Global Natural Orbital Functional

Mario Piris

DIPC & UPV/EHU, 20018 Donostia, Spain IKERBASQUE, 48013 Bilbao, Spain

October 14, 2022

FACULTY OF CHEMISTRY UNIVERSITY OF THE BASQUE COUNTRY

ヨート

→ < Ξ →</p>

Mario Piris Global Natural Orbital Functional

Motivation

The need to overcome the drawbacks of currently used DFAs

 efficient description of strongly interacting electrons (molecular dissociation, Mott insulators, etc)

Goal

Achieve a more precise formalism than approximate density functionals, but less computationally demanding than ab initio wfn-based methods

General considerations:

- N-e⁻ system at 0 temperature
- Time-independent functional theory for the ground state (GS)
- Non-relativistic spin-free N-electron Hamiltonian:

$$\hat{H} = \sum_{ik} \mathcal{H}_{ki} \hat{a}_k^{\dagger} \hat{a}_i + \frac{1}{2} \sum_{ijkl} \langle kl | ij \rangle \hat{a}_k^{\dagger} \hat{a}_l^{\dagger} \hat{a}_j \hat{a}_i$$

 $\begin{array}{l} \mathcal{H}_{ki}: \text{ matrix elements of kinetic energy and external potential} \\ \langle kl | ij \rangle: \text{ two-particle interaction matrix elements (Coulomb integrals)} \\ \hat{a}_i^{\dagger} \ (\hat{a}_i): \text{ fermion creation (annihilation) operators associated} \\ & \text{ with the complete orthonormal spin-orbital set } \{ | i \rangle \}. \end{array}$

$$\left[\hat{H},\hat{S}^{2}\right]=0,\ \left[\hat{H},\hat{S}_{z}\right]=0$$
 \Rightarrow $S\neq$ 0: the GS is a Multiplet

The N-electron system in a mixed state (ensemble) is described by the N-particle density matrix statistical operator:

$$\hat{\mathfrak{D}} = \sum_{I} \omega_{I} |\Psi_{I}\rangle \langle \Psi_{I}| \qquad \sum_{I} \omega_{I} = 1, \ \omega_{I} \ge 0$$

$$\mathfrak{D}\left(\mathbf{x}_{1}^{\prime},\mathbf{x}_{2}^{\prime},..,\mathbf{x}_{N}^{\prime};\mathbf{x}_{1},\mathbf{x}_{2},..,\mathbf{x}_{N}\right)=\sum_{I}\omega_{I}\Psi_{I}\left(\mathbf{x}_{1}^{\prime},\mathbf{x}_{2}^{\prime},..,\mathbf{x}_{N}^{\prime}\right)\Psi_{I}^{*}\left(\mathbf{x}_{1},\mathbf{x}_{2},..,\mathbf{x}_{N}\right)$$

 \Rightarrow The energy is an explicitly functional of the 1- and 2-RDMs:

$$E\left[\mathbf{N}, \mathbf{\Gamma}, \mathbf{D}\right] = \sum_{ik} \mathcal{H}_{ik} \mathbf{\Gamma}_{ki} + \sum_{ijkl} \langle ij|kl \rangle \mathbf{D}_{kl,ij}$$
$$\mathbf{\Gamma}_{ki} = \sum_{l} \omega_{l} \langle \Psi_{l} | \hat{\mathbf{a}}_{k}^{\dagger} \hat{\mathbf{a}}_{i} | \Psi_{l} \rangle, \quad \mathbf{D}_{kl,ij} = \frac{1}{2} \sum_{l} \omega_{l} \langle \Psi_{l} | \hat{\mathbf{a}}_{k}^{\dagger} \hat{\mathbf{a}}_{l}^{\dagger} \hat{\mathbf{a}}_{j} \hat{\mathbf{a}}_{i} | \Psi_{l} \rangle$$

RDM's general properties: Hermiticity, Nonnegative diagonal elements, ...

