

Universidad del País Vasco Euskal Herriko Unibertsitatea

Neuro-Evolutive System for Ego-Motion Estimation with a 3D Camera

Ivan Villaverde, Zelmar Echegoyen and Manuel Graña Computational Intelligence Group University of the Basque Country http://www.ehu.es/ccwintco

ICONIP 2008 Neural Information Processing in Cooperative Multi-Robot Systems

Contents

Universidad del Pais Vasco

- Introduction
- ToF 3D Camera
 - Data Preprocessing
- Neuro-Evolutive System
- Experimental Settings and Results
- Conclusions

Universidad del Pais Vasco

- Use of new ToF 3D cameras.
- Final objective: full SLAM capabilities on multirobot systems.
- First step: Learn data processing and feature extraction from the 3D data provided by the camera.
- Simple task: ego-motion estimation.

ToF 3D Camera

- SwissRanger SR-3000
- Phase measuring Time of Flight principle.
 - Led array illuminates the scene.
 - Known wavelength amplitude.
 - Phase delay used to measure traveled distance.

Universidad lel Pais Vasco

ToF 3D camera

Universidad del Pais Vasco Euskal Herriko Unibertsitatea

eman ta zabal zazu

10010 10101 10101

3D view

Data Preprocessing

Universidad del Pais Vasco Euskal Herriko Unibertsitatea

Pros:

- Full 3D scene information.
- On-line operation.
- On-board operation.
- Cons:
 - Big data size.
 - Ambiguity range.
 - Specular reflections.
 - Measurement uncertainty.

Data Preprocessing

Euskal Herriko Unibertsitatea

eman ta zabal zazu

• Thresholding confidence value $C_i = I_i \times D_i$

Neuro-Evolutive System Neural Gas

Universidad del Pais Vasco Euskal Herriko Unibertsitatea

- First step: Neural Gas used to generate a codevector set that fits the data.
 - Codevector set S.
 - Keeps the spatial shape of the 3D data.
 - Reduces data amount to a fixed, small size.
 - Obtained using the SOM Toolbox for Matlab

http://www.cis.hut.fi/projects/somtoolbox/

011111

Neuro-Evolutive System Ego-motion Estimation

Universidad del Pais Vasco Euskal Herriko

- **Problem Statement:**
 - Robot at time *t* defined by:
 - Position: $P_t = (x_t, y_t, \theta_t)$
 - Observed data: codevector set S
- Time *t*+1:
- S_{t+1} obtained from the camera.
- P_{t+1} has to be estimated. 10100010001010;

Neuro-Evolutive System Ego-motion Estimation

Universidad del Pais Vasco

- P_{t} and P_{t+1} are nearby points in 2D space.
- Same environment, but observed from different PoV.
 - Most objects visible from P_t should be also visible from P_{t+1} .
 - S_{t+1} should be similar to S_t , after a slight transformation.
 - This transformation gives the spatial relation between P_{t} and P_{t+1} .
- Objective: estimate the transformation T between S_t and S_{t+1} .

101000100010]

Neuro-Evolutive System Evolution Strategy

Universidad del Pais Vasco

Jnibertsitatea

- An ES is used to search for the transformation *T*.
- Individuals h_i are hypothesis about position $P_{t+1,i}$ and their traits the parameters of the transformation T_i between P_t and hypothesized
- $P_{t+1} \cdot h_i = (x_i, y_i, \theta_i) \quad T_i = \begin{bmatrix} \cos(\theta_i \theta_i) & -\sin(\theta_i \theta_i) & x_i x_i \\ \sin(\theta_i \theta_i) & \cos(\theta_i \theta_i) & y_i y_i \\ 0 & 0 & 1 \end{bmatrix}$

Neuro-Evolutive System Evolution Strategy

Universidad del Pais Vasco

- For each hypothesis h_i we have a prediction of the observed grid: $(S_{t+1})_i = T_i \times S_t$
- Fitness function as a matching distance between codevector sets, computed as the sum of the euclidean distances from each codevector in $(\hat{S}_{t+1})_i$ to its closest codevector in S_{t+1} .
- Initial population built randomly from $h_o = (0, 0, 0)$ (i.e. No transformation: the robot has not moved).
 - Optionally, an *a priori* estimation can be used.

Neuro-Evolutive System Algorithm Flow Diagram

eman ta zabal zazu

Universidad del Pais Vasco

Experimental Settings

Universidad del Pais Vasco Euskal Herriko Unibertsitatea

- Pre-recorded walks.
 - Odometry and optical views as reference.
 - Very noisy 3D images due non-optimal configuration.
- Experiment result: Sequence of transformations $T = (T_1, ..., T_t)$.

- Robot position at time t: $P_t = T_t \times \dots \times T_1 \times P_o$

100 node codevector sets.

Experimental Settings

- Population of 20 individuals.
- New generation:
 - The 1/3 best fitted directly.
 - Remaining 2/3 generated from them, crossing pairs and mutating traits with 50% probability.
- Fitness function as a matching distance between codevector sets, computed as the sum of the euclidean distances from each codevector in $(S_{t+1})_i$ to its closest codevector in S_{t+1} .
- Stopping condition: Best fitted have the same orientation and are within a threshold euclidean distance.

Matching results:

Universidad Euskal Herriko

Unibertsitatea

eman ta zabal zazu

del Pais Vasco

Correct ego-motion estimation:

Experimental Results

Universidad del Pais Vasco Euskal Herriko Unibertsitatea

Erroneous ego-motion estimation:

Conclusions

Universidad del Pais Vasco

- Mobile robot ego-motion estimation algorithm.
 - 3D camera measurements.
 - Neuro-Evolutive system.
 - Neural Gas.
 - Evolution Strategy.
 - Correct estimation with good matching features.
- Future work:
 - Integration in a Kalman or particle filter SLAM architecture.
 - 3D environment reconstruction.
 - Use of point cloud registration techniques.

