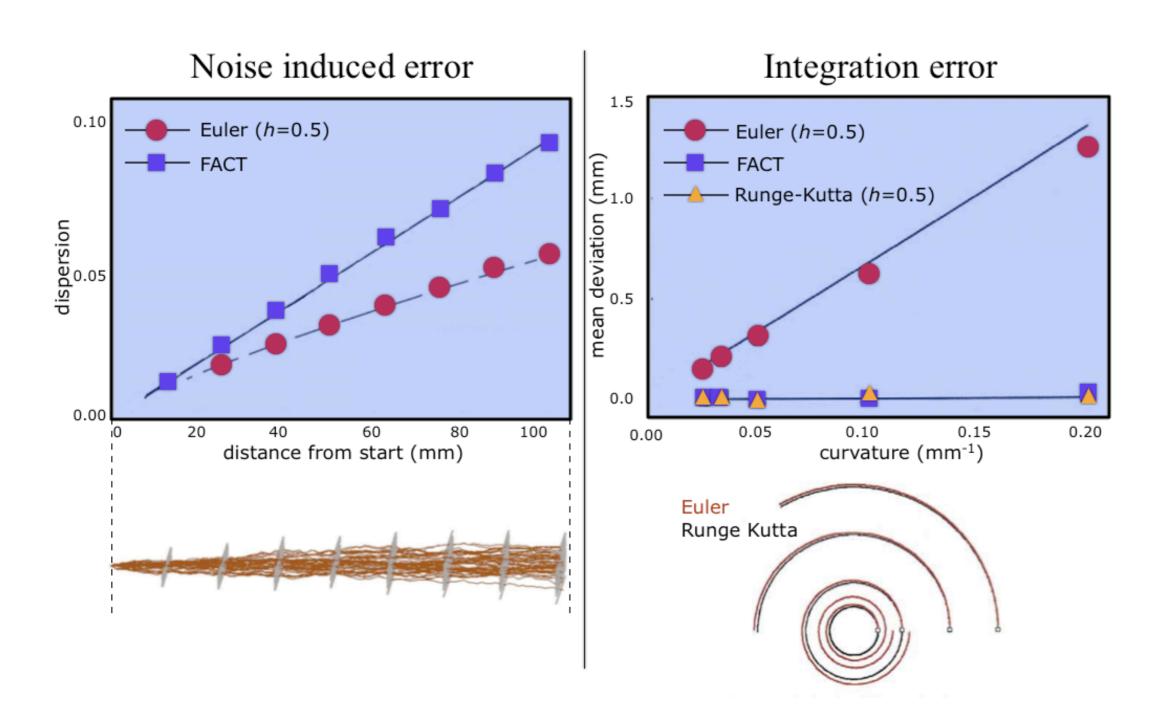


Near the cortex ambiguities/biases

Modelling errors

- Tractography is good for <u>localising</u> tracts
- Difficult to get accurate estimate of site-to-site connectivity
 - ambiguous diffusion-axon mapping
 - cannot quantify modelling errors
 - But we can <u>reduce</u> them by improving the local modelling (ongoing research)

