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També necessito donar les gràcies a la famı́lia, sobretot a me mare i al Kiku,

al Marc, a la Tinta, als meus avis i tiets i cosins. Us he trobat a faltar aquests

quatre anys. Al Sergi (que ja t’he dedicat la tesi, què més vols!!), per aguantar tots
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Abstract

Most of the available computational methods nowadays were designed, in general, to

reproduce particular properties for particular electronic systems, being mostly accu-

rate approximations for a given range of applicability. Electronic structure methods

are nowadays very precise and accurate, yet a method that is general enough, being

able to describe the properties of any system with precision and low computational

cost, still does not exist. The main bottleneck in electronic structure method devel-

opment is the description of the correlated motion of electrons, which hinders the

computational calculation.

This thesis has focused on the study of electron correlation by considering the

most used definitions to split it for method development. These components are

known as dynamic and nondynamic correlation, and in this thesis they have been

studied in terms of the distance between electron pairs. The means to perform such

study is the intracular probability density, a distribution function that gathers the

correlation information contained in the electron pair density. The intracule func-

tion is most known for its role in the definition of Coulomb holes, which provide a

visual representation of the effect of including a correlated description of the electron

motion in an uncorrelated framework (as the Hartree–Fock method).

An electron correlation decomposition scheme is presented, where the correlated

pair density (the part of the pair density that contains all the actual correlation

information) is partitioned in two components. Such components can be directly

related to the dynamic and nondynamic components of electron correlation. This

correlation decomposition scheme has been applied to study a set of molecules and

physical models, in order to analyze the nature of the correlation components, and

has permitted the identification of some characteristic behavior of each component.

One of these characteristics is the particular long-range behavior of the dynamic

correlation component, which presents a universal decay with the interatomic dis-

tance R−3, comparable to the energetic decay of London dispersion interactions.

xix



Moreover, special attention has been put into the reduced density matrix func-

tional theory. Even though the theoretical background is already 50 years old, the

applicability of this method is still emerging. Some approximations have been de-

signed in this framework. A set considering some of these approximations is tested

in order to determine whether they provide a physically sound description of various

physical properties and how accurately they reproduce them.

xx



Resumen

La mayoŕıa de los métodos computacionales actuales están diseñados para reproducir

propiedades particulares en sistemas electrónicos, por lo que resultan ser aproxima-

ciones precisas, adecuadas solamente para un rango de aplicabilidad concreto. Aun

aśı, los métodos de estructura electrónica debeŕıan ser diseñados para reproducir la

enerǵıa y las propiedades qúımicas de los sistemas electrónicos con un rango de apli-

cación más general. El principal problema, pero, es la correlación del movimiento

de los electrones, que sigue siendo el principal reto de la qúımica computacional en

la actualidad.

Para mejorar el desarrollo de métodos teóricos, se ha profundizado en el estudio

de la correlación electrónica, considerando los dos componentes más usados en el de-

sarrollo de métodos. Estas componentes son la correlación dinámica y no dinámica

de los electrones, las cuales se han estudiado en función de la distancia entre pares de

electrones. La densidad de probabilidad intracular es una función que permite dicho

estudio, siendo una función distribución que recoge la información almacenada en la

función de pares de la densidad. Dicha función es usada para definir los agujeros de

Coulomb de los sistemas, ya que permiten reflejar el efecto de incluir la descripción

de la correlación de electrones con respecto a un caso no correlacionado (como en el

método de Hartree–Fock).

En esta tesis se presenta un método para separar la correlación electrónica en dos

componentes mediante un esquema de partición de correlación basado en la función

de pares de la densidad electrónica. Las dos componentes que se obtienen a partir

de la separación se pueden vincular directamente con las componentes dinámica y

no dinámica de la correlación electrónica. Para validar dicho esquema de partición,

se han realizado estudios de modelos f́ısicos y sistemas moleculares, que a su vez han

permitido obtener comportamientos caracteŕısticos de cada tipo de correlación que

se han repetido en todos los casos estudiados.

Una de estas caracteŕısticas observadas es el comportamiento de la componente

xxi



de correlación dinámica con las distancias interelectrónicas grandes. Mediante la

función intracular, se ha encontrado una huella universal de las fuerzas de dispersión

o de London, donde la componente dinámica decae con la distancia interatómica R

con un exponente de -3, R−3, la cual está directamente relacionada con el compor-

tamiento de la enerǵıa de dispersión, R−6.

Se ha puesto especial atención en la teoŕıa de la matriz (reducida) de la densidad.

Aunque los fundamentos de la teoŕıa ya tengan prácticamente 50 años, se trata de

un método emergente, en el marco del cual se han propuesto un número moderado

de aproximaciones de la función de pares. Se propone una serie de pruebas para

determinar la validez de dichas aproximaciones, algunas directamente relacionadas

con las propiedades f́ısicas que una matriz de densidad debeŕıa cumplir.
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Chapter 1

Introduction

The main goal of quantum chemistry is the resolution of the electronic Schrödinger

equation to drag information from a molecular system. Unfortunately, it is impossi-

ble to solve the Schrödinger equation exactly, thus many efforts are put into finding

approximations. Quantum chemistry is the science that deals with the formulation,

evaluation and application of approximate solutions to the Schrödinger equation for

molecular systems.

Electronic structure theory pursues to find a compromise between accuracy and

computational cost to solve the nonrelativistic, electronic Schrödinger equation,

since calculations bear an unaffordable increasing cost with the number of elec-

trons. Whereas the modeling of molecules from first principles with a small number

of electrons is affordable nowadays within the Born-Oppenheimer approximation,

the cost becomes exorbitant when the treatment of medium-sized molecules and

macromolecules is considered. Quantum chemical calculations are expensive due

to the correlated motion of electrons, mostly known as electron correlation, which

usually becomes more complicated to treat as the number of electrons in the system

increases. Practical approximate methods usually tackle this problem by reformu-

lating the N -electron problem as N effective independent-particle problems, such

as the Hartree–Fock (HF) equations in wavefunction-based methods, or using the

Kohn–Sham (KS) reference system in density functional theory (DFT). Such crucial

reformulation enables first–principles modeling of molecules and materials. The HF

method is usually the first approach to solve the many-body problem, yet the corre-

lation of electron motions is greatly underestimated. Whereas it represents a small

fraction to the total energy, the accurate description of the interelectronic interac-

tions and their movement is decisive for chemistry and physics, affecting reaction

barriers, binding properties, or the interactions between light and matter, amongst

others.
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CHAPTER 1. INTRODUCTION

The quest for a means to provide correct energies and properties of molecular

systems at reduced computational cost has brought plenty of methods going beyond

HF (as post–HF wavefunction theories, DFT, ...). However, a fully satisfactory

approach has not been found yet. Because of this, method developers still seek for

the best approach to describe electron correlation with the best compromise between

accuracy and computational time. In the current Chapter, a definition to electron

correlation is provided, along with different ways to classify it. The mathematical

tools applied in this thesis to study electron correlation are presented in Chapters

1.2 and 1.3. A brief introduction to reduced density matrix functional theory is

presented in section 1.2.3. Finally, an introduction to the theoretical schemes to

decompose electron correlation is presented in Chapter 1.4.

1.1 Electron correlation

In quantum chemistry, the electronic, nonrelativistic Hamiltonian contains a pair-

wise Coulomb repulsion that causes the motion of electrons to be dependent on each

other. It is said, then, that their motion is correlated [1, 2]. The electron correla-

tion energy (Ec) is, however, a theoretical concept: it is not an observable linked

to any operator, but rather a quantity born from the inability of the HF method

to correctly describe the correlated motion of electrons. In 1933, Wigner and Seitz

mentioned the concept of “electron correlation” for the first time in the quantum

chemistry literature [3,4], and thereafter many scientists referred to it yet without a

clear definition being given; even some scientists, such as Slater, complained about

the confusion in the community due to the multiple definitions attributed to this

term [5]. It was not until 1959 that Löwdin provided a solid definition to Ec in

which, for a given state, Ec is the energy difference between the exact eigenvalue

of the nonrelativistic electronic Hamiltonian and its expectation value in the HF

approximation in a complete basis [6],

Ec = Eexact − EHF; (1.1)

that is, it is a fraction of the total, nonrelativistic energy that a single determinant

wavefunction is not able to describe. In practice, the exact energy is not known, and

the Eexact term refers to the full configuration-interaction (FCI) energy computed

for a given one-electron basis set. Besides Löwdin’s proposal, more definitions for Ec

appeared in the literature. Some authors suggested using the unrestricted formal-

ism of HF (UHF) instead of the restricted one (RHF), as the latter completely fails

in the description of stretched geometries [7]. Instead, UHF provides an improved

2



1.1. ELECTRON CORRELATION

behavior, but the approach still lacks electron correlation into its description. Other

authors use the concept of electron correlation to quantify the amount of correlation

captured by a given method compared to HF [1, 8, 9]. In KS DFT, the correlation

energy can be defined as the difference between the exact energy and that of the

non-interacting system [10]. Notwithstanding, Löwdin’s definition is the most used

and extended in the community.

Figure 1.1: Schematic representation of Löwdin’s definition of electron correlation energy. Adapted

from Wikipedia, https://commons.wikimedia.org/wiki/File:Electron correlation.png.

According to the variational principle, any post-HF variational method will

yield an energy approximation closer to the exact solution for the nonrelativistic

Schrödinger equation than the HF method (Fig. 1.1). Electron correlation is, then,

a phenomenon lying beyond the HF approximation in which, according to Eq. 1.1,

the HF description neglects the correlated motion of electrons. This statement is

not completely correct, as the HF approximation does include a certain amount of

correlation for same-spin electron pairs (exchange interactions) as its wavefunction

preserves the fermionic nature of electrons. See Chapter 1.2.2 for more details on

the HF method.

Choosing a basis set is also essential in the correct description of electron corre-

lation. The lack of basis functions, the use of small angular momentum functions,

or an incorrect preexponent value may prevent electrons to be found in positions

that stabilize the molecule, leading to too repulsive configurations. The effect of the

basis set chosen is already considered in Löwdin’s definition because the energies

are considered to be obtained at the complete basis set limit (Fig. 1.1).
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Despite its deficiencies, the HF method is usually able to capture up to 99%

of the total energy of a system. To put a couple of examples, it yields 96% of H2

energy, and even the 98.9% of the helium dimer [1]. Such high percentual ratios

are, however, not enough for the correct description of the electronic properties of

a system: the remaining Ec is often of the order of the energy of most elemental

chemical reactions. In the HF description, the dissociation of the hydrogen molecule

is incorrect, with the dissociated hydrogen atoms having ionic character. Electronic

structure methods, then, must accomplish the description of Ec because, otherwise,

binding properties, geometries, excitation energies, reaction barriers, etc. cannot

be correctly predicted. Through the years, many efforts have been put into under-

standing the nature of electron correlation and further development of approximate

methods [11–23]. Different flavors of electron correlation are introduced in the forth-

coming section.

1.1.1 Types of electron correlation

Electron correlation is a complex phenomenon, and, because of this, scientists have

provided a plethora of terminology to obtain a clearer view for the analysis of the

effect of the motion of electrons. Depending on the context, different jargon is used

for atomic and molecular systems. Fig. 1.2 includes a graphical summary of some

of the words used to separate electron correlation. In atoms, quantum chemists

distinguish between radial and angular correlation because of their spherical sym-

metry [24, 25]. Radial correlation prevents electrons to be near an electron that is

close to the nucleus, and consequently forces them to be found far from it. This cor-

relation is also named in-out correlation and can be dealt with using basis functions

with the same angular momentum but different exponent: for an electron found at

the 1s orbital, 2s and 3s functions should be included to treat radial correlation.

On the other hand, angular correlation refers to the increased probability of an elec-

tron to be found at a side of the nucleus when another one is at the opposite side.

Functions with high angular momentum can describe such correlation.

In diatomic molecules, correlation is usually discerned between axial and angular.

The former is also referred as left-right or longitudinal, and describes the increased

probability of an electron to be located in the region of nucleus A when another

electron is around nucleus B. It is also sometimes defined as the tendency of an

electron to be far from the internuclear axis (the axis where the bond is located)

when another electron is close to it [11, 15]. This type of correlation becomes im-
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portant at large nuclear separations, such as in dissociations and transition states.

To include this correlation, electrons must be allowed to be located at antibonding

orbitals and describe the system with a multiconfigurational wavefunction. Angular

correlation is also referred as equatorial, and is a mix of the in-out and radial corre-

lation in atoms, being notorious when the distance between nuclei is reduced [11,26].

Figure 1.2: Summary of all the electron correlation jargon presented in this section, grouped

according to the criterion used to separate electron correlation.

In polyatomic molecules it becomes unhandy to express correlation in terms of

the location of electrons within a molecule. Instead, more general criteria are applied

to separate and define electron correlation contributions. The effect of correlation

according to the interelectronic distance is usually employed and discerns between

long- (LR) and short-range (SR) correlation. LR interactions arise in orbital degen-

eracies in the dissociation limit, or are caused by the van der Waals forces, whereas

SR correlation can be caused by near-degeneracies or simply by the actual move-

ment of electrons.

Another classification comes after the definitions of Coulomb and Fermi holes,

which will be introduced in Chapter 1.3.1. Electrons being charged entities, electro-

static or Coulombic repulsive interactions are forces that also correlate the electronic

motion, and are an important source of electron correlation, which is called Coulomb

correlation. On the other hand, Fermi (or exchange) correlation arises because elec-

trons are fermions with two possible spin states, either sα = 1
2

or sβ = −1
2

[1, 27].

Indeed, two electrons with the same spin experience a big repulsion caused by the

Pauli exclusion principle, and consequently their motion is correlated. By nature,
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Fermi interactions are stronger than electrostatic ones. The jargon of Fermi and

Coulomb correlation is typically (but not exclusively) used in electron correlation

holes (see Chapter 1.3.1).

The distinction between dynamic and nondynamic correlation is more widely

established in the community [1, 28, 29]. Electrons are said to be dynamically cor-

related because they are charged entities in constant motion that repel each other.

Hence, any system with more than one electron (generally) presents dynamic corre-

lation, becoming more important when the number of electrons is large. Because of

this, this type of correlation is universal [30]. Considering a configuration interac-

tion (CI) wavefunction, dynamic correlation emerges when the single determinant

picture (the HF determinant) is consistent but incomplete, and the CI wavefunc-

tion is formed by a highly-contributing HF configuration and by a large amount

of configurations that do not mix strongly with it (see Fig. 1.3) [28–30]. Because

the HF determinant is the dominant configuration in the CI expansion, the electron

density of a system with dynamic correlation will resemble the HF density. Besides,

the low-contributing determinants mixing with the HF determinant will cause small

and local changes to the HF density.

Figure 1.3: Summarized definitions of the dynamic and nondynamic types of electron correlation.

In contrast, nondynamic correlation rises when a system has (near-)degeneracies

and thus the ground state cannot be described by a single determinant but with the

mixing of low-lying-in-energy excited states along with the HF configuration. Then,

the CI vector is formed by a short expansion of Slater determinants, and expansion

coefficient of the HF determinant is relatively smaller than one. The large mix of

configurations causes global changes to the HF uncorrelated density [28, 30–32], as

the electron density is proportional to the square of the expansion coefficients of the

CI vector and, hence, the electron density of the system differs from the HF one. In

contrast to dynamic correlation, nondynamic correlation is system-dependent and,
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therefore, not universal. It emerges when orbital degeneracies exist, caused, for in-

stance, by a molecular dissociation; it appears in charge transfers, in poliradicaloids

or by LR correlation caused by electron entanglement.

The distinction between dynamic and nondynamic correlation explained in the

former paragraph is done in terms of the expansion coefficients in the CI vector.

Strictly speaking, the criterion to distinguish between both types of correlation

should be considered in the Nth root of the coefficients, N being the number of

electrons. The condition for a system that is dominated by dynamic correlation is

that such Nth root should be close to one [33]. For instance, consider an infinite

number of noninteracting He atoms. Its CI vector is composed by N highly con-

tributing configurations, which does not correspond to the definition provided for

dynamic correlation. However, each He atom presents some dynamic correlation,

and they do not give rise to nondynamic correlation because they do not interact

among them. By considering the Nth root of the coefficients, which all of them

squared sum one, there is no controversy in the distinction between both types of

correlation since the quantity is normalized with respect to the number of particles

in the system.

Some authors have introduced different nuances and provided a further distinc-

tion within nondynamic correlation. The “nondynamic correlation” term is some-

times restricted to the correlation arisen in long-distance electron interactions (as a

molecule correctly dissociating into two fragments), and “static correlation” is used

for the correlation arisen when a suitable combination of determinants is used to ac-

count for proper spin symmetries [27,28,32,34]. Further distinctions to nondynamic

correlation were suggested, such as the one proposed by Hollett and Gill based on

the ability of UHF to account for it. They identified two classes of nondynamic

correlation, named types A and B. Type A arises from molecular dissociations, for

instance, and it can be described by UHF. This type of correlation can be detected

with the HOMO-LUMO gap energies, where the bond cleavage produces absolute

near-degeneracies in the gap. Instead, type B cannot be described by UHF and it

is present in systems with relative near-degeneracies [35].

In the quantum chemistry field, it has been customary to associate dynamic

correlation with SR interactions and nondynamic correlation with the LR ones. It

was accepted that the inability to model the electron-electron cusp avoids the cor-

rect description of dynamic correlation [36, 37]; on the other hand, nondynamic

correlation is linked to LR interactions because electrons tend to follow their re-
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spective atom as a molecule dissociates, which gives rise to nondynamic correlation.

This former conception changed and nowadays the two terminologies have been

disconnected. Whereas usually nondynamic(dynamic) correlation indeed arises in

large(short) interelectronic separations, one cannot exclusively associate them to

those. For instance, it is considered that London dispersion interactions are a type

of LR dynamic correlation [38, 39]. Information regarding dispersion interactions is

expanded in section 1.1.2.

The separation of electron correlation into dynamic and nondynamic correla-

tion contributions has become the most widely used, for it permits a qualitative

classification of electronic structure methods according to their ability to describe

these correlation types. The correct treatment of nondynamic correlation requires a

multi-configurational method to strongly mix a small number of other configurations

with the HF one, such as in the complete active-space self-consistent field method

(CASSCF) [40] or the density matrix renormalization group (DMRG) [41]. Instead,

the second-order Møller–Plesset perturbation theory (MP2) [42], configuration in-

teractions with single and double excitations (CISD) [43], or coupled cluster with

single and double excitations (CCSD) [44] introduce dynamic correlation via a small

mixing of a large number of configurations in the wavefunction [45]. The universal

character of DFT approximations also permits the inclusion of dynamic correlation

to some extent [15]. Whereas there is a plethora of methods to treat both types

of correlation separately, very few approaches are able to depict both kinds correla-

tion contributions simultaneously, being CASPT2 [46, 47] (a mix of CASSCF with

a posterior MP2 treatment) a textbook example. Other examples are the multi-

reference single and double configuration interaction method (MRCI-SD) [48, 49],

the antihermitian contracted Schrödinger equation (ACSE) [50], or, most recently,

the adiabation-connection MCSCF (AC-MCSCF) [51] and the ∆NO [52].

These methods are able to capture electron correlation accurately, yet neither of

them presents a convenient scaling of the computational cost with the system size.

Because of this, many hybrid schemes have been proposed, in which different meth-

ods to tackle both correlation types have merged to produce accurate results but at

a more reasonable cost [53–55]. An example are range-separated approaches [56],

which have gained importance in the last decade. Electronic structure methods

that recover separately different correlation types are combined through a range-

separation function so SR interactions include dynamic correlation, and LR asymp-

totics is modeled accordingly with methods that include nondynamic correlation

effects [57, 58].
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1.1. ELECTRON CORRELATION

Through this Chapter, a clear distinction has been made between dynamic and

nondynamic electron correlation contributions, which are presented as independent

phenomena where electronic structure methods have been classified accordingly to

their ability to retrieve them. However, notice that there is not a clear-cut separa-

tion between dynamic and nondynamic correlation since it is a matter of mixing of

states being more or less contributing to the CI vector [59]. In the end, the sum of

both correlation types recovers the complete electron correlation, Ec = EDC+ENDC.

Hence, post-HF methods are able to describe not only an exclusive type of corre-

lation but both, yet to a different extent. For instance, a CISD calculation of a

given system will basically account for dynamic electron correlation, but it will also

introduce a certain small amount of nondynamic correlation in the wavefunction.

However, it is useful to grossly separate the two types of electron correlation in order

to develop electronic structure methods.

1.1.2 Dispersion interactions

In this thesis, special attention has been put into dispersion interactions, an electron

correlation phenomena arising from dynamic correlation. They are originated from

London dispersion or van der Waals (vdW) forces, and consequently weakly correlate

the motion of electrons [60]. They are a type of noncovalent interactions (NCIs) and

thus are originated from electrostatic interactions formed from constantly fluctuat-

ing electron clouds between two or more fragments. Therefore, they are many-body

and nonlocal intermolecular forces that arise when at least two fragments are largely

separated. Note that in this thesis we do not apply the terminology usually used in

chemistry books, where the term “van der Waals interactions” embraces the electro-

static, induction and dispersion interactions. Hereafter, the aforementioned forces

will be referred to as NCIs, and the term “van der Waals interactions” will be used

indistinguishably with “dispersion London interactions”.

Fig. 1.4 has been included to provide a better understanding of how disper-

sion interactions are originated. The classical electrostatic interaction between two

fragments with permanent dipoles (as in two water molecules) can be represented

with the third picture alone in Fig. 1.4. Instead, if one of those fragments does not

present a permanent dipole, the electric field generated by the polar fragment will

distort the polarless fragment, causing an induced dipole. This event is described

by the second and third plots in Fig. 1.4. For dispersion interactions, consider that

none of the fragments has a permanent dipole. The constant fluctuation of electrons

causes an instantaneous, transient charge distribution in one fragment that, at the
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same time, induces another dipole on the neighboring fragment. This couples the

two instantaneous dipoles, a process that corresponds to the complete scheme rep-

resented in Fig. 1.4 [60].

These short-lived, complementary dipoles cause a weak and nonlocal electrical

attraction in which the energetically stable distance depends on the size of each

fragment’s electron cloud. If the clouds of adjacent fragments are too close, the

attracting dispersion interaction becomes repulsive and other electrostatic forces

become prevalent. Note that, compared to covalent interactions, NCIs imply an ex-

tremely small contribution to the total energy and are less directional and distance-

dependent [61]. London dispersion interactions are also known as vdW interactions

in honor of van der Waals, who first introduced attractive forces between molecules

in his equation of state [62].

Figure 1.4: Graphic representation of noncovalent interactions. Yellow areas represent electron

densities. The third figure alone represents two permanent dipoles interacting via electrostatic

forces. The second and third figures together describe a dipole inducing another dipole to a

polarless atom. The complete figure depicts a polarless atom in which the electron distribution

generates an instantaneous dipole (first to second figure), which in turn induces another dipole to

another polarless atom (second to third figure).

These serendipitous interactions may seem irrelevant and very weak, yet they

are of great importance for the structure, stability, dynamics and functionality of

electronic systems. Their origin causes them to be ubiquitous in nature, and play an

important role in chemistry, physics, and biology determining the properties from

the microscale to the macroscale. To name some examples, vdW interactions are

responsible for the binding properties in molecules and materials [63–66], the crystal

formation in molecules, the physics of layered materials and their cohesive interac-

tions, as in graphite [67, 68] (yet some authors have claimed that they are bound

by weak metallic forces) [69], the double-helix structure of DNA, as well as many

other features in proteins such as their structures, protein-protein recognition, or

drug binding [70, 71]. They are also responsible for the cohesion in asteroids [72],

and they are involved in the mechanism that gives geckos the ability to adhere to

walls [73–75].
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Dispersion forces were initially thought to result from the polarization of a frag-

ment in the field of a permanent dipole or quadrupole moment from a neighboring

fragment [76, 77], and scientists were not able to explain the nature of dispersion

interactions until quantum mechanics was developed. In a classical treatment, elec-

trostatic interactions are usually dissected and analyzed by means of a multipole

expansion [60]; however, their non-classical origin obliges the treatment of disper-

sion interactions by means of perturbation theory [60, 78, 79], first accomplished by

London [38, 80]. The main assumption is that electron clouds of two fragments do

not overlap when R→∞, being R the interfragment separation. There, the excita-

tions on both monomers are coupled and permit rewriting the dispersion energy in

terms of the dynamical polarizabilities of each monomer. One can follow the devel-

opment specified in references [60,78], where it is demonstrated that the dispersion

energy takes the form of

Edisp = − 3UAUB
2(UA + UB)

αAαB
(4πε0)2R6

= −C6

R6
, (1.2)

where A and B denote the fragment, UA and UB are average excitation energies

of fragments A and B, α denotes the atomic dynamic polarizability, and C6 is

the sixth-order dispersion coefficient. Higher powers can be added to the leading

R−6 term if higher perturbation orders are considered on the treatment, such as

C8R
−8,−C10R

−10 and C12R
−12, where the latter term is used to describe the SR

interaction in the Lennard-Jones potential [81]. The energetic dependency with R is

not always dominated by the R−6 leading term. Dispersion forces present a depen-

dence with light that affects the forces felt by matter when light is irradiated. If the

interfragment distance R is larger than the characteristic absorption frequency of

the molecule λ, a retardation of the electromagnetic field generated by the electron

clouds arises (retardation effects). When this happens, the dispersion-type emerg-

ing forces are called Casimir forces and changes the proportionality of the dispersion

energy to R−7 [60, 82–84].

Since there is no way to determine the excitation energies nor the accurate frag-

ment polarizabilities within a molecule, dispersion coefficients Ci are usually ob-

tained from approximated treatments in the Casimir–Polder formula (vide infra).

In 1948, Casimir and Polder proposed a perturbation theory treatment that is ap-

proached in terms of quantum electrodynamics, and provides an exact definition

for dispersion interactions [83]. The adiabatic-connection fluctuation-dissipation

(ACFD) theorem is applied for the Ec and permits a description in terms of the

density-density response function at an imaginary frequency, χ(r1, r2, iν), which is

generally approximated to two local atomic polarizability densities. The Casimir–
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Polder formula reads, in atomic units,

Edisp = − 3

2π

∫ ∞

0

dν

∫∫
dr1dr2α(r1, iν)α(r2, iν)

f(R)2

R6
, (1.3)

where f(R) is a damping function used to separate the energy by ranges [60, 85].

From this equation, the C6 coefficient is approximated to

C6 =
3

π

∫ ∞

0

dν

∫∫
dr1dr2α(r1, iν)α(r2, iν). (1.4)

The application and features of the Casimir–Polder equation are out of the scope of

this thesis. More details can be found in references [60,66,85,86].

1.1.2.1 van der Waals-including methods

Because vdW interactions are an electron correlation effect, their modeling has been

a challenge and a central topic in the community [87]. Wavefunction-based meth-

ods become a bad choice because a high level of theory is required, leading to

prohibitively high computational costs. On the other hand, most density func-

tional approximations (DFAs) are known to provide good SR dynamic correlation,

yet they fail to provide the correct decay in the LR part of the electronic energy

due to their semilocal nature [88]. Many accurate first–principles approaches have

flourished in recent years, but some of them are still computationally demanding

and may present some deficiencies. There are plenty of reviews present in the lit-

erature [18, 19, 66, 85, 89–91], in which the vdW-treating methods are essentially

classified in four general groups:

Figure 1.5: Schematic summary of the vdW-including methods available.

1. Effective, atom-centered potentials that are fitted to reproduce NCIs [92].
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1.1. ELECTRON CORRELATION

2. Wave-function theory methods as the quantum Monte-Carlo method [22], the

coupled cluster (CC) method [93], and random-phase approximation (RPA)

approaches [89, 94, 95] to solve the Casimir–Polder equation (Eq. 1.3), which

account for a great accuracy in the description of dispersion interactions but

with the penalty of large computational costs.

3. Density functional approximations (DFAs), subdivided into two groups:

3.1. DFAs that have been fitted to reproduce NCIs and its consequent LR

asymptotics, especially the Minnesota functionals [96].

3.2. DFAs that include a nonlocal kernel that permits the correct LR asymp-

totics. Roughly speaking, these methods are first–principles based —

that is, they explicitly depend on the electron density or orbitals. This

group gathers the van der Waals exchange-correlation functionals (vdW-

DF and vdW-DF2) [97, 98], the Vydrov and Van Voorhis nonlocal func-

tionals VV09 and VV10 [99, 100], or the damped asymptotic dispersion

energy (DADE) functional [86].

4. Coarse-grained approaches, which can also be divided into two subgroups:

4.1. Pairwise, additive corrections to the total energy, as in the exchange-hole-

dipole moment model (XDM) [101–106], the Tkatchenko-Scheffler model

(DFT+TS) [107], and Grimme’s dispersion corrections, the widely used

DFT-D3 and the recently developed DFT-D4 [108,109].

4.2. Many-body coarse-grained models, such as the many-body dispersion

(MBD) scheme [110, 111], and the DFT/vdW-QHO-WF, which adopts

the Quantum Harmonic Oscillator (QHO) model and is based in maxi-

mally localized Wannier Functions (WF) [112].

Nowadays, there exist plenty of approaches that permit the treatment of van der

Waals interactions in electronic structure calculations. The D3 additive correction

scheme has become an everyday tool in computational chemistry thanks to its easy

applicability and computational efficiency, bringing a practically negligible cost to

large systems. The approach considers the molecular geometry as the only input

and includes a correction to the total energy that is added to the result of a conven-

tional DFA calculation. The recently presented D4 model has also introduced the

atomic partial charges as an input. The energy correction influences geometries and

frequencies, as they are connected to the derivatives of the energy with respect to

the atomic coordinates. However, it does not influence all the electronic properties

in a molecule. Particularly, consider the D3 dispersion correction for an excited state
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with a given geometry. The correction for this state would be very similar to the

corresponding correction for the ground state with the same geometry (not entirely

due to the effect of the atomic partial charges, which are also considered). In a sense,

additive corrections to the energy are added a posteriori and, therefore, dispersion

interactions are not treated self-consistently. Because of this, further research and

development are required on first–principles-based methods in which the dispersion

interactions can be optimized in the self-consistent procedure [113,114].

1.2 Theoretical framework

Density matrices are used to study electron correlation in quantum physics and

chemistry. In 1960, Coulson already stated that “electron correlation should show

up in the two-particle density matrix” [115]. Indeed, it is well known that the

energy is an exact functional of the pair density, being a central quantity to describe

electron correlation. Hence, a brief introduction is given through this Chapter.

1.2.1 Density matrices

Within the Born-Oppenheimer approximation, the nonrelativistic, quantum-mechanical

electronic Hamiltonian operator for a system composed of N electrons and M nuclei

is composed of three operators. In atomic units,

Ĥ = −
N∑

i=1

1

2
∇2
i −

M∑

a=1

N∑

i=1

Za
|Ra − ri|

+
N∑

i<j

1

|ri − rj|
, (1.5)

where each term is, in order of appearance, the electronic kinetic energy operator

Te, the electron-nucleus interaction operator VeN , and the interelectronic repulsion

operator Vee, with Za being the charge of a given nucleus a. The total energy is

obtained when the nucleus-nucleus attraction operator VNN is included. Due to

the character of the operators, the electronic Hamiltonian can be separated in one-

(h(i)) and two-electron (v(i, j)) operators,

h(i) = −1

2
∇2
i −

∑

a

Za
|Ra − ri|

; (1.6)

v(i, j) =
1

|ri − rj|
, (1.7)

so the electronic Hamiltonian can be expressed simply as

Ĥ =
∑

i

h(i) +
∑

i<j

v(i, j). (1.8)
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In electronic structure methods, the wavefunction for a given system is obtained

as an approximate solution for the time-independent Schrödinger equation,

ĤΨ(1,2, . . . ,N ) = EiΨ(1, . . . ,N ) (1.9)

where Ei is the electronic energy for state i, and Ψ(1, . . . ,N ) is the wavefunction

of the system, and 1 are the spin and three-dimensional coordinates of an electron,

namely 1 ≡ (r1, σ1), and therefore the same nomenclature is used for the differen-

tials , d1 = dr1dσ1.

The wavefunction is a 4N -variable object, involving spin and spatial coordi-

nates, so its interpretation may become arduous. Instead, for the purpose of quan-

tum chemistry, density matrices provide a more interpretable point of view. Firstly

introduced by von Neumann in 1927 to describe statistical concepts in quantum

mechanics [116], it was not until 1930 that Dirac applied density matrices within

the quantum mechanical context [117]. Compared to wavefunctions, density matri-

ces permit to express the maximum information available of a system in a compact

manner, avoiding the introduction of unnecessary variables. They allow the descrip-

tion of a quantum system in a mixed state, being a more complete object than

the wavefunction is [118]. One can define the Nth order density matrix (or simply

N -density matrix) of an N -electron wavefunction as

ρN(1′,2′, . . . ,N ′; 1,2, . . . ,N ) = Ψ∗(1′,2′, . . . ,N ′)Ψ(1,2, . . . ,N ), (1.10)

being a tensor formed by 2N variables [119,120]. From the Nth density matrix, one

can obtain lower-rank matrices by integrating the appropriate electronic coordinates,

which are called n-order reduced density matrices (n-rDM),

ρn(1′, . . . ,n′; 1, . . . ,n) = (1.11)
(
N

n

)
n!

∫
ρN(1′, . . . ,N ′; 1, . . . ,N )d(n+1) . . . dNd(n+1)′ . . . dN ′

being n < N , and the so-called McWeeny normalization
(
N
n

)
n! is considered, Tr[ρn] =(

N
n

)
n! [118]. Other normalization factors are applied throughout the literature, such

as the Löwdin normalization, with
(
N
n

)
[121]. Lower-rank densities (m) can be ob-

tained from higher-rank densities (l) by integration,

ρm(1′, . . . ,m′; 1, . . . ,m) =
1

(N −m) . . . (N − l + 1)
(1.12)

∫
ρl(1

′, . . . ,m′, (m+1)′, . . . , l′; 1, . . . , l)d(m+1) . . . dld(m+1′) . . . dl′,
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but not vice versa: the integration step reduces the information enclosed in a density

matrix, and the information originally contained cannot be recovered unless the

wavefunction is known. Density matrices are Hermitian

ρn(1′, . . . ,N ′; 1, . . . ,N ) = ρ∗n(1, . . . ,N ; 1′, . . . ,N ′) (1.13)

and antisymmetric in the exchange of a pair of indices

ρn(. . . , i′, . . . , j′, . . . ; . . . ,i, . . . , j, . . .) = (1.14)

− ρn(. . . , j′, . . . , i′, . . . ; . . . , i, . . . , j, . . .).

The first– and second–order rDMs (1-rDM and 2-rDM, respectively) are widely

used in quantum mechanics. They are defined as

ρ1(1
′; 1) =N

∫
ρN(1′, . . . ,N ′; 1, . . . ,N )δ(2− 2′) . . . δ(N −N ′)d2 . . . dNd2′ . . . dN ′

=
1

N − 1

∫
ρ2(1

′,2′; 1,2)δ(2− 2′)d2d2′ (1.15)

and

ρ2(1
′,2′; 1,2)

=N(N − 1)

∫
ρN(1′, . . . ,N ′; 1, . . . ,N )δ(3− 3′) . . . δ(N −N ′)d3 . . . dNd3′ . . . dN ′

=

∫
Ψ∗(1′, . . . ,N ′)Ψ(1, . . . ,N )δ(3− 3′) . . . δ(N −N ′)d3 . . . dNd3′ . . . dN ′,

(1.16)

respectively. The normalization factor for the 2-rDM corresponds to the number of

electron pairs, whereas the 1-rDM is normalized to the number of electrons in the

system.

The diagonal elements of density matrices are the so-called n-electron densities,

ρn(1, . . . ,n) =

∫
ρn(1′, . . . ,n′; 1, . . . ,n)δ(1′ − 1) . . . δ(n′ − n)d1′ . . . dn′, (1.17)

with n ≤ N . n-electron densities measure the joint probability of finding n electrons

regardless of the position in space of the rest of N − n electrons. By virtue of their

corresponding density matrix, the electron densities are symmetric in the exchange

of a pair of indices, and inherit the normalization factors from their corresponding

density matrix counterpart. The most well-known n-density in the chemistry com-

munity is the one coming from the 1-rDM, the 1-electron density, ρ(1) ≡ ρ1(1; 1),

which is simply called electron density, and is the main quantity in DFT. The di-

agonal elements of the 2-rDM are known as the 2-electron density, pair probability
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density, pair density, or 2-particle density (2-PD), and define the probability of find-

ing a couple of electrons irrespectively to where the rest N − 2 are.

Quantum chemical calculations work with basis sets, thus it is appropriate to

use density matrices in the orbital representation. Any (reduced) density matrix

can be expressed as an expansion of a set of orbitals of size K, {φi(1)}i=1,K ,

ρn(1′, . . . ,n′; 1, . . . ,n) =
K∑

i1...in
j1...jn

nDi1...in
j1...jn

φ∗i1(1
′) . . . φ∗in(n′)φj1(1) . . . φjn(n), (1.18)

and the analogous expression can be written for the spinless n-rDM and the cor-

responding n-densities. The orbital representation of an rDM is described by the
nD tensor, named n-density matrix (n-DM). Whereas the spinless n-rDM is com-

posed by 3n variables, the n-DM is a 2n-index tensor of dimension Kn. The orbital

representations for the aforementioned spinless 1-rDM and 2-rDM are

ρ1(r
′
1; r1) =

K∑

ij

1Di
jφ
∗
i (r

′
1)φj(r1) =

K∑

i

niχ
∗
i (r

′
1)χi(r1) (1.19)

ρ2(r
′
1, r

′
2; r1, r2) =

K∑

ij
kl

2Dij
klφ
∗
i (r

′
1)φ∗j(r

′
2)φk(r1)φl(r2)

=
K∑

i,j

γijΓ
∗
i (r

′
1, r

′
2)Γj(r1, r2) (1.20)

The r.h.s. of both Eqs. 1.19 and 1.20 define the corresponding density matrices in

terms of natural orbitals (NOrb). The diagonalization of 1-DM yields the NOrb’s

{χi(1)}i=1,K and natural occupancies (NOcc’s) {ni}i=1,K , whereas the eigenvectors

and eigenvalues of the 2-DM are, respectively, the orthonormal 2-particle functions

known as geminal orbitals {Γi(1,2)}i=1,K and the geminal occupancies or pair oc-

cupation numbers {γij}i,j=1,K .

Because the electronic Hamiltonian is a two-particle operator, as introduced in

Eqs. 1.7 and 1.8, its expectation value can be expressed in terms of the 1-rDM and

the 2-rDM,

E = 〈Ĥ〉 = −1

2

∫

1→1′
∇2

1ρ1(1
′; 1)d1′ +

∫
ρ(1)

|R− r1|
d1 +

∫∫
ρ2(1

′,1)

|r′
1 − r1|

d1′d1, (1.21)

and the 2-PD is, then, an important quantity to describe electron correlation, since

Vee is a functional of the 2-PD. [115]. Te and VeN are functionals of the 1-rDM;
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particularly, VeN is a functional of the diagonal elements of the 1-rDM, the electron

density. The energy is, then, an exact functional of the 2-rDM [122,123]. This topic

will be extended in section 1.2.3. The expectation value of the energy can then be

obtained as

E =
∑

ij

1Dijhij +
1

2

∑

ijkl

1Dkl
ijgijkl (1.22)

where hij and gijkl are the one- and two-electron integrals, related to the one- and

two-electron operators defined in Eq. 1.8 [27].

Density matrices can be decomposed into spin contributions, that is, separating

the elements containing the interactions between electron pairs with the same spin

(αα) and with opposite spin (αβ), by integration over the spin coordinates. The

spinless 2-rDM is formed by six contributions,

ρ2(r1, r2; r′
1, r

′
2) =ραααα2 (r1, r2; r′

1, r
′
2) + ρββββ2 (r1, r2; r′

1, r
′
2)

+ραβαβ2 (r1, r2; r′
1, r

′
2) + ρβαβα2 (r1, r2; r′

1, r
′
2)

+ραββα2 (r1, r2; r′
1, r

′
2) + ρβααβ2 (r1, r2; r′

1, r
′
2), (1.23)

and its diagonal elements, the spinless 2-PD, reduce to

ρ2(r1, r2) = ραα2 (r1, r2) + ρββ2 (r1, r2) + ραβ2 (r1, r2) + ρβα2 (r1, r2). (1.24)

Analogously, one can also decompose the 1-rDM into four components,

ρ1(r1; r′
1) =ραα1 (r1; r′

1) + ρββ1 (r1; r′
1) + ραβ1 (r1; r′

1) + ρβα1 (r1; r′
1). (1.25)

and the electron density constitutes of elements ρα1 (r1) and ρβ1 (r1). Working with

spinless density matrices becomes opportune and suitable in quantum chemistry,

since they are simply spin-traced versions of the complete matrix.

The traces of the spin components of the 2-PD are

Tr [ραα2 (r1, r2)] =

∫
ραα2 (r1, r2)dr1dr2 = Nα(Nα − 1) (1.26)

Tr
[
ραβ2 (r1, r2)

]
=

∫
ραβ2 (r1, r2)dr1dr2 = NαNβ, (1.27)

and ρββ2 and ρβα2 take analogous expressions. In the particular case of a closed-shell

electronic system, Eqs. 1.26 and 1.27 reduce to

Tr [ραα2 (r1, r2)] =

∫
ραα2 (r1, r2)dr1dr2 =

N(N − 2)

4
(1.28)
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and

Tr
[
ραβ2 (r1, r2)

]
=

∫
ραβ2 (r1, r2)dr1dr2 =

N2

4
. (1.29)

The trace of the complete, spinless 2-PD is obtained by accounting for all the spin

components, Tr[ρ2(r1, r2)] = Tr[ραα2 (r1, r2)] + Tr[ρββ2 (r1, r2)] + Tr[ραβ2 (r1, r2)] +

Tr[ρβα2 (r1, r2)]. The case of the 1-electron density reduces to very simple quantities.

Since its trace corresponds to the number of electrons, the spin counterparts are

normalized to the number of alpha and beta electrons separately.

