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Composition integration schemes based on Euler's method

The system of ODEs

Consider a smooth system of autonomous ODEs

y="~(y), f: RY — RY. (1)

A one-step integrator ¢, : R — RY gives, for a given initial value
y(to) = yo, the numerical solution

)/(tk+1)%}’k+1:1/1h(}/k)a k:071727"'

for the time grid t, = tg + kh.
Euler method: ¢4(y) =y + hf(y). Local error:

Yn(y(t)) = y(t+ h)+ O(h*) as h—0.



Composition integration schemes based on Euler's method

The system of ODEs

Consider a smooth system of autonomous ODEs

y="~(y), f: RY — RY. (1)

A one-step integrator ¢, : R — RY gives, for a given initial value
y(to) = yo, the numerical solution

)/(tk+1)%}’k+1:1/1h(}/k)a k:071727"'

for the time grid t, = tg + kh.
Euler method: ¢4(y) =y + hf(y). Local error:

Bn(y(£) = y(t+ )+ O(H?) as h—0.
A more precise integrator can be obtained from xx(y) =y + hf(y)
Yr(y) = X2 © X;/lg()/)
In that case 1,(y(t)) = y(t + h) + O(h3). So that it is of order 2.



Composition integration schemes based on Euler's method

The system of ODEs

Consider a smooth system of autonomous ODEs

y="~(y), f: RY — RY. (2)

A one-step integrator 1, : R — RY gives, for a given initial value
y(to) = yo, the numerical solution
y(tk-s-l)%)/k—i-l :¢h(yk)7 k:071727"'

for the time grid t, = tg + kh.
Euler method: ¢x(y) =y + hf(y). Local error:

Un(y(t)) = y(t + h) + O(h*) as h—0.
An integrator of order 4 from x,(y) =y + hf(y)
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Composition integration schemes based on Euler's method

The system of ODEs

Consider a smooth system of autonomous ODEs

y="f(y), f:RY—-R7 (3)

and explicit Euler x4(y) =y + hf(y), which for any solution y(t)
of (3) gives

xn(y(t)) = y(t+ h) + O(h*) as h— 0.



Composition integration schemes based on Euler's method

The system of ODEs

Consider a smooth system of autonomous ODEs

y="f(y), f:RY—-R7 (3)

and explicit Euler x4(y) =y + hf(y), which for any solution y(t)
of (3) gives

xn(y(t)) = y(t+ h) + O(h*) as h— 0.

We can define for each (a1,...,a2m) € R2™ a new integrator

Composition integration schemes based on Euler's method

Uh = Xagmh © Xape_ih ©** © Xazh © Xaih- (4)

Conditions on (ay, ..., axm) for ¥u(y(t)) = y(t + h) + O(h"T1)?



Composition integration schemes based on Euler's method

The system of ODEs

Consider a smooth system of autonomous ODEs

y="f(y), f:RY—-R7 (3)

and explicit Euler x4(y) =y + hf(y), which for any solution y(t)
of (3) gives

xn(y(t)) = y(t+ h) + O(h*) as h— 0.

We can define for each (a1,...,a2m) € R2™ a new integrator

Composition integration schemes based on Euler's method

Uh = Xagmh © Xape_ih ©** © Xazh © Xaih- (4)

Conditions on (ay, ..., axm) for ¥u(y(t)) = y(t + h) + O(h"T1)?
For arbitrary xs(y) =y + hf(y) + O(h?), more order conditions?



S={e}u U R%™ X-(a1,...,a0m) = (a1, ..., Aaom),

m>1

(31, ceey agm) o (32m+17 ceey 32(m+k)) = (31, sy 32(m+k))-




S={e}U [ JR*", X-(a,...,am) = (Aa1,..., Aazm),

m>1

(al, coog azm) o (32m+1, cocoy 32(m+k)) = (31, ceey a2(m+k))-

Definition

We say that (S, 0, e,v) is a scaled semigroup (resp. scaled group)
if (S,o0,¢€) is a semigroup (resp. group) with neutral element e and

V:RxS — S
(A\,s) — A-s

is a map satisfying that, for all s,s' € S, \,u € R,
@l -s=sand0-s =g,

° A (u-s)=(Au)os,
@ Ao(sos’)y=(A-s)o(A-s')and \-e=e.