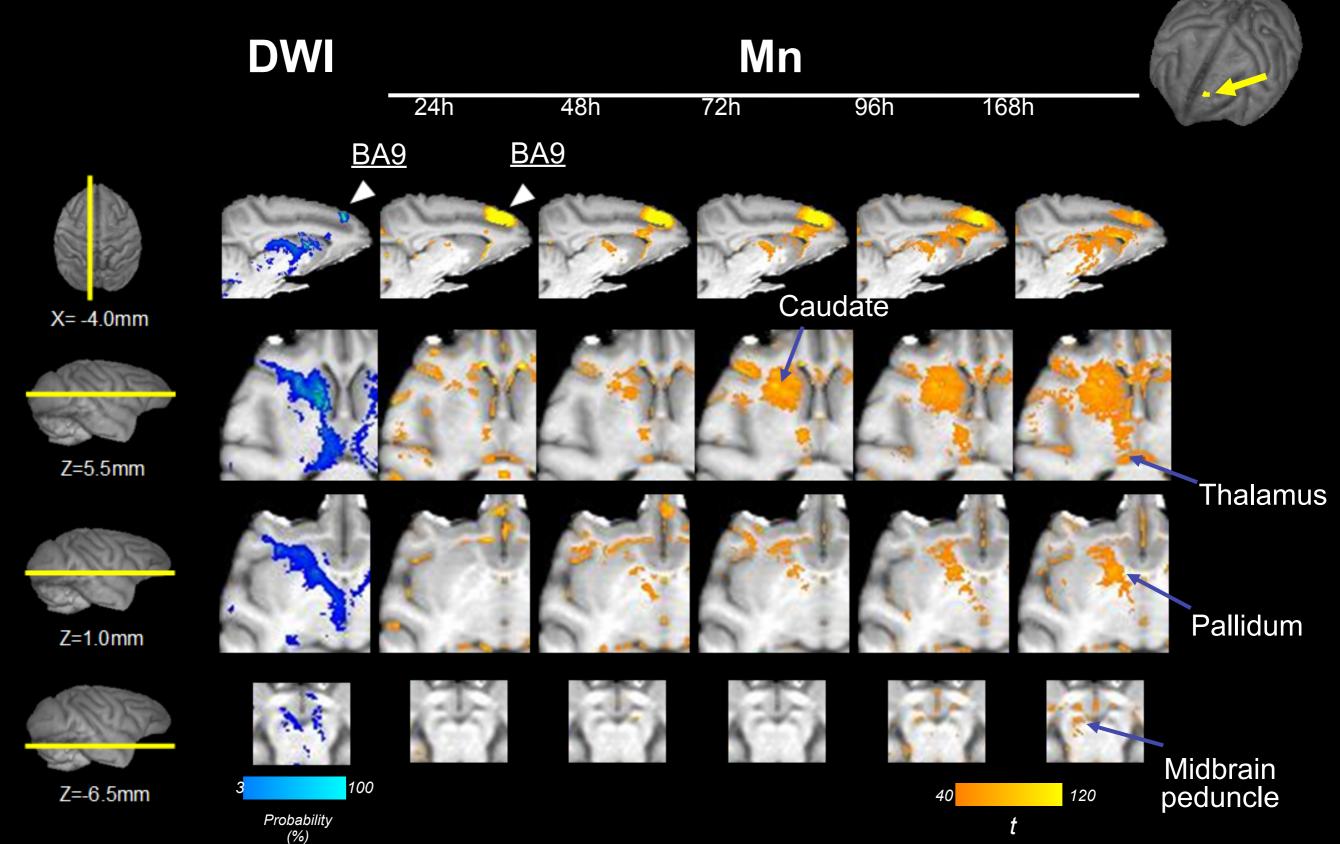
Other errors



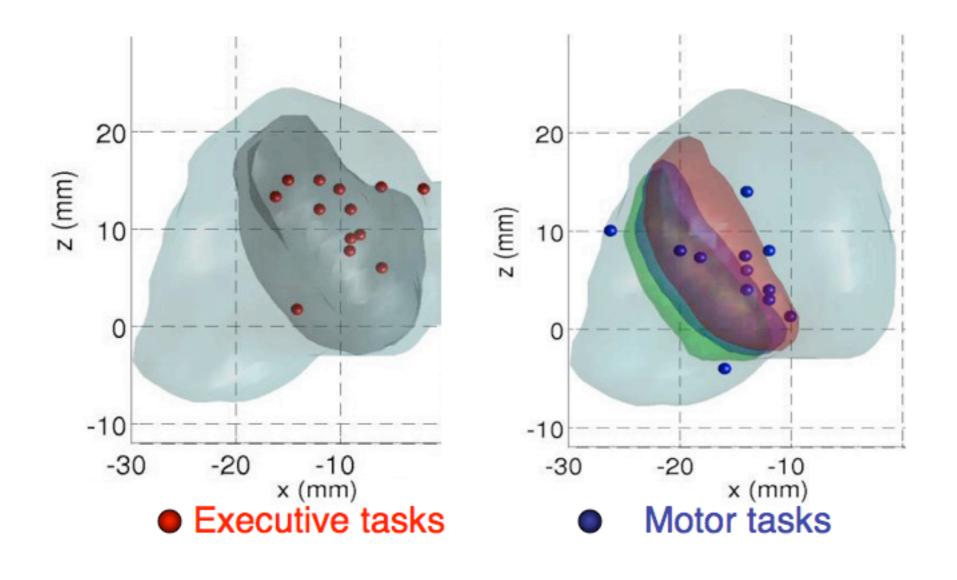
error summary

- We can quantify noise-induced errors
- We can minimize algorithmic errors
- We can't quantify modelling errors
 - false positives and negatives in <u>unknown</u> proportions
 - (but we can *try to* minimize them)
 - we need validation