The 2-PD can be separated in the same manner as the Ec definition (Eq. 1.1),

being the sum of the uncorrelated HF 2-PD and a 2-PD that contains all the re-

maining correlation in the system, which we name the correlation pair density, ∆ρc2,

ρ2(r1, r2) = ρHF
2 (r1, r2) + ∆ρc2(r1, r2), (1.30)

and an analogous separation can be made within the framework of KS-DFT,

ρ2(r1, r2) = ρKS
2 (r1, r2) + ρc,KS

2 (r1, r2). (1.31)

The correlation 2-PD ∆ρc2 is also known as the cumulant of the 2-PD, usually labeled

as λ(1,2) in the literature, and also 2Γklij if expressed in the orbital representation

[124,125]. The cumulant term is the part of the 2-rDM that cannot be described in

terms of the 1-rDM [124] and is considered to contain all the correlation effects that

the SD approximation is not able to describe. Considering the orbital expansion of

the 2-rDM, the 2-DM,

2Dkl
ij = 21Dk

i ∧ 1Dl
j + 2Γklij = 1Dk

i
1Dl

j − 1Dl
i
1Dk

j + 2Γklij , (1.32)

where the 2-DM is expressed in terms of the orbital representation of the cumulant

matrix, and the Grassmann wedge product of the 1-DM [126,127].

The Coulomb and exchange interactions can be described by a unique quantity,

the exchange-correlation density [128],

ρ2(r1, r2) = ρ(r1)ρ(r2)− ρxc2 (r1, r2). (1.33)

Note that the exchange-correlation density integrates to −N . It is plain to see that

electrons are statistically uncorrelated if and only if ρxc2 (r1, r2) = 0. The exchange-

correlation density is important for the definition of McWeeny’s correlation hole (see

Chapter 1.3.1) and is sometimes used as the main ingredient in designing bonding

analysis tools, such as in the electron delocalization index (DI) [129].
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1.2.2 The Hartree–Fock approximation and its density ma-

trices

Even though some correlation facts about the HF method have already been intro-

duced, in this section some concepts are summarized and emphasized. Prior to the

HF method, the Hartree Product was one of the first approaches to construct a wave-

function. It is one of the simplest ways of constructing a wavefunction, consisting

of the product of N one-electron functions or orbitals [130,131],

ΨH(1, . . . ,N ) = ψ1(1) . . . ψ1(N ). (1.34)

The Hartree Product, however, does not consider the fermionic nature of electrons,

for which it is completely uncorrelated; that is, the wavefunction is not antisym-

metrized, thus the Pauli principle is not fulfilled. Electrons are treated as bosons

and do not interact at all. This is reflected in the 2-PD of the Hartree wave-

function, formed by the product of individual electron densities for any spin case,

ρH2 (1,2) = ρH(1)ρH(2). The inclusion of Slater determinants in the wavefunction

description causes the Pauli exclusion principle to be fulfilled,

ΨHF(1, . . . ,N ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ψ1(1) · · · ψ1(N )

...
. . .

...

ψN(1) · · · ψN(N )

∣∣∣∣∣∣∣∣∣∣∣

, (1.35)

leading electron pairs with the same spin to be correlated, as the interchange of any

pair of electron coordinates implies a change in the sign of the wavefunction due to

determinant properties,

ΨHF(. . . , i, . . . , j, . . .) = −ΨHF(. . . , j, . . . , i, . . .). (1.36)

This makes the HF approximation a method where the electron motions are no

longer completely independent. However, whereas exchange interactions are now

present, Coulombic interactions are still not contemplated, which leaves the motion

of two electrons with unlike spins to be uncorrelated. Therefore, in HF (and for

any one-determinant wavefunction), only electron pairs with like-spin are partially

correlated. The HF method employs an approximated repulsive field generated

by the electron cloud in the system, where the repulsion felt by an electron is an

average potential created by the rest of electrons (mean-field approximation). This

underestimation of electron repulsion causes electron pairs to be closer. The HF

2-PD illustrates the partially correlated behavior of electrons,

ρHF
2 (1,2) = ρHF(1)ρHF(2)− ρHF

1 (1; 2)ρHF
1 (2; 1). (1.37)
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The product of individual electron densities depicts the Coulomb interactions and,

consequently, reflects the lack of correlation between electrons in position and spin

1 and 2. The second term, described by the HF 1-rDM, represents the exchange

interactions [25]. The 1-rDM product in Eq. 1.37 can be equivalently expressed as

|ρHF
1 (1; 2)|2.

One can split Eq. 1.37 into spin contributions. The HF 2-PD that contains the

opposite-spin interactions (αβ) is composed by an independent product of individual

one-electron densities,

ρHF,αβ
2 (r1, r2) = ρHF,α(r1)ρHF,β(r2), (1.38)

and the counterpart describing the same-spin interactions (αα) reads

ρHF,αα
2 (r1, r2) = ρHF,α(r1)ρHF,α(r2)− |ρHF,αα

1 (r1; r2)|2. (1.39)

In other words, HF does not correlate electrons of different spins, which are treated

as statistically independent quantities.

When the set of orbitals chosen is the NOrb basis (Eq. 1.20), the orbital rep-

resentation of the HF 2-PD per each electron-pair spin component takes the form

of
2DHF,αβ

ij,kl = nHF,α
i nHF,β

j δikδjl (1.40)

and
2DHF,αα

ij,kl = nHF,α
i nHF,α

j (δikδjl − δilδjk) (1.41)

where
{
nHF
i

}
i=1,K

are the HF occupations, which take values of either 1 or 0, and

the Kronecker deltas define the Coulombic (δikδjl) and exchange (δilδjk) terms.

At this point, it is opportune to introduce the single-determinant (SD) ansatz

to the 2-PD [121]. The SD 2-PD takes the same expression as the HF 2-PD (Eq.

1.37), but uses a generic 1-rDM instead:

ρSD2 (ρ1,1,2) = ρ(1)ρ(2)− |ρ1(1; 2)|2, (1.42)

where, compared to Eq. 1.37, the density elements in Eq. 1.42 are not the HF

densities. This expression recovers the HF 2-PD when the HF 1-rDM is used,

ρHF
2 (1,2) ≡ ρSD2

(
ρHF
1 ,1,2

)
= ρHF(1)ρHF(2)− |ρHF

1 (1; 2)|2. (1.43)

The orbital expansion of the SD 2-PD is also described by Eqs. 1.40 and 1.41.

Note that, since the exact 1-rDM is used instead of the HF 1-rDM, the occupa-

tions taken in these expressions are fractionary. As a consequence, the SD 2-PD
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is not normalized by the number of electron pairs, but with a larger quantity,

Tr
[
ρSD2 (1,2)

]
> N(N − 1). This is caused by the αα elements in the SD 2-PD. The

normalization coefficient for the αβ component corresponds to the one depicted in

Eq. 1.29, or in Eq. 1.27 for open-shell cases, but the trace for the αα 2-PD is larger

than the normalization coefficient expressed in Eq. 1.28 (or Eq. 1.26 for open-shell

cases),

Tr
[
ρSD,αβ2 (1,2)

]
=

∫
ρSD,αβ2 (r1, r2)dr1dr2 =

N2

4
(1.44)

Tr
[
ρSD,αα2 (1,2)

]
=

∫
ρSD,αα2 (r1, r2)dr1dr2 >

N(N − 2)

4
. (1.45)

Also as a consequence, the energy obtained from the SD 2-DM will be larger (and,

therefore, variational) than the HF energy [132].

1.2.3 Approximate density matrices

The knowledge of the 2-rDM of the system permits the evaluation of the Hamilto-

nian and obtaining its expectation value by following Eq. 1.21. It feels only natural,

then, to solve the Schrödinger equation employing 2-rDMs alone and avoiding the

use of the wavefunction, the dimension of which implies a huge demand of compu-

tational capacity. Then, one could variationally optimize a trial 2-rDM instead of

a wavefunction, until reaching the minimum energy. This approach is treated in

reduced density matrix functional theory (rDMFT) [133–135] and it was first in-

troduced by Gilbert in 1975 as an extension to the Hohenberg-Kohn theorem for

nonlocal external potentials [133].

A brief introduction to rDMFT is given in the forthcoming sections. In Chap-

ter 5, a benchmark of a set of reduced density matrix functional approximations

(rDMFA) is presented. The study pretends to complement a former benchmark,

where the approximations were tested with a physical model [136]. The current

benchmark study presented in Chapter 5 studies similar properties in a set of dif-

ferent molecules. The assessed approximations are presented after the introduction

to the theory in section 1.2.3.3.

1.2.3.1 Fundamentals: Gilbert’s theorem

In the framework of DFT, Hohenberg and Kohn proved a one-to-one mapping be-

tween the ground state wavefunction and the ground state electron density [137].

Because of this, the electronic energy can be expressed as a functional of the elec-

tron density. Analogously, Gilbert proved an extension of the Hohenberg and Kohn
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theorem, where a one-to-one mapping between the ground state wavefunction and

the ground state 1-rDM is established [133],

Ψgs(1, . . . ,N )⇔ ρgs1 (1; 1′)⇒ Egs. (1.46)

The derivation of Gilbert’s theorem is very similar to the Hohenberg-Kohn theo-

rem. Consider two distinc Hamiltonians Ĥ and Ĥ ′ that are defined by two different

nonlocal external potentials V̂eN = v(1,1′) and V̂ ′eN = v′(1,1′). Assuming that

the corresponding ground state wavefunctions Ψgs and Ψgs’ are non-degenerate and

different, the variational principle states that

〈Ψgs’|Ĥ|Ψgs’〉 − 〈Ψgs|Ĥ|Ψgs〉 = Egs’ + 〈Ψgs’|V̂eN − V̂ ′eN |Ψgs’〉 − Egs > 0 (1.47)

and

〈Ψgs|Ĥ ′|Ψgs〉 − 〈Ψgs’|Ĥ ′|Ψgs’〉 = Egs + 〈Ψgs|V̂ ′eN − V̂eN |Ψgs〉 − Egs’ > 0, (1.48)

where Egs and Egs’ are the corresponding ground state energies. If the difference of

external potentials is v(1,1′) − v′(1,1′) = δv(1,1′), the addition of Eqs. 1.47 and

1.48 yields

〈Ψgs’|V̂eN − V̂ ′eN |Ψgs’〉+ 〈Ψgs|V̂ ′eN − V̂eN |Ψgs〉 =∫
δv(1,1′)ρgs’1 (1; 1′)d1d1′ −

∫
δv(1,1′)ρgs1 (1; 1′)d1d1′ =

∫
δv(1,1′)

[
ρgs’1 (1,1′)− ρgs1 (1,1′)

]
d1d1′ > 0 (1.49)

Hence, the existence of an energy functional of the 1-rDM is proven because the

difference of 1-rDMs in Eq. 1.49 must be nonzero. rDMFT, then, takes the 1-rDM

as the main quantity for building approximations. If the approximations are built

in the NOrb representation of the 1-rDM, that is, by means of orbital occupancies,

the theory is named natural orbital functional theory or NOFT [138].

Te and VeN can be determined exactly because they are explicit functionals of

the 1-rDM, as introduced in Eq. 1.21. Instead, because Vee is a functional of the

2-PD, it needs to be approximated in terms of the 1-rDM:

E[ρ1(1,1
′)] =Vee[ρ1(1,1

′)] + Te[ρ1(1; 1′)] + VeN [ρ1(1; 1′)]

=Vee[ρ1(1,1
′)] +

∫

1→1′

[
−1

2
∇1′∇1 +

1

|R− r1|

]
ρ1(1; 1′)d1 (1.50)

Approximating Vee in terms of the 1-rDM permits lower storage and data manipula-

tion in computations. Considering the natural orbital representation of the matrices,
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an explicit calculation of Vee involves the handling of K4 terms from the 2-DM, be-

ing K the size of the orbital basis. Instead, 1-DMs are composed of K2 elements,

which makes them more appropriate objects for computations.

1.2.3.2 The N-representability problem

It has been introduced in section 1.2.1 that the rank reduction of a density matrix

implies a loss of information that cannot be recovered, being thus far impossible to

restore a higher-order density matrix from a lower-order one. It is, then, sensible

to impose physical requirements for the reconstruction of approximate 2-rDMs in

terms of 1-rDMs; otherwise, using an unphysical 2-rDM in the Hamiltonian may

lead to non-variational energies [120].

Some trivial restrictions can be imposed, as forcing that the sum of the trace

elements of the 2-DM must result in the total number of electron pairs (that is, the

2-DM must be appropriately normalized, Eqs. 1.28 and 1.29). This imposition is

known as the sum rule. However, there exist a set of requirements that a density

matrix must fulfill. This set of requirements is referred as the N -representability

conditions, and guarantees that the constructed 2-rDM emanates from a fermionic

N -wavefunction [120,123]; in other words, the approximate 2-rDM must be obtain-

able from the integration of a fermionic wavefunction as described in Eq. 1.16.

Otherwise, a non N -representable 2-rDM can lead to energies below the exact result

from variational optimizations [120]. However, up to date it does not exist a direct

way to ensure the N -representability of the 2-rDM without going back up to the

original N -DM, which is not efficient for computations. The concern and assessment

of such an issue is what is known as the N -representability problem [120]. Note that

the N -representability problem affects not only the 2-rDM but any approximated

n-rDM and their associated n-densities. An rDM that can be mapped back to an

antisymmetric N -wavefunction is called to be N -representable.

Even though the complete set of conditions are not completely known for the

n-rDMs, the conditions needed to ensure the N -representability for the 1-rDM and

2-rDM have been widely studied [139–141]. For the particular case of the 1-rDM,

the full set of sufficient conditions is known. Considering the NOrb representation
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of the 1-rDM, the 1-DM, the conditions are [139]:

K∑

i

ni = N (1.51)

0 ≤ ni ≤ 1 (1.52)

That is, the sum of NOcc must be the total number of electrons in the system N ,

and the occupation numbers must range between zero and one.

The whole set of sufficient conditions for the 2-rDM is known, yet their impo-

sition is unfeasible since the rest of higher-order density matrices are needed (that

is, from 3-rDM to N -rDM) [142], leading to an impractical assessment of the ap-

proach. Instead, a group of necessary (yet not sufficient) conditions is imposed.

They are probability-based and, being probabilities, concern the evaluation of the

non-negative character of the 2-rDM elements. These conditions are constructed

in matrix form, and their eigenvalues must be positive semidefinite for a 2-rDM to

be N -representable. Because of this, this group of conditions is called positivity

conditions. A set of positivity conditions exists for any n-rDM [139–141].

The positivity condition matrices are defined from an operator Â composed of

strings of annihilation and creation operators, âiσ and â†iσ respectively, in second

quantization terminology [27]. The positivity conditions require the expectation

value from this operator to be positive semidefinite [143]:

Bi,j = 〈Ψ|Â†i Âj|Ψ〉 ≥ 0, (1.53)

where Bi,j is the expectation value. For the 2-rDM, operator Â is the product of

two creation and annihilation operators [144]:

Â ∈
{
â†i â
†
j, â
†
i âj, âiâj

}
(1.54)

Three matrices result of doing all the possible combinations of Â elements from Eq.

1.54 into Eq. 1.53, and they are known as the P, Q and G matrices [119, 139, 141,

145,146]:

P σσ′
ij,kl = 〈Ψ|a†iσa†jσ′akσalσ′ |Ψ〉 (1.55)

Qσσ′
ij,kl = 〈Ψ|aiσajσ′a†kσa

†
lσ′ |Ψ〉 (1.56)

Gσσ′
ij,kl = 〈Ψ|aiσa†jσ′a

†
kσalσ′ |Ψ〉 (1.57)

These matrices exist for any spin-combination case, since σσ′ = αα, αβ, βα, ββ [143].

The diagonal elements of these P, Q and G matrices are related to different proba-

bilities of electron distributions among orbitals. Therefore, the diagonal elements of
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these matrices must be non-negative, or positive semidefinite, for any orbital repre-

sentation. The positive conditions can be evaluated through the eigenvalues of the

P, Q and G matrices [146] which, in the NOrb representation, results in restrictions

to be applied to the NOccs. The definition of the P matrix actually corresponds

to the definition of the 2-DM in second quantization language, so the P condition

forces the geminal occupancies to be positive semidefinite. On the other hand, the

Q and G conditions indicate the positive semidefinite character of the holes (1− n)

and the particle-hole n(1− n) probabilities, respectively. Fig. 1.6 contains a repre-

sentation summary of the positivity conditions. Note that similar matrices can also

be obtained for any n-rDM.

Figure 1.6: Venn diagrams representing the probabilities of occupying orbitals i and j behind P

(particle-particle), G (particle-hole) and Q (hole-hole) conditions for the 2-DM.

1.2.3.3 Reduced density matrix functional theory approximations

The rDMFT approximations examined in this thesis consider the Coulomb (J),

exchange (K), and time-inversion (L) two-electron integrals in the orbital repre-

sentation [147, 148]. Despite the vast majority of rDMFAs are defined in the or-

bital representation and employ NOccs, there are other rDMFAs that use the space

representation to develop the approximations (see, for instance, the ∆NO func-

tional [52, 149, 150]). According to the approach considered for their construction,

rDMFAs can be classified into two groups: the K-functionals and the PNOFs. The

functionals presented hereafter are the ones that are studied in Chapter 5.

1.2.3.3.1 K-functionals

K-functionals are approximations that use the HF expression for the Coulombic

terms (Eqs. 1.41 and 1.40) and propose an expression to approximate the exchange

elements in the 2-DM. The electrostatic interactions are left untouched as some

authors suggested that correlation effects can be approximated with just exchange
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integrals [151, 152]. In the literature, this group of rDMFAs is referred to as JK-

functionals because the approximate 2-DM elements are the ones accompanying

either the Coulomb and the exchange integrals. In this thesis, we consider that it is

more appropriate to name them K-functionals alone since the approximations only

affect the exchange terms. K-functionals use the following expressions to construct

2-DM approximations [146]:

2DX,αβ
ij,kl = nαi n

β
j δikδjl, (1.58)

2DX,αα
ij,kl = nαi n

α
j δikδjl − fX(nαi , n

α
j )δilδjk, (1.59)

where fX(nαi , n
α
j ) (hereafter expressed as fX(ni, nj) for simplicity) is the approx-

imate expression proposed by functional “X” for the exchange terms. Since the

derivation of Gilbert’s theorem, a plethora of K-functionals are present in the lit-

erature. In Chapter 5, a group of eight K-functional approximations have been

benchmarked. The fX(ni, nj) expressions taken by each functional are gathered in

Table 1.1.

Not specifically designed to be an rDMFA, the SD ansatz is the most direct ap-

proach in approximating the 2-DM (Eq. 1.42), taking the HF expression (Eq. 1.37)

for describing both Coulombic and exchange terms [121]. Because the HF expression

is used but not the HF occupancies, the SD 2-DM is not purely N -representable and,

for instance, does not follow the sum rule (Tr
[
2DSD

ij,kl

]
≡ Tr

[
ρSD2 (r1, r2)

]
6= N). The

SD 2-DM coincides with the HF 2-DM when canonical orbitals and occupations are

used, and optimization of occupancies and orbitals using the 2-DM SD leads to the

HF energy, occupancies, and orbitals.

The first actual approximation of the 2-DM in the rDMFT framework was de-

rived independently by Müller by one side, and by Buijse and Bearends by another

one. Some authors call it the “Corrected Hartree” functional [153], but it is best

known by the acronym of the author’s initials, MBB [151,152,154]. The approxima-

tion considered the requirement of producing a minimal amount of deviations of the

Pauli principle condition, and was derived from Coulomb and Fermi holes. It pro-

vides a qualitatively correct correlation description, as in the H2 dissociation energy

curve and the He isoelectronic series, when NOrb’s and NOcc’s are not treated self-

consistently [151, 152, 155]. On the other hand, Goedecker and Umrigar designed

the GU approximation to correct the self-interacting error in MBB by omitting

all diagonal Coulomb and exchange integrals [156]. The rest of the elements take

the same expression as in MBB. With this correction, the total energies for atoms

and molecules at equilibrium geometries improve with respect to MBB, yet it yields

27



CHAPTER 1. INTRODUCTION

worse dissociation descriptions [146,155,157]. A more physically motivated approach

is the one proposed by Gritsenko and coworkers, who designed the BBC1, BBC2,

and BBC3 approximations to improve the MBB functional [155]. In this thesis, the

BBC2 approximation has been studied. This rDMFA introduces the definition of the

Fermi level FL (being the last orbital whose occupancy is greater or equal to N/2)

to define the orbital occupancies and the interactions between electron pairs change

according to the orbitals in which are found. The interaction between highly- (below

FL) and weakly-occupied (above FL) orbitals are described with the MBB expres-

sion, and the HF expression is recovered in the case of two orbitals found below the

FL. Other cases are summarized in Table 1.1. MBB and BBC2 are designed to fulfill

the sum rule, but GU does not because of the straightforward correction introduced.

On the other hand, we find the CA and CGA functionals, which were proposed

mainly by Csányi and Arias [153,158]. They proposed a tensor product expansion of

the 2-rDM to construct the approximation and the approximations were designed to

reproduce the homogeneous electron gas. CGA was later presented as an improve-

ment of CA for higher densities, a regime in which CA showed deficiencies [158]. A

difference with respect to the MBB group of functionals is that the CA and CGA

expressions consider the particle-hole symmetry n(1 − n), as it is shown in Table

1.1. According to the authors, the CGA functional is comparable to the generalized-

gradient approximation performance in atoms [158]. Both approaches recover the

normalization coefficient of the 2-DM.

The latter group of K-functional approximations considered in this thesis is the

one derived by Marques and Lathiotakis, the ML and MLSIC functionals [159]. The

square root in MBB is replaced with a Padé approximant, and include three pa-

rameters that were empirically fitted to reproduce the correlation energies of the G2

set of molecules. Because of this fitting, the sum rule is not satisfied in either of

both cases. MLSIC is the self-interaction-corrected version of ML and, therefore,

ML presents a unique expression for all the exchange interactions, whereas MLSIC

reoptimizes the fitting parameters after omitting all diagonal Coulomb and exchange

elements to avoid the double interaction counting.
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Functional fX(ni, nj)

SD ninj ∀i, j

MBB (ninj)
1/2 ∀i, j

GU
(ninj)

1/2 i 6= j

ninj i = j

BBC2

ni i = j

ninj i 6= j ∧ i ∈ [1;FL] ∧ j ∈ [1;FL]

−(ninj)
1/2 i 6= j ∧ i ∈ (FL;∞) ∧ j ∈ (FL;∞)

(ninj)
1/2 otherwise

CA [(ni(1− ni)nj(1− nj)]1/2 + ninj ∀i, j

CGA 1
2

[
[(ni(2− ni)nj(2− nj)]1/2 + ninj

]
∀i, j

ML

a = 126.3101

ninj(a+ b ninj)(1 + c ninj) ∀i, j b = 2213.33

c = 2338.64

MLSIC

ninj(a+ b ninj)/(1 + c ninj) i 6= j a = 1298.78

ninj i = j
b = 35114.4

c = 36412.2

Table 1.1: Exchange expressions fX(ni, nj) (Eq. 1.59) per each K-functional studied in this thesis.

1.2.3.3.2 PNOF functionals

The second group in DMFT approximations are the ones that are based on the
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spectral expansion of the cumulant of the 2-DM (Eq. 1.32) [160]. As introduced

in section 1.2.1, the cumulant of the 2-DM is defined as the part of the 2-DM that

includes the electron correlation information that is not included in the HF method

(that is, correlation effects beyond Fermi correlation) [124,125],

2Dαβ
ij,kl = nαi n

β
j δikδjl + 2Γαβij,kl, (1.60)

2Dαα
ij,kl = nαi n

α
j (δikδjl − δilδjk) + 2Γααij,kl. (1.61)

The cumulant matrices contain the missing correlation effects that the SD ap-

proximation of the 2-DM does not include. Because the expressions of the cumulant

matrices are not known, an approach to reconstruct the correlated 2-DM consists in

providing approximations to the same- and opposite-spin cumulant matrices. The

PNOF functionals (after “Piris Natural Orbital Functional”) approximate the anti-

symmetric cumulant matrices by splitting them into two auxiliary matrices known

as ∆ and Π [160],

2Γαβij,kl = −∆αβ
ij δikδjl + Πikδijδkl, (1.62)

2Γααij,kl = −∆αα
ij (δikδjl − δilδjk) . (1.63)

Note that these auxiliary matrices are composed of two indices in contrast to the

cumulant matrix, composed of four indices. This is done to simplify the cumulant.

Another difference with recpect to the K-functionals is that PNOFs also provide

approximations for the Coulomb elements, and include Coulomb (J), exchange (K)

and the exchange and time-inversion (L) integrals [160].

The different expressions given for both matrices produce different versions of

the PNOFs, named PNOFi with i = 2, . . . , 7 [55,148,161–166]. In general, the func-

tionals are constructed to respect the N -representability conditions and the sum

rule. They were not designed to consider open-shell cases, yet this issue is currently

being explored [167]. The particle-hole symmetries are considered in most of the

expressions for the functionals. For the ∆ matrix, the same expression is used for

both spin cases, except in PNOF3 [162]. Table 1.2 gathers the expressions for the

∆ and Π matrices.

PNOF5 and PNOF6 were initially designed to follow a perfect pairing approach,

which forces the coupling of occupancies of different orbitals, ni + nj = 1 [148,164–

166]. ni will be coupled to nj when one of these orbitals is found below the FL and

the other one above it. An extended approach was later on considered for PNOF5,
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where the occupancy of the orbital below the FL is coupled to the occupancies of a

set of orbitals above the FL. This extension was named PNOF5e. In this thesis, we

have also considered this extended approach in PNOF6 (PNOF6e).

PNOF6 is defined in terms of a variable Sxγ [148] and can take different defini-

tions if the orbitals considered are placed above (up, x = u) or below (down, x =

d) the Fermi level. An average of both cases can also be considered (half, x = h).

The formulas for the PNOF6x functional are summarized in Table 1.2.

In Chapter 5, the PNOF and K-functionals presented are benchmarked using

a set of molecules in order to test the soundness of their expressions, and some

chemical properties. The approach followed to do the study does not allow the

analysis PNOF5e and PNOF6e as presented in this section due to the perfect-pairing

constraints imposed by the functionals. Instead, the restriction-free versions of these

functionals are employed.

Functional ∆ij Πij

PNOF2

hihj
√
ninj +

√
hihj + Tij i ∧ j ∈ [1, FL]

hinj

(
1−sF
sF

) √
ninj −

√
hinj + Tij i ∈ [1, FL] ∧ j ∈ (FL,K]

nihj

(
1−sF
sF

) √
ninj −

√
nihj + Tij i ∈ (FL,K] ∧ j ∈ [1, FL]

ninj Tij i ∧ j ∈ (FL,K]

PNOF3

hihj ninj −√ninj i ∧ j ∈ [1, FL]

hinj

(
1−sF
sF

)
ninj −√ninj −

√
hinj i ∈ [1, FL] ∧ j ∈ (FL,K]

nihj

(
1−sF
sF

)
ninj −√ninj −

√
nihj j ∈ [1, FL] ∧ i ∈ (FL,K]

ninj ninj +
√
ninj i ∧ j ∈ (FL,K]

PNOF4

hihj) −
√
hihj i ∧ j ∈ [1, FL]

hinj

(
1−sF
sF

)
−
√(

hinj
SF

)(
ni − nj +

hinj
SF

)
i ∈ [1, FL] ∧ j ∈ (FL,K]

nihj

(
1−sF
sF

)
−
√(

nihj
SF

)(
−ni + nj +

nihj
SF

)
i ∈ [1, FL] ∧ j ∈ (FL,K]

ninj
√
ninj i ∧ j ∈ (FL,K]
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PNOF5
ninj −√ninj (i ∧ j ∈ Ωg) ∧ (i = g ∨ j = g)

ninj
√
ninj (i ∧ j ∈ Ωg) ∧ (i ∧ j ∈ (FL,K])

PNOF6x

hihje
−2SF −e−SF

√
hihj i ∧ j ∈ [1, FL]

γiγj/S
x
γ −

√[
nihj +

γiγj
Sxγ

] [
hinj +

γiγj
Sxγ

] i ∈ [1, FL] ∧ j ∈ (FL,K]

∨ j ∈ [1, FL] ∧ i ∈ (FL,K]

ninje
−2SF e−SF

√
ninj i ∧ j ∈ (FL,K]

PNOF7

ninj −√ninj (i ∧ j ∈ Ωg) ∧ (i = g ∨ j = g)

ninj
√
ninj (i ∧ j ∈ Ωg) ∧ (i ∧ j ∈ (FL,K])

0 −
√
nihinjhj

(i ∨ j) ∈ [1, FL]

∧ [(i ∈ Ωg ∧ j /∈ Ωg) ∨ (j ∈ Ωg ∧ i /∈ Ωg)]

0
√
nihinjhj

(i ∧ j) ∈ (FL,∞)

∧ [(i ∈ Ωg ∧ j /∈ Ωg) ∨ (j ∈ Ωg ∧ i /∈ Ωg)]

Table 1.2: The expressions for the ∆ and Π matrix elements for the PNOFi, i = 1 . . . 7. The

diagonal elements for any PNOFi are ∆ii = n2i and Πii = ni. Appearing elements in the table are

hi = 1 − ni, Tij = ninj −∆ij , and SF =
∑FL
i=1 hi. For PNOF6x, x = d, u, h with Sdγ =

∑FL
i=1 γi,

Suγ =
∑K
i>FL

γi and Shγ = (Sd + Su)/2, being γ = nihi + κ2i − κi
∑FL
i=j κj and κi taking values of

κi = hie
−SF when i ∈ [1, FL] and κi = nie

−SF when i ∈ (FL,K]. For PNOF5, Ωg is the subspace

containing orbital g, which is defined to be below FL, and several orbitals above FL.

The benchmark study on which the analysis presented in Chapter 6.3 is based

revealed some strengths as well as some problems in the rDMFAs [136]. That study

analyzed the ability of the rDMFAs to describe some properties of the harmonium

atom, a two-electron physical model. The errors obtained for different proper-

ties over increasing correlation regimes revealed an oscillating dependency of the

parametrized ML and MLSIC functionals, whereas the rest of functionals showed a

linear error increase with the correlation strenght. On the other hand, most of the

approximations that yield the correct trace (i.e. follow the sum rule) by imposition

presented important deviations in the diagonal matrix elements compared with the

exact one. This affects the calculation of other chemical properties, for instance, the

delocalization index (DI) [168, 169], in which PNOF2, CA, and CGA, for instance,

produced errors in predicting DIs above 3%, yet the trace of the 2-DMs are exact.
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There is an improvement in PNOFs, where PNOF4 and PNOF6 provided better pre-

dictions than older versions of the PNOF considered. Because PNOF4 and PNOF6

reduce to the exact functional for a two-electron system, it is not surprising that

they committed the smallest errors compared to the rest of rDMFAs. Whereas most

of the functionals performed reasonably well in predicting the electronic repulsion

energy, non-negligible errors in the calculation of other properties were obtained.

In Chapter 6.3, the 2-DM approximations presented are built using the exact

(within the basis set) NOrbs and NOccs, and thus the orbitals or the occupancies

are not optimized for each approximation. Therefore, the errors analyzed in Chapter

5 and discussed in Chapter 6.3 only consider the effect produced by the expression

designed to approximate the 2-DM. In a sense, the accuracy of the expressions

for the 2-DM approximations is evaluated. This type of error is sometimes called

functional-driven error in KS DFT [170], which in that framework evaluates the

true error in an exchange-correlation approximation of any given density. Let us

introduce the total energy error in rDMFT:

Etotal = E [{ni, χi}]− EX
[{
nXi , χ

X
i

}]
, (1.64)

where the first term is the exact energy and the second term is the optimized rDMFA

energy. This error can be split in the functional–driven and the 1-rDM–driven error,

Etotal = EF + EDM. In the rDMFT framework, the energy functional-driven error is:

EF = E [{ni, χi}]− EX [{ni, χi}] (1.65)

in which the second term in the r.h.s. of Eq. 1.65 is the energy of the rDMFA

obtained with the exact NOccs and NOrbs – that is, a non-optimized energy. On

the other hand, the 1-rDM–driven error (the analogy to the density-driven error in

KS DFT [170]) is:

EDM = EX [{ni, χi}]− EX
[{
nXi , χ

X
i

}]
. (1.66)

In this thesis, the 1-rDM–driven (or self-consistent) error is not analyzed.

1.3 The intracule probability density

In chemistry, the concept of an electron pair is fundamental to describe reactivity and

binding properties. Electron-pair distribution functions are useful tools that provide

relevant chemical information; more precisely, they provide information regarding

electron correlation [115]. In the literature, many reviews have been published
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regarding the advantages of using distribution functions of 2-PD [123,171,172]. SR

and LR interactions between two electrons located at r1 and r2 can be conveniently

analyzed in terms of the center-of-mass vector,

R =
1

2
(r1 + r2) (1.67)

and the interelectronic-distance or relative motion vector

s = r1 − r2. (1.68)

Such coordinates define the extracule probability density (EPD)

E(R) =

∫
dr1dr2ρ2(r1, r2)δ (R− (r1 + r2)/2) ; (1.69)

and the intracule probability density (IPD),

I(s) =

∫
dr1dr2ρ2(r1, r2)δ (s− (r1 − r2)) , (1.70)

respectively. Note that the Dirac delta function obliges the evaluation of the function

only when s = r1−r2. The integration over dΩu produces the corresponding radial

or isotropic probability density by averaging the probabilities over space [123, 171,

172]:

I(s) = s2
∫
dΩsI(s), (1.71)

and analogously for the extracule function. dΩu = sin θudθudφu is the solid angle,

and u defines either the center-of-mass R or the relative-motion s coordinate. Here-

after, the isotropic probability densities will be simply referred to as probability

densities for brevity, assuming that the given probability function is already inte-

grated over the solid angle.

It is assumed that the terms for EPD and IPD were coined by Eddington in its

Fundamental Theory series in 1946 [173], yet Debye was the first known scientist

to use them as distribution functions of the interelectronic distances [174–176], and

were introduced by Coleman in 1967 into the density matrix theory [123]. They

provide a genuine advantage with respect to the associated 2-PD, since they are 1-

dimensional functions (3-dimensional for the non-averaged distribution function) in

contrast to the 6-variable dependency of the spinless 2-PD. Therefore, they permit

the analysis of the probability information contained in the 2-PD in a contracted

way. Another advantage is that the IPD is the simplest function known in terms of

which Vee can be expressed,

Vee =

∫
ds
I(s)

s
, (1.72)
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i.e. there is no need to estimate the full 2-PD to retrieve the total energy of a sys-

tem. In this line, some authors have defined the intracule functional theory [177,178].

Since the EPD is a function of the center-of-mass vector, its evaluation provides

information about the location of electron pairs. When evaluated at the origin R = 0

it depicts the probability of finding any two electrons on opposite sides with respect

to the symmetry center [179–182]. E(0) is named interelectronic counterbalance

density, and has been proposed as an indicator of nondynamic correlation in ref-

erence [183]. Henceforth, this chapter will focus on the IPD since is an important

function for the present thesis. Note that the mathematical properties of the EPD

are analogous to the ones of the IPD, which will be explained below. More infor-

mation about the EPD can be found, for example, in reference [171].

The IPD indicates the probability of two electrons to be separated by a given

distance s. The assessment of the IPD at the origin provides information regarding

the probability of two electrons to be on top of each other, thus I(0) is known as

the electron coalescence density. An interesting fact about the coalescence density is

that it can be experimentally determined through integrated total X-ray scattering

intensities [184]; in fact, the whole intracule probability density can be obtained

from the Fourier-Bessel transform of X-ray scattering cross-sections, being an ob-

servable based on the 2-PD [174,185–189].

The mathematical properties of probability densities are inherited from the 2-

PD. They are even functions because the 2-PD is symmetric. The ability to partition

the 2-PD into spin contributions (Eq. 1.24) is also acquired,

I(s) = Iαα(s) + Iββ(s) + Iαβ(s) + Iβα(s), (1.73)

where each intracule component is obtained through the integration of the respective

spin component of the 2-PD. The IPD and its spin components receive the normal-

ization factors from the corresponding 2-PD (Eqs. 1.26–1.29) after integration over

ds.

Since the IPD is a function of the 2-PD, such 2-PD can be any 2-PD, as, for

instance, the HF 2-PD (Eq. 1.37). Because of this, we introduce the notation

IX(s) ≡ I(ρX2 , s), where X refers to the method to approximate the 2-PD (X =

FCI, HF, SD, MBB, ...). This permits an exhaustive analysis of how an approxi-

mated pair density correlates electrons [136]. The shape of an IPD is characteristic

of each electronic system, yet they always present a particular profile. It is composed
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of several maxima centered at the most probable interelectronic distances 〈s〉, corre-

sponding to the distances between nuclei positions, and followed by a smooth decay

to zero at infinite interelectronic separations. Specifically in homonuclear dimers,

the profile is characterized by two maxima, one at the SR caused by electron pairs

within a nucleus, and another one centered around the interatomic distance, s ≈ R.

As an example, Fig. 1.7 depicts the IPD for the helium dimer.

Figure 1.7: Left) The IPD of two helium atoms separated a distance of R = 9.45 bohr. Right)

A schematic representation of the two different interelectronic distances within the helium dimer.

The peak in Left) labelled with s1 depicts the short-range interelectronic distance for electrons

within the same nucleus, and s2 represents the long-range interelectronic distance for electrons of

different nuclei, in which s2 ≡ R.

The usefulness of the presented electron pair-distributions has brought interest

amongst the community, since it permits topological insight in the electron distribu-

tion [190–192]. I(0) and E(0) have contributed into the understanding of the nature

of electron correlation [183, 193]. However, the most widely known application of

the IPD may be their use to obtain electron correlation holes [192, 194–202], which

are introduced in the following section.

1.3.1 Electron correlation holes

Correlating the motion of electrons implies that the presence of an electron will in-

fluence the vicinity of other electrons. The simple existence of an electron implies a

drop of probability into finding another electron nearby. In other words, an electron

causes a region of decreased probability in its surroundings, a “hole”, caused by

the Pauli principle and by the fact that it is a charged particle (that is, the repul-

sive Coulombic and exchange interactions) [25, 27, 171, 203]. There exist two main

definitions for correlation holes in quantum chemistry, where the most extended
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definition is the one attributed to Coulson, which is an analogy to the definition of

electron correlation provided by Löwdin (Eq. 1.1). The second definition is the one

proposed by McWeeny, based on statistical probabilities. The definition considered

for Coulomb holes in this thesis is the one alluded to Coulson, yet a summary on

McWeeny’s definition is also given for completeness.

1.3.1.1 Coulson’s definition of the Coulomb hole

The definition provided by Coulson is based on the radial intracule probability

density. As for the definition of Ec (Eq. 1.1), the correlation hole is defined as

the difference between the exact and the HF IPDs [204,205],

hc(s) = Iexact(s)− IHF(s) ≡ I(ρFCI
2 , s)− I(ρHF

2 , s) (1.74)

where, as in the case for the exact nonrelativistic energy in Eq. 1.1, the exact intrac-

ule is calculated with the FCI 2-PD for a given basis set. Since the HF 2-PD (Eq.

1.37) includes exchange interactions, the difference in Eq. 1.74 pictures the lack of

Coulomb correlation in the HF approach and, therefore, the correlation hole is known

as Coulomb hole. The integration of the Coulomb hole is zero,
∫∞
0
hc(s)ds = 0, since

both intracule probabilities are normalized with the same coefficient. This property

illustrates a physical interpretation of the Coulomb hole, implying that there is a

fixed amount of electrons that are shifted from short interelectronic distances to

larger ones.

Whereas Debye was the first scientist to advert the Coulomb hole around 1920

[174–176], the first explicit calculation was held in 1961 by Coulson and Neilson [204].

Coulomb holes provide information about changes suffered by the 2-PD when the

correlation interactions are turned on. In general, the repulsive interactions cause

electrons to increase their expected interelectronic separation 〈s〉. This phenomenon

is portrayed in the IPDs, where the maximum in the exact intracule Iexact(s) is

shifted to larger interelectronic distance values s with respect to IHF(s). The dif-

ference between both IPDs results in the well-known shape of Coulomb holes, as

portrayed in Fig. 1.8, and it is a physical representation of the improper handling

of electrostatic interactions in the HF method as a consequence of the mean-field

approximation. One can also consider the Coulomb hole as the intracule of the

correlation 2-PD (Eq. 1.30).

The existence of the Coulomb hole implies the existence of a Fermi hole, which

reflects the repulsive interactions caused by the fermionic nature of electrons. The
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Figure 1.8: Coulomb hole (Eq. 1.74) of the hydrogen molecule H2 at R = 1.32 bohr of bond

separation.

Fermi hole, also known as spin correlation hole, can only be defined for electron pairs

with like-spin. It represents the decreased probability of two electrons with the same

spin to be close to each other. This defines a Fermi hole per each spin, that is, for

αα and ββ electron pairs. The definition of Fermi holes was proposed by Boyd

and Coulson [206]. The HF method considers exchange interactions but not the

Coulombic ones between electrons of opposite spin, being a reference wavefunction

that only includes Fermi correlation. The uncorrelated reference must neglect Fermi

correlation (a wavefunction that is not antisymmetric). Coulson and Boyd chose the

Hartree product wavefunction (Eq. 1.34), yielding to the Fermi hole definition

hσx(s) = IHF(s)–IH(s) ≡ I(ρHF
2 , s)− I(ρH2 , s), (1.75)

being σ either α or β. Note that the effects of Coulomb correlation are more long-

ranged than those of Fermi correlation because the repulsion between a pair of

like-spin electrons increases when they approach each other.

1.3.1.2 McWeeny’s definition of the Coulomb hole

McWeeny’s proposal for electron correlation holes is statistically motivated. This

implies that no reference wavefunction is needed, in contrast to Coulson’s Coulomb

hole [118]. Considering the exchange-correlation density defined in Eq. 1.33,

ρxc(1,2) = ρ(1)ρ(2)− ρ2(1,2),
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the exchange-correlation hole or hole density is defined by dividing the exchange-

correlation density by the electron density,

hxc(2|1) =
ρxc(1,2)

ρ(1)
=
ρ2(1,2)

ρ(1)
− ρ(2). (1.76)

The exchange-correlation hole measures how much the probability of finding an

electron at r2 changes due to the presence of another one at r1. McWeeny sug-

gested a splitting of the hole density into the exchange hole and the correlation

hole, hxc(r2|r1) = hx(r2|r1) + hc(r2|r1), according to the spin of the electron pairs.