Universal 1-RDM Fuctional:

$$E [N, \Gamma, D] \rightarrow E [N, \Gamma] = \sum_{ik} \mathcal{H}_{ik} \Gamma_{ki} + V_{ee} [N, \Gamma]$$
$$V_{ee} [N, \Gamma] = \min_{E^2 \ni D \rightarrow \Gamma} \left[\sum_{ijkl} \langle ij|kl \rangle D_{kl,ij} \right] \quad (\text{Gilbert 75, Levy 79, Valone 80})$$
$$E_{gs} = \min_{\Gamma \in E^1} \left[\mathcal{H} [N, \Gamma] + V_{ee} [N, \Gamma] \right]$$

Imiting situations → minimization can be exactly solved In general, const. search is not appropriate for computation

2 V_{ee} [N, Γ] has been unreachable so far \Rightarrow We have to settle for approximations

Spectral decomposition of the 1RDM: $\Gamma(\mathbf{x}'_1, \mathbf{x}_1) = \sum_i n_i \phi_i(\mathbf{x}'_1) \phi^*_i(\mathbf{x}_1)$ $\{\phi_i(\mathbf{x})\}$: natural spin-orbitals $\{n_i\}$: occupation numbers

- The 1RDM in the natural orbital (NO) representation: $\Gamma_{ki} = n_i \delta_{ki}$
- Ensemble N-representable 1RDM:

$$0 \leq n_i \leq 1, \ \sum_i n_i = \mathbb{N}$$
 (Coleman 1963)

• The universal functional in NO representation:

$$E_{gs} = \min_{\{n_i, \phi_i\} \in E^1} \left\{ \sum_i n_i \mathcal{H}_{ii} + V_{ee} \left[N, \{n_i, \phi_i\} \right] \right\}$$
$$V_{ee} \left[N, \{n_i, \phi_i\} \right] = \min_{E^2 \ni D \to \{n_i, \phi_i\}} \left\{ \sum_{ijkl} \langle ij|kl \rangle D_{kl,ij} \right\}$$

∃ → < ∃ →</p>

Approximate 2RDM $D[n_i, n_j, n_k, n_l]$:

$$E \approx \sum_{i} n_i \mathcal{H}_{ii} + \sum_{ijkl} D[n_i, n_j, n_k, n_l] \langle ij|kl \rangle, \quad E_{gs} = \min_{\{n_i, \phi_i\} \in E^1} E[N, \{n_i, \phi_i\}]$$

- V_{ee} will not, in general, be entirely rebuilt An approximate NOF still depends on D (Donnelly 79)
- The N-representability is twofold:

N-representable 1RDM N-representable Functional

 $\mathfrak{D} \to \Gamma : \mathfrak{0} \leq n_i \leq 1, \ \sum_i n_i = \mathbb{N}$ $\mathfrak{D} \to \mathbb{D} : E[\mathfrak{D}] \to E[\mathbb{N}, \{n_i, \phi_i\}]$

For the 2RDM, a complete set of N-representability conditions that do not depend on higher-order RDMs remains unknown.

• Alternative: Use the (2,2)-positivity conditions $\mathbf{D} \ge 0, \ \mathbf{Q} \ge 0, \ \mathbf{G} \ge 0$

Singlet State in a two-electron system

Exact Wavefunction & Energy (Lowdin & Shull 1955)

$$\Psi(\mathbf{x}_{1}, \mathbf{x}_{2}) = \frac{1}{\sqrt{2}} (\alpha_{1}\beta_{2} - \alpha_{2}\beta_{1}) \sum_{p} f_{p}\sqrt{n_{p}}\varphi_{p}(\mathbf{r}_{1})\varphi_{p}(\mathbf{r}_{2}), \ f_{p} = \pm 1$$
$$E\left[N, \{f_{p}, n_{p}, \varphi_{p}\}\right] = 2 \sum_{p} n_{p}H_{pp} + \sum_{p,q} f_{p}f_{q}\sqrt{n_{q}n_{p}}L_{pq}, \ L_{pq} = \langle pp|qq \rangle$$
Phase Dilemma: # of possible $\{f_{p}\}$ combinations is prohibitively large

• NOF:
$$E(2e^{-}) = 2\sum_{p} n_{p}H_{pp} + n_{1}L_{11} - 2\sum_{p=2}\sqrt{n_{1}n_{p}}L_{p1} + \sum_{p,q=2}\sqrt{n_{q}n_{p}}L_{pq}$$

Accurate NOF \Rightarrow Motivation for using electron-pairs as basic units!

- Electron-pairing-based NOFs for N electrons: $D_{pq,rt}^{\alpha\alpha}, D_{pq,rt}^{\beta\beta}, D_{pq,rt}^{\alpha\beta}$
 - PNOF5, PNOF6, PNOF7 [Phys. Rev. Lett. 119, 063002, 2017] (static)
 - GNOF [Phys. Rev. Lett. 127, 233001, 2021] (static + dynamic correlation)

The adjective 'global' is used instead of 'universal': GNOF \neq Valone's exact.

