OH Radical Attack on amino acid side chains

Jon Uranga, Jon I. Mujika and Jon M. Matxain

Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC)

P.K. 1072, 20080 Donostia (Basque Country)

email address: jon.uranga@ehu.es

Introduction

OH radical attack in proteins, to the side chains and α carbon of the amino acids.

- 1. Addition of OH radical.
- 2. Hydrogen abstraction.
- Side chains under study: Ser, Thr, Cys, Met.

Aminoacid side chain:

- Abstraction from: All heavy atoms of the side chain and the $C\alpha$.
- Kinetics and Thermodynamics studied.
- Protein enviroment:

We have considered solvent effects at different dielectrics:

- a) ε =4 for inner aminoacids (far from water)
- b) ε =20 intermediate
- c) ε=78 for outter aminoacids (close to water)

Backbone Moldels

- Tripeptide (AA1-AA2-AA3). AA2 complete (side chains mentioned in the introduction), AA1, AA3 cut at $C\alpha$.
- For backbone: two types of folding: α helix and β sheet.

- Optimization and Frequencies in gas phase: MPWB1K/6-31+G(d,p).
- -Single points at ε =4, ε =20, ε =40 and ε =80: MPWB1K/6-311++G(2df,p).
- H_{sol}²⁹⁸=E_{sol}+H(cont)_{gas}²⁹⁸. IRC for Transition States.

Side Chains

- Methionine as example.
- Labelling: 1 for $C\alpha$ then increasing. The further from $C\alpha$, the larger the number.

Results

	lpha-helix							
	ΔH_4^{TS}	ΔH_{20}^{TS}	ΔH_{water}^{TS}	ΔH_4^{Prod}	ΔH_{20}^{Prod}	ΔH_{water}^{Prod}		
Cys1	-3.0	-2.2	-2.0	-30.5	-28.5	-31.3		
Cys2	-4.4	-3.5	-3.3	-24.6	-22.6	-25.1		
Cys3	-1.4	-1.0	-0.9	-30.9	-31.2	-31.2		
Met1	-3.1	-2.6	-2.5	-30.4	-31.1	-31.2		
Met2	1.1	1.4	1.4	-18.7	-19.1	-19.2		
Met3	-1.0	-0.9	-0.9	-28.4	-28.9	-29.0		
Met4	-3.3	-3.2	-3.2	-23.0	-23.1	-23.2		
Ser1	-1.3	-0.8	-0.7	-24.8	-25.8	-26.0		
Ser2	8.9	8.8	8.7	-22.1	-22.6	-22.7		
Ser3	-2.0	-1.7	-1.6	-11.1	-12.0	-12.2		
Thr1	-1.4	-0.7	-0.6	-23.8	-24.8	-25.0		
Thr2	-2.8	-2.4	-2.3	-23.9	-24.4	-24.5		
Thr3	2.9	3.4	3.5	-10.2	-10.6	-10.6		
Thr4	1.0	1.2	1.2	-14.7	-14.9	-15.0		

	β -sheet							
	ΔH_4^{TS}	ΔH_{20}^{TS}	ΔH_{water}^{TS}	ΔH_4^{Prod}	ΔH_{20}^{Prod}	ΔH_{water}^{Prod}		
Cys1	-3.9	-2.9	-2.6	-32.2	-32.1	-32.0		
Cys2	2.1	1.8	1.7	-23.1	-23.0	-23.0		
Cys3	9.5	9.8	9.8	-30.3	-30.7	-30.7		
Met1	-4.4	-3.2	-2.9	-33.0	-33.4	-33.5		
Met2	-3.8	-3.3	-3.1	-19.7	-20.0	-20.1		
Met3	-3.7	-2.7	-2.5	-19.7	-20.0	-20.1		
Met4	-4.9	-4.3	-4.2	-27.0	-27.1	-27.2		
Ser1	-2.5	-1.7	-1.5	-34.6	-34.3	-34.2		
Ser2	2.5	3.5	3.8	-14.3	-14.3	-14.7		
Ser3	-3.9	-3.7	-3.6	-21.8	-21.9	-21.9		
Thr1	-3.4	-2.2	-1.9	-32.5	-32.2	-32.1		
Thr2	-4.5	-4.1	-4.1	-26.0	-26.4	-26.5		
Thr3	1.6	2.8	3.0	-14.1	-14.4	-14.5		
Thr4	0.6	1.2	1.3	-16.1	-16.1	-16.1		

- $\ln \alpha$ helix
- •Cys2, Met4, Ser3 and Thr2 are kinetically favoured.
- •Cys1/2, Met1, Ser1 and Thr1/2 are thermodinamically favoured.
- In β sheet.
 - •Cys1, Met2/4, Ser1/3 and Thr2 are kinetically favoured.
 - •Cys1/2, Met1, Ser1 and Thr1 are thermodinamically favoured.
- β sheet conformation favors the attack in $\text{C}\alpha,$ both thermodinamically and kinetically.

Attack to the Side Chain (Met2)

Acknowledgements

Research unded by Eusko Jaurlaritza (the Basque Government) SAIOTEK program, and the Spanish Ministerio de Educación y Ciencia. The SGI/IZO-SGIker UPV/EHU (supported by Fondo Social Europeo and MCyT) is gratefully acknowledged for generous allocation of computational resources.