The Fermi hole arises when like-spin cases are considered,

hx(r2|r1) =
ραα2 (r1, r2)

ρα(r1)
− ρα(r2) (1.77)

and represents the like-spin component of the exchange-correlation hole. Instead,

the Coulomb hole is the complete opposite-spin component,

hc(r2|r1) =
ραβ2 (r1, r2)

ρα(r1)
− ρβ(r2). (1.78)

It is usually conceived that the Fermi hole takes into account the effect of the cor-

related motion of αα electron pairs, and the Coulomb hole describes the correlation

between αβ electron pairs. This, however, is not be completely correct. Certainly,

at the HF level, the interactions involving αα electron pairs are the only ones that

are correlated. Going beyond HF implies introducing correlation interactions af-

fecting both αβ and αα spin interactions. Therefore, the repulsion felt between a

pair of electrons is increased regardless of their spin. Therefore, the Coulomb hole

depicts the correlated motion for any electron pair, for both αα and αβ pairs. To

emphasize this concept, consider Eq. 1.73, where the IPD is composed of both spin

contributions. By introducing Eq. 1.73 into Coulson’s Coulomb hole definition (Eq.

1.74), it is clear to see that the Coulomb hole depicts the correlation of both αα

and αβ electron pairs. This misconception may be caused by the fact that exchange

interactions are stronger than the same-spin electrostatic ones. Most of the αα

electron correlation is caused by Fermi correlation, and, generally, the αβ Coulomb

correlation is larger than the αα analogue.

1.4 Separation of dynamic and nondynamic cor-

relation

In section 1.1.1, special attention has been put to emphasize the fact that there is

no clear boundary between dynamic and nondynamic correlation [59]. The mixing
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of low-lying energetic states with the HF one will always introduce both correlation

types into the wavefunction. However, electronic structure methods are in general

specialized at improving the description of one of these two types. Many attempts

have been done for proposing qualitative correlation expressions to separate dynamic

and nondynamic correlation [7,29,183,193,207–217] and, since electron correlation is

usually interpreted as an energetic attribute (Ec, Eq. 1.1), most of the partitioning

definitions are energy-based. In this section, some relevant partitions of the electron

correlation are introduced.

1.4.1 Energy-based separation schemes

The decomposition presented by Mok, Neumann and Handy takes advantage of

the ability of the CASSCF method to include nondynamic correlation into the HF

reference configuration [29]. They defined nondynamic correlation energy as the

fraction of energy that full valence CASSCF is able to describe,

EHandy
NDC = E[ΨCASSCF]− E[ΨHF] (1.79)

and, by completeness, the dynamic correlation energy reads

EHandy
DC = E[Ψexact]− E[ΨCASSCF]. (1.80)

Cioslowski introduced a different approach to provide energetic expressions for

correlation components. Cioslowski’s idea is to construct a FCI wavefunction that

reproduces the HF density by means of a density-constrained approach. This so-

called density-constrained FCI energy, EDCFCI = E[Ψexact, ρHF], is used to define the

dynamic and nondynamic correlation energies [208]:

ECios
DC = E[Ψexact, ρHF]− E[ΨHF, ρHF] (1.81)

and

ECios
NDC = E[Ψexact, ρexact]− E[Ψexact, ρHF], (1.82)

respectively. Considering a wavefunction where the HF reference state does not

strongly mix with other configurations, the HF electron density is expected to bring

a correct approximation to the exact density. According to this statement, the non-

dynamic energy should then be close to zero [208].

On the other hand, Valderrama, Ludeña, and Hinze proposed a generalization

of Cioslowski’s scheme by presenting the former decomposition divided into two

paths [209, 210]. One of the paths, which the authors call path I, corresponds to
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Figure 1.9: Schematic diagram of Ec decomposition into dynamic and nondynamic correlation com-

ponents, according to Cioslowski’s (purple path, Eqs. 1.81 and 1.82), and Ludeña and coworkers

(green path, Eqs. 1.83 and 1.84) proposals. Adapted from Ref. [209].

the decomposition proposed by Cioslowski; path II, instead, introduces a different

intermediate energy component, which corresponds to a HF calculation using a

single-determinant wavefunction that is restricted to reproduce the exact density,

namely EHF [ρexact]. Therefore, the definition proposed for the dynamic correlation

energy reads

ELudeña
DC = E[Ψexact, ρexact]− E[ΨHF, ρexact], (1.83)

and, for the nondynamic counterpart,

ELudeña
NDC = E[ΨHF, ρexact]− E[ΨHF, ρHF]. (1.84)

Fig. 1.9 contains a representation of the paths to retrieve the Ec, according to the

definitions proposed by Cioslowski (path I) and Ludeña and coworkers (path II).

−ECios
DC and −ECios

NDC (upper triangular elements in Fig. 1.9) are positive quantities,

since each step in path I implies a relaxation of the system that leads to lower en-

ergies. On the other hand, the first step in path II is destabilizing (−ELudeña
NDC < 0)

because the HF wavefunction does not bear the HF optimal density anymore. In-

stead, describing the system with the exact wavefunction makes −ELudeña
DC positive,

and is the stabilizing step of path II.

Path II is inspired by the definitions proposed by Gross, Petersilka, and Grabo

[10], and the ones by Görling and Ernzerhof, all of them in the framework of KS

DFT [218]. Valderrama et al. defined the nondynamic correlation energy in path

II as the sum of the concepts presented by the former authors. Their works at-

tempted to provide an actual comparison between electron correlation energies in
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KS DFT and wavefunction theory. In one hand, Görling and Ernzerhof compared

the energy arisen from the difference between the KS and the HF wavefunctions

yielding the correct electron density, ∆E = E[ΨHF, ρexact]−E[ΨKS, ρexact] [218]. On

the other side, Gross, Petersilka and Grabo discussed the different definitions for

Ec in wavefunction theory (which they name “quantum chemistry correlation en-

ergy”) and the one in the KS DFT framework. Whereas the uncorrelated energy for

the wavefunction theory definition is the same proposed by Löwdin, being the HF

solution obtained with the self-consistent HF orbitals, the uncorrelated energy in

the DFT framework is the exact KS solution. The difference between both electron

correlation definitions results in ∆ = E[ΨKS, ρexact]− E[ΨHF, ρHF] [10].

1.4.2 Electron correlation separation based on natural oc-

cupancies

In 2016, Ramos-Cordoba, Salvador and Matito presented an electron correlation

decomposition scheme in which dynamic and nondynamic correlation are separated

using solely NOccs [219]. This approach may be more convenient than an energetic

decomposition of electron correlation since it can be used in theoretical approaches

and obtain the correlation separation of other observables.

It has been mentioned throughout this thesis that the 2-PD is a quantity that

should contain all the electron correlation information of the system [115]. Eqs.

1.40 and 1.41 introduced in section 1.2.2 show that the HF 2-DM can be expressed

in terms of occupation numbers and, when NOccs from a correlated calculation are

used instead of the HF ones, the resulting 2-DM is the SD approximation to the

2-DM (Eq. 1.42). To use the same labeling appearing in the section 1.4.1, the SD

and HF 2-DM are referred as 2DSD ≡ 2DSD[1D] and 2DHF ≡ 2DSD[1DHF], where the

square brackets indicate that the 2-DM is a functional of the 1-DM.

Inspired by the energy-based decompositions previously introduced, more pre-

cisely by the second path presented by Valderrama, Ludeña and Handy, the authors

suggested a correlation decomposition in terms of the 2-PD in the NOrb basis. In

their work, they decompose the correlation 2-PD (Ckl
ij ) into two matrices [219],

Ckl
ij = Λkl

ij + Γklij , (1.85)
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being

Λkl
ij = 2Dkl,SD

ij − 2Dkl,HF
ij = (ninj − nHF

i nHF
j )(δikδjl − δilδjk); (1.86)

Γklij = 2Dkl
ij − 2Dkl,SD

ij = 2Dkl
ij − ninj(δikδjl − δilδjk). (1.87)

Λkl
ij is the difference between the SD and HF 2-PD and it reduces to a difference of

correlated and uncorrelated NOccs, since they share the same expression but use a

different ingredient. Since multireference systems (dominated by nondynamic cor-

relation) present large deviations of 0 and 1 in their NOccs, Λkl
ij will be significantly

large in such cases and practically zero when the system has a monodeterminantal

picture. Γklij depicts the difference between the exact and the SD approximation to

the pair density. Both 2-PD involve the same NOccs, but the expression to depict

the 2-PD is different. This definition is coincident with the one for the cumulant

matrix of the 2-DM, presented in Eq. 1.61 [124,125].

Figure 1.10: Schematic diagram of the correlation 2-DM Cklij decomposition to Λklij and Γklij com-

ponents to account for dynamic and nondynamic correlation, in terms of the 1-DM. Adapted from

Ref. [219].

The hypothesis of this framework is that large changes in NOccs are caused

by nondynamic correlation being present in a system, caused by the configurations

that mix strongly with the HF determinant in the CI wavefunction. It is then

expected that Λkl
ij and Γklij should account for nondynamic and dynamic correlation,

respectively. From a minimal-basis model, the authors proposed a set of correlation

indicators based on Eqs. 1.86 and 1.87 [219],

ID =
1

4

∑

σ,i

√
nσi (1− nσi )− 1

2

∑

σ,i

nσi (1− nσi ) , (1.88)
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IND =
1

2

∑

σ,i

nσi (1− nσi ) , (1.89)

and

IT = ID + IND =
1

4

∑

σ,j

√
nσi (1− nσi ), (1.90)

which provide simple measures of both correlation components and total correla-

tion in terms of NOccs and permit the evaluation of correlation for any type of

calculation. Note that IND corresponds to the deviation from idempotency of the

1-rDM [220]. Fig. 1.11 contains an adaptation of a 2-electron 2-orbital model that

shows that ID is larger than the nondynamic correlation indicator in extremelly

small NOcc values, but IND takes over as the NOcc increases. The maximum value

of IND is obtained when one electron is split between two orbitals, which gives a

maximum of nondynamic correlation.
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Figure 1.11: The dynamic ID (blue), nondynamic IND (red) and total IT (black) global electron

correlation indicators (Eqs. 1.88–1.90) for a homonuclear minimal-basis two-electron model in

singlet state, for different NOccs n. Adapted from Ref. [219].

These global indicators [219] were adapted to local indicators of electron cor-

relation [221]. By assuming a homogeneous contribution of the orbitals, these in-

dices provide measures of electron correlation in particular points in space. The

expressions for the global indicators (Eqs. 1.88–1.90) can be transformed into local

expressions by multiplication of the spin-natural orbitals [221]:

ID(r) =
1

4

∑

σ,i

√
nσi (1− nσi )− 1

2

∑

σ,i

nσi (1− nσi ) |χσi (r)|2, (1.91)

IND(r) =
1

2

∑

σ,i

nσi (1− nσi ) |χσi (r)|2, (1.92)
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IT(r) =
1

4

∑

σ,j

√
nσi (1− nσi )|χσi (r)|2. (1.93)

The integration of the local indicators over the space coordinates results into the

corresponding global indicator,
∫
IX(r)dr = IX, being IX any of the three indicators.
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Chapter 2

Objectives

This thesis is an extension to the work presented by Ramos-Cordoba, Salvador, and

Matito [219, 221], introduced in section 1.4.2, and also the rDMFT benchmarking

study of reference [136].

The motivation to continue working on the correlation decomposition relies on

the promising predictions obtained with both global and local correlation indica-

tors [219, 221]. On the other hand, there is a no comprehensive benchmarking of

rDMFT approximations in the literature that considers a qualitatively large set of

molecules and tests. The objectives of this thesis are separated into two principal

points, 1) the study of the correlated part of the 2-PD, its separation into two com-

ponents, and posterior analysis by range utilizing Coulomb holes, and 2) the study

and benchmark of approximate 2-DM within the rDMFT framework. Note that

the objectives of this thesis are connected, as the quantity that is divided into two

components is the same quantity that is approximated in rDMFT.

The first objective concerns the study of the correlated part of the 2-PD, ∆ρc2,

and the proposal of a correlation decomposition scheme that separates ∆ρc2 into two

components. This would be the first step to fulfill the first objective. The decom-

position to be presented in this thesis is based on the correlation decomposition

introduced in section 1.4.2. Such decomposition was simplified in order to reach an

expression in terms of NOccs and NOrbs [219,221]. Instead, in this thesis no simpli-

fication is made in order to provide an exact decomposition. This partition pretends

to analyze a property (the 2-PD) rather than a product quantity (the electronic en-

ergy). Whereas the energy is the direct output from a quantum chemical calculation,

the 2-PD is the natural ingredient to obtain the electron-electron repulsion. The

goal of the decomposition is to gather enough information of the correlation part

of the 2-PD and its correlation components in order to reproduce their behavior in
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physical models. The long-term goal of this project (of which this thesis represents

the first step) is to produce new exchange-correlation functionals for KS DFT. The

2-PD components, named ∆ρcI2 and ∆ρcII2 , are responsible for capturing dynamic

and nondyamic correlation in some extent, and mainly contain either long- or short-

range interactions, respectively. They are introduced and analyzed in Chapter 3, in

two articles, and discussed in Chapter 6.1.

The second step of the first objective of this thesis is to validate the 2-PD decom-

position by range-separating electron correlation. Coulomb holes are useful tools to

do this analysis since they provide a clear vision of the electron correlation effects

by range. Because intracule pair densities (IPDs) (from which Coulomb holes are

defined) are functionals of the 2-PD, the correlation decomposition can be applied

to Coulomb holes. This permits an analysis of ∆ρcII2 and ∆ρcI2 also by range. Dy-

namic correlation is mainly short-ranged in nature, whereas nondynamic correlation

is most important when electrons are largely separated (long-ranged), arising from

entanglement and orbital degeneracies emerging from molecular dissociations. Nev-

ertheless, nondynamic correlation can also stem from short-range interactions as

well generated by orbital degeneracies (consider the beryllium atom as an example).

Dynamic correlation can also induce important effects in long-range interactions due

to London dispersion forces. Therefore, this step pretends to validate whether the

cI and cII correlation components are capable of describing these short- and long-

range correlation effects, and determine their ability to account for nondynamic and

dynamic correlation. The analysis is carried out through molecular systems and

physical models. This point is treated together with the first one in the same chap-

ters of this thesis.

The third and last point to fulfill the fist objective involves the analysis of Lon-

don dispersion interactions. Because these interactions arise from long-range dy-

namic correlation, the long-range region of the correlation component responsible

for capturing dynamic correlation effects is evaluated. Special attention is put into

characterizing dispersion interactions in the IPD. An analytic study in the pertur-

bation theory framework is carried out in order to obtain a universal signature for

dispersion interactions, which is reminiscent of the well-known dispersion energy

decay with the interfragment distance R, Edisp ∝ R−6. This property of dispersion

interactions is also examined in the range-separation of the Coulomb hole. The mo-

tivation for this point is to find a property (other than the energy) that can provide

a connection with dispersion interactions. Because the IPD is a functional of the

2-PD, the dispersion condition can be linked with the 2-PD. Obtaining a dispersion
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condition for the 2-PD would provide with the ability to design new models that

could describe the correct decay of dispersion interactions with R. The assessment

of this objective is addressed in Chapter 4 and examined in Chapters 6.2 and 6.1.2.1.

The second main objective of this thesis is to provide a benchmark for a group

of approximations of the reduced density matrix functional theory (rDMFT) by

comparison with FCI references. The tests used to analyze the accuracy of the func-

tionals involve energetic predictions, chemical properties, and known conditions that

the structure of a 2-DM must fulfill. Some benchmark studies for rDMFT approx-

imations are already present in the literature, but most of the tests performed in

those works are based on energy predictions, and they do not consider a large list of

rDMFAs. The set of molecules in which the approximations are applied is also small

and, hence, we believe that this far there is no exhaustive benchmark for rDMFT

approximations in the literature. Chapter 5 in this thesis pretends to complement

these former studies through a set of 14 diatomic molecules and other systems to

measure the accuracy of 17 rDMFT approximations via tests that go beyond energy

benchmarks. Results are discussed in Chapter 6.3.

To sum up, the objectives of this thesis are:

1) To study of the correlated part of the pair density (2-PD).

1.1 To separate the correlated part of the 2-PD into two correlation compo-

nents.

1.2 To study the range-separation of the correlated part of the 2-PD and the

decomposed correlation components using intracule probability densities

(IPDs) and Coulomb holes. Validate the correlation decomposition.

1.3 To study dispersion interactions using the range-separation of the corre-

lation decomposition. Connect the IPD with dispersion interactions.

2) To provide an exhaustive rDMFT benchmark with molecules, evaluating the

predictive ability of chemical properties besides the energy, and analyzing the

expressions designed for the functionals.
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Chapter 3

The pair density-based correlation

decomposition of the Coulomb

hole

3.1 The separation of the cI and cII correlation

components in the Coulomb hole, I
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ABSTRACT: The correlation part of the pair density is separated into two
components, one of them being predominant at short electronic ranges and the
other at long ranges. The analysis of the intracular part of these components
permits to classify molecular systems according to the prevailing correlation:
dynamic or nondynamic. The study of the long-range asymptotics reveals the key
component of the pair density that is responsible for the description of London
dispersion forces and a universal decay with the interelectronic distance. The
natural range-separation, the identification of the dispersion forces, and the kind
of predominant correlation type that arise from this analysis are expected to be
important assets in the development of new electronic structure methods in wave
function, density, and reduced density-matrix functional theories.

Electron correlation being the Holy Grail of electronic
structure methods, it has been the subject of extended

analysis.1−14 The solution of quantum many-body problems
hinges on the type of correlation present in the system, and
one of the most practical classifications consists in the
separation between dynamic- and nondynamic-correlation-
including methods. Indeed, there are accurate methods to
study systems with one predominant correlation type, but
systems presenting both correlation types pose one of the
greatest current challenges in electronic structure theory.15−17

The attempt at taking the best of both worlds has led to a
resurgence of interest in hybrid schemes,18 merging methods
that recover different correlation types.19−21 Among hybrid
implementations, the most successful one is based on the range
separation of electron correlation,18,22,23 using a mixing
function to combine approximations that account for short-
range dynamic correlationsuch as density functional
approximationswith approaches providing correct long-
range asymptotics. The performance of these methods pivots
on the choice of the function combining the two approaches,
which provides a natural splitting of the Coulomb interaction
and thus the pair density.24 In range-separation approxima-
tions, the typical choice is the error function that, in turn,
depends on an attenuating parameter, which is both system-
and property-dependent.25,26 Even though the methods are
chosen according to their ability of recovering dynamic and
nondynamic correlation, the range separation of the pair
density has not been motivated by the correlation type present
in the system, risking double counting of electron correlation.

Thus far, there has been very few attempts to separate
dynamic and nondynamic correlation,2,4−9,13,27 most of them
based on energy calculations. The lack of a physically sound
separation of dynamic and nondynamic correlation precludes
individual treatment of these effects. We analyze the
decomposition of the pair density into three components:
the uncorrelated reference and two correlation terms. The
latter two behave differently with respect to large changes of
the first-order reduced density matrix (1-RDM), permitting the
identification of systems with prevalent dynamic or non-
dynamic correlation.2,6,7,11,12 Some of us have recently used a
similar strategy to obtain scalar11 and local12 measures of
dynamic and nondynamic electron correlation from a two-
electron model. The intracule of the correlation components of
the pair density yields a 2-fold separation of the Coulomb hole
in terms of correlation type and interelectronic range. These
components of the pair density display a simpler mathematical
form than the total pair density, one of them being dominant at
short ranges and one with prevailing long-range contributions.
This feature is particularly convenient for the design of energy
functionals in wave function, density, and density matrix
functional theories. As a result of this separation, we will clearly
identify the part of the pair density that is responsible for the
correct description of van der Waals interactions and unveil a
universal condition it should satisfy.28 To our knowledge, the
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latter is the only known condition of the pair density that can
be employed to design methods including van der Waals
interactions.
Theoretical Background. Let us consider the pair density

of an N-electron system described by the Ψ(1, ..., n) wave
function

∫ρ = − |Ψ |N N
1 2 1 n( , )

( 1)
2

d ... d ( , ..., )3 n2
2

(1)

where numerical variables (1, 2, ...) refer to space and spin
coordinates. Upon integration over its coordinates, the pair
density can be reduced to the intracule density, which only
depends on the interelectronic range separation, s

∫ρ ρ δ= −I s s r1 2( , ) d d ( , ) ( )1 22 2 12 (2)

where r12 is the Euclidean distance between the electrons at 1
and 2. The intracule density is the simplest function in terms of
which we can express the Coulomb interaction energy

∫ ρ[ ] =V I s
I s

s
d

( , )
ee

2
(3)

The electron correlation contents of the pair density can be
determined by the difference between the actual pair density
and an uncorrelated reference, which here we choose to be the
Hartree−Fock (HF) one

ρ ρ ρΔ = −1 2 1 2 1 2( , ) ( , ) ( , )2
c

2 2
HF

(4)

The intracule of this function is Coulson’s Coulomb hole29

∫ρ ρ δ= Δ = Δ −h s I s s r1 2( ) ( , ) d d ( , ) ( )1 2c 2
c

2
c

12 (5)

In order to split the correlation part of the pair density (eq
4), we employ an approximate pair density, the single-
determinant (SD) ansatz of the pair density1

ρ ρ ρ ρ ρ= − | |1 2 1 2 1 2( , , ) ( ) ( ) ( ; )2
SD

1 1 1 1
2

(6)

where ρ1(1; 2) is the 1-RDM and ρ1(1) ≡ ρ1(1; 1) is the
electron density. Substituting ρ1 by the HF 1-RDM in eq 6
yields the HF pair density, i.e.,

ρ ρ ρ=1 2 1 2( , ) ( , , )2
HF

2
SD

1
HF

(7)

which does not account for electron correlation. However,
ρ2
SD(ρ1, 1, 2) can be regarded as an approximation to the actual

pair density; an approximation that does not account for
dynamic correlation either at short-30 or at long-range.28 Figure
1 depicts the two paths of arriving at the exact ρ2(ρ1, 1, 2)
from ρ2

SD(ρ1
HF, 1, 2), either straightforwardly or through the

intermediate SD approximation. The latter path defines the
decomposition of the correlation part of the pair density

ρ ρ ρ ρ ρ
ρ ρ ρ ρ

ρ ρ

Δ = −
+ −

= Δ + Δ

1 2 1 2 1 2
1 2 1 2

1 2 1 2

( , ) ( ( , , ) ( , , ))
( ( , , ) ( , , ))

( , ) ( , )

2
c

2
SD

1 2
SD

1
HF

2 1 2
SD

1

2
c

2
cI II

(8)

Δρ2
cI(1, 2) will be large only if the HF 1-RDM and the actual

1-RDM are significantly different, and in such case, the system
will be affected by nondynamic correlation. Indeed, the wave
function of systems dominated by dynamic correlation can be
described by a large expansion of Slater determinants with one
of them (the HF one) having an expansion coefficient very
close to one.31 Therefore, these systems are characterized by a
1-RDM that retains the shape of the HF 1-RDM. Conversely,
the wave function of nondynamic-correlated systems can be
written as a shorter expansion of Slater determinants, but in
this case, the HF determinant has an expansion coefficient that
is qualitatively smaller than one.31 Since the 1-RDM is
determined by the square of the expansion coefficients, we
expect systems affected by nondynamic correlation to display
large Δρ2

cI(1, 2). Some authors have used similar arguments to
use the electron density (the diagonal part of the 1-RDM) as a
means to define dynamic and nondynamic correlation
energy.2,6 In this work, we prefer to employ the 1-RDM
because the cases of spin entanglement would not be regarded
as nondynamic correlation if only density differences were
considered. Indeed, in the stretched H2 molecule, the HF
electron density is qualitatively similar to the exact one,
whereas there are large and notorious differences between the
exact and the HF 1-RDMs.
The magnitude of Δρ2

cI(1, 2) can be thus regarded as a
measure of nondynamic correlation, but it can also be
interpreted as the correlation retrieved by using the actual 1-
RDM rather than the HF one to construct the pair density.
Conversely, Δρ2

cII(1, 2) does not depend on the differences
between ρ1

HF and ρ1, but on the validity of the SD
approximation. Note that Δρ2

cII coincides with the cumulant
of the pair density.14,32 The intracule functions of ρ2

SD(ρ1, 1, 2)
and the exact pair density, ρ2(ρ1, 1, 2), display the same
asymptotic behavior33 and, therefore, Δρ2

cII is dominated by the
short-range component. Interestingly, Δρ2

cI(1, 2) is the long-
range-dominant component of the correlated part of the pair
density (eq 4) because the HF and the exact 1-RDM can differ
substantially at large separations, for instance, in the presence
of entanglement. On the contrary, Δρ2

cI(1, 2) displays very
small values at small interelectronic distances mostly due to the
opposite-spin part of this term.
The current partition

ρ ρ ρ ρ= + Δ + Δ1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )2 2
HF

2
c

2
cI II (9)

provides a natural range separation of the pair density that can
be employed to split the Coulomb hole into two correlation
components

ρ ρ= + = Δ + Δh s h s h s I s I s( ) ( ) ( ) ( , ) ( , )c c c 2
c

2
c

I II
I II

(10)

naturally yielding a separation of electron correlation by range.
We will show that the decay of I(Δρ2

cII, R) is universal and that
it corresponds to a characteristic signature of London
dispersion forces (R being the distance between two atoms
in the molecule).

Figure 1. Correlation part of the pair density, Δρ2c, decomposed into
two components.
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Results and Discussion. In the following, we introduce
five selected examples that illustrate the effectiveness of the
current scheme to separate the correlation part of the
Coulomb hole at different ranges and how the long-range of
Δρ2

cII can be used to identify and characterize van der Waals
interactions.
Hydrogen Molecule.34 At the equilibrium geometry, hcII(s)

dominates over hcI(s) at all interelectronic distances s, as shown

in the left panel of Figure 2, whereas hcI(s) increases
importantly as the bond is stretched, in line with the expected
increase of nondynamic correlation. The most likely
distribution of the electron pair at large bond lengths
corresponds to one electron sitting at each atom, and
accordingly, the intracule density peaks around the bond-
length distance. At the dissociation limit, the long-range part of
the Coulomb hole is completely determined by hcI(s) because
one isolated electron cannot give rise to dynamic correlation.
Hence, the unrestricted HF calculation of H2 produces
Coulomb hole components that are not distinguishable from
FCI.35 A simple interpretation is also obtained from valence
bond theory: at large separations, the exact pair density is

entirely described by covalent components, whereas the HF
pair density contains equally contributing ionic and covalent
terms. hcII(s) removes the ionic contribution (i.e., removes
contributions keeping the electrons at short distances),
whereas hcI(s) adds the missing covalent contribution (i.e.,
adds contributions placing one electron in each atom); in
accord with the results plotted in the r.h.s. of Figure 2 (see also
the Supporting Information).

Hubbard Dimer. The Hubbard dimer is the simplest model
of interacting particles in a lattice and conceivably the most
studied model for testing methods at different correlation
regimes.36,37 We employ the one-dimension Hamiltonian of
the Hubbard model

∑ ∑ ρ ρ̂ = − ̂ ̂ + ̂ ̂ + ̂ ̂
μ ν σ

μσ νσ νσ μσ
μ

μα μβ
⟨ ⟩

† †H t c c c c U( )
, , (11)

where μ and ν denote the sites, σ is the spin polarization (α or
β), cμ̂σ

† and cμ̂σ are creation and annihilation operators of one
electron with spin σ in site μ, and ρ̂μσ stands for a one-particle
number operator with spin σ acting on site μ. t is the hopping
parameter, and U is the on-site interaction parameter. These

Figure 2. Total Coulomb hole (black), hcI(s) (red), and hcII(s) (blue) correlation components, and the intracule density (shadowed green region,
right y-axis) of the H2 molecule at 1.32 and 7.56 au bond lengths.

Figure 3. Coulomb hole (see Figure 2 for further details) of the two-site real-space Hubbard dimer for various U/t values.

Figure 4. Coulomb hole of He (l.h.s.) and hcI(s) for the isoelectronic series of He (r.h.s.).
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parameters control the electron correlation within the
Hubbard model, small (large) U/t inducing dynamic (non-
dynamic) correlation. Hence, large U/t values prompt the
electrons to distribute among the sites to minimize the electron
repulsion. Figure 3 presents plots of the Coulomb hole at
various values of U/t for the two-electron two-site Hubbard
model in real space.36 At low U/t values, the system is barely
affected by correlation, thus dynamic correlation dominates
(small hcI(s) and large hcII(s)) and the electron pairs distribute
equally between on-site and intersite components. As U/t
grows, nondynamic correlation dominates and hcI(s) becomes

more important, being the prevailing contribution between
sites.

He Series.34 The He isoelectronic series is perhaps the
simplest series of systems dominated by dynamic correction.38

As the atomic number Z increases, the electron correlation of
He(Z) tends to a constant and the exact electron density
barely distinguishes from the HF one. In Figure 4 we observe
that hcI(s) decreases with the atomic number Z, and hence, hcII
completely takes over.

N Hydrogen Atoms.34 The size consistency of our approach
and its ability to measure spin entanglement is examined in

Figure 5. Coulomb hole of N hydrogen atoms. D, D1, D2, and D3 indicate the different distances between the H atoms placed at the vertices of the
respective polyhedra. The bottom r.h.s. plot displays the minimal value of hcII (s), hcII

min, the part of electron−electron repulsion that corresponds to

Δρ2
cII (i.e., Vee

cII = ∫ ds hcII(s)/s), and the correlation energy (Ec), as a function of N.

Figure 6. Coulomb hole of the He2 molecule at two bond lengths (5.67 and 9.45 au, left and right). The inset plots reproduce the ones above on a
narrower interval.

Figure 7. hcII(R) (in blue) against the bond length (R) and the corresponding electron−electron van der Waals contributions (in green) for some
noble-gas dimers: He2, HeNe, and HeAr.
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Figure 5. We have plotted the Coulomb hole of the N-vertex
polyhedron resulting from N hydrogen atoms separated by 10
Å from the center of the polyhedron. At these large
separations, the hydrogen atoms only interact to each other
through entanglement, and this is the only term that remains in
the cumulant4 (i.e., in Δρ2

cII), which shows a linear behavior
with N (see Figure 5). As in previous systems, hcII is short
ranged and its contribution to the energy grows linearly with
N. These systems can be classified as nondynamic correlated
because hcI is mostly long ranged and peaks at the same
positions of the intracule density maxima. The planar D4h/D2h
potential energy surface of H4 has also been used for
discriminating between dynamic and nondynamic correlation39

and is given in the Supporting Information.
van der Waals (vdW) Interactions.34 Figure 6 includes

plots of the Coulomb hole of the helium dimer. hc compares
satisfactorily to earlier calculations.40 The dynamic long-range
interaction between the two noble-gas atoms is reflected by the
second peak of the intracule density, whereas the interaction of
the electron pair within each helium shows in the first peak.
Regardless of the bond length, hcII dominates, indicating that
the correlation is dynamic and mainly affects the electron pair
within each He. Unlike H2, there is very little long-range
nondynamic correlation in this system; however, at all
distances, the long-range part of hcII peaks around the bond-
length distance (see the inset plots of Figure 6). The plot in
Figure 7 presents hcII(R) against the bond length, R, revealing a
R−3 decay. It is a textbook fact that the pairwise vdW energy
decays like R−6.41 Using perturbation theory, some of us have
recently proved that the vdW contribution to hcII should

actually decay like R−3, the integration of hcII(s)/s over s
yielding a fraction of the Coulombic interaction (eq 3) due to
London dispersion forces and, therefore, decaying as R−6.28

Figure 7 includes plots for other noble-gas dimers, which also
satisfy this property. Most density functional theory (DFT)
practitioners add ad hoc empirical corrections to the energy for
vdW interactions, and therefore, they only shift the relative
energies of different conformers, yet the electronic structure of
the system is not completely considered.42 The present
separation into correlation regimes unveils the target part of
the pair density and the Coulomb hole, i.e., the long-range
component of hcII(s), which should be improved in order to
incorporate the description of London dispersion forces and
avoid the latter problem, thus opening a door to the accurate
account of these forces within DFT and reduced density matrix
functional theory (RDMFT).
In conclusion, eqs 8 and 9 represent a separation of the pair

density and the Coulomb hole into components dominated by
short- and long-range interactions. This result is expected to be
important in the development of new hybrid electronic
structure methods that can be employed in RDMFT21,43 and
other computational approaches. For instance, the HF
reference in Figure 1 can be replaced by the Kohn−Sham
system to adapt the present idea to DFT. It can be shown that
the exchange-correlation functional can be entirely written in
terms of the Kohn−Sham orbitals, Δρ2

cI and Δρ2
cII. Hence, a

template to construct density functional approximations, where
the correlation components are treated separately, arises. Such
possibility is already being explored in our laboratory.
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SUPPLEMENTARY COULOMB HOLES

The Hydrogen molecule
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FIG. S1. The total Coulomb hole (black), hcII (blue) and hcI (red) correlation components, and

the exact (FCI) intracule density (shadowed green region, right y-axis) of the H2 molecule at a)

1.32 , b) 2.83, c) 3.78, and d) 6.61 a.u.
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The Helium dimer
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FIG. S2. The total Coulomb hole (black), hcII (blue) and hcI (red) correlation components of the

He2 molecule at a) 5.67, b) 6.99, c) 8.13, and d) 9.45 a.u.. The inset plots reproduce the ones above

on a narrower interval. The green-shadowed region represents the exact (FCI) intracule density.
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The Hubbard model
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FIG. S3. The Coulomb hole (black), hcII (blue) and hcI (red) correlation components of the half-

filled two-site real-space Hubbard dimer for various U/t values. The green-shadowed region (right

y-axis) corresponds to the exact (FCI) intracule density.

3.1. THE SEPARATION OF THE CI AND CII CORRELATION
COMPONENTS IN THE COULOMB HOLE, I

61



The He series
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FIG. S4. The total Coulomb hole (black), hcII (blue) and hcI (red) correlation components, and the

exact (FCI) intracule density (shadowed green region, right y-axis) of the He isoelectronic series.
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N Hydrogen atoms
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FIG. S5. The Coulomb hole (black), hcII (blue) and hcI (red) correlation components of N = 2, 4, 6

and 8 hydrogen atoms, separated 10 Å from the geometric center of the polyhedra. The green-

shadowed region (right y-axis) corresponds to the exact (FCI) intracule density. D, D1, D2 and D3

indicate the different distances between the H atoms placed at the vertices of the polyhedra.
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∫
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FIG. S7. The Coulomb hole (black), hcII (blue) and hcI (red) correlation components of four

conformations of D4h/D2h H4, corresponding (from left to right and top to bottom) to R = 1.51

a.u. and θ = 0.39π, R = 1.51 a.u. and θ = π/2, R = 7.56 a.u. and θ = 0.39π, and R = 7.56

a.u. and θ = π/2, respectively. The green-shadowed region (right y-axis) corresponds to the exact

(FCI) intracule density.

The planar D4h/D2h potential energy surface (PES) of H4 [1] is determined by the distance

from one hydrogen to the center of mass R and the angle between the center of mass and

the two closest hydrogen atoms θ. This system is frequently used for discriminating different

correlation types [2–4], being the regime of the PES dominated by nondynamic correlation

characterized by large R or θ ≈ π/2, whereas the regime dominated by dynamic correlation

is present at small R and θ � π/2. The Coulomb hole contributions in the plots of Fig.

S7 comply with the expected correlation trends. Indeed, hcI dominates for the square D4h

structure at large R. Despite the complicated mathematical structure of the long-range

component of hc (s), it is completely reproduced by hcI (s), which remarkably only depends

on the 1-RDM.
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H2 MODEL

Let us analyze the contents of the pair density of the correlation components of the

electron correlation, hcI and hcII , in terms of ionic and covalent contributions. We are going

to use as a simple model H2 described with a minimal basis set, namely, a normalized 1s

orbital centered on each of the hydrogen atoms (χA(r) and χB(r)). One can construct two

orthonormal orbitals that are eigenfunctions of the Fock operator, a bonding

ϕ+(r) =
1√

2(1 + SAB)
(χA(r) + χB(r)), (1)

and an antibonding orbital

ϕ−(r) =
1√

2(1− SAB)
(χA(r)− χB(r)), (2)

where SAB is the overlap between atomic orbitals. The normalized HF ground state wave-

function is a Slater determinant built with the lower-in-energy-bonding molecular orbital

as

Φ0(1,2) =
1√
2
ϕ+(r1)ϕ+(r2) [α(ω1)β(ω2)− β(ω1)α(ω2)] , (3)

where 1 = {r1, ω1} refer to spatial and spin coordinates. Within this basis set, the exact (or

FCI) wavefunction can be written as a linear combination of the HF ground state and the

double excited Slater determinants

Ψ(1,2) = c0Φ0(1,2) + c1Φ1(1,2), (4)

where

c20 + c21 = 1, (5)

and

Φ1(1,2) =
1√
2
ϕ−(r1)ϕ−(r2) [α(ω1)β(ω2)− β(ω1)α(ω2)] . (6)

As a prototype of a system dominated by nondynamic correlation, we are going to study

this model at a large interatomic (R) distance. At this regime, the FCI solution is reached

when c0=−c1=
1√
2

. Moreover, the product χA(r)χB(r) tends to 0, and so does SAB.
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The exact pair density is written as

ρ2(r1, r2)|R→∞ =

∫ ∫
dω1dω2|Ψ(1,2)|2|R→∞

=
1

2
(|χA(r1)|2|χB(r2)|2 + |χB(r1)|2|χA(r2)|2)

(7)

containing only covalent terms as expected. The exact 1-RDM (needed to construct the

single-determinant approximation) is

ρ1(r
′
1; r1)|R→∞ =

∫ ∫
dω1dx2Ψ

∗(1′,2)Ψ(1,2)|ω′
1=ω1

= χ∗A(r′1)χA(r1) + χ∗B(r′1)χB(r1).

(8)

The HF pair density in terms of atomic orbitals at the strong correlation limit is

ρHF
2 (r1, r2)|R→∞ =

∫ ∫
dω1dω2|Φ0(1,2)|2|R→∞

=
1

4
[|χA(r1)|2|χA(r2)|2 + |χB(r1)|2|χB(r2)|2

+|χA(r1)|2|χB(r2)|2 + |χB(r1)|2|χA(r2)|2],

(9)

where the first two terms are the spurious ionic contributions and the last two correspond

to half the covalent terms obtained with the exact pair density. The single determinant pair

density is

ρSD2 (r1, r2)|R→∞ =
1

2
ρ1(r1)ρ1(r2)−

1

4
ρ1(r1; r2)ρ1(r2; r1)|R→∞

=
1

2
(|χA(r1)|2|χB(r2)|2 + |χB(r1)|2|χA(r2)|2)

+
1

4
(|χA(r1)|2|χA(r2)|2 + |χB(r1)|2|χB(r2)|2),

(10)

where the first two terms are covalent and the last two ionic. One can see that the covalent

contribution is equal to the exact one, indicating that a single determinant pair density is
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able to exactly describe the covalent (long-range in this case) contributions to the exact pair

density. On the other hand, the spurious ionic terms are equivalent to the HF ones.

We define a pure ionic and a covalent pair density for a two-electron system as

ρion2 (r1, r2) =
1

2
(|χA(r1)|2|χA(r2)|2 + |χB(r1)|2|χB(r2)|2)

(11)

ρcov2 (r1, r2) =
1

2
(|χA(r1)|2|χB(r2)|2 + |χB(r1)|2|χA(r2)|2).

(12)

The pair densities described above can be combined to define hcI and hcII from the exact

pair density. The pair density of the first type of correlation ∆ρcI2 is

∆ρcI2 (r1, r2)|R→∞ =
1

4
(|χA(r1)|2|χB(r2)|2 + |χB(r1)|2|χA(r2)|2)

=
1

2
ρcov2 (r1, r2).

(13)

∆ρcI2 (r1, r2) only contains covalent terms. By adding this fragment of the pair density to

the HF one, the exact description of the covalent terms is recovered. The pair density for

the cII type of correlation is then

∆ρcII2 (r1, r2)|R→∞ = −1

4
(|χA(r1)|2|χA(r2)|2 + |χB(r1)|2|χB(r2)|2)

= −1

2
ρion2 (r1, r2)

(14)

It contains ionic terms that will cancel out when added to the reference HF pair density.

Indeed, according to Fig. 2, ∆ρcII2 removes the ionic contribution (i.e., removes contributions

that keep the electrons at short distances), whereas the ∆ρcI2 adds the missing covalent

contribution (i.e., adds contributions that place one electron on each atom).
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Abstract

A range-separation of the Coulomb hole into two components, one of them being predom-

inant at short interelectronic separations (hcII ) and the other at long distances (hcI ), is exhaus-

tively analyzed throughout various examples that put forward the most relevant features of this

approach and how they can be used to develop efficient ways to capture electron correlation.

We show that hcI , which only depends on the first-order reduced density matrix, can be used

to identify molecules with a predominant nondynamic correlation regime, and differentiate be-

tween two types of nondynamic correlation, types A and B. Through the asymptotic properties

of the hole components, we explain how hcI can retrieve the long-range part of electron cor-

relation. We perform an exhaustive analysis of the hydrogen molecule in a minimal basis set,

dissecting the hole contributions into spin components. We also analyze the simplest molecule

presenting a dispersion interaction, and how hcII helps to identify it. The study of several

atoms in different spin states reveals that the Coulomb hole components permit to distinguish

clear correlation regimes that are not apparent from the whole Coulomb hole. The results of

†This paper is dedicated to Paul Geerlings on occasion of his 70th birthday.

3.2. THE SEPARATION OF THE CI AND CII CORRELATION
COMPONENTS IN THE COULOMB HOLE, I

70



this work hold the promise to aid in the development of new electronic structure methods that

efficiently capture electron correlation.