Connectivity of prefrontal cortex

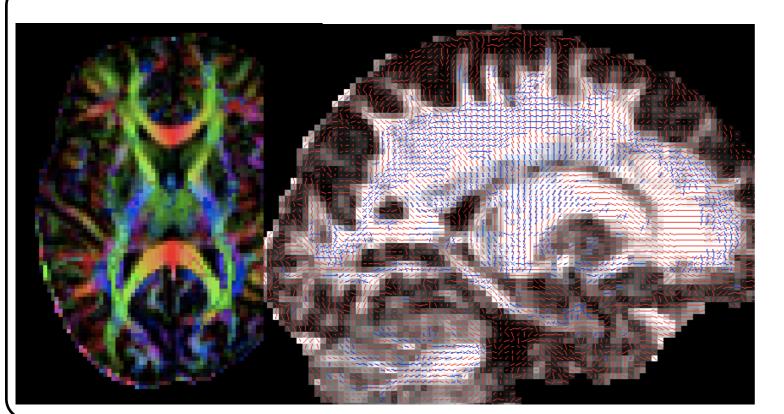


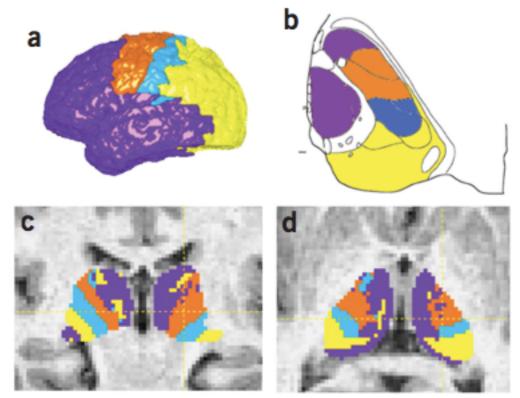
Functional validation: meta-analysis of FMRI activations within thalamus



FMRIB Diffusion Toolbox

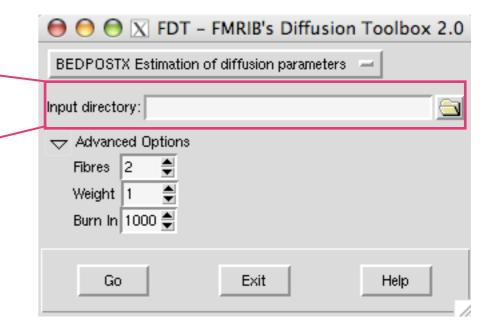
- DTI model fit
- Eddy current correction
- Voxel-Based diffusion analysis (TBSS)
- BEDPOSTX modelling crossing fibres
- PROBTRACKX propagating uncertainty in tractography

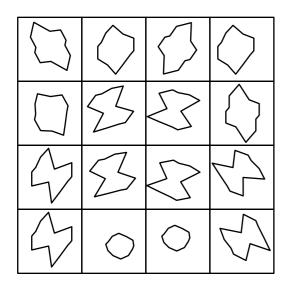


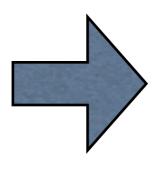


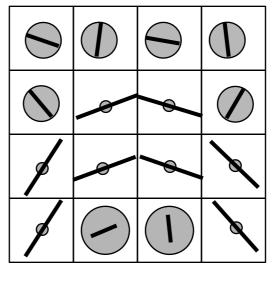
GUI options

data.nii.gz nodif_brain_mask.nii.gz bvecs bvals



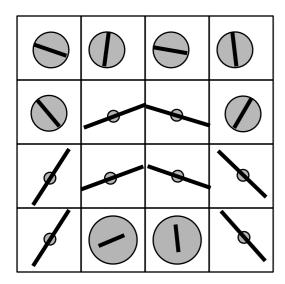






Data

Model parameters



Results

Sample orientations

merged_th1samples.nii.gz merged_ph1samples.nii.gz merged_th2samples.nii.gz merged_ph2samples.nii.gz

Sample fractional volumes ———

merged_f1samples.nii.gz merged_f2samples.nii.gz

Mean orientation

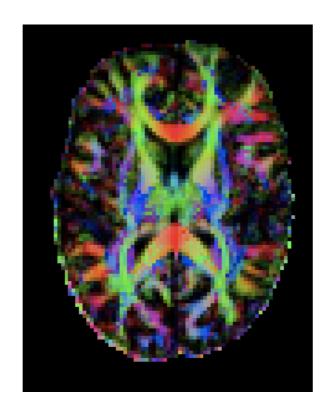
dyads1.nii.gz dyads2.nii.gz

Mean fractional volumes

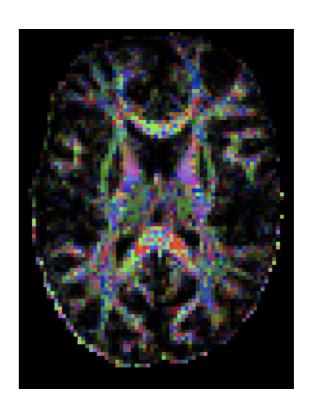
mean_f1samples.nii.gz mean_f2samples.nii.gz