Definition

Amapf:S§ — Sisa morphism of scaled semigroups if it is a
morphism of semigroups satisfying that A - 6(s) = 6(\ - s) for all
AeRandseS.

Let A be an associative algebra with unity 1 4, and consider

{Zh”A,, : Vn >0, A,,EA},
n=0

G(A) = {1A+Zh”An : Vn>1, A,,EA},
n=1

Allh]]

where h is an indeterminate variable. Clearly, A[[h]] has an algebra
structure, and G(A) C A[[h]] is a scaled group with

A- <1A+§:h”An> - 1A+§:h”)\”An.
n=1

n=1



Example

For each n > 1 and each s = (a1,. .., axm), consider the linear
differential operator 6,(s) that gives a smooth function 6,(s)[g]
for each g € C>°(R?; R) as follows:

On()Nelr) = - g (Wn(y)) o 5)

so that formally,

g(n(y)) = 0(s)gl(y), where 6(s) =1+ h"0a(s),

n>1

where | represents the identity operator. Here, C = C®°(R%; R) is
a commutative algebra, A = EndgC is an associative algebra with
unity /, and 6 : S — G(.A) is a morphism of scaled semigroups.




Example (cont.)
Given f : RY — RY, let us consider X, € A = EndgC is such that,
forgeC = COO(Rd;R) and y € RY,

n

Xlglr) = 2 g (xh( o = 8V GNFW), - F1).

We have that g(¢¥n(y)) = 0(s)[g](y), where
6(s) = X(arh)"*X(azh) - - - X(azm—1h) "1 X (aomh),

with X(ah) =1+ " a" h"X,,.

n>1




Example (cont.)

Given f : RY — RY, let us consider X, € A = EndgC is such that,
forgeC = Coo(Rd;R) and y € RY,

n

Xolglly) = s 8(xn(¥))lh—o = n|g(”’( J(F(y), - F(y))-
We have that g(vn(y)) = 6(s)[g](y), where

0(s) = X(arh)"*X(azh) - - - X(a2m-1h)"* X (a2mh),
with X(ah) =1+ " a" h"X,,.

n>1
For any solution y(t) of the ODE system,

gy(t+h)) +Z _F”[g] y(t)) = exp(h F)[g](y(1)),

where Flg](y) = g'(y)f(y). (as expected, X1 = F).
D




Let us denote in addition L(.A) = hA[[h]]. The exponential and
the logarithm

exp: L(A) — G(A), log: G(A) — L(A)

are reciprocal bijections defined in the usual way.
We are interested in morphisms of scaled semigroups of the form

0:S — G(A)
s lA—i—Zh”H,,(s).

n>1

Definition

We write 6(s) (é) 0(s") if Ox(s) =0k(s’) for k=1,...,n.

We want to characterize 6(s) (;) 6(s") in terms of functions on S.



Example (Composition based on Euler's method for y = y)
S={etUlUm>1 R?™ A =R and

v 1+ axj_1h
2j—1

9(31,...732m):1+ E hnen(al,...732m)znﬁ.
n>1 j=1 2

Consider the logarithm

m
|Og(0(31, 000y azm)) = Z |0g(1 + azj_lh) = |Og(1 + agjh)

j=1
1 k+1
- Z( uk al7"'7‘92m)7
k>1
where ug(a1,...,amm) = Z?;"l(—l)jaj’-‘.

Thus, 0(s) 2 0(s") if and only if ux(s) = uk(s’) for 1 < k < n.

y




Consider the (commutative) algebra RS of functions v : S — R,
with unity 1 € RS (i.e., defined as 1(s) =1 for all s € S).

Given a morphism 6 : S — G(.A), a linear form v € A* and n > 1,
consider the function up ,, € RS defined by

up,n(5) = (0n(s))-

Observe that ug n~(A-s) = A" ug n~(5).