1 Introduction

In computational chemistry, the difference between the exact nonrelativistic electronic energy and

the Restricted Hartree–Fock (RHF) one is known as correlation energy.1 Even though the uncorre-

lated, self-consistent field (SCF) HF energy usually represents more than 98% of the total energy,

the remaining is crucial to describe the chemistry of atoms and molecules (dissociation energies,

reaction enthalpies, etcetera).2,3 The description of the quantum system with the HF method lacks

electron correlation, i.e., a correct account of the correlated motion of the electrons. This co-

nundrum is generally known as the many-body problem and it is one of main challenges in this

field.2,3 The study of electron correlation per se goes hand in hand with the development of elec-

tronic structure methods that do not bear a large computational cost.4–22

There exist many criteria to separate electron correlation, but the terminology involving non-

dynamic (also static)2,23,24 and dynamic2,24 correlation is regularly used, as electronic structure

methods are usually classified according to their ability to account for one of these types. Dynamic

correlation is universally present in systems with more than two electrons, as it describes the mo-

tion of charged particles avoiding each other due to the electronic repulsion. Hence, this type of

correlation increases with the number of electrons. A single-determinant picture along with a large

number of low-contributing configurations is usually sufficient to portray this contribution. It is

thus natural that the electron density displays very small changes with respect to the HF density.15,22

Due to its nature, dynamic correlation affects electrons that are close to each other (short-ranged),

but it is also responsible for non-covalent interactions such as the London dispersion forces (long-

ranged).25 Configuration interactions or coupled cluster with single and double excitations (CISD

or CCSD),26,27 Møller-Plesset second-order perturbation theory (MP2)28 and density functional ap-
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proximations (DFAs)6,29 are methods that account for a large amount of dynamic correlation. On

the other hand, nondynamic correlation is not universal, since it emerges when (near-)degeneracies

are present in the system. It is characteristic of bond stretching, polyradical structures, entangle-

ment, and high symmetries. The correct description of such correlation component requires a mix

of largely-contributing configurations besides of the HF one.30 Nondynamic correlation induces

considerable changes in the electron density, caused by the mix of highly-contributing configura-

tions in the CI vector.14–16,20–22 Complete active space SCF (CASSCF),31 density matrix renormal-

ization group (DMRG),32 and multi-configurational SCF (MCSCF)33,34 are methods that are able

to retrieve a fair amount of nondynamic correlation.

The ability to simultaneously tackle both types of correlation is present in very few elec-

tronic structure methods, such as the complete active space with second-order perturbation the-

ory (CASPT2),35,36 multireference configuration interactions (MRCI)37,38 or, most recently, the

adiabation-connection MCSCF (AC-MCSCF)39 and the ΔNO.40 Nevertheless, these methods are

far from exact and the scaling of their computational cost with the number of electrons in the

system represents a big drawback. Because of this, systems presenting both dynamic and nondy-

namic correlation types have become one of the greatest challenges in modern electronic structure

methods. Latterly, an increasing interest in hybrid schemes such as range-separated methods41,42

has appeared to confront the exposed problem. These methods aim to recover both correlation

types by treating short- and long-range interactions with two different methodologies, according to

their ability to recover one of the correlation components.41–51 Although range-separation hybrid

schemes provide a splitting of the pair density and the interelectronic coordinate, the separation is

not custom-built for the correlation type present in the system.

Some studies have suggested measures of quantifying dynamic and nondynamic correlation,8–19

some of them based on the correlation energy.14–19 As reported by Coleman,52 the use of electron-

pair distribution functions to study electron correlation must lead to a useful understanding of both
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short- and long-range interelectronic interactions. In line with the former statement, we have re-

cently proposed a general decomposition scheme to separate the correlation part of the pair density

into two components that permits the identification of systems with prevalent dynamic or nondy-

namic correlation.20–22 From this scheme, scalar20 and local21 measures of dynamic and nondy-

namic correlation have been developed. Finally, a range-separation of the Coulomb hole has been

introduced, providing the dominance of one component at short ranges (cII), and the other one (cI)

at long ranges.22

In the present work, the range separation of the Coulomb hole is exhaustively analyzed through-

out various examples that put forward the most relevant features of this approach and how they can

be used to develop efficient ways to capture electron correlation. First of all, we introduce the

range-separation of the Coulomb hole and its rationalization. Through the asymptotic properties

of the hole parts, we explain how the component based only on the first-order reduced density

matrix can retrieve the long-range part of electron correlation. Second, we perform an exhaustive

analysis of the hydrogen molecule in a minimal basis set, dissecting the hole contributions into

spin components. Third, we analyze the simplest molecule presenting a dispersion interaction,

and how one of the Coulomb hole components helps identifying it. This dispersion signature is

also identified in the remaining molecules of the manuscript, highlighting its universal character.

Afterwards, we analyze the Coulomb holes of several atoms in different spin states, finding that

the Coulomb hole components permit to distinguish clear correlation regimes that are not apparent

from the whole Coulomb hole. Finally, we analyze the two types of nondynamic correlation, types

A and B,11 and show that they can be both captured by the first component of the Coulomb hole.

The results of this work hold the promise to aid in the development of new electronic structure

methods that efficiently capture electron correlation. In particular, the models of the cII component

can be straightforwardly used in the reduced density matrix functional theory,53–56 although they

are not limited to this theory.
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2 Methodology

The pair density of a N-electron system described by a Ψ(1, . . . ,N ) wavefunction is

ρ2(1,2) = N(N − 1)
�

d3 . . . dN |Ψ(1, . . . ,N )|2, (1)

where we have assumed McWeeny’s normalization,57 which accounts for the number of elec-

tron pairs in the system, and the variables (1,2, . . .) refer to both space and spin coordinates,

1 ≡ �r1,σ1. The pair density contains information about the probability of finding electron 1 at

position and spin 1 and electron 2 at position and spin 2 when the remaining of N − 2 electrons are

placed anywhere. The analysis of the pair density is arduous since it depends on six space and two

spin variables. Conversely, the radial intracule density is a reduced form of the pair density that

only depends on the interelectronic distance or range separation, s, and still retains the necessary

information to calculate the electronic repulsion energy,

Vee =
1
2

�
ds

I(ρ2, s)
s
, (2)

being

I(ρ2, s) =
�

d1d2 ρ2(1,2)δ(s − r12), (3)

where r12 is the Euclidean distance between electrons 1 and 2, and δ(s−r12) is the Dirac delta. Eq 3

is the radial intracule density and it corresponds to the probability distribution of interelectronic

distances s between two electrons. It provides information about the electron-pair relative motion

within atoms and molecules. This distribution can also be obtained experimentally from X-ray

scattering cross-sections.58–61

Analogously to Löwdin’s definition of correlation energy,1 Coulson defined the correlated pair

density as the difference between the exact and an uncorrelated pair density, which was chosen to
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be the Hartree–Fock (HF) one,62

Δρc
2(1,2) = ρ2(1,2) − ρHF

2 (1,2). (4)

The intracule of the correlation pair densityΔρc
2(1,2) is known as Coulson’s Coulomb hole:63–65

hc (s) = I
�
Δρc

2, s
�
= I (ρ2, s) − I

�
ρHF

2 , s
�
. (5)

The Coulomb hole is thus a probability density difference that reflects the effect of switching

from the mean-field HF approximation, which underestimates the electronic repulsion, to a corre-

lated framework. This translates into an increase in the expected interelectronic distance vector,

�sHF� < �s�, caused by the correct account of the electronic repulsion (�s� =
�

I(s)sds).

We have introduced elsewhere20–22 a splitting of the correlated pair density, eq 4, using the

single-determinant approximation to the pair density,1

ρSD
2 (ρ1,1,2) = ρ(1)ρ(2) − |ρ1 (1; 2) |2, (6)

where ρ1 (1; 2) is the first-order reduced density matrix (1-RDM),

ρ1
�
1; 1�� =

�
d2 . . . dNΨ (1,2, . . . ,N )Ψ∗

�
1�,2, . . . ,N

�
, (7)

and its diagonal part, ρ (1) = ρ (1,1), is the electron density. The SD ansatz, eq 6, takes advantage

of the HF expression for the pair density but uses the actual 1-RDM to generate an approximation

to the pair density. Obviously, it returns the HF pair density when the HF 1-RDM is used, i.e.,

ρHF
2 (1,2) = ρSD

2

�
ρHF

1 ,1,2
�
. (8)

The SD approximation includes neither short-66 nor long-range67 dynamic correlation, that is, it
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only accounts for nondynamic correlation. Even though it cannot be guaranteed that all nondy-

namic correlation in the system is accounted for, it is legitimate to claim that the SD pair den-

sity, eq 6, includes some extent of it. In fact, the SD approximation captures most long-range

electron correlation effects and usually presents a very small short-range contribution, except for

systems with type B nondynamic correlation11 that arises due to the relative degeneracy of its

frontier orbitals (vide infra). Unlike the HF pair density, the SD approximation is in general not N-

representable by construction, i.e., this approximate pair density does not necessarily correspond to

an N-particle fermionic wavefunction. The violation of the N-representability conditions may lead

to spurious energies68 and affect density matrix properties as the trace, Tr
�
ρSD

2

�
, or the positivity

of its eigenvalues, among others.66,69–73 Despite it is not N-representable, ρSD
2 (1,2) is simply used

in this context as a mathematical approximation to seize nondynamic correlation. Indeed, we have

used it to separate eq 4 into two correlation contributions, ΔρcI
2 and ΔρcII

2 ,22

ΔρcI
2 (1,2) = ρSD

2 (ρ1,1,2) − ρSD
2

�
ρHF

1 ,1,2
�

(9)

ΔρcII
2 (1,2) = ρ2 (ρ1,1,2) − ρSD

2 (ρ1,1,2) , (10)

which, along with the HF pair density, recover the exact pair density:

ρ2 (1,2) = ρHF
2 (1,2) + ΔρcI

2 (1,2) + ΔρcII
2 (1,2) . (11)

The partition of the pair density into the HF reference plus the cI component and the cII part is

known as the Lieb partitioning of the pair density.74–76 ΔρcII
2 (1,2) is also known as the cumulant

of the density matrix, which captures the correlation lacking in the 2-RDM.77,78 ΔρcI
2 (1,2) only

depends on the actual 1-RDM and the HF one. ΔρcI
2 (1,2) is actually a measure of the dissimilar-

ity between the latter two matrices. Systems with nondynamic correlation present larger changes

on the electron density with respect to HF than systems with dynamic correlation.15 Therefore,

ΔρcI
2 (1,2) can be also regarded as a function measuring nondynamic correlation. In this sense,

the information about dynamic correlation is expected to be fully contained in ΔρcII
2 (1,2), which
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might also include nondynamic correlation to some extent.

A more explicit expression for eqs 9 and 10 can be casted:

ΔρcI
2 (1,2) = |ρHF

1 (1; 2) |2 − |ρ1 (1; 2) |2 + ρ(1)ρ(2) − ρHF(1)ρHF(2) (12)

ΔρcII
2 (1,2) = ρ2 (1,2) − ρ(1)ρ(2) + |ρ1 (1; 2) |2. (13)

If we employ the correlation components of the pair density, we can split the Coulomb hole into

two hole components,

hc (s) = hcI (s) + hcII (s) = I
�
ΔρcI

2 , s
�
+ I

�
ΔρcII

2 , s
�
, (14)

which permit the analysis of electron correlation in terms of interelectronic ranges.22 The asymp-

totic properties of ΔρcI
2 (1,2) and ΔρcII

2 (1,2) determine the long-range behavior of the Coulomb

hole components. The first important property of hcI (s) and hcII (s) is that they vanish for very large

values of s as long as such large value of s corresponds to points 1 or 2 in ΔρcI
2 (1,2) and ΔρcII

2 (1,2)

that are far from the molecule. Since both the HF and the exact pair density are zero for such points,

one only needs to prove the same for the SD approximation. The latter is formed by two terms, the

first one involving the product of two densities and, therefore, it vanishes in regions far from the

molecule. The long-range asymptotics of the 1-RDM79 also guarantees that the second term, in-

cluding the square of a 1-RDM, vanishes under this condition. Second, we study the behavior of the

two Coulomb hole components at short ranges. By virtue of the Pauli principle, the same-spin com-

ponent of ΔρcI
2 (1,2) and ΔρcII

2 (1,2) vanishes when r12 = 0. Hence, one can easily prove that at the

electronic coalescence points, ΔρcI
2
�
�r1,�r1

�
= 2

�
ρα(�r1)ρβ(�r1) − ρHF,α(�r1)ρHF,β(�r1)

�
. Since HF under-

estimates the electron-nucleus cusp, this quantity is greater than zero in the vicinity of the nuclei.

As a matter of fact, our experience indicates that hcI (s) is usually greater than zero.1 Conversely,

1A remarkable exception to this rule occurs in molecules that are dissociated by HF into fragments with a wrong
number of electrons. See the last two examples given in this paper.
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hcII (s) is usually negative at short ranges because ΔρcII
2

�
�r1,�r1

�
= 2

�
ρ
αβ
2

�
�r1,�r1

� − ρα(r1)ρβ(r1)
�

is

negative at points close to the nuclei, which are the points that contribute the most to ΔρcII
2

�
�r1,�r1

�
.

In the following, we analyze ΔρcII
2 (1,2) at long ranges to prove its short-ranged character. The

long-range contributions come mostly from points which are very close to nuclei, typically points

that are centered into two different atoms. For the sake of simplicity, let us choose the hydrogen

molecule dissociation to illustrate this point. We can take the leading term in the expansion of

ΔρcII
2 (1,2) around the two electron-nucleus cusps, ΔρcII

2 (RH,RH�) = ρ2(RH,RH�) − ρSD
2 (RH,RH�),

which we have fully developed in the Supporting Information. In Figure 1, we represent the ratio

ρSD
2 (RH,RH�)/ρ2(RH,RH�) against the interatomic separation RHH� . The ratio is always greater than

0.8 and easily achieves 1.0 as the bond stretches, indicating that ΔρcII
2 (RH,RH�) quickly vanishes

at long distances and, therefore, ΔρcII
2 (1,2) is expected to vanish quickly with r12 and, hence, be

predominantly short-ranged.
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Figure 1: ρSD
2 (RH,RH�)/ρ2(RH,RH�) against the interatomic separation RHH� for the minimal basis

set calculation of the hydrogen molecule.

Finally, let us mention that the evaluation of the cII component of the Coulomb hole at the

interfragment separation distance R, hcII (R), decays like R−3 when R → ∞.67 This dependency is

connected with the well-known R−6 decay of the van der Waals (vdW) dispersion energy. hcII (s)

actually presents a narrow positive region at interelectronic distances around R that reflects the

binding character of dispersion interactions, as we shall see in the examples covered in the Results

section. Because dispersion interactions are weak in nature, the region in hcII is proportionally
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small.

3 Computational Details

Full configuration interactions (FCI) calculations have been run with a modified version of Knowles

and Handy’s program.80,81 The Dunning’s augmented correlation-consistent double zeta basis set

(aug-cc-pVDZ)82,83 is used, unless otherwise specified. For the Be isoelectronic series we have

used the basis sets developed in a previous paper.20,81 The density matrices and the intracule prob-

ability distributions have been obtained with the in-house DMN84 and RHO2−OPS85 codes, re-

spectively, the latter using the algorithm of Cioslowski and Liu.86

4 Results and discussion

4.1 H2 in minimal basis

Due to its simplicity, H2 in a minimal basis (STO-3G)87 becomes a perfect model to understand

the partition of the Coulomb hole. Let us consider the equilibrium and a stretched geometry. In

both cases, the total Coulomb hole is negative at the short range, indicating that HF overestimates

the number of electron pairs at short interelectronic distances (see Figure 2). The hole of H2 at

equilibrium becomes positive for values of s larger than the bond length, as a consequence of

HF’s underestimation of number of electrons pairs at these interelectronic distances. The cI part of

the hole is positive and rather small, whereas cII accounts for almost the entire shape of the total

Coulomb hole. This is a clear indication that the role of nondynamic correlation is small at equi-

librium. At the stretched geometry, the magnitude of the Coulomb hole is considerably larger and

the maximum of the hole coincides with maximum of the intracule of the pair density. In this case,

HF does a worse job in describing the distribution of electron pairs, providing even larger errors

on both the short- and long-range components of the Coulomb hole. As a result of the separability
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problem, which originates from the impossibility to separate two electrons occupying the same

orbital on a restricted single-determinant wavefunction,2 HF clearly underestimates the number of

electrons pairs formed at large electron-electron separations and overestimates the number of pairs

formed at short separations (see Figure 3). Interestingly, the two components of the Coulomb hole

provide a clear-cut separation of both phenomena: cI corresponds to the electron pairs missed by

HF at long ranges and cII corrects the overestimation of electron pairing at short range. Since the

Coulomb hole is actually the correction to HF’s two-electron distribution, its energetic contribu-

tion to the total energy can be regarded as the correction to the HF electron-electron repulsion.

In this sense, both hole components contribute to the energy correction. However, the cI contri-

bution is small and comes entirely from the short-range part (which is not apparent in Figure 2,

unless we plot hcI (s)/s) because hcI (s)/s tends to zero for large s as we reach the dissociation limit.

Conversely, other properties based on the pair density, such as the covariance of the electron pop-

ulations of the two atoms,88 are affected by the value of cI at all ranges and, therefore, the correct

account of hcI at short ranges would not be enough.
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Figure 2: Coulomb hole (black), hcI (s) (red) and hcII (s) (blue) correlation components, and the
intracule density (shadowed green region, right y-axis) of H2 calculated with STO-3G basis set at
the equilibrium distance (1.39 a.u. bond distance) and 7.56 a.u. bond distance.

Let us now dissect the hole and its components into spin contributions for the stretched ge-

ometry (see Figure 4). The ground state of H2 has one electron of each spin, thus the same-spin
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Figure 3: The intracule probability densities of H2 at R = 7.56 a.u. bond distance calculated
with the STO-3G basis set. Top: the exact (filled black) and the Hartree–Fock (dashed orange)
intracules. Bot: the opposite- (filled blue) and same-spin (dashed red) components of the Single-
Determinant approximation intracule. The filling has been included as a visualization aid.
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contribution of the Coulomb hole is zero, hααc (s) = 0. However, the same-spin contribution of

the correlation components of the Coulomb hole, hααcI
(s) and hααcII

(s), is not zero. This reveals that

the Coulomb hole components do not have any physical meaning; they are simply mathematical

objects that are defined for convenience. Indeed, the so-defined hcI (s) of H2 at dissociation arises

uniquely from hααcI
(s), which completely reproduces the long-range behavior of the total Coulomb

hole. Conversely, hαβcI (s) is very small by definition, because neither HF nor SD pair densities ex-

plicitly introduce opposite-spin correlation and the difference between HF and the exact density

is expected to be small (in the present case, where we employ a minimal basis set, the density

difference is zero in the limit of H2 dissociation). The long-range opposite-spin correlation is indi-

rectly introduced in the cI component through the addition of the hααcI
(s) contribution. Obviously,

for systems of only one alpha electron, hααcI
(s) = −hααcII

(s) and, therefore, hααcII
(s) is compensating for

the long-range contribution of hαβcII (s), making hcII(s) short-ranged. In other words, hcI (s) captures

the long-range component of the Coulomb hole through the intracule of ρSD,αα
2 (1,2). In particular,

the latter contributes a quadratic term on r12 at short ranges and its long-range contribution is dom-

inated by the ρα(1)ρα(2) term in ρSD,αα
2 (1,2). Hence, as first approximation to the long-range part

of ΔρcI
2 (1,2) one could take ρα(1)ρα(2) + ρβ(1)ρβ(2), which captures the long-range asymptotics

of the Coulomb hole.

4.2 H2 triplet: dispersion interactions

The triplet state of H2 (3Σ+u ) is solely composed of two electrons with the same spin and constitutes

probably the simplest model to study dispersion interactions.89 In contrast to the ground state sin-

glet (1Σ+u ), the triplet state 3Σ+u (with spin projection either Ms = 1 or Ms = −1) is qualitatively well

described by the HF configuration at any interatomic distance and bears the correct dissociation.90

Indeed, compared to the singlet, the Coulomb hole is very small (see the left y-axis in Figure 5).

This case does not present electron entanglement, therefore, nondynamic correlation does not arise

when the two fragments are separated.
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Figure 5: Coulomb hole (black), hcI (s) (red) and hcII(s) (blue) correlation components, and the
intracule density (shadowed green region, right y-axis) of the 3Σ+u state of H2 molecule at 8.18
(left) and 19.84 a.u. (right) of bond distance.

Since we have employed a basis set including p orbitals, long-range dispersion interactions

are taken into account.91 Hence, the only peak present in the plots corresponds to dispersion in-

teractions, i.e. dynamic correlation and, thus, it is captured by hcII(s).67 hcII(s) peaks around the

interatomic separation, RHH� , and displays a shape that indicates that HF underestimates the num-

ber of electrons pairs that are separated RHH� , which are placed at shorter and longer distances. On

the other hand, there is almost no hcI(s) contribution at equilibrium, and it is completely zero at

the stretched geometry. The reason stems from the fact that ρSD
2 (1,2) is very close to ρHF

2 (1,2)

due to the very small contribution of the electron correlation to the changes of the density or the

first-order density. As we have recently proved,22,67 dispersion interactions are characterized by a

universal feature: hcII(RHH�) decays as R−3
HH� for large RHH� .

4.3 He-Ne atomic series.

Since correlation increases with the number of electrons, N, the Coulomb hole dimension is ex-

pected to increase with the atomic number, Z. The magnitude of the hole increases and shrinks with

Z (�s� decreases due to larger attractive nucleus potential); however, this increase is not monotonic

(see the plot for hc in Figure S4). The splitting of the hole into the two correlation components
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reveals that hcII (s) (which includes the dynamic correlation effects of the hole) presents a system-

atic growth with Z (see the magnitude increase in the top plot of Figure 6). Instead, hcI (s) reveals

characteristic shapes according to the nature of each atom, in agreement with the expected nondy-

namic correlation behavior in these atoms (bottom plot in Figure 6).
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Figure 6: hcII (top) and hcI (bot) correlation components of the Coulomb hole of the He-Ne atomic
series in their lowest-lying multiplicities.

We have studied different multiplicities for carbon, nitrogen and oxygen: their lowest-lying

states (highest spin multiplicity) and the states with the lowest multiplicity. Their holes are com-

piled in Figure 7. The most outstanding feature is that the Coulomb hole of all the atoms looks

practically identical regardless the multiplicity and, therefore, one expects a similar correlation

contribution to the electron-electron repulsion. Hence, a mere evaluation on the shape of the

Coulomb hole does not provide insight about how electron correlation changes in different multi-

plicity states. However, the Coulomb hole components provide more information about electron

correlation, since hcI (s) and hcII(s) have different shapes according to the spin state.
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Figure 7: Coulomb hole hc(s), hcI (s) and hcII(s) correlation components of carbon, nitrogen and
oxygen in both their ground state (black, red and blue, respectively) and minimum multiplicity
state (gray, orange and turquoise).
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More precisely, each state presents a characteristic profile, independently of the atom con-

sidered. In the ground states (highest spin multiplicities), both cI and cII components present the

conventional hole shape, being negative at short interelectronic distances and positive at large ones.

hcII is, in general, larger than hcI and both increase systematically with the number of electrons, N

(see Figure 7), in line with the fact that the HF description becomes less accurate as N increases

in this set of atoms. Conversely, the atoms in their lowest spin multiplicity present mostly positive

hcI and short-ranged negative hcII .
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Figure 8: The Coulomb hole, hc(s), and its correlation components, hcI (s) and hcII(s), (left column),
their same-spin contributions to the Coulomb hole (middle column), and opposite-spin contribu-
tions (right column) for singlet state carbon (top row) and the triplet, ground state (bottom row).

The reason behind this characteristic profiles is explored through the spin decomposition of the

holes. We have used the carbon atom as a representative example of these three atoms. As we

can see in Figure 8, the spin components of the Coulomb hole present similar profiles in singlet

carbon (C(1S)) and singlet H2 (compare to Figure 4). The shape of the Coulomb hole is mostly

given by the opposite-spin hcII (s) component and the same-spin components are more important in

the description of the singlet than in the triplet. The latter feature can be explained from the nature

of ραα,SD
2 (1,2), which contributes to hααcI

(s). Since hααcI
(s) is greater than zero, its magnitude can be

related to the inability of ραα,SD
2 (1,2) to reproduce the number of electron pairs of the same spin
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upon integration over 1 and 2. The larger the electron correlation effects on the first-order density,

the larger the deviation from the number of electron pairs of the same spin.92 Therefore, singlet

carbon, which is much more affected by nondynamic correlation, presents larger values of hααcI
(s)

and, since the total Coulomb hole is mostly given by the opposite-spin component, hααcII
(s) will be

large and (at least partially) compensate for hααcI
(s) (see Figure 8). In Table 1, it is shown that the

trace deviation of the like-spin SD pair density is larger in the singlet than in the triplet.

Table 1: Same-spin pair-density traces for Ne, the singlet and triplet states of carbon atom.
Tr

�
ραα2 (1,2)

�
= Nα (Nα − 1).

Ne C(3P) C(1S)

Tr
�
ραα2 (1,2)

�
20.00 7.00 6.00

Tr
�
ραα,SD

2 (1,2)
�

20.06 7.11 6.59

4.4 The Be2 Coulomb hole

The description of both Be atom and its dimer is very sensitive to the level of theory and the quality

of the basis set employed93 (see also Supporting Information, where we follow a previous strat-

egy81,94 to analyze the effect of the basis set). Due to the well-known near-degeneracy of 2s and 2p

orbitals in Be, the binding of both fragments and, in general, the potential energy curve (PEC) of

Be2 has been the subject of study of both experimentalists and computational chemists alike. One

of the most intriguing features of the PEC of Be2 is a change of slope that generates two potential

minima, one corresponding to the equilibrium geometry at 4.72 a.u., and the second one at twice

the equilibrium distance. Because of this double well, a single-reference method with a basis set

that includes neither d nor f functions usually gives the second geometry as the equilibrium one, or

even a repulsive, non-binding curve.95–97 In our study, we have run a frozen-core full configuration

interactions (FCI) calculation with the aug-cc-pVTZ basis set to study the Coulomb hole. It has

been shown elsewhere96 that the core electrons do not play an important role in the electronic de-

scription of Be2 because the triple and quadruple excitations of the valence electrons are the ones
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responsible for most of the electron correlation.

Figure 9 contains the Coulomb holes of two geometries of Be2. Two interesting features of hc(s)

are the presence of a small bump around the hole evaluated at the interatomic distance, hc(s = R),

and a shoulder at the small s region. The latter is connected with lack of correlation of the core

electrons (compare to Figure S2 and see Ref. 94 for a discussion of the effect of core electrons

in the Coulomb hole). For both geometries, hcI (s) takes large numbers due to the nondynamic

correlation arisen from the near-degeneracy between the 2s and 2p orbitals of beryllium atom; this

multireference character is preserved in the dimer. It has actually been reported that the valence

molecular orbitals 3σg, and 3σu, which arise from linear combinations of 2s and 2p, show signif-

icant orbital occupation numbers and, hence, should be considered in the calculation.96,97 Indeed,

the FCI occupation numbers of 3σg and 3σu are 0.0589 at R = 24.57 a.u.. Conversely, since the

2σ orbitals are completely occupied in the HF description, it cannot provide an accurate 1-RDM

at this stretched geometry and, therefore, ΔρcI
2 (1,2) is large. Certainly, the wrong dissociating

description provided by HF, plus the strong multireference character of the dissociated Be frag-

ments, makes the HF 1-RDM a very poor reference. The long-range part of the Coulomb hole of

stretched Be2 presents a maximum that belongs to hcI(s), caused by the presence of the valence

electrons localized near their respective nuclei. The long-range part of hcII (s) in stretched Be2

presents a minuscule yet positive area as a result of dispersion interactions.

The most remarkable feature of the Coulomb hole splitting of this molecule is the dominance

of both types of correlation at short range. In most of the cases studied thus far, the short-range

part of the Coulomb hole has always been dominated by hcII(s), and it defined the shape of the

short-range part of the total hole hc(s). Instead, the shape of the short-range part of the total hole

in Be2 at the equilibrium and stretched geometries is molded by both correlation contributions.
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Figure 9: Coulomb hole (black), hcI (s) (red) and hcII(s) (blue) correlation components, and the
intracule density (shadowed green region, right y-axis) of the Be2 molecule at 4.72 a.u. (left) and
24.57 a.u. (right) bond lenghts.

4.5 Types A and B of nondynamic correlation: Be(Z) and H2

Hollett and Gill recognized two types of nondynamic correlation that are classified according to

the ability of the unrestricted Hartree–Fock (UHF) method to capture them.11 The first type, type

A, arises from the absolute near degeneracies, for example those that occur when a homolytic dis-

sociation takes place, as in the stretching of a diatomic molecule. As the interatomic separation

distance R increases, the energy gap (Δ�gap) between the highest occupied and lowest unoccupied

molecular orbitals (HOMO and LUMO, respectively) becomes smaller until it turns zero and such

orbitals become degenerate. Certainly, RHF cannot describe the localization of the electrons at

each nucleus, whereas the unrestricted formalism succeeds in doing so by getting rid of the ionic

description. The second type, named type B, arises in the presence of relative near-degeneracies.

In the Be isoelectronic series, the HOMO-LUMO gap widens as the effective charge Z increases.

However, the difference between gap increments, Δ
�
Δ�gap

�
, remains constant. In this scenario,

UHF is not able to portray the nondynamic correlation in such molecules and multireference meth-

ods are required for an accurate description. Identifying both correlation types, A and B, is a

challenging test for correlation indicators.20 In the present section, we study whether correlation

types A and B can be detected by hcI(s). Namely, we analyze a typical case of type B correlation,

the isoelectronic series of Be, Be(Z) with Z = 3–8, and the dissociated and equilibrium geometries
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of H2 as an example of type A correlation.

In the literature, there exist many studies about the consistency and convergence of basis sets

using the Be atom due to the difficulty to correctly reproduce short-range interactions in this sys-

tem.95,98 We have optimized an even-tempered basis set of 10 s, p and d functions to perform the

calculations of Be(Z). Information about the optimization is provided in the Supporting Informa-

tion.

It has been demonstrated elsewhere that the correlation energy in Be grows linearly with Z

due to the 2s − 2p near-degeneracy.99 Consequently, one would expect that the energy difference

between UHF and RHF, ΔE, increases with Z. Instead, Hollet and Gill demonstrated the contrary

in their work: the molecules present a triplet instability and UHF can describe nondynamic cor-

relation from Z = 3.0 to Z = 4.25, yielding lower total energies with respect to RHF. Conversely,

the fraction of energy recovered by UHF decreases as Z increases and the UHF description in

5 ≤ Z ≤ 8 is actually equivalent to the RHF (see Table 2). The HOMO-LUMO gap widens with

the effective charge Z, but the difference between gaps, Δ
�
Δ�gap

�
, remains constant indicating a

linear growth of the gap.

Table 2: The Restricted Hartree–Fock energy, Unrestricted Hartree–Fock energy, their energy dif-
ference, the spin contamination from the UHF calculation, the HOMO and LUMO energies and
their difference, and the difference between energy gaps for Be-like ions with 3 ≤ Z ≤ 8.

Z ERHF EUHF ΔE �S 2�UHF �HOMO �LUMO Δ�gap Δ
�
Δ�gap

�

3 -7.38012 -7.39086 -0.01074 0.7132 0.04521 0.02639 0.21864 0.15874
4 -14.57022 -14.57059 -0.00036 0.1378 -0.31300 0.06438 0.37738 0.22385
5 -24.23339 -24.23339 0.00000 0.0000 -0.87412 -0.27289 0.60123 0.22636
6 -36.39601 -36.39601 0.00000 0.0000 -1.69410 -0.86651 0.82759 0.22368
7 -57.07217 -57.07217 0.00000 0.0000 -2.76685 -1.71558 1.05127 0.21915
8 -68.22939 -68.22939 0.00000 0.0000 -4.08835 -2.81793 1.27042 -

Figure 10 contains the hcI (s) contribution for Be-like ions with 3 ≤ Z ≤ 6. In accordance
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to the facts summarized in Table 2 and in Ref. 11, the UHF and RHF holes for Z = 5 and 6 are

indistinguishable, as the UHF calculation bears the restricted solution. Instead, the UHF and RHF

holes for the Be atom are quite similar, and for Z = 3 both descriptions are no longer equivalent.

Figure S3 of the Supporting Information provides the Coulomb hole decomposition of a UHF

calculation of the H2 with a minimal basis set. The latter is barely indistinguishable from the FCI

counterpart (Figure 2), indicating that hcI (s) accounts also for type A correlation. In this sense,

hcI (s) can describe nondynamic correlation, regardless of its type.

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 0  2  4  6  8  10  12  14

h
c

I (
s
)

s (a.u.)

Z = 4

Z = 5

Z = 6

Z = 3

RHF
UHF
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4.6 C3v H4

We considered the PEC of H4 in the C3v symmetry point group, being the coordinate the distance

between the axial H (Hax hereinafter) and the equatorial plane where the rest of H are located,

as it is illustrated in Figure 11.100–106 In this study, we keep the distance between the equatorial

hydrogens (labeled as RHΔ in Figure 11) fixed at 1.77 a.u.104 and consider the lowest-lying states.
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Figure 11: Graphical representation of H4 at the C3v symmetry point group, where the position of
the axial hydrogen (Hax) through the axial axis R (marked as green) represents the PEC analyzed.
We keep rHΔ fixed at 1.77 a.u. bond distance. R = 0 when Hax is at the equatorial plane.

The FCI potential energy curve (PEC) presents an intersystem crossing around R = 4.50 a.u.

from S0 to state S1 (see Figure 12). At the S0 state, the system is described as two interacting H2

molecules, and the increase of R causes one of these molecules to dissociate, leaving H+3 in the

equatorial plane and a H−, Hax, separated from it. The HF description of S 0 at the ground state

is dominant in the CI vector, being the largest occupation numbers of the natural orbitals 1.957

and 1.936. Conversely, at R = 28.35 a.u. (S1), the CI vector is composed by at least four highly

contributing configurations, and the natural occupations are 1.954, 1.000, and 0.992, the 1.000 oc-

cupation corresponding to Hax.
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Figure 12: Potential energy curves (PEC) of H4 at the C3v symmetry point group, where the coor-
dinate axis represents the separation of the axial hydrogen Hax from the plane. A crossing from S0

to S1 takes place at 4.27 a.u.
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The magnitudes of the Coulomb holes of equilibrium and dissociated geometries reflect the

changes in the CI vector, where the S1 state is more correlated than S0. The correlation contribu-

tions depicted in Figure 13 show that hcII(s) is prevalent at the equilibrium geometry and defines

the shape of the Coulomb hole. At the stretched geometry, however, the short-range part of the

Coulomb hole is dominated by hcI(s), mainly caused by the multireference description of the S1

state. hcII(s) retains a simple shape and presents a peak at this geometry caused by the long-range

dispersion interaction between Hax and the rest of hydrogens in the plane, which is captured by

hcII(s). hcI(s) at the stretched geometry presents two features we have not seen thus far in the first

component of the Coulomb hole: it has a very large value at short-ranges and it shows impor-

tant negative values at long range. These uncommon characteristics of the first component of the

Coulomb hole put forward the very deficient description of HF, which does not dissociate into

fragments with an integer number of electrons. If HF would dissociate into the correct number of

electrons for each fragment, the shape of hcI(s) would not show these features (compare to Fig-

ure S6). The large positive short-range part of hcI(s) reflects the excess of electrons that HF locates

in the H3 plane. HF also locates less than one electron in Hax, resulting in the negative long-range

part of hcI(s).
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Figure 13: Coulomb hole (black), hcI (s) (red) and hcII(s) (blue) correlation components, and the
intracule density (shadowed green region, right y-axis) of H4 molecule at the C3v symmetry point
group with fixed rHΔ . Hax is placed at (left) R = 3.50 a.u. (right) and R = 28.35 a.u. from the
equatorial plane (see Figure 11 for details).
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4.7 LiH and the harpoon mechanism

LiH presents an ionic ground state and its lowest-lying excited state is covalent.107 Thus, in the

adiabatic representation, the ground state of LiH presents an ionic bonding at equilibrium, with

Li+ and H−, whereas the character of the state changes from ionic to covalent as the molecule

dissociates (see Figure 14). The mechanism depicting the electron transition from hydrogen to

lithium is known as the harpoon mechanism,108 and it is caused by the small ionization potential of

lithium and the large electron affinity of hydrogen. The potential energy curve presents an avoided

crossing where the transition from the covalent state to the ionic description occurs, when Li and

H are separated 6.8 a.u.107
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Figure 14: The potential energy curves of the lowest-lying diabatic states in LiH. An avoided
crossing takes places around 6.8 a.u. Below, the harpoon mechanism taking place is depicted.

Two different profiles are obtained at different distances (see Figure 15) which, despite the

different electronic distribution, resemble the C3v H4 profiles depicted in Figure 13. Whereas the

equilibrium geometry is properly described by HF due to its ionic nature, the covalent character

of the state at large interatomic distances is not. Therefore, the hole at equilibrium does not differ

qualitatively from the hole of other molecules, such as H2. On the other hand, at large distances,

hcI(s) is predominant along the interelectronic distance coordinate, with a modest area of hcII(s) at

short range and inappreciable at long range. Nevertheless, as we can see in the inset plot, the latter
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is characterized by a maximum, which features the universal signature of dispersion. In this case,

HF also dissociates the LiH molecule into a non-integer number of fragments and, therefore, the

resemblance between this hole and the one of H4. In fact, at the stretched geometry, the difference

between the exact intracular and the UHF one is negligible (see Figure S5), indicating that all the

features of the Coulomb hole in Figure 15 are entirely due to the wrong dissociation of HF.
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Figure 15: Coulomb hole (black), hcI (s) (red) and hcII(s) (blue) correlation components, and the
intracule density (shadowed green region, right y-axis) of LiH at the equilibrium geometry at 3.02
a.u., and 15.12 a.u. bond length.

5 Conclusions

We have studied a correlation decomposition scheme that provides a natural separation of the pair

density. Upon integration over the intracule coordinate, a range-separation of the Coulomb hole

into two components, hcI and hcII , arises. The cI component describes the long-range interactions

that are nondynamic in nature, whereas the cII component accounts for dynamic and nondynamic

short-range interactions. These components are exhaustively analyzed throughout various exam-

ples that put forward the most relevant features of this approach and how they can be used to

develop efficient ways to capture electron correlation.
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First of all, through the asymptotic properties of the hole parts, we explain how the component

based only on the first-order reduced density matrix can retrieve the long-range part of electron

correlation. Second, we perform an exhaustive analysis of the hydrogen molecule in a minimal

basis set, dissecting the hole contributions into spin components. Third, we analyze the simplest

molecule presenting a dispersion interaction, triplet H2, and how hcII helps to identify it. This dis-

persion signature is also identified in all the other molecules studied in this work, highlighting its

universal character.

We also analyze the Coulomb holes of several atoms in different spin states, finding that the

Coulomb hole components permit to distinguish clear correlation regimes that are not apparent

from the whole Coulomb hole. Indeed, atoms with different spin states present the same Coulomb

hole profile but their correlation components unravel relevant differences. The same-spin elements

are the ones that capture nondynamic correlation in the system, and give away the true multirefer-

ence character of the singlet state of carbon and nitrogen atoms.

Finally, we analyze the two types of nondynamic correlation, types A and B,11 and show that

they can be both captured by the first component of the Coulomb hole. Profiles of hcI(s) calcu-

lated with an unrestricted reference clearly differentiate from profiles calculated with a restricted

wavefunction when type B nondynamic correlation is present. The larger the presence of type B

nondynamic correlation, the bigger the difference between both holes. Interestingly, the correlation

indicators based in natural orbitals that were also developed from this partition20 could not make

such distinction.

The results of this work hold the promise to aid in the development of new electronic structure

methods that efficiently capture electron correlation. In particular, the models of the cII component

can be combined with other results available in the literature56,66,109 to develop new approximations

in the reduced density matrix functional theory,53,54 although the present work is not limited to this
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theory.
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(24) Sinanoğlu, O. Many-Electron Theory of Atoms, Molecules and Their Interactions. Adv.

Chem. Phys. 1964, 6, 315–412.

3.2. THE SEPARATION OF THE CI AND CII CORRELATION
COMPONENTS IN THE COULOMB HOLE, I

99



(25) Stone, A. J. The theory of intermolecular forces, 2nd ed.; Oxford University Press, 2013.

(26) Shavitt, I. Methods of electronic structure theory; Springer, 1977; pp 189–275.
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1 Basis set consistency in full configuration interactions calcu-

lations of Be atom

In previous studies of the Be atom and its dimer,1–3 it has been found that the description of the

species is very sensitive to the basis set consistency and it affects, particularly, to the short-range

description. A systematic improvement of the basis set does not guarantee a better wavefunction

(see, for instance, the ground state geometries for different methods and basis sets in the NIST

database).4 In this study, we have optimized an even-tempered basis set of ns, np and nd functions

to perform the calculations of Be-like ions, where n represents the number of orbitals used of each

kind (these basis sets are referred as nSPD hereafter).5 Figure S1 displays the Coulomb hole hc(s)

of the beryllium atom calculated with 6SPD, 7SPD, 8SPD, and 10SPD basis sets (9SPD is not

shown due to its high resemblance to 10SPD). hc(s) with Dunning’s augmented basis functions,

aug-cc-pVDZ and aug-cc-pVTZ, and Pople’s 6-311G** have also been calculated for comparison.
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Figure S1: Coulomb hole hc(s) of Be computed with different basis sets. The graph below depicts
a zoomed section from the plot above, marked with dashed lines.

Note that, as the quality of the basis set increases (from aug-cc-pVDZ to aug-cc-pVTZ), the short

range part of hc(s) shows a sinusoidal shape that all even-tempered basis sets already reproduce

(see the bottom plot in Figure S1). In a previous study, our group found that 6-311G** offers a

poor description of the short-range part of the Coulomb hole, and that optimized basis sets pro-

vided a better description for core electrons.3 Therefore, we have chosen the 10SPD basis set to

study the rest of Be-like ions as the 9SPD one was indistinguishable from 10SPD (i.e. the basis set

is converged with respect to the number of s, p and d basis functions).
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Figure S2: The short-range region of the Coulomb hole (hc(s)), hcI(s), and hcII(s) of Be2 at 24.57
a.u. of bond distance.

2 The short-range region of the Coulomb hole of Be2

The short-range region of the Coulomb hole of the beryllium dimer does not present a smooth

decrease as the rest of Coulomb holes exposed in the article. Figure S2 contains this short-range

region for a stretched geometry of Be2, where the Coulomb hole hc(s) has an inflection point

instead of a smooth minimum, which is usually defined as a shoulder-shape profile. The correlation

decomposition of the Coulomb hole indicates that hcI (s) is zero in the short-range region, with a

posterior even growth, and hcII(s) decreases smoothly with the interelectronic distance s. The

combination of both components results in a shoulder-like shape in the short-range region of hc.