Results

Mean orientation



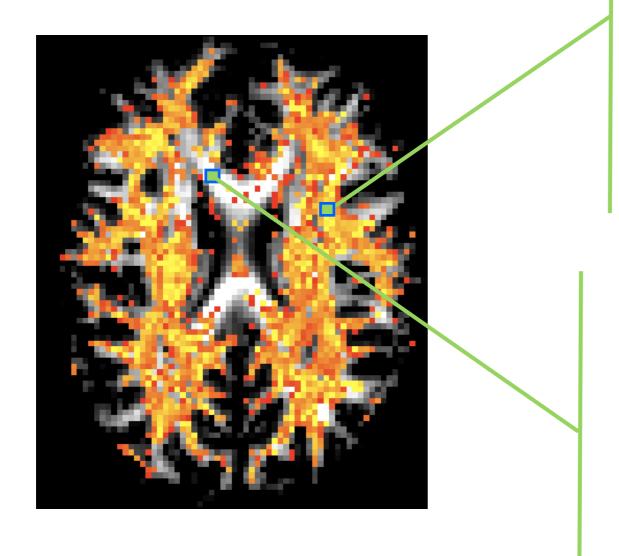
dyads1.nii.gz

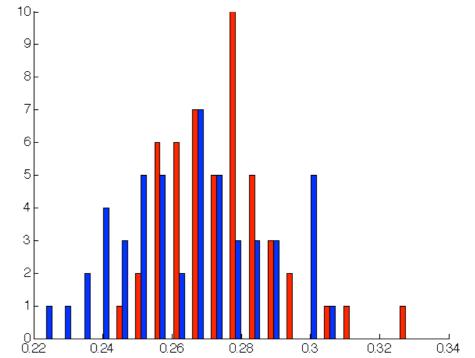


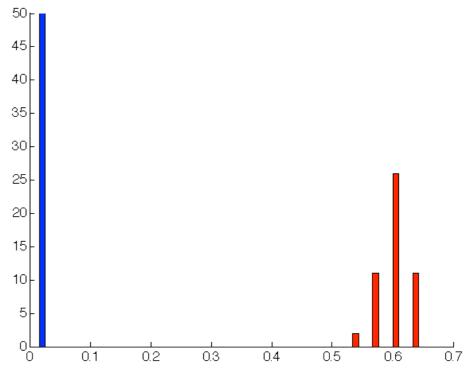
dyads2.nii.gz

Results

Mean fractional volumes



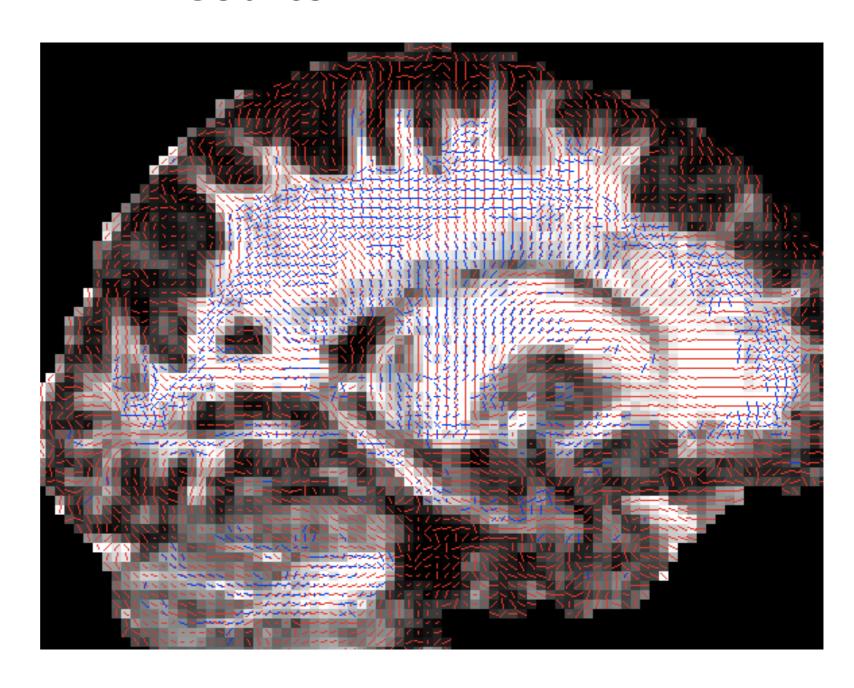




BEDPOSTX

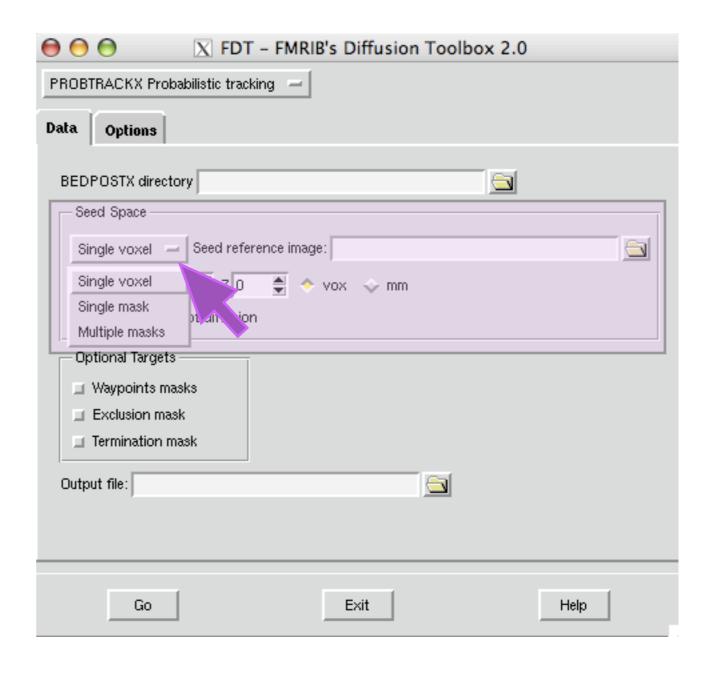
Results

Mean orientation



Seed specification

- Different ways of specifying seeds
- Allow seed specification in a different space