Consider the (commutative) algebra RS of functions v : S — R,
with unity 1 € RS (i.e., defined as 1(s) =1 for all s € S).

Given a morphism 6 : S — G(.A), a linear form v € A* and n > 1,
consider the function up ,, € RS defined by

up,n(5) = (0n(s))-

Observe that ug n~(A-s) = A" ug n~(5).

Definition

Given u € RS, we say that u is homogeneous of degree |u| = n if

V(A,s) e Rx S, wu(A-s)=Au(s).

Convention: 0° = 1. In particular, if |u| = 0, then
u(s) = u(A-s)=u(0-s)=u(e) = u(e)l(s), and thus v = u(e)l.



Given a morphism 6 : S — G(.A), consider the subalgebra
H? C RS generated by

{vony : n21, ye A},

and denote H% = {u € H? : |u| = n}. (In particular, H§ = R1.)



Given a morphism 6 : S — G(.A), consider the subalgebra
H? C RS generated by

{ony 2 n21, ve A}, (Ugny(s) =7(0n(s)))

and denote H% = {u € H? : |u| = n}. (In particular, H§ = R1.)



Given a morphism 6 : S — G(.A), consider the subalgebra
H? C RS generated by

{uﬁ,n,w :n>1, ~ye€ A*}’ (uf).n.,”/(s) = 7(917(5)))

and denote H% = {u € H? : |u| = n}. (In particular, H§ = R1.)
Clearly, H? = Do H?. Obviously, given s,s’" € S,

o) 20(s) = vVuePH u(s)=u(s).

k<n

If the subspace of A spanned by the range of 6, is finite
dimensional, then H,e, is finite dimensional.

Definition

Let S be a scaled semigroup and A an algebra, we say that a
morphism of scaled semigroups 6 : S — G(.A) is of finite type if
each H? is finite dimensional.




Theorem

If each HY is finite dimensional, then given u € H% (n > 0), there
exist m > 1 and vi, wi, ..., Vm, Wy with |vj| + |w;| = n such that
m
V(s,s) €S xS, u(sos’)= Z vi(s)w;(s").
j=1

v

Given a subspace V of RS, we make the standard identification of
V ® V with a subspace of RS*S. That is, given uj,v;i € V, \; € R

V(s,sY€eGxG, (O Niu®v)(s,s)=>:Nui(s)vi(s).

Definition

Given u € RS, we define Au € RS*S, as

Au(s,s')=u(sos’), for s,s’€S.

According to previous theorem, if for given 6 : S — G(A) each H?
is finite dimensional, then AH? ¢ H? @ H?.
D



Furthermore, the semigroup structure of S together with HJ = R1
implies that A1 = 1 ® 1 and for each u € H? with n > 1

n—1
Au-u®l-19uec PH,H, .
k=1



Furthermore, the semigroup structure of S together with HJ = R1
implies that A1 = 1 ® 1 and for each u € H? with n > 1

n—1
Au-u®l-19uec PH,H, .
k=1

Definition (Representative funcions of a scaled semigroup)
Given a scaled semigroup S, we define H(S) = ©,,59 H(S)n,
where

HS) = {ueR® : |u/=0}=R1, andfor n>1,
H(S)» = {u€RS : |ul=n,

Au-uel-1oue P H(S)k®H($)n,k}.
0<k<n

We say that u is a representative function of S if u € H(S).

4




Some immediate results:

@ The scaled semigroup structure of S gives a connected graded
Hopf algebra structure to H(S).

@ Foreach 0 : S — G(A), HY is a Hopf subalgebra of H(S).

Given u € RS, u € H(S), (n > 1) if and only if there exists an
algebra A, a morphism of scaled semigroups 6 : S — G(.A) of
finite type and a linear form v € A* such that

Vs e S, u(s)=7(0n(s)).