3 Type A of nondynamic correlation Coulomb hole of stretched

H2

Because UHF has the ability to describe type A nondynamic correlation, molecular dissociations

such as the one of H2 are correctly accounted for by this method. There is no type A nondynamic
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correlation in the equilibrium geometry of H2, where we have not yet reached the Coulson-Fisher

point. On the other hand, the bond stretching gives rise to type A nondynamic correlation and,

eventually, the UHF intracule in a minimal basis set is exactly coincident with the FCI one. Thus,

the Coulomb holes are identical, as depicted in Figure S3.
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Figure S3: (Left) Coulomb hole hc(s), hcI(s), and hcII(s) of H2 at R = 7.56 a.u. in a minimal
basis set, as presented in Figure 2 of the manuscript. (Right) Coulomb hole calculated using
the UHF intracule pair density instead of the FCI one: h(UHF)

c (s) = I(ρUHF
2 , s) − I(ρRHF

2 , s), and
h(UHF)
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Figure S4: Coulomb hole hc(s) of the He-Ne atomic series.
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Coulomb holes hc(s) for the He-Ne atomic series in their ground state are presented in Fig-

ure S4. Notice that the dimension of lithium’s Coulomb hole is smaller compared to the rest of

atomic series and shows as a flat line.

5 Cases with RHF dissociating to an incorrect number of elec-

trons per fragment.
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Figure S5: The intracule probability density difference of the UHF and RHF pair densities,
I(ρUHF

2 , s) − I(ρRHF
2 , s), of the LiH molecule at R = 15.12 a.u..

Because RHF is not able to properly dissociate heterogeneous diatomic molecules with differ-

ent electronegativities, the dissociated fragments of LiH are not neutral; namely, RHF dissociates

the molecule into ions, Li+ and H-. Because of this, the RHF intracule probability density unusu-

ally presents an excess of electron-pair probability at the long-ranges of interelectronic distance

caused by the extra electron in H. Instead, the unrestricted formalism correctly separates LiH into

two neutral atoms. The UHF wavefunction (and also the intracule probability density) provides a

close description of the FCI one. Figure S5 contains the intracule difference between the UHF and
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RHF. This difference is indistinguishable from the Coulomb hole hc presented in the manuscript,

due to the quality of the UHF description.

A similar situation occurs in the trigonal planar H4 molecule (C3v symmetr point group). The

HF description describes the axial hydrogen with a non-integer number of electrons. The UHF

wavefunction provides a better description of the molecule, and because of this the magnitude of

the corresponding hole is smaller. Note that, however, H4 is a more correlated molecule than LiH

and, therefore, the unrestricted formalism of HF is not able to provide a correct description to the

system either.

-0.3

-0.1

0.0

0.1

0.3

 0  10  20  30  40
s (a.u.)

hc (s)

I(ρ2
FCI

, s) - I (ρ2
UHF

, s)

Figure S6: Coulomb hole hc (black) and the intracule difference between the FCI and the UHF pair
densities I(ρFCI

2 , s) − I(ρUHF
2 , s) (gray) of H4 molecule at C3v symmetry point group, with H∆

= 1.77
a.u., and Hax placed at R = 28.35 a.u. from the equatorial plane (see also Figure 11 of the paper).

6 Conditions for ∆ρ
cI
2 (1,2) and ∆ρ

cII
2 (1,2): H2 in a minimal ba-

sis

Let us analyze ∆ρcI
2 (1,2) and ∆ρcII

2 (1,2) for the hydrogen dimer described in a minimal basis set

with a normalized 1s orbital centered on each nuclei A and B. The bonding and antibonding
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orthonormal orbitals that arise are

φ1 (r) =
1√

2 (1 + S AB)
(S A(r) + S B(r)) (S1)

and

φ2 (r) =
1√

2 (1 − S AB)
(S A(r) − S B(r)) , (S2)

respectively, and are eigenfunctions of the Fock operator. S AB is the overlap between both atomic

orbitals.

The Slater determinant built with the lowest-lying molecular orbital, eq S1, corresponds to the

(normalized) Hartree-Fock ground-state, Φ0 (1,2):

Φ0 (1,2) = |11〉 =
1√
2

(
φ1 (1) φ1 (2) + φ1 (1) φ1 (2)

)
, (S3)

where the bar over the atomic orbital indicates that the spin state of the electron is beta (otherwise,

it is alpha). The doubly-excited Slater determinant ΦD (1,2) reads

ΦD (1,2) = |22〉 =
1√
2

(
φ2 (1) φ2 (2) + φ2 (1) φ2 (2)

)
, (S4)

and with a linear combination of both determinants one can construct the exact wavefunction for

H2 in a minimal basis set:

Ψ (1,2) = c0Φ0 (1,2) + cDΦD (1,2) , (S5)

and, to keep the wavefunction normalized we impose c2
0 + c2

D = 1.

3.2. THE SEPARATION OF THE CI AND CII CORRELATION
COMPONENTS IN THE COULOMB HOLE, I

115



From this wavefunction, one can obtain its second-order reduced density matrix (2-RDM),

ρ2
(
1,2;1′,2′) = 2Ψ∗ (1,2) Ψ

(
1′,2′)

= c2
0

(
φ∗1(1)φ∗1(2)φ1(1′)φ1(2′) + φ∗1(1)φ∗1(2)φ1(1′)φ1(2′)

+ φ∗1(1)φ∗1(2)φ1(1′)φ1(2′) + φ∗1(1)φ∗1(2)φ1(1′)φ1(2′)
)

+c2
D

(
φ∗2(1)φ∗2(2)φ2(1′)φ2(2′) + φ∗2(1)φ∗2(2)φ2(1′)φ2(2′)

+ φ∗2(1)φ∗2(2)φ2(1′)φ2(2′) + φ∗2(1)φ∗2(2)φ2(1′)φ2(2′)
)

+c0cD

(
φ∗1(1)φ∗1(2)φ2(1′)φ2(2′) + φ∗1(1)φ∗1(2)φ2(1′)φ2(2′)

+ φ∗1(1)φ∗1(2)φ2(1′)φ2(2′) + φ∗1(1)φ∗1(2)φ2(1′)φ2(2′)

+ φ∗2(1)φ∗2(2)φ1(1′)φ1(2′) + φ∗2(1)φ∗2(2)φ1(1′)φ1(2′)

+ φ∗2(1)φ∗2(2)φ1(1′)φ1(2′) + φ∗2(1)φ∗2(2)φ1(1′)φ1(2′)
)
;

(S6)

the first-order reduced density matrix (1-RDM), which is obtained upon integration of the 2-RDM

over the second-electron coordinate,

ρ1
(
1;1′) =

∫
d2 ρ2

(
1,2;1′,2′) |2′=2

= c2
0

(
φ∗1(1)φ1(1′) + φ∗1(1)φ1(1′)

)
+ c2

D

(
φ∗2(1)φ2(1′) + φ∗2(1)φ2(1′)

)
;

(S7)

and the electron density, which is the diagonal of the 1-RDM,

ρ(1) = ρ1
(
1;1′) = c2

0

(
|φ1(1)|2 + |φ1(1)|2

)
+ c2

D

(
|φ2(1)|2 + |φ2(1)|2

)
. (S8)

The HF pair density is

ρHF
2 (1,2) = 2Φ∗0 (1,2) Φ0 (1,2) = |φ1(1)|2|φ1(2)|2 + |φ1(1)|2|φ1(2)|2 (S9)
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and the single-determinant approximation, according to eq 6 in the manuscript,6 reads

ρSD
2 (1,2) =ρ(1)ρ(2) − |ρ1(1;2)|2

=c4
0

(
|φ1(1)|2|φ1(2)|2 + |φ1(1)|2|φ1(2)|2

)
+ c4

D

(
|φ2(1)|2|φ2(2)|2 + |φ2(1)|2|φ2(2)|2

)

+c2
0c2

D

(
|φ1(1)|2|φ2(2)|2 + |φ1(1)|2|φ2(2)|2 + |φ1(1)|2|φ2(2)|2 + |φ1(1)|2|φ2(2)|2

+|φ1(2)|2|φ2(1)|2 + |φ1(2)|2|φ2(1)|2 + |φ1(2)|2|φ2(1)|2 + |φ1(2)|2|φ2(1)|2

−φ∗1(1)φ1(2)φ∗2(1)φ2(2) − φ∗1(1)φ1(2)φ∗2(1)φ2(2)

−φ∗1(2)φ1(1)φ∗2(2)φ2(1) − φ∗1(2)φ1(1)φ∗2(2)φ2(1)
)
,

(S10)

At the particular case when the two centers are far apart (and electrons are located at each

center), the overlap between the atomic orbitals becomes zero, i.e. |RAB| → ∞ ⇒ S AB → 0.

Then, it is legitimate to consider that φ1(A) ≈ φ2(A) and −φ1(B) ≈ φ2(B), A and B standing for the

position of the corresponding atom. Therefore, eq S10 becomes

lim
|RAB|→∞

ρSD
2 (A, B) =

(
c4

0 + c4
D + 2c2

0c2
D

) (
|φ1(A)|2|φ1(B)|2 + |φ1(A)|2|φ1(B)|2

)

+ 2c2
0c2

D

(
|φ1(A)|2|φ1(B)|2 + |φ1(A)|2|φ1(B)|2

+ φ∗1(A)φ1(B)φ∗1(A)φ1(B) + φ∗1(A)φ1(B)φ∗1(A)φ1(B)
)

= ρHF
2 (A, B) + 4c2

0c2
D

(
|φ1(A)|2|φ1(B)|2 + |φ1(A)|2|φ1(B)|2

)
,

(S11)

where, for the sake of simplicity, we have considered real orbitals, φ∗i (r) = φi(r). Hence,

lim
|RAB|→∞

∆ρcI
2 (A, B) = ρSD

2 (A, B) − ρHF
2 (A, B) = 4c2

0c2
D

(
|φ1(A)|2|φ1(B)|2 + |φ1(A)|2|φ1(B)|2

)
. (S12)

When the wavefunction is only composed of the HF determinant, cD = 0 ⇒ ∆ρcI
2 (A, B) → 0.

Conversely, at the limit of the dissociation, the expansion coefficients are equal in weight, c0 =

−cD = 1√
2
. Hence, the spin-integrated cI component of the pair density tends to a value which is

as large as the HF pair density, ∆ρcI
2 (A, B) → ρHF

2 (A, B), which results in ∆ρcI
2 (A, B) capturing the
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nondynamic correlation arisen from the stretching.

One could also analyze the spin-components of these expressions. The hydrogen molecule only

presents opposite-spin interactions, with just one alpha and just one beta electron in each nucleus.

Thus the HF pair density does not have exchange terms and will read

ρHF
2 (1,2) = ρHF,α(1)ρHF, β(2) + ρHF, β(1)ρHF,α(2). (S13)

However, ρSD
2 includes some same-spin elements by construction, and hence

ρSD
2 (1,2) = ρα(1)ρα(2) + ρβ(1)ρβ(2) + ρα(1)ρβ(2) + ρβ(1)ρα(2) − |ραα1 (1;2)|2 − |ρββ1 (1;2)|2. (S14)

If we assume ρHF,σ(1) ≈ ρσ(1), only the same-spin terms survive in the cI component,

∆ρcI
2 (1,2) ≈ ρα(1)ρα(2) + ρβ(1)ρβ(2) − |ραα1 (1;2)|2 − |ρββ1 (1;2)|2. (S15)

When a dissociation occurs, namely when RAB → ∞, the ∆ρcI
2 (1,2) vanishes at short range (the

first non-vanishing term of the short-range expansion is quadratic in r12).

The asymptotics of the 1-RDM define the asymptotics of the cI component of the pair density.

March and Pucci7 found that, when electrons are separated infinitely from each other and are also

separated from any nucleus A, ρ1(1;2) → √
ρ(1)ρ(2).1 Therefore, the same-spin component of

the SD approximation reduces to zero, and thus

lim
r12→∞

rA1 ,rB2→∞
∆ρcI,αα

2 (1,2) = 0 ∀A, B (S16)

The opposite-spin component does not depend on the 1-RDM, therefore its asymptotics is defined

1For non-degenerate (N − 1)-particle systems.8
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by the product of the correlated and uncorrelated electron densities:

lim
r12→∞

rA1 ,rB2→∞
∆ρ

cI,αβ
2 (1,2) = ρα(1)ρβ(2) − ρHF,α(1)ρHF,β(2) = 0, ∀A, B (S17)

because the density dies off quickly far from the nuclei.

When electrons are placed on top of each other r12 → 0 (the coalescence point), the same-spin

component of ∆ρcI
2 (1,2) is zero by construction. Nevertheless, there exists a small probability of

opposite-spin electrons to be on top of each other:

lim
r12→0

∆ρ
cI,αβ
2 (1,2) = ρα(1)ρβ(1) − ρHF,α(1)ρHF,β(1). (S18)

Now, let us consider the limits of ∆ρcII
2 (1,2). The value of ∆ρcII

2 (1,2) at the coalescence point

depends exclusively on the opposite-spin component, because the same-spin one vanishes due to

the Pauli principle,

lim
r12→0

∆ρcII
2 (1,2) = ∆ρ

cII,αβ
2 (1,1) + ∆ρ

cII, βα
2 (1,1) = 2

(
ρ
αβ
2 (1,1) − ρα(1)ρβ(1)

)
, (S19)

and, hence, its behavior depends on the on-top pair density value.9

The actual pair density (the diagonal elements of eq S6) as RAB → ∞ is dominated by the value

at the points close to the nuclei. Let us consider, ρ2(A, B),

ρ2(A, B) =c2
0

(
|φ1(A)|2|φ1(B)|2 + |φ1(A)|2|φ1(B)|2

)
+ c2

D

(
|φ1(A)|2|φ1(B)|2 + |φ1(A)|2|φ1(B)|2

)

−2c0cD

(
|φ1(A)|2|φ1(B)|2 + |φ1(A)|2|φ1(B)|2

)

= (c0 − cD)2 ρHF
2 (A, B),

(S20)
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and therefore cII component of the pair density is (see eq S11)

∆ρcII
2 (A, B) = ρ2(A, B) − ρSD

2 (A, B) = (c0 − cD)2 ρHF
2 (A, B) − (1 + 4c2

0c2
D)ρHF

2 (A, B), (S21)

where we have assumed a closed-shell system.

At the dissociation limit c0 = −cD = 1√
2

and, therefore, limRAB→∞ ρ2(A, B) = 2ρHF
2 (A, B). Hence,

limRAB→∞ ∆ρcII
2 (A, B) = 0. Unlike ∆ρcI

2 (1,2), the long-range component of ∆ρcII
2 (1,2) vanishes and,

therefore, we have a convenient range separation of the pair density into cI and cII components.
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van der Waals interactions govern the physics of a plethora of molecular structures. It is well known that the
leading term in the distance-based London expansion of the van der Waals energy for atomic and molecular
dimers decays as 1/R6, where R is the dimer distance. Using perturbation theory, we find the leading term in the
distance-based expansion of the intracule pair density at the interatomic distance. Our results unveil a universal
1/R3 decay, which is less prone to numerical errors than the 1/R6 dependency, and it is confirmed numerically
in H2 and He2 molecules. This signature of van der Waals interactions can be directly used in the construction of
approximate pair density and energy functionals including vdW corrections.

DOI: 10.1103/PhysRevA.96.050501

I. INTRODUCTION

Dispersion or van der Waals (vdW) interactions are
ubiquitous in nature, governing the stability of molecules
and materials [1] and having an essential role in molecular
recognition [2], the double-helical structure of DNA [3],
molecular adsorption on surfaces [4,5], and the adhesion of
micromachined surfaces [6]. They are so important in physics,
chemistry, and biology, that even the most simple electronic
structure methods consider corrections for vdW interactions.
Due to their long-range dynamic-correlation nature, they are
not well modeled by standard functionals in density functional
theory (DFT) [1], which by construction are essentially local
or semilocal in nature [7]. Hence, except for a few functionals
[8,9], most DFT functionals include ad hoc energy corrections
to account for vdW interactions [10–12].

vdW forces arise from the electrostatic interaction between
fluctuations in the electron density, and the pairwise effect
in the energy shows a leading 1/R6 dependency, where R is
the interaction distance between fragments. This fact is often
exploited in the construction of effective pairwise potentials
that enter the expressions of various methods. On the other
hand, the effect of vdW interactions in the wave function
or related quantities has been less discussed in the literature
[13–16]. This knowledge could shed some light in the design
of computational approaches including vdW interactions and
provide further tests to calibrate electronic structure theory
methods.

In this Rapid Communication we use perturbation theory
to find the leading term in the expansion of the intracule
pair density in terms of R, the interatomic distance. Our
results reveal a universal 1/R3 dependency that is corroborated
by numerical calculations in H2 and He2 molecules. Upon
integration of the vdW contribution to the intracule we
recover the vdW energy that follows the established 1/R6

dependency.

*Author to whom the correspondence should be addressed:
ematito@gmail.com

II. THEORY

We start from the unperturbed wave function for a system
of two hydrogen atoms, A and B, separated a distance R, given
by the product of two hydrogenoid 1s functions [17],

�(0)(r1,r2) = NφA(r1)φB(r2). (1)

For convenience we have chosen to represent the hydrogenoid
functions by one Gaussian function of exponent α. This change
does not alter the 1/R6 dependency on the calculation of the
second-order correction to the energy (vide infra).

The perturbation operator contains all the interactions
between fragments A and B:

Ĥ (1) = − 1

rA2
− 1

rB1
+ 1

R
+ 1

r12
, (2)

where we have labeled the electrons in A and B as 1
and 2, respectively (see Fig. 1). After application of Unsöld’s
approximation [18,19], the expansion of Eq. (2) in terms of
1/R at large distances yields the first-order correction to the
wave function,

�(1)(r1,r2) ≈ �(0)(r1,r2)

R3
(xA1xB2 + yA1yB2 − 2zA1zB2)

+O(R−4), (3)

where we have assumed that the molecule is located in the
z axis and xA1,yB2, etc. refer to the Cartesian components of
the vectors in Eq. (2). Using the first-order correction to the
wave function we can demonstrate that the leading term in
the second-order correction to the energy follows the widely
known 1/R6 dependency [17]

E(2) = 6

α4R6
+ O(R−8). (4)

Now, let us consider the first-order correction to the pair
density,

n
(1)
2 (r1,r2) = 2�(0)(r1,r2)�(1)(r1,r2). (5)

2469-9926/2017/96(5)/050501(3) 050501-1 ©2017 American Physical Society
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FIG. 1. Two atoms, A and B, separated by a distance R and two
electrons with coordinates �rA1 and �rB2 defined with respect to the
position of atoms A and B.

The intracule of the pair density is a function that provides a
distribution of the interelectronic separations [20]

I (u) =
∫ ∫

dr1dr2 n2(r1,r2)δ(u − r12), (6)

and thus returns the average electron-electron distance upon
integration over u. The intracule of the pair density is
actually connected with an experimental observable, the x-ray
scattering intensity, which is essentially determined by the
Fourier-Bessel transform of the radial intracule probability
density [21,22].

After some algebraic manipulation one can prove that the
zeroth-order intracule of the pair density at R,

I (0)(R) =
( α

16π3

)1/2
(1 − e−4αR2

), (7)

yields a constant value in the limit, which corresponds to the
distribution of two independent electrons. A Gaussian function
enters the expression in Eq. (7) and, therefore, the form of the
zeroth-order intracule function at R depends on the reference
wave function, Eq. (1). Conversely, the first-order correction
at R decays as 1/R3,

lim
R→∞

I (1)(R) = −4(1 + 8
√

2)α5/2

π7/2R3
, (8)

without any exponential terms in the expression, suggesting
that the 1/R3 dependency does not rely on a particular choice
of the zeroth-order reference. As we will check numerically in
the next section, Eq. (8) puts forward a universal condition that
can be employed to assess the performance of approximate pair
densities and models of the intracule function in reproducing
vdW interactions.

III. NUMERICAL EXAMPLES

As a zeroth-order pair density we choose

nSD
2 (r1,r2) = n(r1)n(r2) − n1(r1; r2)n1(r2; r1), (9)

where n1(r1; r2) is the first-order reduced density matrix.
nSD

2 is the minimal model that guarantees that nSD
2 (r1,r2) →

n(r1)n(r2) at large interatomic distances and, at the same time,
preserves the antisymmetric nature of particles [23], which
is necessary to remove the spin entanglement effects that also
appear at large interelectronic separations and are not included
by the second-order perturbational treatment. Hence we will
evaluate the intracule resulting from the following pair density

 0

 1x10-5

 2x10-5

 3x10-5

 4x10-5

 5x10-5

 20  24  28  32  36

R (a.u.)

H2: I (1)(R )

He2: I (1)(R )

fH (R ) = 0.38/R 3

fHe (R ) = 0.27/R 3

FIG. 2. I (1)(R) against R, the interatomic distance, for H2 and
He2. The fitting corresponds to f (R) = a/R3, where a is the fitted
parameter and equals 0.38 and 0.27 for H2 and He2, respectively.
In both cases the Pearson regression coefficient, r2, is greater than
0.999. All quantities are in a.u.

difference

I (1)(u) ≈
∫ ∫

dr1dr2
[
n2(r1,r2) − nSD

2 (r1,r2)
]
δ(u − r12).

(10)

To this aim, we have chosen two simple molecules, H2

and He2, and we have performed full-configuration interaction
calculations1 with the aug-cc-pVDZ basis set at different
interatomic separations (R). We have computed Eq. (10) and
plotted I (1)(R) against R (see Fig. 2).

The numerical results confirm the predicted 1/R3 depen-
dency of the vdW correction to the intracule of the pair density.
The fitting procedure employs the points presented in Fig. 2
and uses a least squares minimization analysis to determine
the Pearson regression coefficient and the a parameter in the
f (R) = a/R3 fitting function.

The intracule pair density is the simplest quantity in terms
of which we can express explicitly and exactly the electron-
electron repulsion energy,

Vee =
∫

du
I (u)

u
, (11)

and the integration of the first-order correction to the intracule
divided by the electron-electron distance provides the vdW
energy:

V (2)
ee =

∫
du

I (1)(u)

u
. (12)

1The calculations have been performed with a modified version of
the program of Knowles and Handy [27] and the pair density matrices
have been obtained with our in-house DMN code. [28] The intracule
calculation employed the in-house RHO2_OPS [29] code, which uses
the algorithm [30] of Cioslowski and Liu.
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H2: Vee
(2)(R )

He2: Vee
(2)(R )

gH (R ) = -22.08/R 6

gHe (R ) = -2.66/R 6

FIG. 3. V (2)
ee (R) against R, the interatomic distance, for H2 and

He2. The fitting corresponds to g(R) = a/R6, where a is the fitted
parameter and equals −22.08 and −2.66 for H2 and He2, respectively.
In both cases the Pearson coefficient, r2, is greater than 0.97. All
quantities are in a.u.

Through Eq. (12), we can calculate the vdW energy using
the first-order correction to the intracule function. In Fig. 3
we observe that at large distances these functions reproduce
the 1/R6 dependency. The fitting is not as good as in the
intracule function because of the large power dependency,
which increases the numerical error.

IV. CONCLUSIONS

We have unveiled a universal condition of the intracule
of the pair density: the vdW contribution to the intracule
of the pair density at R should decay as 1/R3, R being the
separation of two fragments. This condition is connected to
the well-known 1/R6 decay of the vdW energy and it can be
recovered from the vdW contribution to the intracule of the pair
density [see Eq. (12)]. This requirement is a salient signature of
vdW interactions that can be employed as a stringent constraint
in a judicious construction of new methods and approximations
in electronic structure theory including vdW interactions
[24–26]. Since the vdW correction to the intracule of the pair
density shows a lower power dependency than the energy one,
it is also less prone to numerical errors (compare fittings in
Figs. 2 and 3).
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Abstract

At present, several functional approximations to reduced density matrix functional theory

(rDMFT) have been developed, yet very few benchmarks exist in the literature. Usually,

the energy is used as the main criterion for validating the performance of reduced density

matrix functional approximations (rDMFAs). Besides the energy, more chemical proper-

ties should be considered, along with further analysis on the design of the expressions.

In this paper, we report a systematic study of the performance of several rDMFAs on a

benchmark set of first and second row molecules, which aims to complement an already

published benchmark that used the harmonium atom (N = 2). Our benchmark indicates

the need for considering other properties besides the energy in order to develop approxi-

mations.

Introduction

Because the electronic operators are one- and two-electron operators, the electronic en-

ergy can be expressed in terms of the first- and second-order reduced density matrices
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(1-rDM and 2-rDM, respectively),

E = −1
2

∫

1→1′
∇2
1ρ1(1′;1)d1′ +

∫
ρ(1)
|R − r1|d1 +

"

ρ2(1,2)
|r1 − r2|d1d2, (1)

where we have expressed space and spin coordinates as boldface numbers, 1 ≡ −→r1 , σ1.

Because of this, an intuitive path for solving the Schrödinger equation implies using the

2-rDM of a system instead of an inaccessibly large wavefunction. This approach is treated

in reduced density matrix functional theory (rDMFT),1–3 whose grounds were introduced

by Gilbert in 1975 as an extension to the Hohenberg-Kohn theorem for nonlocal external

potentials.1 Nowadays, several approximations to the exact functional have been devel-

oped in the literature, yet their application into actual quantum chemistry calculations is

far from widespread. Albeit rDMFT approximations have been benchmarked already in

the literature,4–9 a broad and extensive study of the energy and other properties of a large

collection of approximations in molecules is still missing.

The energy is an explicit functional of the 2-rDM by virtue of eq. 1. The 2-rDM is

defined as

ρ2(1′,2′;1,2) = N(N − 1)
∫

Ψ∗
(
1′,2′,3 . . .N

)
Ψ (1,2,3 . . .N ) d3 . . . dN , (2)

where we consider the McWeeny normalization factor to normalize the density matrix.10

Besides its lower dimensionality with respect to the N-electron wavefunction, the ad-

vantage of working with density matrices is the statistical information of electron pair

probabilities contained in the elements of the 2-rDM. The diagonal elements of the 2-

rDM form the pair density, ρ2(1,2;1,2) ≡ ρ2(1,2). Integration of the 2-rDM by the

convenient coordinates reduces to the 1-rDM,

ρ1(1′;1) =
1

N − 1

∫
ρ2(1′,2′;1,2)δ(2 − 2′)d2d2′, (3)
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which, in turn, bears the well-known electron density in its diagonal elements, ρ1(1;1) ≡
ρ1(1). Hence, the electronic energy of a system can be calculated utilizing the 2-rDM.

Even though 2-rDMs are smaller objects than wavefunctions, their size may be impracti-

cal to store and manipulate. rDMFT proposes the reduction of the computational cost by

means of building approximations to the 2-rDM, and construct them in terms of a known

1-rDM.

Because calculations are mostly performed using orbital basis sets, we consider the

orbital representation of the 2-rDM, in which ρ2(1′,2′;1,2) is expanded in a set of orbitals

{φi(1)}i=1,K ,

ρ2(1′,2′;1,2) =

K∑

i j
kl

2Di j
klφ
∗
i (1′)φ∗j(2

′)φk(1)φl(2), (4)

where 2Di j
kl is a tensor of K4 elements named 2-density matrix (2-DM). A similar expres-

sion can be written for the 1-density matrix (1-DM) where, when extended in the natural

orbitals basis set, the 1-DM is diagonal and its elements are the natural occupancies,

ρ1(1′;1) =

K∑

i j

1Di
jφ
∗
i (1′)φ j(1) =

K∑

i

ni χ
∗
i (1′)χ j(1), (5)

being {ni}i=1,K the natural occupation numbers and {χi}i=1,K the natural orbitals. In accor-

dance with our previous study, we adopt the natural orbital representation of the 2-DM

and, therefore, 2-DM approximations are constructed from natural occupation numbers.

In this work, we construct the approximate 2-DMs utilizing the natural occupancies from

a full configuration interaction (FCI) wavefunction.

A 2-DM must correspond to an N-particle fermionic wavefunction, according to eq. 2,

in order to bear a variational electronic energy after optimization.11 When a 2-DM can be

mapped back to an antisymmetric N-wavefunction, such 2-DM is called N-representable.

There exists a set of necessary requirements, known as N-representability conditions, that
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a density matrix must fulfill to be N-representable. Even though the set of conditions that

guarantee the N-representability of the 2-DM is known,12 they are, in practice, impossible

to impose because they require higher-order density matrices, which may not exist, or

bear large computational cost. Instead, three necessary (yet not sufficient) probability-

based conditions are usually imposed, since they only involve the manipulation of the 2-

DM. These conditions are known as the P-, Q-, and G-conditions, and define the positive

semidefinite character of P, Q and G matrices,5,13–16

Pσσ′
i j,kl = 〈Ψ|a†iσa†jσ′akσalσ′ |Ψ〉 (6)

Qσσ′
i j,kl = 〈Ψ|aiσa jσ′a

†
kσa†lσ′ |Ψ〉 (7)

Gσσ′
i j,kl = 〈Ψ|aiσa†jσ′a

†
kσalσ′ |Ψ〉 (8)

where âiσ and â†iσ are the annihilation and creation operators from the second quantization

language.17 Because the eigenvalues of these matrices must be positive semidefinite, such

conditions are also known as positivity conditions.18,19 The eigenvalues of the P, Q and

G matrices refer to different probabilities of electron distributions among orbitals and, in

the natural orbital representation, restrictions are imposed to occupancies in natural or-

bitals (particle and hole probabilities).5 Indeed, the definition of the P matrix corresponds

to the second quantization definition of the 2-DM and involves the semidefinite positive

character of the geminal occupancies. Q and G conditions involve the hole (1 − ni) and

particle-hole ni(1 − ni) probabilities, respectively.

2-DM approximations

A group of 14 rDMFAs is evaluated in this study, which are the same ones considered

in our former study.8 Those functional approximations create elements that accompany

the Coulomb (J), exchange (K) and time-inversion (L) two-electron integrals,20 and, ac-
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cording to the approach considered for constructing the approximation, rDMFAs can be

classified in two groups: K-functionals and JKL-functionals. The first group adapts the

Hartree–Fock (HF) expression for the Coulombic terms and propose an expression to

model the exchange elements of the 2-DM:5,21,22

2DX,αβ
i j,kl = nαi nβjδikδ jl, (9)

2DX,αα
i j,kl = nαi nαj δikδ jl − f X(nαi , n

α
j )δilδ jk, (10)

where f X(nαi , n
α
j ) denotes the exchange functional. Because the approximations only dif-

ferentiate among them by the exchange elements, we refer to them as K-functionals. The

expressions taken by each 2-rDM approximation are summarized in Table 1. The most

elemental approximation to the 2-DM is taking the actual exchange expression from HF,23

which leads to the SD approximation. The SD 2-DM was originally not designed as an

actual functional approximation within rDMFT because, upon optimization of natural or-

bitals and occupancies, it reduces to the actual HF results. Because the HF expression is

used but neither the HF occupancies nor orbitals, the SD 2-DM represents an approxima-

tion to the 2-DM by itself.

The first actual functional approximation was MBB, derived independently by Müller

by one side, and by Buijse and Baerends by the other one.21,22,24 MBB was derived from

the requirement of minimal deviation of the Pauli principle condition. On the other hand,

Goedecker and Umrigar designed the GU approximation to correct the self-interacting

error in MBB.25 Gritsenko, Pernal, and Baerends suggested three versions to improve the

MBB functional: BBC1, BBC2, and BBC3.26 In this work, we consider BBC2, which

uses the Fermi level FL to introduce electron pair interactions according to the orbitals in

which they are found. BBC3 requires the identification of the type of orbital and thus we

cannot construct the 2-DM only with the FCI occupancies.26
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Table 1: Exchange expressions f X(ni, n j) (eq. 10) per each K-functional studied in this
work.

Functional f X(ni, n j)

SD nin j ∀i, j

MBB (nin j)1/2 ∀i, j

GU
(nin j)1/2 i 6= j

nin j i = j

BBC2

ni i = j

nin j i 6= j ∧ i ∈ [1; FL] ∧ j ∈ [1; FL]

−(nin j)1/2 i 6= j ∧ i ∈ (FL;∞) ∧ j ∈ (FL;∞)

(nin j)1/2 otherwise

CA [(ni(1 − ni)n j(1 − n j)]1/2 + nin j ∀i, j

CGA 1
2

[[
(ni(2 − ni)n j(2 − n j)

]1/2
+ nin j

]
∀i, j

ML

a = 126.3101

nin j(a + b nin j)(1 + c nin j) ∀i, j b = 2213.33

c = 2338.64

MLSIC

nin j(a + b nin j)/(1 + c nin j) i 6= j a = 1298.78

nin j i = j
b = 35114.4

c = 36412.2

The CA and CGA functionals were proposed by Csányi and Arias,27,28 and are based

on a tensor product expansion of the 2-rDM in order to reproduce the homogeneous elec-

tron gas. CGA was later presented as an improvement of CA.28 The functionals derived
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by Marques and Lathiotakis, the ML and MLSIC functional approximations, replace the

square root in MBB with a Padé approximant, and include three parameters. MLSIC is the

self-interaction-corrected version of ML.29 Notice that both ML and MLSIC functionals

were developed exclusively to reproduce the total energy. It is our prerogative to use them

in this study to calculate other properties assuming their expressions are general enough

for this purpose.

On the other hand, the second group of rDMFAs studied in this work are the JKL-

functionals, based on the spectral expansion of the cumulant of the 2-DM.30 The cumu-

lant, usually labelled as 2Γkl
i j in the orbital representation, contains the missing correlation

effects that the SD approximation of the 2-DM does not include. In other words, it con-

tains all the electron correlation beyond HF in the 2-DM,

2Di j,kl = 2DSD
i j,kl + 2Γi j,kl. (11)

Because the actual expression of the cumulant in terms of natural occupancies is not

known, the PNOFs (after "Piris Natural Orbital Functionals") aim to approximate the 2-

DM via reconstructing the cumulant. To reduce the four-index dimensionality, PNOFs

assume that the cumulant matrix is quite sparse and approximate it by splitting it into two

auxiliary matrices, known as ∆ and Π,30

2Γ
αβ
i j,kl = −∆

αβ
i j δikδ jl + Πikδi jδkl, (12)

2Γααi j,kl = −∆αα
i j

(
δikδ jl − δilδ jk

)
. (13)

In contrast to the K-functionals, the Coulomb elements are also approximated. Ac-

cording to the expressions granted to ∆ and Π, different versions of PNOFs exist, named

PNOFi with i = 2 . . . , 7.31–38 Table 2 gathers the expressions for ∆ and Π matrices for all

PNOFs.
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Table 2: Expressions for the ∆ and Π matrix elements for the PNOFi, i = 1 . . . 7, according
to eq. 13. The diagonal elements for any PNOFi are ∆ii = n2

i and Πii = ni. Appearing
elements in the Table are hi = 1 − ni, Ti j = nin j − ∆i j, and S F =

∑FL
i=1 hi. For PNOF6x,

x = d, u, h, where each ingredient used is defined through eqs. 14–18. For PNOF5 and
PNOF7, Ωg is the subspace containing orbital g (which is imposed to be below FL) and
several orbitals above FL.

Functional ∆i j Πi j

PNOF2

hih j
√

nin j +

√
hih j + Ti j i ∧ j ∈ [1, FL]

hin j

(
1−sF

sF

) √
nin j −

√
hin j + Ti j i ∈ [1, FL] ∧ j ∈ (FL,K]

nih j

(
1−sF

sF

) √
nin j −

√
nih j + Ti j i ∈ (FL,K] ∧ j ∈ [1, FL]

nin j Ti j i ∧ j ∈ (FL,K]

PNOF3

hih j nin j − √nin j i ∧ j ∈ [1, FL]

hin j

(
1−sF

sF

)
nin j − √nin j −

√
hin j i ∈ [1, FL] ∧ j ∈ (FL,K]

nih j

(
1−sF

sF

)
nin j − √nin j −

√
nih j j ∈ [1, FL] ∧ i ∈ (FL,K]

nin j nin j +
√

nin j i ∧ j ∈ (FL,K]

PNOF4

hih j) −
√

hih j i ∧ j ∈ [1, FL]

hin j

(
1−sF

sF

)
−

√(
hin j

S F

) (
ni − n j +

hin j

S F

)
i ∈ [1, FL] ∧ j ∈ (FL,K]

nih j

(
1−sF

sF

)
−

√(
nih j

S F

) (
−ni + n j +

nih j

S F

)
i ∈ [1, FL] ∧ j ∈ (FL,K]

nin j
√

nin j i ∧ j ∈ (FL,K]

PNOF5
nin j −√nin j (i ∧ j ∈ Ωg) ∧ (i = g ∨ j = g)

nin j
√

nin j (i ∧ j ∈ Ωg) ∧ (i ∧ j ∈ (FL,K])

PNOF6x

hih je−2S F −e−S F

√
hih j i ∧ j ∈ [1, FL]

γiγ j/S x
γ −

√[
nih j +

γiγ j

S x
γ

] [
hin j +

γiγ j

S x
γ

] i ∈ [1, FL] ∧ j ∈ (FL,K]

∨ j ∈ [1, FL] ∧ i ∈ (FL,K]

nin je−2S F e−S F
√

nin j i ∧ j ∈ (FL,K]
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PNOF7

nin j −√nin j (i ∧ j ∈ Ωg) ∧ (i = g ∨ j = g)

nin j
√

nin j (i ∧ j ∈ Ωg) ∧ (i ∧ j ∈ (FL,K])

0 −
√

nihin jh j

(i ∨ j) ∈ [1, FL]

∧
[
(i ∈ Ωg ∧ j /∈ Ωg) ∨ ( j ∈ Ωg ∧ i /∈ Ωg)

]

0
√

nihin jh j

(i ∧ j) ∈ (FL,∞)

∧
[
(i ∈ Ωg ∧ j /∈ Ωg) ∨ ( j ∈ Ωg ∧ i /∈ Ωg)

]

The shape of S x
γ in PNOF6 depends on the orbitals considered to construct it, which

can be either the orbitals placed above (x = u, up) or below (x = d, down) the FL,

S d
γ =

FL∑

i=1

γi; (14)

S u
γ =

K∑

i>FL

γi. (15)

An average of both cases results in PNOF6h (x = h, half),

S h
γ = (S d + S u)/2. (16)

The γi term takes the following expression,

γ = nihi + κ2
i − κi

FL∑

i= j

κ j, (17)

where

κi =



hie−S F when i ∈ [1, FL]

nie−S F when i ∈ (FL,K].
(18)

A perfect pairing approach was initially imposed in PNOF5, PNOF6, and PNOF7, in

which the occupancies of two orbitals i and j are forced to be coupled, ni + n j = 1, i 6= j,

being i an orbital below the FL and j above it, or viceversa.34,35 This perfect pairing ap-
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proach is an unphysical condition to the construction of the rDMFT approximation. In

this benchmark, as we are using the FCI occupancies, this restriction cannot be fulfilled.

Instead, we consider the extended versions of these functionals, in which the occupancy

of an orbital below the FL is coupled to the occupancies of a set of orbitals above it and,

hence, both PNOFs are free of restrictions in a closed-shell system.37,38 In this study, we

have not considered PNOF5 and PNOF7 due to the imposibility to define the Ωg sub-

spaces, which are automatically chosen in the optimization algorithm of the approxima-

tions.

Because the 2-DM approximations are built using the exact (within the basis set) natu-

ral orbitals and occupation numbers and not optimized for each approximation, the errors

analyzed from each test only consider the effect produced by the expression designed to

approximate the 2-DM. In a sense, the accuracy of the expressions for the 2-DM approx-

imations is evaluated. This type of error is sometimes called functional–driven error in

KS DFT,39 which in that framework evaluates the true error in an exchange-correlation

approximation of any given density. Let us introduce the total energy error in rDMFT:

Etotal = E
[{ni, χi}] − EX

[{
nX

i , χ
X
i

}]
, (19)

where the first term is the exact energy and the second term is the optimized rDMFA

energy. This error can be split in the functional–driven and the 1-DM–driven error, Etotal =

EF + EDM. In the rDMFT framework, the energy functional–driven error is:

EF = E
[{ni, χi}] − EX [{ni, χi}] , (20)

in which the second term in the r.h.s. of eq. 20 is the energy of the rDMFA obtained with

the FCI natural occupancies and orbitals – that is, a non-optimized energy. On the other
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hand, the 1-DM–driven error (the analogy to the density–driven error in KS DFT)39 is:

EDM = EX [{ni, χi}] − EX
[{

nX
i , χ

X
i

}]
, (21)

which is also the self-consistent error of the approximation. In this work, the 1-DM–

driven error is not analyzed.