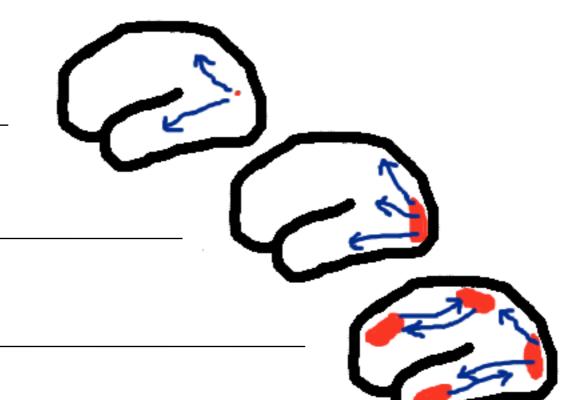


Seed specification

• single voxel —

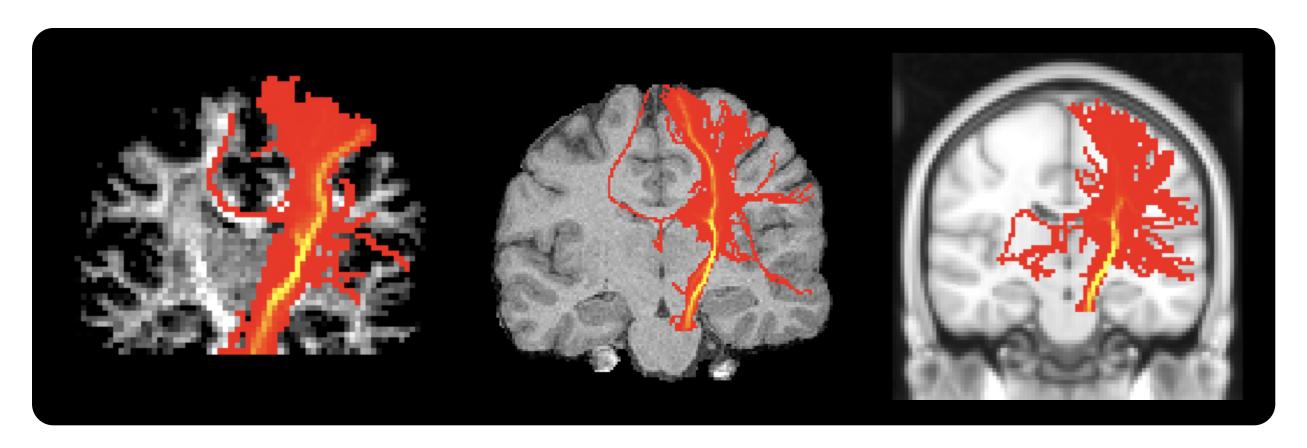
• single mask -

• multiple masks -



Seed specification

Different seed spaces



Diffusion space

Structural space

Standard space

(optional) Targets specification

- Waypoints
- Exclusion
- Termination
- Classification

Dissecting specific tracts

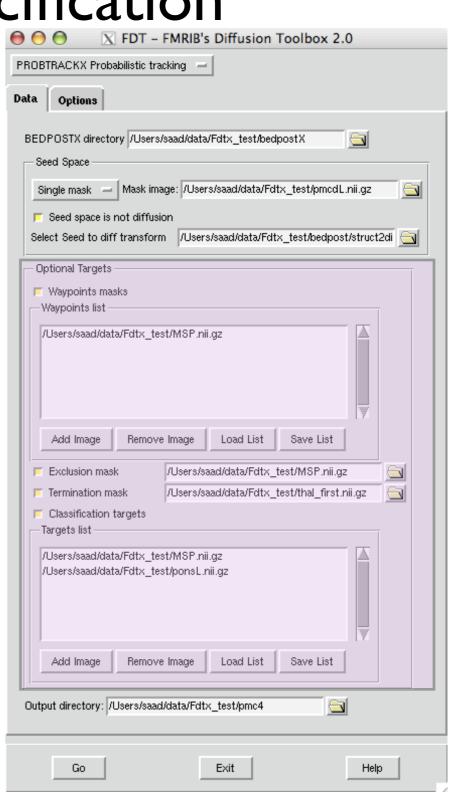
(equivalent to adding priors on the distribution of connections)