Example (The group of composition integration schemes)

Consider again the scaled semigroup

S={e}U | JR*", X-(a,...,3m) = (Aa1,..., Aazm),

m>1

(317 S 32m) 9 (a2m+17 cooy a2(m—|—k)) = (ala poog aZ(m—i—k))’

and let ~ be the finest equivalence relation satisfying that

(a,a) ~eand (a1,...,aj—1,b,b,a;,...,a0m) ~ (a1, ..., am).
Clearly, Gc = S/ ~ has a scaled group structure inherited from the
scaled semigroup structure of S. Each element in ¢ = G.\{e} can
be uniquely written as

¢ = x(a1) "t o x(az) o -+ 0 x(a2m-1)"" © x(a2m)

where aj_1 # aj (2 < j < 2m) and x(a) represented by (0,a) € S.

v




Example (cont.)
For an arbitrary algebra .A and any morphism of scaled groups

0:G. — G(A)
s = 1a+ Y h"6(s),

n>1

<

with the notation X, = 6,(x(1)) € A, one necessarily has for each
¥ =x(a1) "t ox(a2) o -+ o x(a2m-1)"" © x(a2m) € Gc that

0(v)) = X(arh) "1 X(azh) - - - X(azm—1h) " X (a2mh),

where X(ah) =14+ >_,5; h"a"X, and

X(@ah) =14+ a"h" D (-1)X; - X

n>1 JiAtie=n




Example (cont.)
That shows that, for each ¢ € G,

BW)=1a+ D M D () X X,

n>1  jit-tje=n

for some ..., € RY with |uj,...;.| = j1 + -+ jr.




Example (cont.)
That shows that, for each ¢ € G,

BW)=1a+ D M D () X X,

N1 jiejr=n

for some wj,...;, € RY with |uj,...;,| = j1 + -+ j,. Actually,

u,-(al,...,agm) = Z (—l)j aJ’:,

1<j<2m
. 1-4jo > _F
ui1i2(317 ER) a2m) — E : (_1)11 2 aj2aj1’
1< <j3 <jp<2m
. _ E _ Vit 53 402 41
ulllgl3(al7 ) a2m) — ( 1)J a.ll3a.l'2aj17

1< < <jp<j3 <jz<2m

and so on. Notation: j* = j — 1 if j is even, and j* = j if j is odd.
From previous lemma, H(G.) is spanned by the functions uj...; .




For a given S, one is not always interested in characterizing

0(s) 2 0(s') (6)
for all posible morphisms 6 : S — G(.A). Recall that a
characterization of (6) for one particular morphism 6 is obtained
with the Hopf subalgebra H? C H(S) (instead of the whole H(S)).



For a given S, one is not always interested in characterizing

0(s) 2 0(s') (6)
for all posible morphisms 6 : S — G(.A). Recall that a

characterization of (6) for one particular morphism 6 is obtained
with the Hopf subalgebra H? C H(S) (instead of the whole H(S)).

Theorem

Consider a scaled group G and a family {¢/ : G — G(A/)}jes of
morphisms of scaled semigroups. Let H be a subalgebra of H(G)
with finite dimensional H, ={u € H : |u|=n} (n>1). The
following statement holds for arbitrary s,s' € G and n > 1

Vue @ M u(s)=uls) — Vied, #(s)Zoi(s),

iff H is the Hopf subalgebra of H(G) generated by U H?.
JeT




Definition
We say that (G, H) is a group of abstract integration schemes if G
is a scaled subgroup and H = €D~ Hy is a graded Hopf
subalgebra of H(G) satisfying the following:
@ Each H, is finite dimensional.
@ H separates the elements in G, i.e., V(s,s’) € G, Ju € H such
that u(s) # u(s').

As an algebra H is freely generated (as a consequence of Milnor
and Moore theorem).



Definition
We say that (G, H) is a group of abstract integration schemes if G
is a scaled subgroup and H = -, Hn is a graded Hopf
subalgebra of H(G) satisfying the following:
@ Each H, is finite dimensional.
@ H separates the elements in G, i.e., V(s,s’) € G, Ju € H such
that u(s) # u(s').