Computational details

The physical basis and quality of the 2-DM approximations are evaluated through a set

of diatomic molecules composed of first- and second-row elements. The molecules con-

sidered and their interatomic distances are collected in Table 3. This test considers the

experimental equilibrium geometry Req, and a stretched geometry at Rdiss = 5Req. Be-

sides this set of molecules, this work also analyzes the performance in predicting the Be2

energy curve,40–42 the size consistency of the approximations via N = 4, 6, 8-vertex poly-

hedra resulting from N hydrogen atoms separated 10 Å from the geometric center of the

respective polyhedron,43,44 and different correlation regimes through the D4h/D2h potential

energy surface of H4.44–47 The geometrical parameters for these four systems are summa-

rized in Table 4.
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Table 3: Experimental equilibrium geometries for the diatomic molecules in Angstroms,
taken from the NIST database.48 aEquilibrium distance reference is CCSD(T)/aug-cc-
pVQZ from the NIST database.48 bEquilibrium distance reference is CCSD(T)/aug-cc-
pVQZ from the NIST database.48

Molecule Req Molecule Req

H2 0.741 LiH 1.595
He2 2.963a 2BeH 1.343
Li2 2.673 2CH 1.120
Be2 2.460 NH 1.034
C2 1.243 2OH 0.970
N2 1.098 HF 0.917

3O2 1.208 LiF 1.564
1O2 1.218b CO 1.128
F2 1.412 2NO 1.154

2CN 1.172

Table 4: Geometries for the non-diatomic molecules considered in this test, in Angstroms
and degrees. R defines the distance between the geometric center and a hydrogen placed
in a vertex.44 In H4, θ indicates the angle formed between the geometric center and two
adjacent H atoms, 6 H0H.46

Molecule Geometries
H4 R = 0.8, θ = 70 (D2h)

R = 4.0, θ = 70 (D2h)
R = 0.8, θ = 90 (D4h)
R = 4.0, θ = 90 (D4h)

Hn polyhedra N = 2 (hydrogen molecule)
N = 4 (tetrahedron)
N = 6 (octahedron)
N = 8 (cube)
R = 10.0

The reference 2-DM and natural occupancies were obtained with the in-house DMN

code,49 which uses the CI vector obtained from a selected configuration interaction (sCI)

based on the CIPCI algorithm50–52 to construct the reference density matrices. The matrix

elements of the approximated 2-DMs, 2DX, are constructed on the fly per each test used,

and are generated with the reference natural orbitals and occupation numbers, niχi → 2DX,

which are considered to be exact within the given basis set. DIs are computed with the

in-house codes RHO−OPS53 and APOST−3D.54 Intracule radial probability distributions
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are obtained with the in-house code RHO2−OPS55 that uses the algorithm proposed by

Cioslowski and Liu .56

Tests

In the present work, we analyze the physical background of the 2-DM approximations

and their performance in predicting energies and chemical properties. We evaluate the

rDMFAs with:

a) The error in the trace of the approximated 2-DM,

Etrace = Tr
[

2DX
]
− Tr

[
2D

]
, (22)

where the trace of the exact 2-DM,

Tr
[

2D
]

=

K∑

i j

2Di j,i j, (23)

sums up to the number of electron pairs N(N − 1), according to the McWeeny

normalization factor described in eq. 2.

b) The cumulative absolute error (CAE) in both the diagonal and all the elements of

the approximated 2-DM,

CAEdiag =

K∑

i j

|2DX
i j,i j − 2Di j,i j|; (24)

CAE =

K∑

i jkl

|2DX
i j,kl − 2Di j,kl|. (25)
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Both CAE are normalized by the number of electron pairs for each molecule

CAE’diag = 2CAEdiag/N(N − 1) (26)

CAE’ = 2CAE/N(N − 1) (27)

and the average for all the molecules analyzed is presented in the Results section.

c) The evaluation of the eigenvalues of the positivity conditions (eqs. 6–8) by sum-

ming all the negative eigenvalues produced by the respective matrices.8 For each

molecule, this sum is normalized by the number of electron pairs to make all cases

comparable.

d) The antisymmetry of the elements of the 2-DM,

Eantisym =

K∑

i jkl,σ

|2DX,σσ
i j,kl + 2DX,σσ

i j,lk + 2DX,σσ
ji,lk + 2DX,σσ

ji,kl |, (28)

since the 2-DM must describe the interactions arising from the fermionic nature of

electrons. The sum is normalized to the number of electron pairs of the 2-DM of

each molecule.

e) The difference between the exact and the approximated delocalization index (DI)

EDI = δX (A, B) − δ (A, B) , (29)

where the DI is defined as

δ (A, B) = −2
∫

A

∫

B
d1d2

[
ρ2(1,2) − ρ(1)ρ(2)

]
. (30)

δ(A, B) is a measure of the bond order between two fragments within a molecule by

examining the electron population between regions A and B.57–59 Note that the elec-
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tron density in eq. 30 is the same as the reference, FCI density, as in this work we

use the exact natural orbitals and occupancies to construct the approximate 2-DM.

Then, the test actually measures the accuracy of the approximation in predicting the

number of electron pairs in both regions;

f) The error in the (radial) intracule probability density (IPD)

EI(s) = I(ρ2, s) − I(ρX
2 , s), (31)

where the IPD is an electron-pair distribution function that indicates the probability

of two electrons being separated a given interelectronic distance s,10,60,61

I(s) ≡ I(ρ2, s) = s2
∫

dΩsd1d2ρ2(1,2)δ(s − r12), (32)

with dΩs = sin θdθdφ being the solid angle over the spherical coordinates, provid-

ing an spherical average of the probability density over space, and r12 = r2−r1.61–63

Then, the error measured in this test, EI(s), is a function that evaluates the ability of

each functional approximation to reproduce all the I(s) points. Notice that the IPD

can be built from any 2-DM (for instance, the HF 2-DM, or an approximate 2-DM).

In the specific case in which X = HF, the definition of Coulson’s Coulomb hole is

recovered in eq. 31.64

g) The relative error in the average distance between electron pairs 〈s〉 and its variance

σ2 = 〈s2〉 − 〈s〉2,

E〈s〉 = (〈s〉X − 〈s〉)/〈s〉 (33)

and

Eσ2 = (σ2
X − σ2)/σ2, (34)
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〈s〉 and σ2 being properties that can be extracted from the IPD (eq. 32),

〈s〉 =

∫
ds I(s)s. (35)

h) The relative error in interelectronic repulsion energy Vee,

EVee =
(
VX

ee − Vee

)
/Vee, (36)

which can be calculated from the IPD,

Vee =

∫
ds

I(s)
s
. (37)

Recall that, in rDMFT, the only term that needs to be approximated from the elec-

tronic Hamiltonian is the electron-electron repulsion energy Vee, so evaluating Vee

is equivalent to evaluate the functional–driven total energy error (Eq. 20).

i) The error in dissociation energies of the diatomic molecules,

EDe = DX
e − De, (38)

where we only consider Vee,

De := Vee

(
50Req

)
− Vee

(
Req

)
. (39)

j) The size-extensivity of the approximations using the polyhedron-shaped HN molecules.

The increase in the number of hydrogens N permits the study of the linear behaviour

of the energy with N. The difference between the approximate and exact Vee’s is

compared for each HN . The error analyzed is

EVee/N =
(
VX

ee − Vee

)
/N. (40)
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k) The behavior of the approximations under the effect of different regimes of electron

correlation. H4 in D2h/D4h point symmetry group permits the modulation of the type

and amount of correlation present in the system via small geometrical modifica-

tions. Nondynamic correlation dominates the correlated motion of electrons when

atoms are largely separated, or when the orbitals are degenerate (when θ = 90° and

R = 0.8 Å). Instead, dynamic correlation overtakes nondynamic correlation when

the H atoms are close to each other and there is no degeneracy in the molecular

orbitals.45–47 The error is calculated with respect to the interelectronic repulsion

energy of the ground state geometry Vee, ref (R = 0.8 Å, θ = 70°),

EH4,corr = (VX
ee − VX

ee, ref) − (VFCI
ee − VFCI

ee, ref) (41)

l) The long-range behavior of the approximated 2-DM to describe dispersion inter-

actions. Our group recently discovered a footprint of London dispersion forces

in the LR region of the IPD that behaves very similarly to the very well-known

energetic decay of the energy.44,65 The first-order correction of the IPD with the

interfragment distance R behaves as I(1)(ρ2,R) ∝ R−3. This behavior can be ob-

tained by subtracting the IPD built with the SD 2-DM from the exact one (that is,

I(ρ2,R) − I(ρSD
2 ,R)) because this difference captures the dynamic correlation of the

pair density.44 Hence, their ability to describe dispersion interactions will be ana-

lyzed with

Edisp(R) =
(
I(ρX

2 ,R) − I(ρSD
2 ,R)

)
R3 (42)

Because the tests have mostly been applied to a set of diatomic molecules to evaluate

the accuracy of the functionals, the errors produced by a rDMFA in a benchmarking test

are averaged using root mean squared errors (RMSE) and mean signed deviations (MSD),

RMSErDMFA =

∑T
i

√
E2

i,rDMFA

NT
; (43)
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MSDrDMFA =

∑T
i Ei,rDMFA

NT
, (44)

where NT is the number of diatomic molecules in the set, and Ei is the error obtained in a

certain test for a given rDMFA (eqs. 22, 29, 33, 34, 36, and 38).

Physical fundaments analysis of the approximate 2-DMs

Trace

By definition, the trace of the 2-DM equals the number of electron pairs in the system

(see eq. 2). MBB, BBC2, CA, CGA, PNOF2, and PNOF4 were designed to reproduce

the correct trace and thus their error is zero. Figure 1 contains the root mean squared error

(RMSE) of the error in the traces computed for all the molecules considered. The SD,

GU, MLSIC, and PNOF3 approximations produce the same traces due to the definition

of the diagonal elements used to construct the approximation (n2
i ). This group appears

under the SD label in Figure 1. This group of rDMFAs produces the largest errors overall.

In contrast, ML gives incorrect traces due to its parametrization, with errors only slightly

smaller than the SD group. PNOF6d and PNOF6u generate very accurate traces with

small deviations, and their combination to generate the PNOF6h functional results into

the exact trace.

The error committed in 5Req geometries is larger than in Req, excepting the beryllium

and helium molecules. The error trend in both cases correlates with the idempotency de-

viation of the 1-DM used to build the approximation, because for many functionals (the

SD group) it coincides with the error on the trace except for a constant,
∑

i n2
i − N(N − 1)

vs
∑

i ni(1 − ni) = N −∑
i n2

i . The error in He2 is the same for both geometries, whereas in

Be2 smaller errors are obtained for the stretched geometry. Similar trends are observed ac-

cording to the idempotency deviations. In general, deviations in open-shell molecules are

smaller than in the closed-shell cases. However, the magnitude of the errors for both cases
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are coincident in 5Req geometries. The traces produced by K-functionals in closed-shell

systems are larger than the expected ones, whereas some PNOF deviations are negative

(mainly in PNOF6d but also in some PNOF6u traces obtianed). The trends obtained for

this set of atoms are in concordance with the ones obtained in the harmonium atom.8
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Figure 1: Root mean squared error (RMSE) of the trace error Etrace (eq. 22), produced by
the SD group (including SD, GU, MLSIC, and PNOF3), the ML approximation, and the
three PNOF6 variants considered in this work.

Elements of the 2-DM

Diagonal elements

In this section, we compare the approximate diagonal elements with the ones from the

FCI 2-DM. The CAE for the diagonal elements is calculated by summing the absolute

differences between the approximate and the FCI 2-DM (see eq. 24), and normalized by

the number of electron pairs to make the error comparable (eq. 26).

MBB, BBC2, CA, and CGA present no error in the trace since they were designed to

provide the exact one. However, their CAE, which is the same for the four approxima-

tions, is the largest among the K-functionals. These approximations provide the correct

trace thanks to some unphysical elements in the 2-DM responsible for the self-interactions
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(Dσσ
ii,ii 6= 0). SD, MLSIC, and GU are built using the same diagonal elements and, there-

fore, also produce the same CAE, which is the smallest among the K-only rDMFAs. It

is interesting to remark that this latter group of rDMFAs presents a very simple form

for the diagonal elements, f (ni, ni) = nini, which bears the smallest deviation within the

K-functionals. On the other hand, the PNOF family of approximations generate diag-

onal elements that approximate the reference 2-DM elements, producing CAEs smaller

than the K-functionals. PNOF2 and PNOF4 produce the correct trace, yet their elements

(which ara coincident) bear some CAE. However, the magnitude of the CAE is minimal,

and cannot be compared with the deviation produced by the group involving MBB, BBC2,

CA, and CGA, which also produces the correct trace. PNOF3 presents the largest devia-

tions among the PNOFs. The three versions of PNOF6 generate the smallest deviations

in general. This trend is in agreement with the results obtained for the harmonium atom.8

The CAE of the diagonal elements of the K-functionals for molecules at 5Req is six

times greater than the one produced at Req, and three times larger than in the PNOF family.

The increase of electron correlation caused by the bond stretching is clearly problematic

for the elements in the matrices. The diagonal elements in open-shell molecules are better

approximated than in the closed-shell set of molecules. In this case, K-functionals pro-

duce CAEs of the same magnitude as the PNOFs.

It is worthy to mention the specific case of the hydrogen molecule, where the PNOF

family (with exception of PNOF3) produces CAEs really close to zero. More precisely,

the diagonal elements of PNOF2 and PNOF4 are equal to the reference ones in the

stretched geometry of H2 (see the Supporting Information). Indeed, PNOF2 and PNOF4

reduce to the exact functional for a two-electron system.66 Same results to the CAE test

were obtained for the harmonium atom.8
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Figure 2: Average of the cumulative absolute errors (CAE), normalized to the number of
electron pairs of each molecule N(N − 1)/2, for the diagonal approximate elements of the
2-DM (Eq. 26).

Total CAE

Given a 1-rDM, all the components of the electronic Hamiltonian but Vee are known (eq.

1) and, to approximate Vee, one needs a 2-PD instead of the complete 2-rDM. The 2-rDM

is, however, needed in order to compute other properties besides the energy. The average

of the CAE for all the elements in the 2-DM (including the diagonal elements) are gath-

ered in Figure 3.

According to Tables 1 and 2, each approximation has its expressions to construct the

complete 2-DM, and hence none of them has the same elements as it occurred in the di-

agonal case. Because there are more elements to evaluate in this test, the dimension of

the CAEs is larger than the CAEdiag. In contrast, the magnitude difference between equi-

librium and stretched geometries is shortened with respect to the CAEdiag test: generally,

greater CAE are obtained at 5Req, yet the amount of deviations at equilibrium geometries

is approximately equal. MBB, BBC2, CA, and CGA are the ones that produce larger

differences between both geometries. SD, CA, and ML are the K-functionals with the

lowest CAE, being SD the approximation that presents the most similar 2-DM elements

with the reference 2-DM. PNOF2 and PNOF3 CAEs are a bit smaller than the SD and
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Figure 3: Average of the cumulative absolute errors (CAE), normalized to the number of
electron pairs of each molecule N(N−1)/2, for all the elements of the approximate 2-DM
(Eq. 27).

CA CAEs. PNOF4 and the three PNOF6 versions present the most consistent CAEs for

both geometries and the lowest deviations overall for closed-shell molecules. Concerning

the open-shell set, rDMFAs show similar CAEs for both geometries, but the equilibrium

geometry is better approximated. Surprisingly, SD is the best rDMFA for this set.

The trends obtained in this section are in good agreement with the ones obtained for

the diagonal elements alone, indicating that the main source of error in the approximate

2-DM elements comes from the diagonal components. However, the CA approximation

presents the smallest increase of CAE compared to the CAEdiag, and very close to the SD

CAE, a fact that was already observed in the harmonium atom in non-strongly correlated

regimes.8 The elements of the CA 2-DM are better approximated than its updated version,

CGA. Despite the off-diagonal elements of ML and MLSIC were not specially designed

to reproduce the exact elements, their CAEs are not the largest obtained in this test, and

MBB, BBC2, CGA, and GU are the ones with the least accurate elements in the 2-DM. As

in the CAEdiag test, the CAE obtained for the PNOFs (excepting PNOF3) in H2 is really

close to zero, where PNOF4 and PNOF6 produce the closest 2-DM to the exact one.
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Positivity conditions

The semidefinite positive character of the eigenvalues for the P, Q and G matrices are

evaluated to determine wether the rDMFAs fulfill some of the known N-representability

conditions of the 2-DM. We have analyzed the sum of all negative eigenvalues of those

matrices, and divided them by the number of elements in the 2-DM to make all the sys-

tems comparable.

The PNOF6d approximation is the only functional that fulfills the three conditions for

any system considered, whereas PNOF6u and, consequently, PNOF6h generate a small

sum of negative eigenvalues in the P and Q matrices. In the harmonium case presented

in our previous work,8 the SD, PNOF2 and PNOF4 approximations satisfied the three

positivity conditions,8 yet when a larger set of molecules is considered, only the SD ap-

proximation satisfies the P and G conditions in every system studied in this benchmark.

The Q condition is only fulfilled in H2 by SD, PNOF2, PNOF4, and the other PNOF6

versions (besides PNOF6d).

The P condition checks whether the geminal occupations are non-negative. SD and

PNOF6d are the only rDMFAs that fulfil this condition. The PNOF group generates de-

viations which are an order of magnitude smaller than the other approximations and, in

some particular molecules, PNOF2 and PNOF4 do satisfy this condition (see the Suple-

mentary Information). PNOF3 is the rDMFA that produces the largest amount of negative

eigenvalues from the PNOF family. K-only functionals produce larger sums of negative

eigenvalues than PNOF3, and CA is the approximation that produces the smallest sum in

general terms. MBB, BBC2, and CGA approximations produce the largest sum. How-

ever, the amount of deviations produced by CA depends on the geometry studied, since,

ML and MLSIC produce less deviations in stretched, closed-shell systems. ML, MLSIC,

and, in a lesser extent, GU produce consistent deviations independently of the geometry

or spin state considered. As expected, the positive character of the eigenvalues of the P
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matrix is better preserved at Req.

The largest averaged sum of negative eigenvalues of the Q matrix is produced by the

SD approximation, which conflicts with the fact that the Q condition is met in the hy-

drogen molecule and the harmonium atom.8 The CA and ML approximations produce

the lowest sum among the K-functionals, with ML being the most consistent for any

molecule. SD produces consistent errors for both geometries, but in open-shell molecules

larger deviations are committed. As in the results obtained for the P condition, PNOFs

generate smaller sums than the K-functionals, and again PNOF3 produces the greatest

sum of negative eigenvalues.

The particle-hole probabilities are always positive semidefinite in SD, MBB, CA,

CGA, GU, PNOF4, and the three versions of PNOF6, as they were designed to meet the G

condition. The rest of rDMFAs, namely BBC2, MLSIC, ML, PNOF2 and PNOF3, present

negative eigenvalues in the G matrix, even though the averaged sum is small compared to

the sums obtained for the P and Q conditions (excepting the G condition calculated with

PNOF2 and PNOF3, for which the sum is slightly larger).

Since the PNOF family of approximations were designed to satisfy as many of these

conditions as possible, it is not entirely surprising that these functionals are the ones that

produce the smallest sum of negative eigenvalues in the P, Q, and G matrices, being the

PNOF6 versions and PNOF4 the rDMFAs that provide the smallest amount of viola-

tions. The CA functional presents the lowest sum of negative eigenvalues among the

K-functionals, yet larger deviations are obtained at the stretched geometry. ML shows a

slightly greater sum of negative eigenvalues, but with a consistent error.

151



−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0
SD M

B
B
B
B
C
2

C
A

C
G

A
M

L
M

LSIC

G
U

SD M
B
B
B
B
C
2

C
A

C
G

A
M

L
M

LSIC

G
U

SD M
B
B
B
B
C
2

C
A

C
G

A
M

L
M

LSIC

G
U

Req CS

5Req CS

Req OS

5Req OS

G ConditionQ ConditionP Condition

−0.15

−0.10

−0.05

0.00
PN

O
F2

PN
O

F3

PN
O

F4

PN
O

F6d

PN
O

F6u

PN
O

F6h

PN
O

F2

PN
O

F3

PN
O

F4

PN
O

F6d

PN
O

F6u

PN
O

F6h

PN
O

F2

PN
O

F3

PN
O

F4

PN
O

F6d

PN
O

F6u

PN
O

F6h

Req CS

5Req CS

G ConditionQ ConditionP Condition

Figure 4: Average of the normalized (by the number of electron pairs) sum of negative
eigenvalues from the approximate P, Q and G matrices for closed-shell (CS) and open-
shell (OS) molecules.

Antisymmetry

The PNOF family and the SD approximation are designed to produce antisymmetric 2-

DMs. The rest of approximations, however, fail to some extent to attend the symmetry

condition. Compared to the rest of funtionals, the deviations produced by ML are rather

small and stationary in both geometries. The averaged antisymmetry error at 5Req is

twice the error at Req in all 2-DM approximations but MLSIC, where the error is larger

at the equilibrium, and ML and GU, which present consistent errors. The magnitude of

the averaged error committed for closed-shell molecules is the same for the open-shell

molecules set. The MLSIC and GU approximations produce the largest deviations in this

test.
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Figure 5: Average of the normalized (by the number of electron pairs) antisymmetry error
Eantisym (eq. 28).

Performance in physical chemistry properties

Delocalization index

The DI measures the covalent bond order between two fragments and decreases to zero

as a bond is stretched and the molecule is dissociated.59 Despite DI can be negative, they

rarely are unless it corresponds to largely separated or unconnected atoms, with an abso-

lute magnitude that is never very large. In the present case, no molecule displays a nega-

tive DI at either geometry according to the reference. However, MLSIC and GU mainly,

but also PNOF3 and BBC2 to a lesser extent, predict negative DIs. In fact, MLSIC and

GU only provided one positive DI for closed-shell molecules at 5Req. Even though GU

does not predict any negative DI in open-shell molecules, nor BBC2 in the closed-shell

ones, these rDMFAs produce the largest errors among the functionals considered. MLSIC

and GU, provide worse predictions than their corresponding self-interaction uncorrected

versions. BBC2, which is also an improvement with respect to MBB, also presents large

deviations with respect its predecessor.

The K-only functionals that do not provide negative DIs present smaller errors at
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Figure 6: Root mean squared error (RMSE) and mean signed deviation (MSD) for the er-
rors produced in delocalization index, EDI (eq. 29), for closed- and open-shell molecules.

stretched geometries because there is no bond at 5Req, and the corresponding DI is zero

or practically in most of the diatomic molecules. The K-functionals are able to reproduce

the DI in this scenario and, therefore, larger errors are committed at Req. On the other

hand, the PNOF family still predicts a binding value in most of the molecules at 5Req,

being PNOF2 and PNOF3 the ones that deviate the most. Because the PNOFs predict a

bonding interaction still at five times the equilibrium geometry, the K-functionals present

a better ability at reproducing the bond order of dissociated molecules.

MBB and CGA produce the smallest deviations among the rDMFAs at both geome-

tries, regardless the spin state of the molecule (see the Supporting Information). On the

other hand, whereas the errors produced by SD, CA, ML in closed-shell molecules are

considerably small, there is a huge inconsistency in the DI predictions for open-shell

molecules.
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Generally, all the functionals studied in this work tend to overestimate the covalent

bond order of the molecules, excepting functionals that produce negative DIs at large sep-

arations. In addition, reproducing the DI in open-shell molecules is clearly a problem for

all the approximations.

Mean interelectronic distance 〈s〉 and variance σ2

In this section, the average distance between electron pairs 〈s〉 and its corresponding vari-

ance σ2 are analyzed. The MSD plot presented in Figure 7 indicates that PNOF2 predicts

electron pairs to be too close (negative MSD values), and its deviations are larger than

the SD approximation. Its description for stretched H2 is particularly poor, where elec-

tron pairs are twice as close as in the reference calculation. PNOF3 provides a corrected

description at 5Req with respect to PNOF2, yet H2 and other molecules are slightly incor-

rectly described (see the Supporting Infromation). In contrast to the rest of functionals,

PNOF3 usually overestimates 〈s〉 (see the MSD plot). The variances obtained for both

PNOF2 and PNOF3 approximations at 5Req are not in agreement with the FCI variance,

where the overestimation of 〈s〉 implies an over-delocalization of electrons (underestima-

tion of σ2) in PNOF2, and the other way around in PNOF3. Variances and interelectronic

distances in stretched molecules are significantly improved in the PNOF4 and PNOF6

versions. Generally, variances are correctly predicted at Req by both the PNOF family and

the K-functionals.
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Figure 7: RMSE and MSD for the relative error in the average distance between electron
pairs E〈s〉 (Eq. 33), for closed- and open-shell molecules. PNOF6u and PNOF6d produce
the same deviations as PNOF6h and are thus omitted to avoid redundance.

K-functionals tend to underestimate 〈s〉, and 5Req geometries are more prone to de-

viations than equilibrium geometries. ML and MLSIC provide a similar error magnitude

than SD, yet their equilibrium predictions are improved with respect to the latter. Along

with GU, this group of K-functionals presents larger deviations in the variance only at

stretched geometries. The rest of K-functionals (MBB, BBC2, CA ,and CGA) produce

similar errors as PNOF4 and the three PNOF6 versions, and all of them provide better

predictions for both 〈s〉 and σ2 than PNOF2 and PNOF3.

There is a big overestimation of 〈s〉 in open-shell cases, in which the SD approxima-

tion produces more accurate values of 〈s〉 and σ2 than any K-functional. Interestingly,

whereas the error in 〈s〉 is larger in open-shell cases, the error in σ2 is smaller in open-
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Figure 8: RMSE and MSD for the relative error in the variance of the interelectronic
distance Eσ2 (Eq. 34), for closed- and open-shell molecules. PNOF6u and PNOF6d
produce the same deviations as PNOF6h and are thus omitted to avoid redundance.

shell molecules than in the closed-shell ones.

It is interesting to remark that the largest deviations committed in this test were ob-

tained for the stretched H2 molecule. PNOF4, PNOF6, MBB, BBC2, CA and CGA are

the functionals that best approximate the interelectronic distance value and its variance.

Most rDMFAs tend to uncorrectly distribute electron pairs when a molecule is stretched.
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Intracule probability densities

Negative values

Because the IPD is a probability distribution of interelectronic distances, its values should

be compressed between zero and a positive value to bear a physical significance. Nega-

tive probabilities are obtained if the corresponding 2-DM is formed by negative diagonal

elements, which are also unphysical. We have calculated the IPD for all the molecules

and geometries considered, consulted their profiles, and whether any of the functionals

provide any negative values.

In contrast to the IPDs obtained for the harmonium atom,8 in which most of the func-

tionals presented negative IPD values in the short-range (SR) region, negative IPD values

are only predicted in “extremely” long-range (LR) regions in the current set of molecules

considered. The region where the negative points are obtained is not that relevant for the

electron pair information since the values are obtained around sneg ∼ 2〈s〉. That is, the

region in which the IPD values are large are found at smaller s compared to the region

at which the negative IPD values are obtained. Moreover, the magnitude of the nega-

tive values is remarkably small, 10−5 being the largest negative value. Therefore, one

could consider these values to be residual and not affecting the physical properties of the

molecule. This unphysical feature is obtained for both equilibrium and stretched geome-

tries and for most of the molecules considered in this set, mainly predicted by all the

K-functionals. However, exceptions are found in stretched H2, He2, and Li2. The amount

of negative values in the mid-range (MR) region of He2 and their magnitude are both

small, but BBC2, CA, CGA, GU, MBB, PNOF3, and PNOF6 approximations fail to de-

scribe the SR of stretched H2. This same group of functionals also predicted negative IPD

values in the SR region of harmonium atom in the strong-correlation regime.8 PNOF3 is

the functional that provides the worst profile (see Figure 9), PNOF3 providing a negative

minimum in the MR of stretched Li2. Nevertheless, the magnitude of the negative values

158



obtained for the set of molecules in this current work is two orders smaller than the ones

obtained for the harmonium atom.
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Figure 9: Intracule probability densities (IPDs, eq. 32) of the approximate 2-DM that give
unphysical IPD values of H2 at 5Req. The picture on the right contains a zoomed version
of the region within the dashed box from the left figure. See the Supporting Information
for the complete figure of the IPD.

IPD profiles

In this test, we evaluate the difference between the reference and the approximate IPD

(EI(s), see eq. 31). Note that the substraction is the inverse to the one applied in the

previous tests, and EI(s) determines the lack of electron correlation with respect to FCI at

different range separations. When a method underestimates the correlated motion between

electrons, the IPD difference EI(s) is negative in the short-range region (small interelec-

tronic distances s) of the graph, and positive in the long-range region. EI(s) plots for every

molecule are gathered in the Supplementary Information.

The EI(s) profiles obtained for open-shell molecules indicate that SD reproduces better

the IPD than the K-functionals (which behave similarly to SD only for CH at equilib-

rium, see Figures S14–S19 in the Supporting Information). In most of the cases, the

K-functionals generate analogous and almost undistinguishable IPDs, indicating that the

2-DMs are approximated in a similar way for open-shell cases. Unlike SD, rDMFAs re-
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produce the IPD of singlet oxygen instead of the open-shell triplet (compare Figures S11

and S19), which suggests that the approximate 2-DM reproduce closed-shell structures.

The SD approximation also describes better the long-range region of the holes, obtain-

ing an almost zero EI(s) for SD, whereas the rest of functionals present larger or lower

probabilities, depending on the molecule considered. Another difference in these cases is

that the EI(s) in the SD approximation always produces a Coulomb hole shape (i.e. neg-

ative in the short-range region and positive in the long-range region) for both geometries

studied, caused by a general underestimation of Vee and smaller 〈s〉. Instead, the rest of

rDMFAs present different EI(s) shapes according to the molecule examined. For instance,

at the equilibrium geometry of CH and OH (Figures S15 and S18), EI(s) is negative at

short ranges and positive at larger interelectronic distances; however, rDMFAs produce

the inverse profile for the other four open-shell molecules of the set. The magnitude of

EI(s) is larger at 5Req, excepting in triplet O2 (Figures S33–S38). Positive EI(s) values at

the long-range region are obtained for stretched CN and OH (Figures S35 and S37), sug-

gesting that K-functionals underestimate electron pair probabilities of largely separated

electrons. Conversely, the long-range region of EI(s) is negative for CH, BeH, NO, and

triplet O2 at the stretched geometries. Different EI(s) profiles are generated for the same

molecule at two different geometries and, therefore, the behavior of the approximate IPDs

generally difficult to predict in open-shell molecules.

Unlike open-shell cases, rDMFAs exhibit different profiles for close-shell molecules

(see Figures S1–S13 and S20–S32 for equilibrium and stretched geometries, respectively).

This fact puts forward that the current approximations are rather tailored for closed-shell

molecules. The magnitude of EI(s) does not change much between both geometries, but

in general the error is larger at 5Req. SD produces larger deviations from the reference

IPD compared to the rest of the rDMFAs, which is a big improvement with respect to

the performance of the rDMFAs in open-shell molecules. PNOF4 and PNOF6 are ap-

proximately equivalent through all the systems considered, and EI(s) is negative at the
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short-range region and positive at the long-range, indicating a slight underestimation of

electron correlation. This profile is obtained at both equilibrium and stretched geometries.

These versions of PNOF provide the smallest errors in molecules with a small number of

electrons (see Figures S1–S4). PNOF3 and GU present a similar IPD behavior at Req due

to an overestimation of correlation. Because electron pairs are too separated, their EI(s) is

positive in the short-range region and negative in longer ranges. The CA approximation

presents irregular, oscillating EI(s) profiles through all the interelectronic distance axis, and

is, in general, the functional that provides the largest deviations. These oscillations are not

present when the system analyzed has a small number of electrons, and CA produces an

IPD very similar to the SD one (Figures S1–S4). PNOF2, ML, MLSIC, CGA, MBB, and

BBC2 show similar EI(s) trends as PNOF4 and PNOF6, yet they present a posterior max-

imum at the long-range region of EI(s) at equilibrium geometries. In general, there is no

rDMFA that provides an accurate description of the IPD in a specific range when treating

equilibrium geometries (besides PNOF4 and PNOF6 in molecules with a small number

of electrons, as already mentioned). The deviations obtained along the interelectronic dis-

tance are similar for all rDMFAs, where, in general, the error in the mid-range region is

always negative.

The short-range region of the IPD of molecules at 5Req basically describes the short-

range interactions present at Req, and the profiles at the short-range region of EI(s) at 5Req

are very similar to the complete EI(s) picture at equilibrium. On the other and, the long-

range region of EI(s) at the stretched geometries permits to discern whether a method

is accurate enough to describe dissociations. The magnitude of EI(s) in the long-range

region is somewhat larger than the one from the short-range region, indicating that the

pair-electron distribution between electrons at different atoms is not well described. SD,

MBB, CA, CGA, ML, and, to a lesser extent, MLSIC, accurately reproduce the long-range

part of EI(s) of stretched geometries. GU and MLSIC provide quite accurate IPDs through

all the interelectronic distances, yet in some cases they overestimate the long-range part

161



of the IPD. BBC2 and GU reproduce this region correctly only for particular molecules,

such as Lif or NH (Figures S24 and S28). The long-range IPD values of PNOF2, PNOF4,

and PNOF6 are usually lower than the FCI IPD values (positive EI(s)). This behavior

is directly related to the results obtained in the DI test, in which the PNOFs predicted

a bonding interaction at 5Req. The long-range region of EI(s) in PNOF3 presents differ-

ent profiles depending on the molecule considered, which indicates that PNOF3 does not

present a systematic and predictable error.

We put special attention to the IPD of the stretched geometry of the helium dimer

(Figure S21) since it is bonded by weak van der Waals forces (long-ranged).67 MBB, ML,

CGA, CA, SD, PNOF3, and PNOF2 show very small differences with respect to the ref-

erence IPD, giving thus a correct description. BBC2, PNOF4, and PNOF6 underestimate

the probability of electron pairs at such long interelectronic distances, whereas GU and

MLSIC present a small overestimation. These profiles are in agreement with the ones

obtained for the DI test (check the DI values of He2 in the Supporting Information). For

further discussion on the ability of the functionals to describe dispersion interactions, see

the dispersion test section (vide infra).

Energetic analysis

This section includes tests that consider the ability of the rDMFAs to reproduce the elec-

tronic repulsion energy. Because in rDMFT the only approximated term of the electronic

Hamiltonian is the electron-electron repulsion Vee (eq. 10), we analyze the quality of the

predictions of this quantity for each functional in the set of diatomic molecules considered.

162



Interelectronic repulsion energy Vee in diatomic molecules

Analysis of the electron-electron repulsion energies of the set of diatomic molecules re-

veals what has already been concluded from the previous IPD and average interelectronic

separation 〈s〉 tests: energetic predictions present more deviations from the reference at

stretched geometries (Figure 10). The SD approximation produces more accurate Vee

values than the K-functionals in open-shell molecules, which is in agreement with the

smaller EI(s) magnitudes obtained in the IPD test. The error magnitudes in Vee are like-

wise similar among the K-functionals. SD usually produces a slight overestimation of

Vee, whereas K-functionals tend to underestimate it. However, there is neither system-

atic overestimation nor underestimation of Vee, which depends on the molecule studied.

Approximations produce larger Vee errors for closed-shell molecules at stretched geome-

tries, being PNOF2 the one with an RMSE larger than SD, followed by ML, MLSIC, GU,

and PNOF3. Instead, the latter group of functionals provides better energetic predictions

at Req, whereas CA and SD are the ones with the largest deviations for both open- and

closed-shell molecules. Functionals that commit the largest error are coincident with the

ones that were not able to reproduce correctly 〈s〉 in the corresponding test. MBB, BBC2,

CGA, and GU are the K-functionals that perform the best. Unlike K-functionals, PNOF4

and PNOF6 systematically present small overestimations of the electron-electron repul-

sion energy. Likewise, PNOF2 always presents large overestimations, and PNOF3 is the

only approximation of the family that underestimates Vee. Note that the repulsion energy

prediction for the latter functional in stretched H2 is only half the FCI value.
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Figure 10: RMSE and MSD for the relative error in the interelectronic repulsion energy
EVee (eq. 36) in atomic units, for closed- and open-shell molecules. PNOF6u and PNOF6d
produce the same deviations as PNOF6h and are thus omitted to avoid redundance.

As intuitively expected, the distance between electron pairs 〈s〉 is directly linked to

the repulsive potential Vee. In practically all cases studied, functionals that predict smaller

(larger) 〈s〉 than the FCI reference produce a larger (smaller) electron-electron potential.

In agreement with the average electron pair distances test, the MSD plot for the interelec-

tronic repulsion energies reveals the inverse trends seen in Figure 7.

Dissociation energies of dimers

Dissociation energies (De) are routinely used in computational chemistry and are a mea-

sure of size-consistency. For the molecule to be dissociated, we have considered energies

for geometries that are fifty times the equilibrium geometry, 50Req. Since the other energy

components are exactly calculated from FCI natural orbital occupancies, by studying De

we are only considering the error of the interelectronic repulsion potential (eq. 38). The
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RMSE and MSD of EDe are summarized in Figure 11 for all functional approximations.

Some rDMFAs show a severe problem in describing the dissociation potentials, since

SD, BBC3, ML, MLSIC, GU, PNOF2, and PNOF3 present a RMSE of the error larger

than 100 kcal/mol, where BBC2 has a deviation of almost 400 kcal/mol. This error mostly

arises from predictions of Vee at 50Req geometries in the H2 molecule, where this group of

rDMFAs predict an excessively large repulsive potential at such interelectronic distances

(and PNOF3 produces a negative potential). As seen in the Vee prediction test, functionals

produce larger errors when considering stretched geometries. Whereas BBC2 was one of

the best performing rDMFAs in that test, a too large error in H2 makes it an unreliable

functional for this test. PNOF4 and PNOF6 provide the best dissociation energies among

their functional family. Compared to other tests, rDMFAs provide better predictions in the

set of open-shell molecules. Again, according to the results obtained from the Vee test and

from this test, the interelectronic repulsion is better predicted at equilibrium geometries.

This causes large deviations in De predictions by some approximations. Therefore, we

suggest that future development of rDMFAs should focus on the description of stretched

geometries of molecules.
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Figure 11: RMSE and MSD for the error in the dissociation interelectronic potentials
EDe (eq. 38), for closed- and open-shell molecules in kcal/mol. PNOF6u and PNOF6d
produce the same deviations as PNOF6h and are thus omitted.

H4 D2h/D4h

The D2h/D4h potential energy surface (PES) of H4 permits assessing the ability of a func-

tional to describe dynamic and nondynamic correlation effects. The only case in which

H4 is not affected by nondynamic correlation is at the D2h symmetry (θ = 70◦) with R =

0.8 Å (the equilibrium geometry46). In Figure 12, all the errors reported are represented

with respect to this geometry. The PES from going from D2h to D4h but keeping the same

distance between hydrogen atoms R (red bars in Figure 12) is better reproduced by the

rDMFAs than the other paths analyzed; however, the error committed is of 100 kcal/mol

in average. MBB, BBC2, CA, CGA, PNOF2, and PNOF6h produce errors below 65

kcal/mol, but larger than 50 kcal/mol. This shows that rDMFAs can moderately hande

nondynamic correlation coming from short-ranged orbital degeneracies. On the other

hand, rDMFAs produce errors usually larger than 100 kcal/mol in the other two paths
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analyzed (same symmetry as the reference geometry but different R, green bars in Figure

12, and changing both the symmetry and R, blue bars in the figure). The only exceptions

are MBB and CGA, and, to a lesser extent, CA and PNOF3 (only in one of the paths).

That is, rDMFAs present a problem in describing nondynamic correlation effects arising

from the dissociation of a molecule. The errors produced for this situation are equivalent

for both symmetries, with the exception of BBC2, which presents a larger deviation at the

D4h symmetry. MBB and CGA errors are of 15 kcal/mol in this two paths, being the best

performing rDMFAs in this test.
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Figure 12: Error of the D2h/D4h potential energy curve of H4, EH4,corr (eq. 41), where the
repulsion energies are calculated with respect to the interelectronic potential of the ground
state geometry, R = 0.8 Å and θ = 70°.

A former study carried out in our laboratory on the D2h/D4h potential energy surface of

H4
46 concluded that PNOF6 produces qualitatively correct energies and orbitals for this

system, as PNOF6 includes intrapair and interpair correlation. In contrast to this work,

the geometries were optimized using PNOF6. The PNOF6 absolute energies for the equi-
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librium geometry from that study produce relative errors of the same order of magnitude

as the ones obtained in this work. However, the relative errors do not change drastically

when considering other geometries (other angles and hydrogen distances). This suggests

that the functional–driven error is larger in PNOF6 than the 1-DM–driven error.

Size-extensivity of the energy: polyhedral HN
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Figure 13: Error in the interelectronic repulsion energy by the number of hydrogen atoms,
EVee/N (eq. 40), for N hydrogen atoms placed at the vertices of an N-vertex polyhedron,
in which the H atoms are separated by 10 Å from the geometrical center.

The increase in the number of electrons in the HN polyhedral molecules implies an in-

crease in the electron-electron repulsion energy. All rDMFAs but BBC2 predict an in-

crease of Vee with the number of atoms; BBC2 predicts larger repulsive potentials when

N = 6 (see the Supporting Information). Figure 13 illustrates the Vee error per number of

atoms N (eq. 40). MBB, CA, and CGA are the only functionals that are able to predict

accurate repulsion energies through the HN molecules considered, with size-extensive re-

sults and presenting relative errors below 1 kcal/mol. In contrast, BBC2 shows the largest

168



deviations, with an unreasonable errors that grow up to 5800 kcal/mol. SD, ML, and ML-

SIC present size-extensive energies, but their relative errors are also excessively large. GU

and PNOF2 produce smaller errors but they are still non-negligible, and are not the most

size extensive rDMFAs studied. PNOF3 is the only approximation that underestimates

the interelectronic repulsion, as already discussed in other tests, and predicts negative Vee

in N = 2. PNOF4 and PNOF6 provide a quality Vee for H2, but they provide errors of

the same order of magnitude as PNOF2 and GU for the rest of HN molecules. This test

enhances the statement of PNOF4 and PNOF6 being good rDMFAs for systems with two

electrons, but not the best choice to describe molecules with a larger number of electrons.

They do not provide size-extensive energies in this test.

Description of dispersion

The ability of each rDMFA to account for dispersion interactions is analyzed in stretched

H2 and He2 at different interatomic distances. The dispersion error evaluated, Edisp(R) (eq.

42) analyzes whether the rDMFAs account for the IPD condition65 by multiplying by R3.

In this way, rDMFAs with dependencies higher than R3 will show an Edisp(R) growth to

(absolute) large values as R increases. On the other hand, rDMFAs with an exponential

or a smaller decay (R−4 or lower) will present an Edisp(R) that rapidly goes to zero at early

values of R.

The black dashed line appearing in both graphs of Figure 14 represents the behavior

of the reference. The FCI Edisp(R) function is positive and constant when the two frag-

ments are largely separated. Due to a lack of numerical precission, the FCI Edisp(R) in

H2 presents a smooth growth with R, caused by a limitation on the angular grids in the

present implementation of the RHO2_OPS code, used to perform the IPD integrations.

In both H2 and He2, PNOF2, PNOF3, GU, and MLSIC show an Edisp(R) that largely
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grows or decreases with R, indicating an incorrect description of dispersion interactions

caused by a major power dependence with R. Whereas this behavior is not obtained in

H2, PNOF4, PNOF6, and BBC2 also present a larger power dependency with R in He2.

This leads ML, CA, CGA, and MBB the only rDMFAs with a smaller power dependency

than R−3.

Another point to be analyzed is the constant value accompanying the 1/R3 decay,

which is a positive parameter. The positivity of Edisp(R) can also indicate the quality of

the dispersion interactions treatment. ML, CA, CGA, and MBB present negative Edisp

values. PNOF2 produces negative Edisp(R) values for H2, but at He2 Edisp(R) are positive,

and the contrary behavior is produced by BBC2, PNOF4, and PNOF6. GU, MLSIC, and

PNOF3 Edisp(R) values are positive in both molecules.

No rDMFA is able to correctly reproduce the universal signature of dispersion in-

teractions in the IPD, and therefore the description of London dispersion forces is not

correctly described by any of the rDMFAs. Whereas some functionals produce smaller

power dependencies, others bind molecules too strongly. Indeed, in a former study, it

was concluded that PNOF2 presents the ability to bind two He atoms to form the van der

Waals dimer.31 However, geometry and, therefore, orbital and occupation number opti-

mizations were carried out in that study, contrarily to this current work. Nevertheless, the

PNOF2 results in this test suggest that the higher power dependency with R gives PNOF2

the ability to bind He2. We believe that such behavior could be corrected if the dispersion

condition for the IPD65 is considered in their development.
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Figure 14: Edisp(R) profiles (Eq. 42) in (left) the hydrogen molecule and (right) the helium
van der Waals dimer.