Quantification of connectivity

ALL THE TARGETS IN THE SAME SPACE AS THE SEEDS

(optional) Targets specification

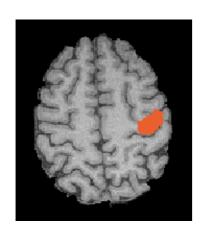
- Waypoints
- Exclusion
- Termination
- Classification

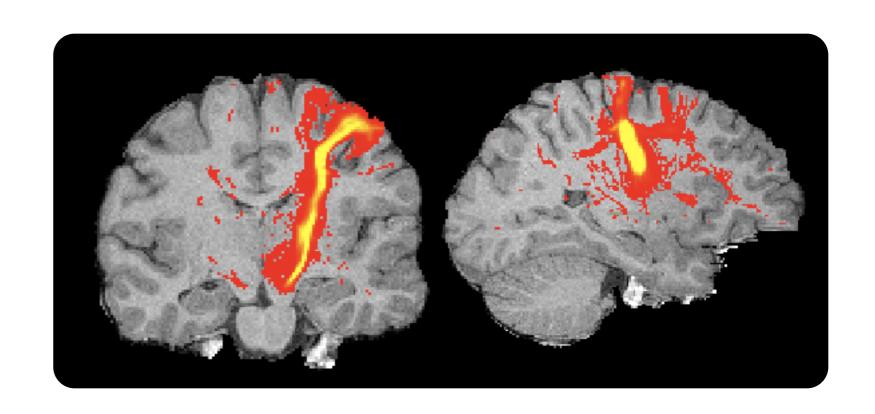


Dissecting a specific tract

Cortico-spinal tract

Seed: MI, hand area



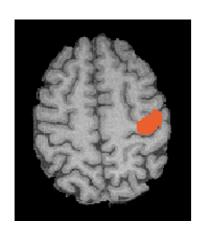


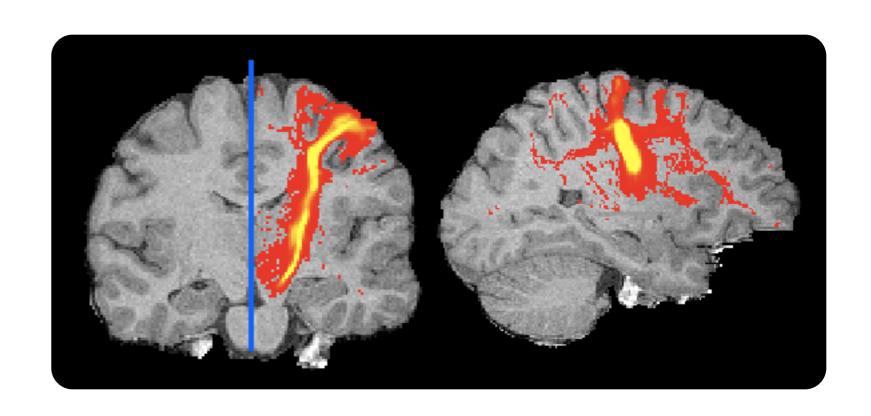
No targets

Dissecting a specific tract

Cortico-spinal tract

Seed: MI, hand area



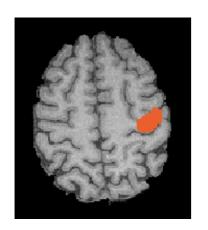


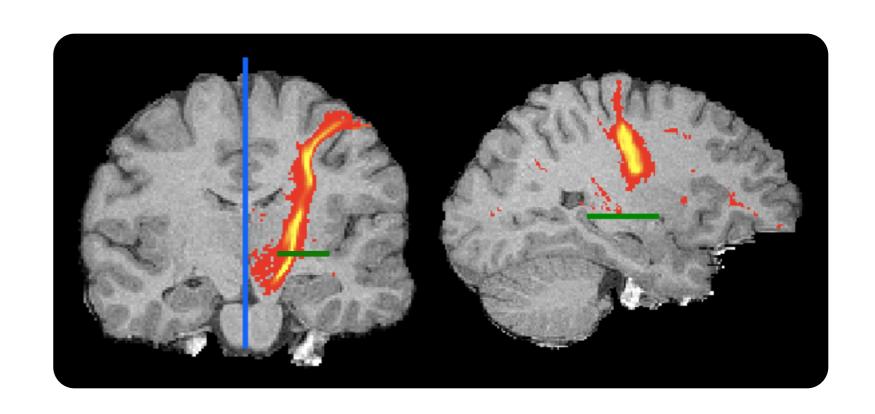
Exclusion: Mid-Sagittal plane

Dissecting a specific tract

Cortico-spinal tract

Seed: MI, hand area