As an algebra H is freely generated (as a consequence of Milnor
and Moore theorem). If H # H(G), then the functions in H

characterize 6(s) (é) 6(s’) for a strict subclass of morphisms
0 : G — G(A) of finite type (precisely, the morphisms 6 such that
H? C H).



Theorem (G dense in G)

Let (G, H) be a group of abstract integration schemfs, and let G
denote the group of characters of H. For each o € G and each
n > 1, there exists 1) € G such that

Vue P Hi, u(y)=a(u). (7)

k<n

v

Let 7 be a set of homogeneous functions on G that freely generate
the algebra H, then

u(v) = a(u), YueT with |u| <n,

provides necessary and sufficient independent conditions for (7).



The coalgebra structure of H endows its linear dual H* with
an algebra structure. ({vy} induce {7y}).

The subset G C H* of algebra maps o : H — R is a group
(the group of characters). It is a scaled group with
na) =X«

A-a(u) =N"a(u) Yu € H,.

The map 7 : G — G such that Vo € G, (1)) is defined by
w(¢)(u) = u(t)) is a monomorphism of (scaled) groups. So
that G can be seen as a scaled subgroup of g.

There is a subset g C H* that is a Lie algebra under the
bracket [a, 3] = a8 — B (the Lie algebra of infinitesimal
characters), such that exp : g — G is a bijection.



Example (cont.)

Consider H = H(G.). Given an algebra A (for instance,

A = EndgC>®(R?; R)) and @ : Gc — G(H), we define for each
a € H* the algebra morphism 6 : H* — A[[h]] as

Ola)=a@)1a+ > h" D alup) X X
n>1 jidet=n
Given g1, € COO(]Rd;R), if & € G, then
0(a)lg1g2] = 0(a)[g1] 0(c)[g2]-

And if a € g, then

0(c)[g182] = g1 0()[g2] + g20(cv) g1)-




Let (G, H) be a group of abstract integration schemes, and let
0:G — G(A) (with A certain algebra) be a morphism of scaled
groups such that H? C H. Then, there exists a unique algebra
morphism 0 : H* — A[[h]] such the 0(m(x))) = 6(x)). When
restricted to G, it is a morphism 0:G—G (A) of scaled groups.

Observations:

@ In applications to numerical analysis, there is typically a
distinguished element oo € G such that

0(0) =14+ Oa(a) b

n>1

represents the exact solution to be approximated.

o Backward error analysis: For each ¢ € G, 6(3) = exp(6(53)),
where 8 = log(m(¢)) € g.



Theorem

Let G be a scaled group, and let H be a subalgebra of H(G) with
finite dimensional H, = {u € H : |u| = n} (n > 1). Assume that
the following statement holds for arbitrary s,s' € G and n > 1:

vue @ Hi, u(s)=uls) = 6(s) 2 o)

for arbitrary algebras A and arbitrary morphisms of scaled groups
0:G — G(A). Then H = H(G).

Theorem

| A

Let S be a scaled semigroup. For arbitrary s,s' € S and n > 1, the
following two statements are equivalent:

° Vu € Do, H(S)k,  uls) = u(s').

e 4(s) (g 0(s") for arbitrary algebras A and arbitrary morphisms

of scaled semigroups 6 : S — G(.A) of finite type.
D




Example (cont.)

H(G.) is isomorphic to the quasi-shuffle Hopf algebra of Hoffman,
thus is freely generated by the functions u;;...; indexed by the set
of Lyndon words j; - - - j, on the alphabet {1,2,3,...}

L= {u_,'l...jr 5 (jl o jk) < (,jk+1 00 jr) foreach 1 < k < r}
The first sets £, = {uj,...j, € L :|ujy...j| =j1 + -+ jr = n} are

L1 = {w}, Lo={w}, Lz={u,u3z}, Ls={u112,u13,us},

e = {U1112,U113,U122,U14,U23,U5}-

Theorem Given 1,1’ € G, 6(y) (é) 6(v") for arbitrary algebras A
and any morphism 6 : S — G(A), if and only if

Vue | L, u(y)=u@®)

k>1