Conclusions

A set of thirteen approximations to the 2-DM have been analyzed by considering their

physical background in their design, and their performance in predicting chemical proper-

ties. No rDMFA has succeeded in all the tests considered in this work, yet their strengths

and flaws have been identified and exposed. The MBB, CA, and CGA approximations

have provided really good predictions for the energies in the tests carried out in this study.

These approximated 2-DMs bear the correct trace, yet they only fulfill the G-condition.

They reproduced quite accurately the DIs and predicted quite accurate interelectronic dis-

tances 〈s〉. However, the IPD profiles obtained are quite inaccurate compared to the exact,

FCI one, giving very irregular profiles in all the dimers studied in this work. The MBB

IPD is, however, one of the best rDMFAs to reproduce the reference IPD. Their per-

formance in open-shell molecules is not that unsatisfactory, since CGA and MBB have

provided the smallest deviations in the DI and Vee predictions. However, as the rest of

K-functionals, their IPDs and, consequently, the expected value of the interelectronic dis-

tance 〈s〉 are incorrect. In former benchmarks, it has been pointed out that CA and CGA

give correct energies but for the wrong reason.9 In general, MBB has provided quite better

results than CA and CGA, but the antisymmetry of the approximate 2-DM is not better
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preserved than in CA or CGA. In general, CA, CGA, and MBB approximations tend to

provide better predictions than the SD 2-DM, a functional that was not designed to be a

rDMFA.

GU and BBC2 show significative worse predictions than their predecessor, MBB. The

sums of negative eigenvalues of the P, Q, and G matrices of BBC2 are slightly smaller

with respect to MBB, yet the G-condition is not satisfied in BBC2. Instead, the GU 2-

DM commits approximately the same violations as MBB, and is G-representable. Their

2-DM elements differ significantly from the FCI ones, and it results in, for instance, bad

approximations of the DI, even providing negative DI values that do not correspond with

the studied molecules. However, the IPD and its derived properties (〈s〉, σ2, and Vee)

are quite accurately predicted by BBC2. BBC2 was explicitly designed to predict ener-

gies, but only for non-strongly correlated cases, as it has been seen in the predictions of

stretched geometries, the De test, and in the H4 D2h/D4h potential energy surface (see as

well the results obtained in the harmonium atom). Instead, the IPD of the GU 2-DM does

not improve with respect to MBB, and its energetics, while they are not the worst predic-

tions, they are not the best ones either. Better predictions are also obtained in systems that

are not dominated by nondynamic correlation. Instead, BBC2 is able to provide a quite

correct long-range behavior that permits describing dispersion interactions quite properly.

This result is not obtained in MBB, and a worse behavior is seen in GU.

The number of violations committed by the PNOFs in the positivity matrices is smaller

than in the K-functionals group, as the PNOF design imposes these conditions in their

structure. PNOF2 and PNOF3 present a small number of violations, and fewer deviations

are committed in PNOF4 and PNOF6. PNOF2 and PNOF3 show important deviations

in their IPDs, and stretched molecules seem to be problematic to describe. However, the

electron pair distribution seen in the IPDs reveals that the PNOFs have improved through

the versions. However, PNOF3 provides some unphysical and incorrect descriptions in
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most of the molecules examined, being PNOF2 a more appropriate functional than its

successor. The latest versions of PNOF considered in this work provide reasonable IPD

profiles for dissociating geometries, really similar to the FCI results in cases where elec-

tron correlation is small, and reasonably good predictions for Vee. However, their DI

predictions fail to describe a dissociated bond order, as well as other energy predictions in

cases where nondynamic correlation plays an important role. Instead, they provide a rel-

atively proper treatment of dispersion interactions, in which their older versions, PNOF2

and PNOF3, failed considerably in describing the long-range asymptotic decay.

Table 5 summarizes the results of the tests performed through this article, and gathers

the best performing rDMFAs. In general, the rDMFAs that produce the smallest devia-

tions in all the tests are MBB, CA, CGA, PNOF4, and PNOF6 (not necessarily in this

order). Newer PNOF versions provide better predictions, yet the oldest K-functionals are

the best performing. It does not seem that the self-interaction corrections provide any

advantage on the functionals either.

The foundations on rDMFT are almost 50 years old,1 yet the theoretical research of

rDMFT has increased in the last years. Several functionals have been presented through

the years and large improvements are obtained. However, there is still the need to improve

the performance of 2-DM approximations in the description of open-shell molecules, as

well as stretched bonds, as it has been seen through the tests presented in this work. In

general, they present difficulties in predicting the IPD of open-shell molecules, where SD

provides a better prediction than the rest of K-functionals. The treatment of open-shell

molecules is currently being assessed, with promising results.68–70

173



Table 5: Summary of the best-performing rDMFAs according to the results and errors
obtained in the tests studied throughout this work. a) For open-shell molecules. b) At
stretched geometries, regions close to interfragment distances, s = R. c) For systems with
small number of electrons. d) These functionals provide the smallest deviations, but the
RMSE of the error is of 50 kcal/mol. e) CGA and MBB are not able to describe short-range
correlation arising from orbital degeneracies

Property Best-performing rDMFA

Trace MBB, BBC2, CA, CGA, PNOF2, PNOF4

Diagonal elements of the 2-DM PNOF6, PNOF4, PNOF2

Elements of the 2-DM PNOF6, PNOF4, SD

N-representability PNOF family, CA, SD

Antisymmetry SD, PNOF family

Delocalization index MBB, CGA, CA, ML, SD

Intracule probability densities
MBB, ML, MLSIC, SD, a K-functionals, b

PNOF4, c PNOF6 c

Average interelectronic distance MBB, CGA, CA, BBC2
and variance

Interelectronic potential MBB, CGA, CA, PNOF4, PNOF6

Dissociation energies MBB,d CGA, d PNOF4, d PNOF6, d CA d

Nondynamic correlation-including MBB, e CGA e

Size-extensivity MBB, CA, CGA

Description of dispersion interactions none
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Figure S1: H2 intracule probability densities (IPD) at the equilibrium geometry Req. Left) The exact
IPD (FCI), I(ρ2, s) and the IPDs obtained from the approximate 2-DM, I(ρX

2 , s), where X stands
for a RDMFA. Right) The error in the IPD, EI(s) = I(ρ2, s) − I(ρX

2 , s) (eq. 35 in the manuscript).
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Figure S2: He2 intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S3: LiH intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S4: Li2 intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S5: LiF intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S6: Be2 intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S7: C2 intracule probability densities (IPD) at the equilibrium geometry Req. See caption of
Figure S1 for more details.
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Figure S8: CO intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S9: NH intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S10: N2 intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S11: Singlet O2 intracule probability densities (IPD) at the equilibrium geometry Req. See
caption of Figure S1 for more details.
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Figure S12: HF Intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S13: F2 intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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1.1.2 Open-shell molecules
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Figure S14: BeH intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.

0.0

2.0

4.0

6.0

8.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

I
 (
s
)

s (a.u.)

Req CH

FCI
SD

MBB
BBC2

CA
CGA

GU
ML

MLSIC

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

E
I
 (
s
)

s (a.u.)

Req CH

Figure S15: CH intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S16: CN intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S17: NO intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S18: OH intracule probability densities (IPD) at the equilibrium geometry Req. See caption
of Figure S1 for more details.
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Figure S19: Triplet O2 intracule probability densities (IPD) at the equilibrium geometry Req. See
caption of Figure S1 for more details.
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Figure S20: H2 intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S21: He2 intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S22: LiH intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S23: Li2 intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S24: LiF intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S25: Be2 intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S26: C2 intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S27: CO intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S28: NH intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S29: N2 intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S30: Singlet O2 intracule probability densities (IPD) at 5Req. See caption of Figure S1 for
more details.
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Figure S31: HF intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S32: F2 intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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1.2.2 Open-shell molecules
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Figure S33: BeH intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S34: CH intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S35: CN intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Figure S36: NO intracule probability densities (IPD) at 5Req. See caption of Figure S1 for more
details.
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Chapter 6

Results and discussion

In this chapter, the results introduced in the works compiled in Chapters 3–5 are

discussed and summarized. In Section 6.1, the ability to describe nondynamic and

dynamic correlation effects of the correlation components introduced in Chapter 3

is validated. By means of textbook examples of dynamic and nondynamic correla-

tion, as well as physical models and other molecules, the validation of the cI and

cII correlation components is done in Sections 6.1.1 and 6.1.2, respectively. Insight

is given into London dispersion interactions in Section 6.1.2.1. Particular profiles

are detected in both correlation components of the Coulomb hole, according to the

range considered. This is discussed in Section 6.1.3. An analysis of the spin compo-

nents of the Coulomb hole and its partitions is analyzed in 6.1.4.

The new universal footprint found in the intracule pair density for dispersion in-

teractions introduced in Chapter 4 is reviewed and expanded in Section 6.2. Finally,

Section 6.3 encloses the outcome of the rDMFT benchmark introduced in Chapter 5.

6.1 On the pair density-based decomposition of

the Coulomb hole

Chapter 3.1 presented the decomposition of the correlation part of the 2-PD, ∆ρc2,

into two components, named ∆ρcI2 and ∆ρcII2 , where

ρ2(r1, r2) = ρHF
2 (r1, r2) + ∆ρc2(r1, r2) = ρHF

2 (r1, r2) + ∆ρcI2 (r1, r2) + ∆ρcII2 (r1, r2).

(6.1)

The definitions for the components arising from the splitting of ∆ρc2(r1, r2) are:

∆ρcI2 (r1, r2) := ρSD2 (ρ1, r1, r2)− ρSD2 (ρHF
1 , r1, r2) (6.2)
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and

∆ρcII2 (r1, r2) := ρ2(r1, r2)− ρSD2 (ρ1, r1, r2), (6.3)

where ρSD2 (ρHF
1 , r1, r2) ≡ ρHF

2 (r1, r2) is the HF 2-PD (Eq. 1.37), ρSD2 (ρ1, r1, r2) is

the SD approximation of the 2-PD (Eq. 1.42), and ρ2(r1, r2) is the FCI 2-PD. Note

that the definitions of ∆ρcI2 and ∆ρcII2 are analogous to the ones for Λkl
ij and Γklij

(Eqs. 1.86 and 1.87), respectively, presented in Section 1.4.2. The main difference

is that Eqs. 6.2 and 6.3 are not restricted to the NOrb representation, and that the

decomposition of ∆ρc2 is exact.

The criterion to split ∆ρc2 in such a way is based on the inability of the SD ap-

proximation of the 2-PD (Eq. 1.42) to describe dynamic correlation effects [136,222].

It is accepted that the SD 2-PD describes a large part of nondynamic correlation,

but it is too bold to assume that it considers all of them. Because of this, we can

assure that ∆ρcI2 only contains nondynamic correlation effects, whereas ∆ρcII2 mainly

describes dynamic correlation, but also some nondynamic correlation effects. The

hypothesis for this decomposition is analogous to the argument presented in Section

1.4.2: the 1-RDM (ρ1) is able to capture the nondynamic correlation effects. Non-

dynamic correlation arises when going from a single configurational picture (that is,

a CI vector mainly described by the HF determinant and a large number of lowly

contributing configurations) to a multiconfigurational one (a CI vector composed by

more than one dominant determinant besides the HF one). Because of this, going

from one picture to another the 1-RDM will undergo large changes. Nondynamic

correlation causes large and global changes in the electron density caused by the

large mixing of configurations. Therefore, ∆ρcI2 is close to zero in a system mainly

described by the HF determinant (a system that mainly suffers of dynamic corre-

lation effects). Instead, a strong mixing of configurations with the HF determinant

(which gives rise to nondynamic correlation effects) implies a large value in ∆ρcI2
because the 1-RDM is substantially different from the HF 1-RDM.

One of the main goals of this thesis is to study the range-separation of electron

correlation and its components. Because the IPD (Eq. 1.71) summarizes the elec-

tron correlation effects contained in the 2-PD, it permits a natural separation of

electron correlation by range. As well, the IPD is the building block to construct

Coulomb holes (see Chapter 1.3.1); one can construct a correlation hole for each 2-

PD correlation component. If the Coulomb hole is defined as the difference between

the FCI (correlated reference) and the HF (uncorrelated reference) IPDs (Eq. 1.74),

hc(s) = I(∆ρc2, s) = I(ρFCI
2 , s)− I(ρHF

2 , s), (6.4)
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it is sensible to apply the correlation splitting for the 2-PD into it:

hc(s) ≡ I(∆ρc2, s) = I(∆ρcI2 , s) + I(∆ρcII2 , s) ≡ hcI(s) + hcII(s). (6.5)

As we shall see, Eq. 6.5 permits the study, identification and treatment of each

correlation type separately and by range.

6.1.1 hcI and nondynamic correlation
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Figure 6.1: Coulomb hole and its correlation components for H2 at a) 1.32, b) 2.83, c) 3.78, and

d) 6.61 a.u. bond distances. The FCI IPD, I(ρFCI
2 , s) is represented in green (right y-axis) for

comparison.

The basis of the decomposition relies on the ability of the 1-RDM to capture

nondynamic correlation effects, but not retrieving dynamic correlation. Although

the definition of the 2-PD cI component (Eq. 6.2) is a difference between two 2-PDs,

both ρSD2 and ρHF
2 use the same expression (same “recipe”) but a different input vari-

able, the 1-rDM (two different “ingredients”). What is actually evaluated in Eq. 6.2

is, then, the dissimilarity between the FCI and HF 1-rDMs by means of the 2-PD.

Expressed in terms of NOrbs and NOccs, it evaluates the difference between the FCI

occupancies (fractional numbers compressed between 1 and 0) and the HF ones (1

or 0). When a molecule requires a multiconfigurational wavefunction, nondynamic

correlation arises between electron pairs. Cases in which the HF wavefunction fails
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to describe an electronic system are the stretching of a bond and molecular disso-

ciations; or, in general, orbital degeneracies caused by the symmetry of the system.

Therefore, molecular dissociations and cases with orbital degeneracies in the ground

state are considered in this section to evaluate whether ∆ρcI2 captures nondynamic

correlation effects.

6.1.1.1 Chemical examples
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Figure 6.2: Coulomb hole hc in black, and its cI (red) and cII (blue) correlation components of

HN with N = 2, 4, 6 and 8. The FCI IPD, I(ρFCI
2 , s) is represented in green (right y-axis) for

comparison.

The stretching of the H–H bond in H2 is the most elemental example to evaluate

∆ρcI2 . It is well known that a single Slater determinant is not able to describe the

homolytic separation of two electrons into their respective hydrogen nuclei. Fig.

6.1 contains the Coulomb holes and its components at different bond distances. It

can be seen that, as the bond stretches, hcII becomes less important and hcI turns

into the leading component of the Coulomb hole. Another example is polyhedral

HN , a system composed of N = 2, 4, 6, 8 hydrogen atoms equidistantly separated a

distance of 18.9 a.u. from the center of mass, forming a polyhedron. Fig. 6.2 shows

that Coulomb holes of HN present a large cI hole that peaks around the interfrag-

ment distances with the other hydrogens (labeled with a D in the figure).
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Because nondynamic correlation rises when a molecule dissociates, hcI predomi-

nates in the LR region, caused by the LR interactions between the electrons found in

each atomic center. Through the molecules analyzed, hcI is usually positive at both

SR and LR regions, being mostly long-ranged with large values due to the small

electron pair probability of the HF 2-PD at those ranges. Exceptions to this state-

ment are found in molecules where HF is not able to produce the correct homolytic

dissociation, such as in LiH and H4 at the C3v symmetry point group, presented

in Chapter 3.2. See Fig. 6.3 for the LiH Coulomb hole as an example. In these

molecules, HF dissociates into fragments with a noninteger number of electrons.

This causes some fragments to have a larger electron pair population, and, there-

fore, hcI is negative in the LR region. Instead, if HF would dissociate into the correct

number of electron pairs in each fragment (as in the UHF method), hcI would be

positive in the LR region of the hole (see Figs. S5 and S6 in Chapter 3.2).
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Figure 6.3: Coulomb hole hc in black, and its cI (red) and cII (blue) correlation components of

LiH at the equilibrium geometry at 3.02 a.u., and 15.12 a.u. bond length. The FCI IPD, I(ρFCI
2 , s)

is represented in green (right y-axis) for comparison. The inset plot shows the effect of dispersion

interactions in the LR region of hcII .

On the other hand, note that hc, hcI , and hcII have nonzero values in the SR

region at the stretched geometries of the HN molecules. Because there exist no SR

interactions within a hydrogen atom (since there is only one electron; see the shape

of the FCI IPD in the green shadowed region in Figs. 6.1, 6.2, for instance), these

nonzero values in the SR region of the holes are consequence of the SR description

of the HF 2-PD. This amount corresponds to the number of electron pairs that the

HF description places at short interelectronic distances.

H4 in D2h and D4h symmetry point group is a convenient system to analyze for it

permits tuning the effects of electron correlation in terms of the distance between the

center of mass and a hydrogen atom R, and the angle θ formed between the center

of mass and two adjacent hydrogens. Cases where R is large share the same profiles
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with the already discussed H2 and HN molecules: hcI is large and positive in the LR

region of the hole, centered around the interfragment distance with other hydrogens,

and caused by the nondynamic correlation rising from molecular dissociation. In the

particular case of H4 in the D4h symmetry point group, an important orbital degen-

eracy exists caused by the symmetry of the molecule. This orbital degeneracy causes

SR interactions between electron pairs that are caused by nondynamic correlation

effects. The cI hole component is positive in the SR region of the Coulomb hole, in-

dicating that ∆ρcI2 captures some of the SR nondynamic correlation effects from ∆ρc2.
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Figure 6.4: Coulomb hole and its correlation components for four conformations of D2h/D4h H4.

a) R = 1.51 a.u. and θ = 0.39π (D2h), b) R = 1.51 a.u. and θ = π/2 (D4h), c) R = 7.59 a.u. and

θ = 0.39π (D2h), and d) R = 7.59 a.u. and θ = π/2 (D4h). R is the distance from the center of

mass to one hydrogen, and θ is the angle between the center of mass and the two closest hydrogen

atoms. The FCI IPD, I(ρFCI
2 , s) is represented in green (right y-axis) for comparison.

The beryllium atom is a textbook case of nondynamic correlation due to the

near-degeneracy of the 2s and 2p orbitals, a feature that is passed to the beryllium

dimer (for more details of Be atom, see Fig. 6.9 for the Coulomb hole, and Section

6.1.1.3 for an analysis of the isoelectronic series of Be). hcII is not zero when Be2 is

at the equilibrium geometry, due to the SR nature of the interactions that give rise

to dynamic correlation. However, hcI is larger and is the leading component that de-

fines the Coulomb hole (see Fig. 6.5). Because the SR interactions between electron

pairs delocalized in the 2s − 2p orbitals give rise to nondynamic correlation, ∆ρcI2
describes such interactions and are reflected in the magnitude of hcI . The SR region
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of hc in the dissociated geometry of Be2 is equivalent to the picture obtained for the

equilibrium case since this SR region describes the interactions within a beryllium

atom. Certainly, the correlated motion of electrons in Be is nondynamic because

of the 2s − 2p orbital degeneracy, contemplated by ∆ρcI2 and reflected in hcI . The

maximum in the LR region of the Coulomb hole is characterized by hcI , caused by

the orbital degeneracy arising from the bond stretching of Be2. As in H2, the hcI
peak is positive due to the covalent nature of the bond. Despite hcII seems to be

zero at this region of the hole, it presents a small contribution caused by dispersion

forces (see Section 6.1.2.1 and Fig. 6.12).
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Figure 6.5: Coulomb hole and its correlation components for Be2 at 4.72 a.u. (left) and 24.57

a.u. (right) bond distance. The FCI IPD, I(ρFCI
2 , s) is represented in green (right y-axis) for

comparison. Be2 has been calculated with the FCI(FC)/aug-cc-pVTZ level of theory. See Fig.

6.12 for a zoomed detail on the LR region of the stretched geometry.

6.1.1.2 Physical models

The Hubbard model is widely used in physics, for it brings the ability to tune

correlation that can be easily computed [223,224]. Particularly, the Hubbard dimer

contains two interacting electrons in two orbitals found in a lattice. The Hamiltonian

of the Hubbard model tunes the strength of the interelectronic interactions with the

on-site interaction U and the hopping t parameters:

Ĥ = −t
∑

〈µ,ν〉,σ
(â†µσâνσ + â†νσâµσ) + U

∑

µ

ρ̂µαρ̂µβ, (6.6)

where µ and ν denote the two sites of the lattice, σ the spin of the electron, â†µσ and

âµσ are the creation and annihilation operators of one electron with spin σ in site µ,

and ρ̂µσ is the one-particle number operator with spin σ on site µ. Large U/t values

induce nondynamic correlation to the system, and small U/t values result in a dimer
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with only dynamic correlation. Fig. 6.6 contains four different U/t values of the

real-space Hubbard dimer. When U/t is small, an electron pair can be located in

the same site of the lattice. This scenario is described by hcII . However, an increase

in U/t causes a decrease in hcII and the Coulomb hole is taken over by hcI , due to the

strong repulsion felt by the electron pair, now found at different sites. This example

also features the ability of ∆ρcI2 to describe nondynamic correlation effects.

−0.010

−0.005

0.000

0.005

0.010

0.0

0.1

0.2

0.3

0.4

on−site                               intersite

U/t=0.1

I (ρ2, s)
hc (s)
hc

I
 (s)

hc
II
 (s)

−0.08

−0.04

0.00

0.04

0.08

0.0

0.1

0.2

0.3

0.4

on−site                              intersite

U/t=1.0

−0.20

−0.10

0.00

0.10

0.20

0.0

0.1

0.2

0.3

0.4

on−site                              intersite

U/t=10.0

−0.30

−0.15

0.00

0.15

0.30

0.0

0.1

0.2

0.3

0.4

on−site                               intersite

U/t=100.0

Figure 6.6: Coulomb hole and its correlation components for the half-filled Hubbard dimer in real

space, with different U/t correlation parameters. The FCI IPD, I(ρFCI
2 , s) is represented in green

(right y-axis) for comparison.

The strength of electron correlation can also be modulated through the har-

monium atom [225–227]. This model system is described with a Hamiltonian that

approximates the interelectron repulsion with a harmonic potential:

Ĥ = −1

2
(∇2

1 +∇2
2) +

1

2
ω2(r21 + r22) +

1

|r2 − r1|
(6.7)

The strength of the repulsion is tuned with the confinement strength parameter ω:

large ω values correspond to very small correlation, and strongly correlated cases

are reached for very small ω values. The two-electron harmonium permits a study

of varying electron correlation regimes with very small computational effort. Fig.

6.7 depicts the harmonium hole in three correlation regimes. At ω = 1000 (the less

correlated case), electrons do not suffer a large repulsion, so the dominant corre-

lation type in the system is dynamic. This is the behavior described by hcII , that
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is completely identical to the shape of the Coulomb hole, and hcI is flat along the

x-axis. At ω = 1.0 (middle graph in Fig. 6.7), hcI is not zero anymore. However, its

contribution is considerably small compared to the one of hcII . hcI prevails over the

cII hole in the strongly correlated case of ω = 0.3. Note that the average interelec-

tronic distance 〈s〉 is larger in this case than in the other two considered (compare

the x-axes in Fig. 6.7). Repulsion is so strong in this case that electron pairs are

largely separated, giving rise to LR nondynamic correlation. These interactions are

described by ∆ρcI2 .
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Figure 6.7: Coulomb hole and its correlation components for the two-electron harmonium atom,

with different values of confinement strength: (left) ω = 0.3 (center) ω = 1.0 (right) ω = 1000.

6.1.1.3 Types A and B nondynamic correlation

The isoelectronic series of beryllium, Be(Z), is an example in which nondynamic

correlation dominates the electron correlation effects. The small 2s − 2p orbital

energy gap in Be gives rise to nondynamic correlation. Hollett and Gill indicate in

their work that Be(Z) is a series described by type B nondynamic correlation and,

because of that, the unrestricted formalism of HF is not able to describe it [35] (see

Section 1.1.1 for more details about type A and type B nondynamic correlation).

The ability of our correlation decomposition to discern between both types of non-

dynamic correlation is considered in this Section.

Type A nondynamic correlation arises in molecules with absolute near-degeneracies.

The bond cleavage of H2 (or the dissociation of a covalent bond in general) gives

rise to type A. As it has been discussed through this section, ∆ρcI2 describes the

nondynamic correlation interactions arising from molecular dissociations, so type A

nondynamic correlation should be contemplated in this electron correlation compo-
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Figure 6.8: The cI hole component of the isoelectronic series of beryllium, Be(Z). hcI for Z =
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the RHF (UHF) IPD as the uncorrelated reference, being hRcI(s) = I(ρSD2 , s) − I(ρRHF
2 , s) and

hUcI(s) = I(ρSD2 , s)− I(ρUHF
2 , s).

Z ERHF EUHF ∆E 〈S2〉UHF ∆εgap ∆ (∆εgap)

3 -7.380119 -7.390860 -0.01074 0.7132 0.21864 0.15874

4 -14.57022 -14.57059 -0.00036 0.1378 0.37738 0.22385

5 -24.23339 -24.23339 0.0 0.0 0.60123 0.22636

6 -36.39601 -36.39601 0.0 0.0 0.82759 0.22368

7 -57.07217 -57.07217 0.0 0.0 1.05127 0.21915

8 -68.22939 -68.22939 0.0 0.0 1.27042 -

Table 6.1: The RHF and UHF energies, their energy difference, the spin contamination from the

UHF calculation, the HOMO and LUMO energy gap, and the difference between two consecutive

energy gaps for Be(Z) species with 3 ≤ Z ≤ 8. Adaptation from the data presented in Chapter

3.2.

nent.

On the other hand, type B nondynamic correlation arises from relative near-

degeneracies, and UHF is not able to describe its effects. Be(Z) is used to deter-

mine whether the correlation decomposition is able to discern between types A and

B. The last column in Table 6.1 compiles the difference of HOMO-LUMO gaps for
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two consecutive Be(Z), ∆(∆εgap). Because these differences are constant, Be(Z)

presents a relative near-degeneracy with Z. Energies gathered in Table 6.1 indicate

that the UHF method becomes less able to describe type B nondynamic correlation

when the core potential Z increases with fixed N . UHF gives a different description

from RHF at Z = 3 and Z = 4. Instead, from Z = 5 and beyond, the UHF de-

scription converges to the RHF case, indicating the inability of UHF to account for

type B nondynamic correlation effects (a conclusion already presented in the work

of Hollett and Gill [35]). hcI calculated using the UHF and RHF 2-PDs is different

at Z = 3 and Z = 4 (see Fig. 6.8), and there is only one possible hcI for Z = 5 and

beyond because the UHF wavefunction is the RHF one. With this, the inability of

UHF to describe type B nondynamic correlation is also reflected in ∆ρcI2 .

6.1.2 hcII and dynamic correlation

In contrast to ∆ρcI2 , the definition of ∆ρcII2 does not rely on the 1-rDM differences

but on the validity of the SD 2-PD to approximate the 2-PD (Eq. 6.3). The defini-

tion proposed for ∆ρcII2 is actually coincident with the one for the cumulant of the

density matrix (Eq. 1.32), which is commonly understood as the part of the 2-DM

that contains the correlation effects in the 2-rDM [124, 125, 138, 147, 160]. Instead,

∆ρcII2 is expected to contain the dynamic correlation effects and the remaining non-

dynamic correlation that the SD 2-PD is not able to retrieve (the amount that ∆ρcI2
does not describe).
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Figure 6.9: (a) Coulomb holes of the He-Ne series in their ground state. (b) cII (above) and cI

(below) components of the Coulomb hole. The sum of both cI and cII components recovers hc

shown in figure (a).
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To corroborate the expected behavior of ∆ρcII2 , consider the atomic series com-

pressed between helium and neon. The increase in the number of electrons implies

a proportional growth of dynamic correlation. Coulomb holes of each atom are de-

picted in Fig. 6.9a, where, because of the increase of electron correlation with the

number of electrons N within the same row, the magnitude of the holes increases.

However, such growth does not have a specific trend and Coulomb holes present a

particular shape according to the atom considered. Otherwise, hcII shows a system-

atic growth with N within the same row, as it is exposed in Fig. 6.9b. In addition,

a systematic shrinking of the hole is seen, and consequently a decrease of the aver-

age interelectronic distance 〈s〉, caused by the increasing attracting core potential.

The systematic growth of hcII is in agreement with the systematic increase of dy-

namic correlation felt for an atomic series within the same row of the periodic table.

Contrarily, no specific trend is observed for hcI . Because nondynamic correlation

is not universal and system-dependent, its manifestation depends on the nature of

each atom. This system-dependent particularity of nondynamic correlation is repre-

sented correctly by hcI in the atomic series, and changes according to the importance

of nondynamic correlation in these systems.
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Figure 6.10: (Left) Coulomb hole and its correlation components for helium. The FCI IPD,

I(ρFCI
2 , s) is represented in green (right y-axis) for comparison. (Right) The cI hole component for

the isoelectronic series of helium comprehending 2 ≤ Z ≤ 7.

The isoelectronic series of helium, He(Z), is a dynamic-correlation dominated

series in which an increase in the effective potential Z when the number of electrons

N is kept constant results into a shrinking of the electron density and, consequently,

electron pairs undergo more important dynamic correlation effects. When the core

potential is large compared to the number of electrons, the HF determinant describes

the electron density rather correctly, and, consequently, the presence of nondynamic

correlation in the system decreases. The hcI and hcII profiles obtained for the series
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are in agreement with the behavior described for dynamic and nondynamic correla-

tion. Fig. 6.10 shows how hcI diminishes with increasing Z. Because ∆ρcI2 becomes

zero, the correlation decomposition indicates that He(Z) is a series mainly described

by dynamic correlation.

Through all the systems analyzed in this thesis, it can be seen that hcII mainly

describes the SR region of the Coulomb hole, unless short-ranged interactions that

give rise to nondynamic correlation occur (as in Be2, for instance). The nature of

dynamic correlation is mainly short-ranged, since electrons repel each other as a

consequence of being charged and fermionic particles. Therefore, it is not surprising

that hcII is essentially short-ranged. Conversely, not all short-range correlation is

dynamic. Moreover, LR dynamic correlation is also an important source of dynamic

correlation. See the following section for more details.

6.1.2.1 London dispersion interactions
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Figure 6.11: Coulomb hole and its correlation components for He2 at a) 5.67, b) 6.99, c) 8.13, and

d) 9.45 a.u. bond distances. The FCI IPD, I(ρFCI
2 , s) is represented in green (right y-axis) for

comparison.

Chapter 1.1.2 introduced the nature of London dispersion forces, where the long-

range dynamic correlation of electrons creates a weak bond between two electron

clouds. Even though any dimer or molecule experiences dispersion forces due to

their ubiquitousness, an easy example of a molecule bounded by dispersion inter-
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actions is the helium dimer. Therefore, it is expected to encounter them in the

LR region of hcII . The Coulomb holes of different geometries of He2, presented in

Fig. 6.11, show a negative minimum in the LR region of hc depicting intraelectronic

interactions. This minimum is mainly defined by hcI and, apparently, hcII is zero. A

closer inspection (see the inset plots in Fig. 6.11) reveals that hcII is not zero but

slightly positive, and its area decreases with the stretching of the He–He bond. This

reflects the decreasing attraction between both fragments when the interfragment

distance R increases, caused by the weakening of dispersion forces. In contrast, the

magnitude of hcI increases (up to a point) with the stretching of a bond, either if

the bond is covalent (positive hcI values) or noncovalent (negative hcI values). hcI
is also large in systems where HF dissociates into the wrong number of electrons

in each fragment. In any of these situations exposed, dispersion interactions can

be seen through hcII . See the inset plots of Fig. 6.12 for an example of a covalent

bond (Be2), Fig. 6.11 for a noncovalent bond (He2), and Fig. 6.3 for LiH, where HF

dissociates the molecule in two fragments with an uneven number of electrons.
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Figure 6.12: Coulomb hole and its correlation components for Be2 at 24.57 a.u. bond length. The

FCI IPD, I(ρFCI
2 , s) is represented in green (right y-axis) for comparison. The inset plot shows the

effect of dispersion interactions in the LR region of hcII .

With this, it is demonstrated that ∆ρcII2 contains the effects of dispersion inter-

actions, which cannot be seen in the Coulomb hole itself because they are masked

by stronger nondynamic, LR interactions. A clear example of that is the beryllium

dimer. Although Be2 is not a van der Waals molecule, dispersion forces are present

in any molecule because they are ubiquitous. The inset plot of Fig. 6.12 unveils

a small contribution of hcII around the interfragment distance. The values in the

LR region of hcII describing dispersion interactions are small since dispersion forces

are weak in nature [60], and positive because dispersion forces are binding. Figures
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in Chapter 3.2 include more examples for this positive, small maximum in the LR

region of hcII in molecules bound by other forces beside van der Waals.

6.1.3 Conditions for ∆ρcI2 and ∆ρcII2 and behavior of hcI and

hcII

The LR asymptotic properties and the coalescense points of ∆ρcI2 and ∆ρcII2 explain

the profiles of hcI and hcII in the SR and LR regions of Coulomb holes seen in Sec-

tions 6.1.1 and 6.1.2. Concerning the long-range behavior of the 2-PDs, both the

HF and exact 2-PD vanish when the interfragment distance increases (R → ∞).

On the other hand, the first term of the SD 2-PD (Eq. 1.42) vanishes at large R

values because it is a product of electron densities. The second term involves the

long-range asymptotics of the 1-rDM, which becomes
√
ρ(1)

√
ρ(2) when electron

pairs are separated infinitely from each other, and far from any nucleus, as demon-

strated by March and Pucci [228]. This is true for systems where its corresponding

(N − 1)–particle system is non-degenerate [229]. The product of electron densities

also becomes zero under this condition, and guarantees that both hcI and hcII vanish

at the large interelectronic distances.

The coalescense points of the cI and cII hole components are partly determined

by the Pauli principle, their corresponding same-spin component being zero when

two electrons of the same spin are on top of each other, r1− r2 = 0. However, there

exists a probability of two electrons with opposite spin being on top of each other.

For the cI component, the condition is determined by Eq. 1.38, the opposite-spin

components of the SD 2-PD. This leads to

∆ρcI2 (r1, r1) = 2
(
ρα(r1)ρβ(r1)− ρHF,α(r1)ρHF,β(r1)

)
. (6.8)

As discussed in Section 6.1.1, hcI is usually positive through all the interelectronic

vector axis (with some exceptions, as the LiH molecule presented in Fig. 6.3), in-

cluding the SR region. This is due to ∆ρcI2 (r1, r1) being mainly positive, caused

by the HF underestimation of the electron-nucleus cusp. However, as mentioned in

Chapter 6.1.1, hcI is mainly a long-ranged quantity that defines the Coulomb hole

at such distances. The LR asymptotic properties described in the former paragraph

indicate that this quantity will indeed be positive (again, excepting cases like LiH),

since the difference of the product of densities will always be larger.

In the literature, SR interactions or SR correlation is usually used indiscrimi-

nately as a synonym for dynamic correlation. Although some LR correlation can
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Figure 6.13: ρSD2 (R,R′)/ρ2(R,R′) ratio against the interfragment distance R −R′ for a minimal

basis set calculation of H2.

be dynamical, as London dispersion interactions, it is true that normally dynamic

correlation arises from close-electron pair interactions. Through all the molecules

studied, it has been spotted that the SR region of hcII always has a Coulomb hole-

like profile. It is even present in systems where nondynamic correlation is notorious,

with an important contribution of hcI in the SR region of the hole. ∆ρcII2 is able to

account for the universality of dynamic correlation at the SR part of the Coulomb

hole of any system considered. This can be explained through the on-top probability

of the cII component, which reads

∆ρcII2 (r1, r1) = 2
(
ραβ2 (r1, r1)− ρα(r1)ρβ(r1)

)
. (6.9)

This quantity is usually negative at points close to the nuclei, which are the points

that mostly contribute in this coalescence situation, and causes hcII to be negative at

short ranges. An analysis through the hydrogen molecule described with a minimal

basis set also permits to illustrate this fact (the full development of this issue is given

in Chapter 3.2). Taking the leading term of the expansion of ∆ρcII2 (1,2) around the

two electron-nucleus cusps, ∆ρcII2 (R,R′) = ρ2(R,R
′) − ρSD2 (R,R′), it is easy to

demonstrate, by means of the representation of ρSD2 (R,R′)/ρ2(R,R
′) against the

interatomic separation R − R′, that 1) the exact 2-PD is larger than the SD 2-PD

at small interatomic separations, and 2) the 2-PD ratio becomes one as the bond

is stretched (see Fig. 6.13). This demonstrates that hcII is generally a negative,

short-ranged quantity.

6.1.4 Analysis on the spin components of ∆ρcI2 and ∆ρcII2

In this section, Coulomb holes and their cI and cII components of atoms with differ-

ent multiplicities are examined. By just considering the Coulomb hole, the ground
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Figure 6.14: Coulomb holes (left column), hcI (middle column) and hcII (right column) of carbon

(top row), nitrogen (middle row) and oxygen (bottom row) atoms in their ground state (darker

colors) and minimum multiplicity state (lighter colors).

and minimum multiplicity states of carbon, nitrogen, and oxygen present barely

indistinguishable profiles, which may indicate that electron correlation effects are

the same for the atom regardless its multiplicity. As well, according to Eq. 1.72,

the correlated part of Vee in both multiplicities is the same. Instead, hcI and hcII
reveal different profiles for both multiplicities (see Fig. 6.14). More precisely, similar

profiles are generated in the ground state of the three atoms, as well as for the min-

imum multiplicity cases (see the left column plots in Fig. 6.14). In the ground state

cases, both hcI and hcII present the usual hole shape (negative at the SR region, and

positive in the LR region). Instead, for minimum multiplicity cases, hcI is always

positive and hcII is always negative. An explanation for these profiles is attained via

a spin-decomposition analysis of the holes, supported by the ability of the IPD to

separate into spin components (Eq. 1.73). Fig. 6.15 describes the splitting of the
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three holes analyzed into spin components for the carbon atom. The main differ-

ence between both multiplicities is found in the αα components of hc, hcI , and hcII .

Conversely, the αβ holes show similar profiles for both multiplicities.
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Figure 6.15: Spin components of hc, hcI and hcII of singlet (top row) and triplet (bottom row)

carbon. (left column) Complete holes (central column) αα component of hc, hcI , and hcII (right

column) αβ component of hc, hcI , and hcII .

The profiles in Fig. 6.15 can be interpreted via an analysis on the spin inter-

actions within the carbon atom. There is a larger amount of αα electron pairs

in C(3P), which causes more αα interactions in the atom. Therefore, the 2-PD of

triplet carbon contains more αα elements than the singlet. Because of this, the αα

component of hc is larger in the triplet state than in the singlet. The SD 2-PD,

however, causes a counter effect: the αα component of the HF and SD 2-PD in

singlet carbon are, indeed, small. However, the SD 2-PD presents a set of extra αα

terms (see Eq. 1.43) which causes it to significantly differ from the αα component

of the HF 2-PD. Hence, ∆ρcI,αα2 becomes a large quantity in the singlet state of

carbon, and consequently hααcI in nonzero. Instead, the extra αα terms in the SD

2-PD in C(3P) is small compared to the rest of same- and opposite-spin elements in

the SD and HF 2-PD and, then, are not enough to cause large differences in ∆ρcI,αα2 .

Because of this, hααcI is smaller in the triplet. The traces of each 2-PD component

are collected in Table 6.2, where ραα,SD2 is the responsible component for the trace

deviation in the SD 2-PD.
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Figure 6.16: The αβ (left) and αα (right) spin components of the Coulomb hole and the cI and

cII hole components of H2 with R = 7.56 a.u. bond distance.

Tr[ραα2 (1,2)] Tr
[
ραα,SD2 (1,2)

]
Tr
[
ραβ2 (1,2)

]
Tr
[
ραβ,SD2 (1,2)

]

Ne 20.0 20.055 25.0 25.0

C(3P) 7.0 7.106 8.0 8.0

C(1S) 6.0 6.587 9.0 9.0

H2 0.0 1.0 2.0 2.0

Table 6.2: FCI and SD 2-PD traces of the same-spin (αα) and opposite-spin (αβ) components

of neon, triplet carbon, singlet carbon, and hydrogen molecule in minimal basis. Tr[ραα2 (1,2)] =

Nα (Nα − 1) and Tr
[
ραβ2 (1,2)

]
= NαNβ . For open-shell cases, note that the 2-PD containing

same-spin interactions must be splitted into all the possible same-spin components, namely the αα

and ββ interactions, and the trace must be calculated separately, Tr[ραα2 (1,2)] = Nα(Nα−1)
2 and

Tr
[
ρββ2 (1,2)

]
=

Nβ(Nβ−1)
2 . The trace of ραβ,SD2 (1,2) is NαNβ by construction.

The minimal-basis hydrogen molecule (Fig. 6.16) also provides an interesting

insight on the spin components of the 2-PDs and their respective holes. The profiles

obtained are equivalent to the ones described for the atoms discussed in the former

paragraph. Because singlet H2 is only composed of one α and one β electron, the

αα component of hc is practically flat, being the αβ component responsible for the

shape of the total hole, as in the case of C(2S). hααcI determines the shape of hcI . As

addressed in the case of C(1S), this profile is due to the extra αα terms in the SD

2-PD which, particularly in singlet H2, are not present in the HF 2-PD (see Table

6.2). Therefore, the analysis of different multiplicities in a given electronic system

provides valuable information on electron correlation according to the distribution

of electrons in the molecular orbitals. The shape of the Coulomb hole by itself does
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not provide any information on the different multiplicities, because the reference and

the HF IPDs are almost identical in both spin states. The partition of the Coulomb

hole reveals a different structure and particular profiles according to the multiplicity

of the system, granted by the extra terms present in the SD 2-PD.
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IN THE IPD

6.2 On the universal footprint of dispersion inter-

actions in the IPD

Through this thesis, the IPD has been the central tool for analyzing the correlation

components of the Coulomb hole. Directly linked with the results discussed in Sec-

tion 6.1.2.1, where the area of the LR region of hcII decreases with the interatomic

distance R because of London dispersion forces, the IPD has been shown to attain

a relation with R in analogy to the dispersion energy, (Edisp ∝ R−6).