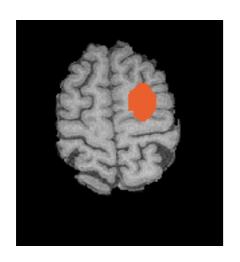


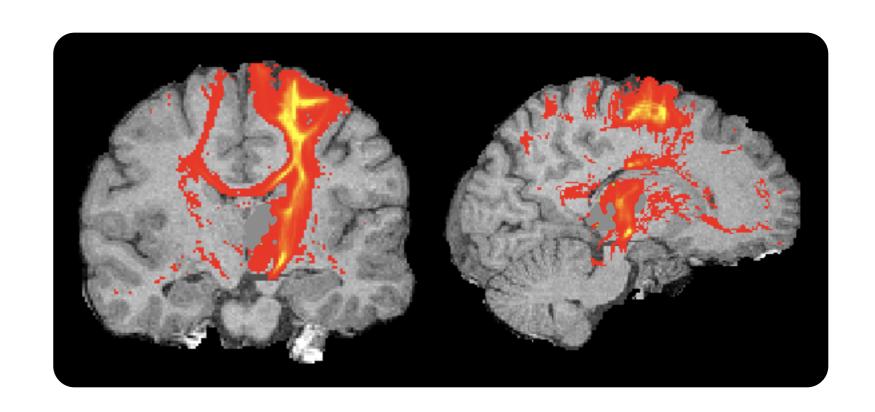
Waypoint: Internal Capsule

Dissecting a specific tract

Cortico-spinal tract

Seed: dorsal PMC



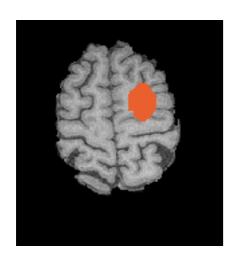


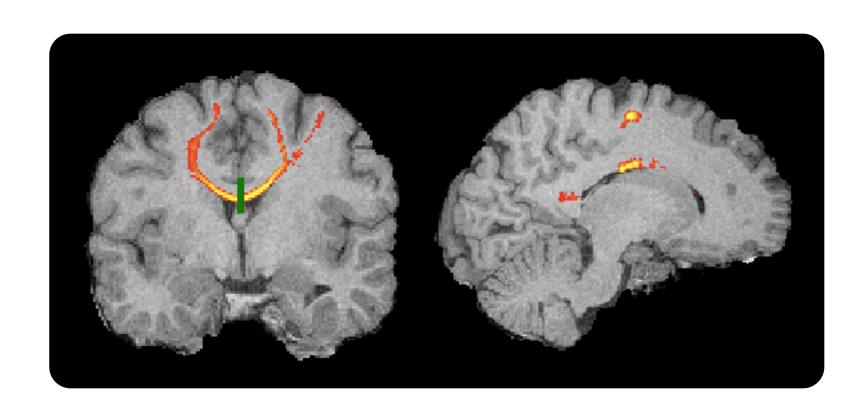
No targets

Dissecting a specific tract

Corpus Callosum

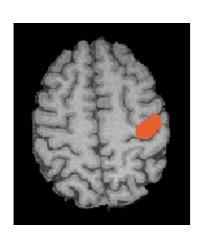
Seed: dorsal PMC

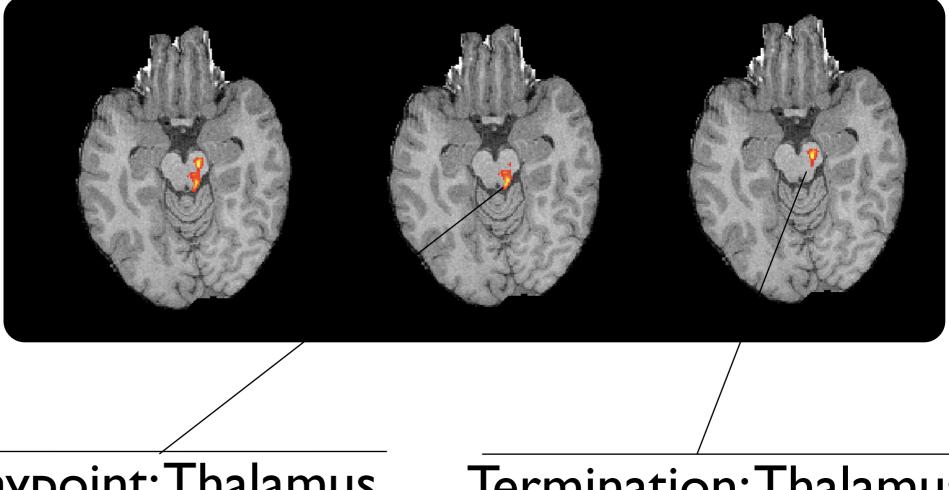




Waypoint: Corpus Callosum

Seed: MI hand



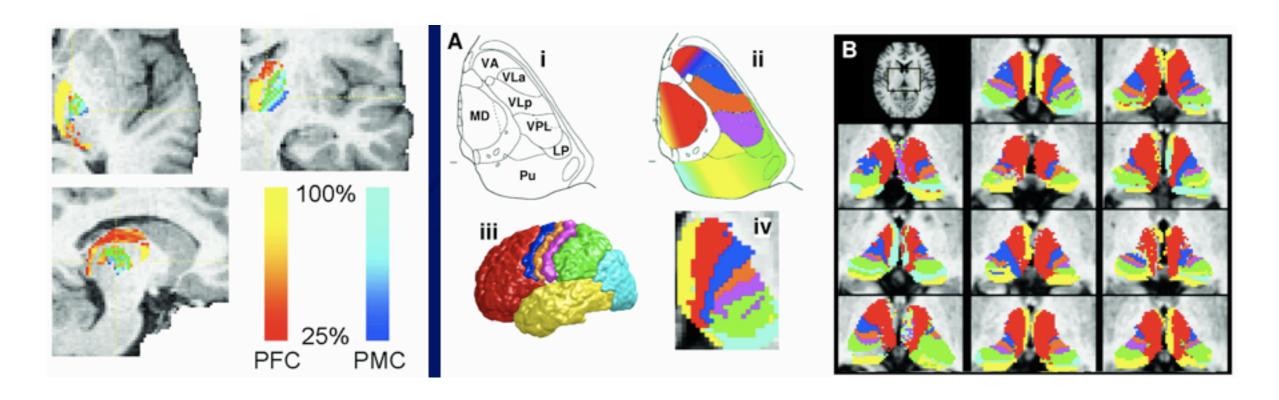


Waypoint: Thalamus

Termination: Thalamus

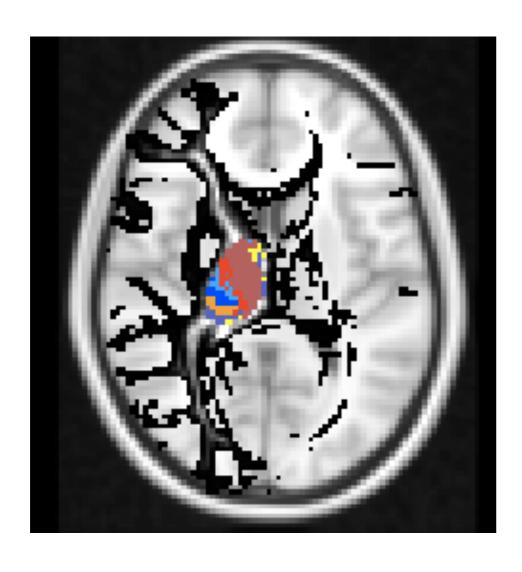
Connectivity-based seed classification

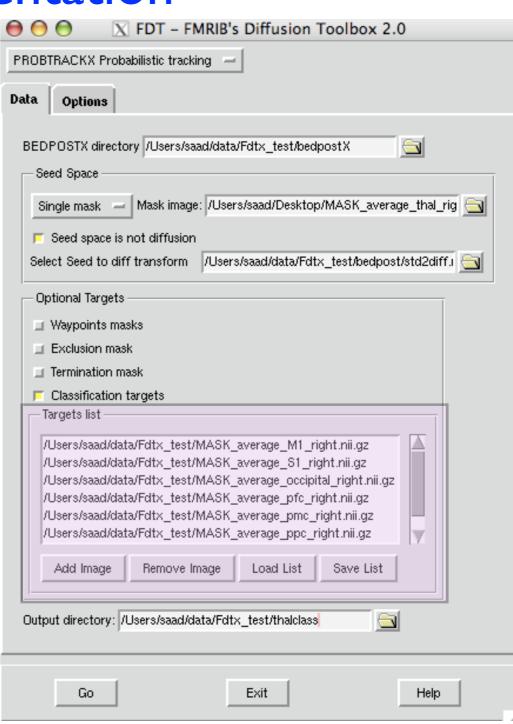
- Quantify the connectivity of seed regions to target regions
- e.g. thalamic voxels can be classified according to their probability of connection to specific cortical targets



Connectivity-based seed classification

Thalamic segmentation





Discussion

What are we (not) measuring?

- Distribution of a fibre orientation rather than distribution of fibre orientations
- Thresholding tract distribution is tricky
- Bins (voxels) are arbitrary
- Favour seed classification for quantitative analysis (masks are meaningful)

FMRIB Diffusion Toolbox

- DTI model fit
- Eddy current correction
- Voxel-Based diffusion analysis (TBSS)
- BEDPOSTX modelling crossing fibres
- PROBTRACKX propagating uncertainty in tractography