< ≣ > ____

Singlet

Triplet

<ロ> <部> < 部> < き> < き> < き</p>

Mario Piris Global Natural Orbital Functional

GNOF for Singlet States

$$E = E^{intra} + E^{inter}$$

$$\mathbf{I} \quad E^{intra} = \sum_{g=1}^{N/2} E_g, \quad E_g = \sum_{p \in \Omega_g} n_p \left(2H_{pp} + L_{pp} \right) + \sum_{q, p \in \Omega_g, p \neq q} \Pi \left(n_q, n_p \right) L_{pq}$$
$$\Pi \left(n_q, n_p \right) = \sqrt{n_q n_p} \left(\delta_{q\Omega^a} \delta_{p\Omega^a} - \delta_{qg} - \delta_{pg} \right)$$

$$\mathbf{\mathfrak{S}} \quad E^{inter} = \sum_{p,q=1}^{N_{\mathbf{B}}} ' \quad \left\{ n_q n_p \left(2J_{pq} - K_{pq} \right) + \left(1 - \delta_{q\Omega b} \delta_{p\Omega b} \right) \\ \left[n_q^d n_p^d + \Pi \left(n_q^d, n_p^d \right) - \sqrt{n_q h_q n_p h_p} \right] L_{pq} \right\}$$

• prime indicates that only the inter-subspace terms are taking into account $(p \in \Omega_f, q \in \Omega_g, f \neq g)$.

 Dynamic Hole and Occupation Number

$$h_{g}^{d} = h_{g} \cdot e^{-\left(\frac{h_{g}}{h_{c}}\right)^{2}}, \quad n_{p}^{d} = n_{p} \cdot e^{-\left(\frac{h_{g}}{h_{c}}\right)^{2}}, \quad g = \overline{1, N/2}, \quad p \in \Omega_{g}$$

Dynamic hole for $h_c = 0.02\sqrt{2}$.

3 x 3

GNOF for Multilet States: $\mathrm{N}=\mathrm{N}_{\mathrm{II}}+\mathrm{N}_{\mathrm{I}}$

$$\begin{aligned} \langle \hat{S}_{z} \rangle &= \sum_{M=-S}^{S} \omega_{M} \langle SM | \hat{S}_{z} | SM \rangle = 0 \quad \Rightarrow \text{ the spin-restricted theory can be adopted} \\ \text{Total Spin: } \langle \hat{S}^{2} \rangle &= \frac{N_{I}}{2} \left(\frac{N_{I}}{2} + 1 \right) \quad \Rightarrow \quad S = \frac{N_{I}}{2}, \quad 2S + 1 = N_{I} + 1 \\ E &= E^{intra} + E^{inter}_{HF} + E^{inter}_{sta} + E^{inter}_{dyn}, \qquad N_{\Omega} = N_{II}/2 + N_{I} \\ E^{intra} &= \sum_{g=1}^{N_{II}/2} E_{g} + \sum_{g=N_{II}/2+1}^{N_{\Omega}} H_{gg}, \quad E^{inter}_{HF} = \sum_{p,q=1}^{N_{B}} ' n_{q} n_{p} \left(2J_{pq} - K_{pq} \right) \\ E^{inter}_{sta} &= - \left(\sum_{p=1}^{N_{\Omega}} \sum_{q=N_{\Omega}+1}^{N_{\Omega}} + \sum_{p=N_{\Omega}+1q=1}^{N_{B}} + \sum_{p,q=N_{\Omega}+1}^{N_{B}} \right)' \sqrt{n_{q} h_{q} n_{p} h_{p}} L_{pq} \\ &- \frac{1}{2} \left(\sum_{p=1}^{N_{II}/2} \sum_{q=N_{II}/2+1}^{N_{\Omega}} + \sum_{p=N_{\Omega}+1}^{N_{\Omega}} \sum_{q=1}^{N_{II}/2} \right)' \sqrt{n_{q} h_{q} n_{p} h_{p}} L_{pq} \\ &- \frac{1}{2} \left(\sum_{p=1}^{N_{II}/2} \sum_{q=N_{\Omega}+1}^{N_{B}} + \sum_{p=N_{\Omega}+1}^{N_{\Omega}} \sum_{q=1}^{N_{II}/2} \right)' \left(\sqrt{n_{q} n_{q} n_{p} h_{p}} L_{pq} - \frac{1}{4} \sum_{p,q=N_{II}/2+1}^{N_{\Omega}} K_{pq} \\ &+ \sum_{p,q=N_{\Omega}+1}^{N_{B}} ' \left(\sqrt{n_{q}^{d} n_{p}^{d}} + n_{q}^{d} n_{p}^{d} \right) L_{pq} \end{aligned}$$