An analytical treatment with perturbation theory is performed to the IPD, as-

suming a model formed by two hydrogenoid atoms separated an infinite distance

R → ∞, and treated with a minimal basis composed of Gaussian functions. The

zeroth–order wavefunction is

Ψ(0)(1,2) = NψA(1)ψB(2), (6.10)

where the superscript (0) labels the zeroth–order correction, A and B refer to the

two nuclei, ψA is the Gaussian function centered in nucleus A, and N is the corre-

sponding normalization factor of the wavefunction. The perturbation Hamiltonian

Ĥ(1) contains all the possible LR interactions between nuclei and electrons,

Ĥ(1) =
1

R
+

1

r12
− 1

rA2
− 1

rB1

, (6.11)

and the Unsöld approximation is applied to obtain the first–order correction to the

wavefunction [230],

Ψ(1)(1,2) = Ψ(0)(1,2)Ĥ(1). (6.12)

Within these conditions, one can obtain the energy dependence on R for the model

system:

E(2)(R) = − 6

α4R6
+O(R−8), (6.13)

being consistent with the widely known dispersion energy, the leading term of which

is R−6. Because the zeroth–order correction to the energy is the sum of orbital en-

ergies ε and the first–order correction is the HF energy, the correction for dispersion

interactions is labeled with (2).

The 2-PD of a two-electron system is the square of the wavefunction (consider Eq.

1.16). Its zeroth–order correction is the product of the zeroth–order wavefunction,

Eq. 6.10, and the first–order correction is the product of the zeroth– and first–order

wavefunction, ρ
(1)
2 (1,2) = 2Ψ(0)(1,2)Ψ(1)(1,2) because of the Unsöld approximation

described in Eq. 6.12. The zeroth–order correction to the IPD is obtained after
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some mathematical manipulation. While the IPD is a function of the interelectronic

distance s, we were interested in the specific point where the interelectronic distance

vector is equal to the interfragment distance, s = R. The zeroth–order correction of

I(R) is:

I(0)(ρ
(0)
2 , R) =

( α

16π3

)1/2 (
1− exp(−4αR2)

)
, (6.14)

and, since we want to know the decay at the infinity limit, R → ∞, I(0)(ρ
(0)
2 , R)

yields a constant value corresponding to the distribution of two independent, nonin-

teracting electrons. On the other hand, the first–order correction to the IPD results

in a more convoluted expression, but its limit in R→∞ yields:

lim
R→∞

I(1)(ρ
(1)
2 , R) = −4

(
1 + 8

√
2
)
α5/2

π7/2R3
, (6.15)

where the leading term is R−3 because the exponential term in I(0) does not show

up in the first–order correction. Therefore, the dependency is a feature of I(1). Since

the zeroth–order correction presents a higher-order dependency than the first–order

one, the leading term of the IPD (corrected to the first order, I1(R)) is exponential,

being I1(R) = I(0)(R) + I(1)(R). This is the first time that a condition to reproduce

dispersion interactions in terms of the pair density is determined.

To unfold the polynomial decay, one must dismiss the exponential leading term

of the zeroth–order IPD correction. To do so, the zeroth–order correction has to be

substracted from the exact IPD. The HF IPD cannot be considered as I(0) because,

since it is constructed with the HF densities, its LR behavior with R is not correct

(Eq. 1.37). Instead, the SD IPD is constructed with the exact electron densities

(Eq. 1.42), and, consequently, its LR behavior with s correctly reproduces the exact

(FCI) decay, ρ2(r1, r2) → ρ(r1)ρ(r2) (see Fig. 6.17). Hence, IFCI(R) − ISD(R)

unveils the R−3 dependency. For that reason, the SD 2-PD is the minimal 2-PD

that guarantees the correct behavior in the LR region of the IPD. The perturbation

theory treatment is cut up to the first order because the R−3 behavior already shows

up at the first-order correction. Since subtracting the SD IPD from the FCI one

already recovers the R−3 dependency, it demonstrates that higher-order corrections

to the IPD do not contain terms with higher order than R−3.

The IPD used to unmask the R−3 term coincides with the definition for the

hole component responsible for describing dynamic correlation effects, hcII . The

FCI 2-PD describes all the correlation effects in a system, and, therefore, dispersion

interactions are masked by stronger interactions, leading to an exponential leading

term, as discussed above. On the other hand, the SD 2-PD can describe some of the
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Figure 6.17: The IPDs of the SD 2-PD (red) and the FCI 2-PD (blue) for H2 at a stretched

geometry. The inserted figure is the zoomed section delimited by the square.

LR interactions and, because of this, it is able to reproduce the LR region of the

FCI IPD. This can be seen in the inset plot of Fig. 6.17. After the analysis done

to recover the dispersion decay in the IPD, it is sensible to affirm that the SD 2-PD

cannot describe LR dynamic correlation effects and, hence, it can only describe LR

nondynamic correlation effects. In a sense, this also justifies using the SD 2-PD as

an object to partition the 2-PD (Eq. 6.1). Actually, the representation of hcII(R)

versus R does follow a R−3 decay (figure not shown, consider Fig. 6.18).

Because Vee can be obtained through the IPD via Eq. 1.72, it may seem straight-

forward to obtain a direct relation with R. However, it is not the case, because Vee is

obtained after the full integration of the complete IPD – that is, not only considering

I(R), but I(s) being s ∈ [0,∞). To our knowledge, there is no explicit dependence

of I(s) on R and, hence, an expression for V disp
ee is still to be derived. Nevertheless,

being V disp
ee an energetic term, the dispersion energy decay (R−6, Eq. 1.2) should be

retrieved. By considering the correlation decomposition, V disp
ee can be obtained as

V disp
ee = V FCI

ee − V SD
ee and neglecting the Vee arising from SR interactions. Another

way of obtaining Vee arising from LR interactions is by integrating the IPD with Eq.

1.72 using different integration limits. From this procedure, we confirm the V disp
ee de-

cay being R−6. Fig. 6.18 contains the V disp
ee and the I(1)(R) ≡ I(∆ρcII2 , R) ≡ hcII(R)

decays against the interfragment distance R for different van der Waals dimers.

The inclusion of dispersion interactions in quantum chemistry computations re-

quires basis set that includes polarization functions. A system only described by

s-type functions (no polarization functions) does not reproduce the R−3 decay, and

the hcII(R) values (as well as the LR region of the IPD) of both FCI and SD are

identical. Whereas an accurate description of such interactions requires a large and

221



CHAPTER 6. RESULTS AND DISCUSSION

0.0e+00

1.0e−04

2.0e−04

3.0e−04

4.0e−04

 12  14  16  18  20  22  24

h
c
II
 (
R

) 
(a

.u
.)

R (a.u.)

H2 : f(R) = 0.375/R
3
, r

2
 = 0.999

He2: f(R) = 0.266/R
3
, r

2
=0.999

HeNe: f(R) = 0.314/R
3
, r

2
=0.999

HeAr: f(R) = 0.531/R
3
, r

2
 = 0.998

(a)

−5e−06

−4e−06

−3e−06

−2e−06

−1e−06

 0

 12  14  16  18  20  22  24

V
eed
is

p
 (

a.
u

.)

R (a.u.)

H2

He2

HeNe

HeAr

H2 : g(R) = −8.72/R
6
, r

2
 = 0.977

He2: g(R) = −4.33/R
6
, r

2
 = 0.991

HeNe: g(R) = −5.37/R
6
, r

2
 = 0.988

HeAr: g(R) = −17.77/R
6
, r

2
 = 0.988

(b)

Figure 6.18: Compilation and adaptation of the graphs presented in Chapter 3 for the dispersion

intracules and energies for H2 (blue dots), He2 (red up-pointing triangles), HeNe1 (green down-

pointing triangles) and HeAr (orange squares). The fittings per each component correspond to

f(R)=a/R3 and g(R) = b/R6. (a) The intracule of the cumulant (which is the definition of hcII(s))

evaluated at s = R for several interfragment distances R; and (b) the dispersion Vee component.

flexible basis set, introducing p-type functions to a minimal basis already introduces

a minimal description of dispersion interactions in the system [231].

To end this discussion, it is important to recall that most of the dispersion cor-

rections used in the literature are applied ad hoc, meaning that they are just energy

1The IPD decay (hcII(R) vs. R) in HeNe does not tend to zero but to a negative value, since

the angular grids in the present implementation of the RHO2 OPS code (which is used to calculate

the IPDs) are limited and do not provide the required precision.
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corrections that are not optimized self-consistently. The signature of dispersion pre-

sented in this thesis is a quality directly related to the 2-PD, and provides a new

means to model such behavior in approximations (for instance, in an exchange-

correlation functional in the KS DFT framework), and permits its optimization

within the self-consistent field procedure. Note that this modeling is numerically

more robust than the usual energetic decay due to the higher power obtained for

the IPD condition has, which makes it less prone to numerical errors. Further work

is done in this direction by members of Dr. Eduard Matito’s group, as well as other

researchers that have started to investigate further conditions related to dispersion

interactions [114].
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6.3 Benchmarking of reduced density matrix ap-

proximations

The rDMFT benchmark study presented in Chapter 5 evaluates the physical grounds

and predictive abilities of a set of thirteen 2-DM approximations by means of a bat-

tery of tests described in the aforementioned chapter. The functionals are evaluated

using a set of diatomic molecules composed of first– and second–row elements, and

molecules formed by more than two atoms. Two different geometries are contem-

plated per each diatomic molecule, the equilibrium one, Req, and a geometry five

times larger the equilibrium one, 5Req. For the dissociation energy test, the energy

of a geometry fifty times the equilibrium one 50Req has also been calculated. The

set of diatomic molecules includes both open- and closed-shell molecules. As intro-

duced in Section 1.2.3.3, rDMFAs are built in the NOrb representation using the

FCI NOccs. These orbitals and occupancies are not optimized, so the benchmark

only considers the functional–driven error.

6.3.1 Elements of the density matrix
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Figure 6.19: RMSE of the trace error (Eq. 22 in Chapter 5), produced by the SD, GU, MLSIC,

and PNOF3 group of rDMFAs, labeled under “SD”; the ML approximation, and the three PNOF6

variants. PNOF6h and the other rDMFAs bear the correct trace and are not represented in this

graph.

The trace test permits to separate the rDMFAs into two different groups, the

first one being composed of approximations that were designed to fulfill the sum

rule and bear the correct trace (MBB, BBC2, CA, CGA, PNOF4, and PNOF6h);

and a second group that includes the rest of functionals with an incorrect trace,

with SD, GU, MLSIC, ML, PNOF3, PNOF6D, and PNOF6u. It is interesting to

notice that the traces of the PNOF6d and PNOF6u 2-DMs bear small deviations,
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but their combination to produce PNOF6h leads to the exact trace. In addition,

SD, GU, MLSIC, and PNOF3 present the same trace error due to the construction

of the diagonal elements, and have the largest trace deviation, with ML bearing

a close error. If one analyzes the diagonal elements that produce this trace, it is

surprising that the rDMFAs that have the correct trace are formed by diagonal el-

ements that are far from coincident with the reference ones (see Fig. 6.20). Most

importantly, MBB, BBC2, CA, and CGA show the largest cumulative absolute er-

rors (CAEs) in the diagonal elements, which reveals that more attention is put into

fulfilling the sum rule rather than reproducing the correct diagonal elements. On

the other hand, the diagonal elements of PNOF2, PNOF4, and PNOF6h are, even

though not equal to the reference ones, quite accurately approximated, with a small

CAE. The PNOF2 and PNOF4 diagonal elements are exact for systems with two

electrons, since they reduce to the exact functional for a two-electron system [232].

Regarding the construction of the complete 2-DM, elements are better reproduced

by SD than by the K-functionals, the former not being a rDMFA strictly speak-

ing. PNOF2 and PNOF3 present the same CAE magnitude as SD. PNOF4 and the

three versions of PNOF6 produce the most accurate 2-DM elements overall. It is

also noticeable that the PNOF family presents an improvement through the versions.

As introduced in Section 1.2.3.2, the N -representability and symmetry conditions

assure that a 2-DM belongs to a physical fermionic wavefunction, and guarantees

that the obtained energy is variational. The positivity conditions, composed of the

P, Q and G matrices, are a known set of N -representability conditions. These con-

ditions are imposed to the PNOF approximations by construction, and, because of

this, the PNOF family produce the smallest deviations in this test. PNOF6d is the

only rDMFA studied in this thesis that bears a 2-DM that fulfills the three positiv-

ity conditions. Instead, PNOF6u and, consequently, PNOF6h generate a very small

sum of negative eigenvalues in the P and Q conditions. PNOF3 is the approxima-

tion with the largest sum of negative eigenvalues from the PNOF group. PNOFs

are designed to produce antysimmetric 2-DMs, and consequently the antisymmetry

error is zero for all of these rDMFAs. The CAE of all the elements in the PNOF 2-

DMs is smaller than in the K-functionals. With this, the construction of the PNOF

family of approximations imposes some of the known physical requirements that the

exact 2-DM fulfills. They produce the smallest amount of negative eigenvalues from

the positivity conditions, produce fermionic 2-DMs, and provide the closest 2-DM

elements to the reference 2-DM.

The SD approximation fulfills the P and G conditions, but the amount of negative
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Figure 6.20: (a) Average of the cumulative absolute errors (CAEs) produced by the diagonal

elements of the approximate 2-DM (Eq. 26 from Chapter 5). (b) Average of the CAEs of all the

2-DM elements (Eq. 27 from Chapter 5).

eigenvalues for the Q condition is excessively large. Instead, CA generates the

smallest sum of negative eigenvalues in both P and Q conditions, and fulfills the

G condition. CA is, then, the K-functional that better accomplishes the known

positivity conditions. The G condition is satisfied by all the K-functionals, with the

exception of BBC2, MLSIC, and ML. However, the amount of negative eigenvalues

in the other two positivity conditions is large. Some K-functionals bear the correct

trace by imposition, but the diagonal elements that also contribute in the trace value

deviate from the reference ones. In general, only the G-condition is attained by the

K-only approximations, but a large sum of negative eigenvalues are obtained for

the other two conditions. The CAE of the 2-DM elements differ from the reference

2-DM, and the antisymmetry error is different from zero for all the K-functionals.
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Figure 6.21: (a) Average sum of negative eigenvalues for the P, Q and G matrices of the (top)

K-functionals (b) PNOF family for the open-shell (OS) and closed-shell (CS) set of molecules.

6.3.2 Delocalization indexes and electron pair distributions

The electron pair distribution of the approximate 2-DMs is analyzed considering the

delocalization index (DI) predictions and the intracule probability density (IPD)

profiles. The delocalization index permits to obtain a measure of the covalent bond

order between two fragments (see Chapter 5 for more details). Usually, the DI is a

positive value, yet it can take negative numbers in some particular cases. However,

the molecule set used in this study presents no situation in which the DI can be

negative. MLSIC, GU, BBC2, and PNOF3 produce some negative DIs; in fact, ML-

SIC and GU only predicted one positive DI for closed-shell molecules at stretched

geometries. This leads to the conclusion that such versions do not perform any bet-

ter than their corresponding self-interaction uncorrected versions (ML and MBB,

respectively). Because of this, these functionals sometimes present underestimated

DI values, and some of the largest root mean squared errors (RMSEs) in the DI test

(see Fig. 6.22). Regarding the PNOF family, they produce larger errors in the DI
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prediction than the K-functionals. PNOF2 shares the same error magnitude with

PNOF3, caused by erroneous predictions in the DI of stretched H2. This is also con-

nected with the erroneous IPD obtained for that molecule, where PNOF2 produces

larger probabilities at the SR region. However, the main result obtained from the DI

test is that PNOFs are not able to correctly distribute electron pairs in dissociated

molecules. When a molecule is dissociated, its bond order and, therefore, its DI

are zero. This is generally predicted correctly by the K-functionals, and thus their

error is smaller at 5Req than at Req. However, all the members of the PNOF family

produce nonzero DI values at these stretched geometries. This inability to distribute

the electron pairs is connected to their performance in the IPD test: PNOFs give

lower electron pair probabilities at long ranges than FCI, indicating that electrons

are still at the bonding region.
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Figure 6.22: RMSE of (a) the error committed in reproducing the delocalization index DI (Eq. 29

in Chapter 5), and (b) the relative error in predicting the average interelectronic distance (Eq. 33

in Chapter 5), for closed- and open-shell molecules.

In general, PNOF4 and PNOF6 present good IPDs in molecules with a small
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number of electrons (6 electrons) when found at the equilibrium geometry (see Figs.

S1–S4 in Chapter 5). This is in agreement with the closing remarks obtained for

the harmonium atom [136], in which these PNOFs present satisfactory IPDs. The

PNOF4 and PNOF6 IPDs are very similar through the systems studied, most of

the times undistinguishable one from the other. Their behavior in molecules with

more than 6 electrons is analogous to the SD profile, but with a smaller magnitude,

showing that electron correlation is slightly underestimated by these rDMFAs (see,

for instance, Fig. S10 in Chapter 5). As stated, they present a higher probability at

medium ranges of the IPD, which causes EI(s) (Eq. 31 in Chapter 5) to be largely

negative at mid ranges and positive at the LR region. PNOF3 generates large nega-

tive IPD values (negative probability) in stretched H2, which is completely incorrect.

Still at stretched geometries, PNOF3 usually places an excessive amount of electron

pairs in the LR region of the IPD, whereas PNOF2 behaves similarly to PNOF4

and PNOF6 at those regions, but with larger EI(s) magnitudes (see the LR region

of Fig. S31 in Chapter 5 as an example).

In the set of closed-shell molecules, MBB, the first rDMFA ever designed, presents

the smallest deviations of the DI predictions, the expected value of the interelec-

tronic distance (〈s〉) and its variance (σ2), and, in general, does not show large

deviations from the reference IPD. It also provides good DI values for open-shell

molecules, but this may be serendipitous because its IPD is not a good approxima-

tion (vide infra). The behavior of CGA in these tests is similar to MBB, and, on

the contrary, ML, MLSIC, and GU (along with PNOF3), show the largest errors in

these tests (recall that some of these approximations produce negative DI values).

Whereas BBC2 produces really good approximations of 〈s〉 and its variance, it also

generates incorrect equilibrium DI predictions, and the BBC2 EI(s) is moderately

acceptable. CA presents wiggly EI(s) profiles, indicating several flaws in most of

the electron pair ranges of the IPD. However, the CA DI, 〈s〉 and σ2 predictions

represent one of the smallest errors (only for closed-shell molecules).

Open-shell molecules present different error trends than the set of closed-shell

molecules. Errors for the DI and the IPD are generally too large for open-shell

molecules. Even though CGA and MBB present quite correct DI predictions for

this set of molecules, the IPD profiles are not so accurate. SD always provides an

IPD description closer to FCI than the rest of K-functionals, all of which generate

highly similar IPD. This implies that all of them share the same error for open-

shell cases. This is also seen in the 〈s〉 test, where all the K-functionals produce

approximately the same error. In some molecules, 〈s〉 is largely overestimated. The
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comparison of the IPD of singlet and triplet O2 shows that rDMFAs produce an IPD

for the triplet state which is very alike to the FCI IPD of the singlet state; in other

words, the rDMFAs seem to approximate the molecule as if it was a closed-shell

system.

All in all, the oldest and simplest rDMFA is the one that generates the best ap-

proximate 2-DM to reproduce the electron pair distribution in the diatomic molecules

studied. Whereas PNOFs evolved correctly through their versions, their improve-

ment is not enough for describing stretched geometries. It would be interesting to

evaluate PNOF5 and PNOF7, which are not considered in this work due to their per-

fect pairing approach, to verify whether the whole PNOF family presents a problem

in describing DI for stretched molecules. The self-interaction corrected function-

als of ML and MBB (MLSIC and GU) do not present any better results than the

uncorrected versions (where MBB is the best-performing rDMFA).

0

40

80

120

160

200

240

280

SD M
B
B
B
B
C
2

C
A

C
G

A
M

L
M

LSIC

G
U

PN
O

F2

PN
O

F3

PN
O

F4

PN
O

F6H

SD M
B
B
B
B
C
2

C
A

C
G

A
M

L
M

LSIC

G
U

E
V
e
e

 M
S

D
 (

k
ca

l/
m

o
l)

Req

5Req

Open-shellClosed-shell

(a)

 0

 50

 100

 150

 200

SD M
B
B
B
B
C
2

C
A

C
G

A
M

L
M

LSIC

G
U

PN
O

F2

PN
O

F3

PN
O

F4

PN
O

F6H

SD M
B
B
B
B
C
2

C
A

C
G

A
M

L
M

LSIC

G
U

E
D
e

  
R

M
S

E
 (

k
ca

l/
m

o
l)

Open-shellClosed-shell

 380

 390

(b)

Figure 6.23: (a) RMSE of the relative error in the electronic repulsion potential (Eq. 37 in Chapter

5) in kcal/mol. (b) RMSE of the error in the dissociation repusion potential (Eq. 38 in Chapter

5) in kcal/mol.
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6.3.3 Energies

One of the main outcomes obtained from the benchmarking study is that rDMFAs

reproduce Vee reasonably well for equilibrium geometries, but their performance be-

comes particularly poor for dissociated molecules. Another remarkable point is that

SD produces smaller errors in the set of open-shell molecules, once again confirming

that rDMFAs are not suited for multiplicities other than a singlet. However, the

error in open-shell molecules is smaller than the error generated at geometries other

than the equilibrium. As a consequence, excessively large deviations are committed

in dissociation energy (De) predictions: the smallest RMSE obtained in the disso-

ciation energy error is about 50 kcal/mol, which is far from the chemical accuracy

required for computational studies. Instead, errors at equilibrium geometries display

a maximum RMSE of 20 kcal/mol, produced by SD. The rest of rDMFAs (except-

ing CA) generate a RMSE below 5 kcal/mol in the closed-shell set of molecules,

and an average error of 10 kcal/mol for open-shell molecules. All in all, the most

appropriate rDMFAs to calculate electronic repulsion energies are MBB and CGA,

since they provide the smallest RMSE at both Req and 5Req, and thus produce the

smallest RMSE in the De test. Other qualitatively good rDMFAs are CA, PNOF4,

and PNOF6, as they also show rather small errors with a consistent magnitude for

the three geometries.

6.3.3.1 Size-extensivity of the rDMFA

The ability to correctly predict Vee with the size of a molecule is tested with a sys-

tematic increase of hydrogen atoms (and a systematic increase of electron repulsion)

in the HN polyhedral molecules already introduced in Chapter 3.1 of this thesis, be-

ing N the number of hydrogen atoms, placed at the vertices of the corresponding

polynomial shape. Hydrogens are separated 10 Å from the center of mass, so very

mild dynamic correlation effects are present in the system. To evaluate the size

extensivity, the energetic predictions are divided by the number of hydrogens (Eq.

40 in Chapter 5).

All the K-only RDMFAs excepting BBC2 and GU give size-extensive results,

or show small deviations frm size-extensivity. This does not mean, however, that

their predictions are accurate. Similarly to the outcome obtained in the Vee test of

diatomic molecules, only MBB, CA, and CGA produce an almost 0 error, whereas

the EVee/N in SD, ML, and MLSIC is around 100 kcal/mol. The GU error is smaller

than this latter group of approximations, yet neither as good as MBB, CA, and CGA,

nor size-extensive. Instead, BBC2 produces excessively large errors and predicts
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Figure 6.24: Error in the interelectronic repulsion energy divided by the number of hydrogen atoms

(Eq. 40 in Chapter 5), for N hydrogen atoms placed at the vertices of an N -vertex polyhedron, in

which the H atoms are separated by 10 Å from the geometrical center.

larger repulsion in H6 than in H8. On the other hand, no member of the PNOF

family seems to be size-extensive. PNOF3 predicts an unphysical, negative Vee in

H2, quite in line with the underestimated Vee values obtained from the Vee test.

PNOF4 and PNOF6 produce very reliable energy values for H2, in agreement with

the Vee test as well, yet their predictions are not as accurate in the rest of HN

molecules. Being PNOF2 the version with the largest EVee/N , the other PNOFs

show qualitatively lower errors.

6.3.3.2 Description of nondynamic correlation

Also introduced in Chapter 3.1, the D2h/D4h potential energy surface of H4 permits

to tune the amount of nondynamic correlation in the molecule by changing the angle

formed between two adjacent hydrogen atoms and the geometrical center, θ, and the

distance between a hydrogen atom from the geometrical center, R. As indicated in

the article in Chapter 5, we consider the error produced in predicting the energetic

barrier or path going from the equilibrium geometry (θ = 70◦ and R = 0.8 Å [233])

to other three geometries (remaining combinatinos of θ = 90◦ or θ = 70◦, and R =

0.8 Å or R = 4.0 Å ). For simplicity, the transition from D2h to D4h that keeps the

same distance between hydrogen atoms R is named path 1 (red bars in Fig. 6.25),

the path that keeps the same symmetry but involves the stretching of the bond

is referred as path 2 (green bars in Fig. 6.25) and the barrier that changes both

the symmetry and the distance between hydrogens is path 3 (blue bars in Fig. 6.25).
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Path 1 is the best approximated by the rDMFAs. The transition brings short-

range nondynamic correlation in the system, proceeding from an orbital degeneracy.

Even though the errors in this path are smaller than in paths 2 and 3, the average

error committed is around 100 kcal/mol, which is far from the chemical accuracy.

The rDMFAs with errors below 65 kcal/mol are MBB, BBC2, CA, CGA, PNOF2,

and PNOF6h, yet the magnitude of the deviation is larger than 50 kcal/mol. Errors

are generally three times larger for the other two paths, in which the stretching of

the H–H bond is involved. Similar errors are obtained for both paths, indicating

that most of the rDMFAs evaluated in this work present difficulties in describing

nondynamic correlation effects arising from molecular dissociations. This is also in

agreement with the results obtained in the Vee test, where the smallest errors are

produced when evaluating equilibrium geometries.

The smallest errors obtained in this test are compressed between 10 and 15

kcal/mol, and are produced by MBB and CGA for paths 2 and 3. Instead, BBC2,

MLSIC, and PNOF2 generate larger errors than SD. PNOF2 seems to be able to de-

scribe nondynamic correlation coming from short-range orbital degeneracies (small

deviation in path 1). PNOF3 predicts the barrier energy of path 2 quite accurately,

but the deviations in paths 1 and 3 are huge. GU and MLSIC produce larger devia-

tions than their self-interaction uncorrected versions, MBB and ML, again showing

that such correction does not bring any improvement to the rDMFA in the tests

carried out in this thesis. On the other hand, CGA does present a better ability to

include nondynamic correlation than CA.

The PNOF group are not the best performing rDMFAs in this test, and contra-

dicts the conclusions obtained in a former study carried out in our laboratory [233],

where PNOF6 produced qualitatively correct energies and orbitals for H4. In con-

trast to this work, the geometries, occupation numbers, and orbitals were optimized

using PNOF6h. However, the respective absolute energies for the equilibrium geom-

etry produce relative errors of the same order of magnitude as the ones obtained in

this work. In the former study, PNOF6h committed consistent deviations through

the geometries analyzed, whereas the results obtained in this test show a drastic

error increase for the path involving both the symmetry transition and the H–H

bond stretching (blue bars in Fig. 6.25). This suggests that the functional–driven

error is larger than the 1-DM–driven error in PNOF6h.
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Figure 6.25: Error of the D2h/D4h potential energy curve of H4, EH4,corr = (V X
ee, geom − V X

ee, ref)−
(V FCI
ee, geom−V FCI

ee, ref) (Eq. 41 in Chapter 5), where the repulsion energies are calculated with respect

to the interelectronic potential of the ground state geometry, R = 0.8 Å and θ = 70◦.

6.3.4 Description of dispersion interactions

To study the ability of the rDMFAs to include dispersion forces in their description,

we take advantage of the signature of London dispersion interactions introduced in

Chapter 4 and discussed in Section 6.2. Edisp(R) =
(
I(ρX2 , R)− I(ρSD2 )

)
R3 (Eq. 42

in Chapter 5) assesses the IPD difference with respect to the SD approximation (see

the discussion in Section 6.2) and multiplies it by R3. In this way, it permits easy

identification of the power dependence of each rDMFA with R. The IPDs of the hy-

drogen molecule and the helium van der Waals dimer are the systems chosen for this

test. If the rDMFA correctly portrays dispersion interactions, Edisp(R) is positive

and constant along R (within the dissociation regime). The approximations that

have an exponential or a lower power decay with R exhibit an Edisp(R) that rapidly

goes to zero at early values of R. In contrast, approximations with a larger power

dependency grow to large (absolute) values. Fig. 6.26 contains the analysis for H2

and He2 molecules. In H2, PNOF2, PNOF3, GU, and MLSIC present the latter type

of behavior introduced (larger power dependency than R−3), whereas, in the rest of

rDMFAs, Edisp(R) rapidly tends to zero. In addition to PNOF2, PNOF3, GU, and

MLSIC, BBC2 and the rest of PNOFs also present a growing Edisp(R) trend in He2.

This indicates that the PNOF family of functionals overestimate dispersion forces,
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as they describe it with a larger dependency than R−3. ML, CGA, CA, and MBB

present smaller power dependencies.
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Figure 6.26: Edisp(R) profiles (Eq. 42 in Chapter 5) of (left) the hydrogen molecule and (right)

the helium van der Waals dimer, according to each rDMFA. The dashed, black line corresponds to

the reference (FCI) behavior.2 The inset plot in both graphs contains a zoomed-out version of the

graph (i.e. a greater y-axis scale). In graph (b), the PNOF4 line is under the PNOF6h one.

In a former study, it was concluded that PNOF2 presents the ability to bind two

He atoms to form the van der Waals dimer [161,200]. However, it seems that PNOF2

is able to bind the helium dimer due to an incorrect assessment of dispersion inter-

actions. Using the FCI NOccs and NOrbs, we have calculated the interelectronic

repulsion for different geometries, and the Coulomb hole for the He2 dimer at 9.45

a.u. of bond distance, to compare with the results presented by Piris and cowork-

ers [161, 200], in which the occupancies and orbitsls were optimized at the PNOF2

level. The Coulomb hole and Vee values are in agreement with the published re-

sults, and it apparently seems that PNOF2 describes dispersion forces correctly.

We have also computed the hcII component of the Coulomb hole, which compares

the FCI/PNOF2 IPD with the SD IPD. Analysis of hcII indicates that the PNOF2

electron-pair probability is excessively large at the LR region of the Coulomb hole

(see Fig. 6.27). Additionally, according to the results obtained with Edisp(R), this

LR probability increases with R, when it should decrease. Therefore, the perfor-

mance of PNOF2 in the dispersion test suggests that the higher-power dependency

with R gives PNOF2 the ability to bind He2, caused by an incorrect treatment of

2Note that the FCI Edisp (R) function (dashed line) in H2 should be constant or decreasing (if

the R−4 and further power dependencies were important) with R, but it is not. The angular grids

in the present implementation of the RHO2 OPS code (used to integrate the IPDs) are limited

and do not provide the required precision.
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dispersion forces.
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2 , s)− I(ρSD2 , s) component of the Coulomb hole

(blue line) and hPNOF2
cII (s) = I(ρPNOF2

2 , s) − I(ρSD2 , s) (orange line) for the helium dimer at 9.45

a.u. of bond distance.

The IPD dependence that describes dispersion interactions has the form of(
IFCI − ISD

)
∝ 1/R3, being a positive quantity that becomes zero as R increases.

In H2, only BBC2, PNOF4, and PNOF6 present positive Edisp(R) values, and would

be the rDMFAs that produce the closest description to dispersion interactions, yet

it has been shown that they are unable to do so in He2. ML, CGA, CA, and

MBB produce negative Edisp(R). PNOF2 produces negative Edisp(R) values for H2,

but at He2 Edisp(R) are positive, and the contrary behavior is produced by BBC2,

PNOF4, and PNOF6. GU, MLSIC, and PNOF3 Edisp(R) values are positive in both

molecules. Therefore, no rDMFA is able to reproduce the universal signature of dis-

persion interactions in the IPD, and therefore the description of London dispersion

forces is not correctly described by any of the rDMFAs. Whereas some functionals

produce smaller power dependencies, others bind molecules too strongly. rDMFAs

with larger power dependencies may bind a van der Waals dimer, even though the

treatment of the interactions is not correct, as the PNOF2 description for the helium

dimer [161].

236



Chapter 7

Conclusions

This thesis introduces a separation of the pair density into two correlation compo-

nents in terms of range separation. The versatility of the IPD permits the further

separation of the Coulomb hole into two hole components, which we have named

hcI(s) and hcII(s). The two pair density components that define the hole components,

∆ρcI2 (1,2) and ∆ρcII2 (1,2), are able to capture long- and short-range interactions, as

well as nondynamic and dynamic correlation effects.

Physical models and small molecules have been used to test and validate the

correlation decomposition scheme and perform a range separation study of electron

correlation. The short-ranged interactions arisen from close electron pairs give rise

to dynamic correlation, which is, therefore, universal in molecules with (at least)

two electrons. The cII hole component has shown to be never small through all the

molecules studied, either if the dominant correlation in the molecule is dynamic or

not. Generally, hcII(s) defines the shape of the short-range part of the Coulomb hole.

Systems with orbital degeneracy have an important contribution of short-range non-

dynamic correlation, which is correctly accounted for by the cI contribution of the

hole. In these cases, the short-range region of the Coulomb hole is described by both

cI and cII components. Systems composed of a minimum of two fragments present a

small positive area of hcII(s) in the long-range region of the Coulomb hole for large

interfragment distances. This positive area becomes smaller when the interfragment

distance is increased. In fact, the evaluation of hcII(R) at different geometries reveals

a decay of hcII(R) ∝ 1/R3, which arises from the universal footprint of dispersion

interactions introduced in this thesis. The cII component is, therefore, able to de-

scribe interactions arisen from London dispersion forces. hcII(s) does not define the

long-range profile of the Coulomb hole, since dispersion forces are weak; instead,

hcI(s) is the dominant component in this region, and can be positive (in covalent

bonds) or negative (in non-covalent bonds, and in cases where Hartree–Fock does
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not dissociate into fragments with an even number of electrons). The cI and cII

correlation components produce different profiles in atoms with two different mul-

tiplicities. Whereas the Coulomb holes of two different spin states of an atom are

undistinguishable, hcI(s) and hcII(s) are clearly different in both cases. Moreover,

∆ρcI2 (1,2) is able to discern between types A and B nondynamic correlation. To

sum up this point, cII is generally important for describing short-range interactions,

and hcII(s) is always present in the short-range part of the Coulomb hole. On the

other hand, cI is predominant at long interelectronic ranges, mostly arisen from the

orbital degeneracies occurring when a molecule dissociates. By analyzing systems

dominated by either dynamic or nondynamic correlation, we have identified that

the cI component is small in systems mainly described by dynamic correlation, and

cI is dominant when there is an important contribution of nondynamic correlation.

Therefore, the first two points of the first objective of this thesis are accomplished:

∆ρcI2 (1,2) and ∆ρcII2 (1,2) are able to separate the correlation pair density ∆ρc2(1,2)

and the Coulomb hole hc(s) into two components dominated by short- and long-

range interactions.

A universal signature of dispersion interactions has been found in the IPD of

the cumulant of the 2-PD. As stated, the cumulant is coincident with the cII cor-

relation component, which mainly contains the dynamic correlation effects of the

2-PD. When the IPD is evaluated at the point where the interelectronic distance

equals with the interatomic separation s = R, a relation with R similar to the dis-

persion energy behavior is obtained, I (∆ρcII2 , R) ∝ 1/R3. This trend is numerically

more robust than the energetic one, Edisp ∝ 1/R6. This concludes the third point

of the first objective of this thesis. Note that, because the IPD is a functional of

the 2-PD, this signature is explicitly dependent on the 2-PD. This opens the door

in new imprelemtations for treating London dispersion interactions, as they can be

treated in a fully self-consistent manner if the long-range decay is imposed in further

approximate methods.

The second objective of this thesis was to provide a comprehensive benchmarking

of reduced density matrix functional approximations. The study illustrates some of

the strengths and flaws of some of the rDMFAs available nowadays. The inability to

properly describe open-shell molecules and stretched geometries indicates that much

work is still to be done in the field. No rDMFA is able to correctly describe disper-

sion interactions, as none of them provides an 1/R3 decay in their IPD. Whereas

some approximations have been said to be dispersion-including methods [161, 234],

it has been demonstrated that they produce binding potential energy curves due to
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an incorrect treatment of dispersion forces.

The MBB approximation has provided the best performances and predictions

through all the benchmarking tests. Being the first rDMFA ever designed, it is

able to produce accurate electron-electron repulsive potentials and delocalization

indices for any geometry and multiplicity considered. The approximate Vee are

size-extensive for the HN set of molecules, and bears one of the smallest errors in

systems dominated by nondynamic correlation. Its dissociation energies present one

of the smallest deviations as well. The MBB 2-DM is not purely antisymmetric and

does not fulfill de positivity conditions, caused by the simple approximation in the

exchange elements. CA and CGA have also shown outstanding results in the bench-

marking tests, in line with the performance of MBB. CGA shows some improvement

with respect to its predecessor, with smaller deviations in Vee predictions, as well as

in dissociation energies, energies in cases where nondynamic correlation is present,

and intracule probability densities. CA has a smaller antisymmetry error, and it

better fulfills de positivity conditions than CGA. Whereas the CA IPD profiles are

the most irregular among the other rDMFAs studied, CGA presents IPDs similar

to MBB. Results of the BBC2 approximation have been outstanding in some tests,

but not so good in others. The BBC2 IPD behavior is in line with MBB and CGA

IPDs, showing really small errors in 〈s〉 and its variance. The Vee predictions for the

diatomic set are quite accurate. However, the Vee predictions are not size-extensive

for the HN set, even predicting larger repulsion in H6 than in H8. It provides an ex-

cessively huge error in the De test, an incorrect description of the D2h/D4h potential

energy surface, and erroneous DI predictions. rDMFAs with empirical parameters

do not outperform other rDMFAs, suggesting that parameterization may not be suf-

ficient to produce accurate 2-DMs. The self-interaction corrected versions of MBB

and ML do not perform qualitatively better than their original versions either. The

construction of PNOF approximations involves the imposition of several physical

conditions, such as the antisymmetry of the 2-DM, and the positivity conditions

to the 2-DM. Because of this, they perform better than the K-functionals in the

N -representability test, and produce no error in the antisymmetry test. The 2-DM

elements are correctly approximated to the reference 2-DM, producing smaller CAEs

than the K-functionals. However, this does not guarantee an accurate performance

in other tets. It has been seen than PNOFs present problems in describing the bond

order in dissociated molecules, and PNOF3 has produced unphysical interelectronic

repulsion potentials. PNOF2 and PNOF4 perform outstandingly in two-electron

systems because they reduce to the exact functional, yet the extrapolation for larger

systems is not so satisfactory for PNOF2. PNOF4 and the three versions of PNOF6
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are the best performing versions among the PNOF family. The error in their dis-

sociation energy predictions is equivalent to the one produced by MBB. Their Vee

predictions are, however, not size-extensive, and produce non-negligible errors in

systems with nondynamic correlation. It would be interesting an analysis using the

newest PNOF versions.

In general, there is room for improvement for all the rDMFAs, and a study of the

1-DM–driven error would be advantageous for the community, with complementary

conclusions to the benchmarking work presented in this thesis. Moreover, the tests in

which the SD approximation has provided poor results provides fruitful information

about the correlation effects that ∆ρcII2 (1,2) must contain.
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[121] P.-O. Löwdin, “Quantum theory of many-particle systems. I. Physical interpre-

tations by means of density matrices, natural spin-orbitals, and convergence

problems in the method of configurational interaction,” Phys. Rev., vol. 97,

no. 6, pp. 1474–1489, 1955.

[122] F. Bopp, “Ableitung der Bindungsenergie vonN-Teilchen-Systemen aus 2-

Teilchen-Dichtematrizen,” Z. Physik, vol. 156, no. 3, pp. 348–359, 1959.

[123] A. J. Coleman, “Density matrices in the quantum theory of matter: Energy,

intracules and extracules,” Int. J. Quantum Chem., vol. 1, no. S1, pp. 457–464,

1967.

[124] D. A. Mazziotti, “Approximate solution for electron correlation through the

use of schwinger probes,” Chem. Phys. Lett., vol. 289, no. 5, pp. 419–427,

1998.

[125] W. Kutzelnigg and D. Mukherjee, “Cumulant expansion of the reduced density

matrices,” J. Chem. Phys., vol. 110, no. 6, pp. 2800–2809, 1999.

[126] C. Valdemoro, “Approximating the second-order reduced density matrix in

terms of the first-order one,” Phys. Rev. A, vol. 45, no. 7, p. 4462, 1992.

[127] D. A. Mazziotti, “Contracted schrödinger equation: Determining quantum

energies and two-particle density matrices without wave functions,” Phys. Rev.

A, vol. 57, no. 6, pp. 4219–4234, 1998.

[128] K. Ruedenberg, “The physical nature of the chemical bond,” Rev. Mod. Phys.,

vol. 34, pp. 326–376, 1962.

[129] R. F. W. Bader and M. E. Stephens, “Spatial localization of the electronic

pair and number distributions in molecules ,” J. Am. Chem. Soc., vol. 97,

pp. 7391–7399, 1975.

[130] D. R. Hartree, “The wave mechanics of an atom with a non-Coulomb central

field. Part I. Theory and methods,” Mathematical Proceedings of the Cam-

bridge Philosophical Society, vol. 24, no. 1, pp. 89–110, 1928.

[131] D. R. Hartree, “The calculation of atomic structures,” Rep. Prog. Phys.,

vol. 11, no. 5, pp. 113–143, 1947.

251



BIBLIOGRAPHY

[132] E. H. Lieb, “Variational principle for many-fermion systems,” Phys. Rev. Lett.,

vol. 46, no. 7, pp. 457–459, 1981.

[133] T. Gilbert, “Hohenberg-Kohn theorem for nonlocal external potentials,” Phys.

Rev. B, vol. 12, no. 6, p. 2111, 1975.

[134] M. Piris and J. M. Ugalde, “Perspective on natural orbital functional theory,”

Int. J. Quantum Chem., vol. 114, pp. 1169–1175, 2014.

[135] K. Pernal and K. J. H. Giesbertz, “Reduced Density Matrix Functional Theory

(RDMFT) and Linear Response Time-Dependent RDMFT (TD-RDMFT),”

in Density-Functional Methods for Excited States (N. Ferré, M. Filatov, and
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