Total energies (Hartrees)

Atoms	Atoms (aug-cc-pVTZ)				Molecules at the Exp. Geom. (cc-pVTZ)				
At	GS	GNOF	CCSD(T)	Molecule	MP2	GNOF	CCSD(T)		
н	² <i>S</i>	-0.49983	-0.49983	CH₄	-40.43238	-40.45533	-40.45960		
He	1 <u>5</u>	-2.90084	-2.90084	C₂H ₆	-79.67171	-79.71166	-79.71789		
Li	² <u>5</u>	-7.45318	-7.45338	H₂CO	-114.34175	-114.36809	-114.36928		
Be	¹ S	-14.63382	-14.63565	нсоон	-189.51455	-189.54192	-189.54659		
В	² P	-24.60751	-24.60912	C ₂ FH ₃	-177.58430	-177.62610	-177.62758		
с	^з Р	-37.79635	-37.79712	C₂H₅N	-133.70022	-133.73644	-133.74992		
N	⁴ S	-54.52947	-54.53421	$C_2H_2O_2$	-227.51149	-227.54481	-227.55734		
0	^з Р	-75.00049	-74.99967	CH3NH2	-95.69653	-95.73376	-95.73676		
F	² P	-99.65391	-99.65218	сн₃осн₃	-154.78170	-154.83262	-154.83576		
Ne	1 <u>5</u>	-128.8442	-128.8440	СН₃СН₂ОН	-154.80194	-154.84906	-154.85458		
MAE (10)		0.0012	-	MAE (55)	30 mHa	8 mHa	-		

Global Natural Orbital Functional

・ロト ・回ト ・ヨト ・ヨト

æ

Mario Piris

Potential Energy Curves

э

æ

Comparison with the Experimental Data

Mo	Mul	Re	$\mathbf{R}_{e}^{e \times p}$	De	$D_e^{e \times p}$	ω_{e}	ω_e^{exp}
F_2	1	1.35	1.41	40.9	39.2	1212	917
H_2	1	0.74	0.74	108.6	109.5	4404	4401
BN	3	1.29	1.32	102.3	94-133	1851	1515
CN	2	1.14	1.17	171.6	177.4	2344	2069
CF	2	1.26	1.27	129.0	128.7	1238	1308
CO	1	1.11	1.13	259.6	259.3	2391	2170

 R_{e} (Å), D_{e} (kcal/mol), and ω_{e} (cm⁻¹)

PECs for the singlet ground state of the CO

Mario Piris Global Natural Orbital Functional

э

Benchmarking GNOF against FCI in one, two and three dimensions

I. Mitxelena & M. Piris, J. Chem. Phys. 156, 214102 (2022)

Dissociation curves corresponding to a 1D lineal chain of 10 H

Dissociation curves corresponding to a 2D ring of 10 H

Mario Piris Global Natural Orbital Functional

э

Dissociation curves corresponding to a **2D sheet** of 10 H

Mario Piris Global Natural Orbital Functional

Dissociation curves corresponding to a 3D pyramid of 10 H

Mario Piris Global Natural Orbital Functional

э

Dissociation curves corresponding to a 1D lineal chain of 50 H

Symmetric dissociation energy curves corresponding to a $4 \times 4 \times 4$ hydrogen cube.

Mario Piris Global Natural Orbital Functional

Metal-to-insulator transition in the 4 \times 4 \times 4 hydrogen cube

Average of off-diagonal 1RDM elements: $\gamma = \sqrt{rac{1}{\mathrm{N}\left(\mathrm{N}-1
ight)}\sum_{i
eq j}(\Gamma^{AO}_{ij})^2}$

Donostia Natural Orbital Functional Program

https://github.com/DoNOF/DoNOFsw

- Onconstrained Occupancy Optimization
- Self-consistent iterative diagonalization procedure for NOs
- Geometry optimization (analytic gradients)
- Harmonic vibrational frequencies (numerical Hessian)
- Natural and canonical representations of molecular orbitals
- Ionization potential using extended Koopmans' Theorem (EKT)

More details in https://donof.readthedocs.io/

• Approximate NOF still depends on the 2RDM:

Functional N-representability

• GNOF: recover dynamic and non-dynamic correlations

Thank you for your attention !!!