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“=f then you do not make yourself equal to God, you cannot apprehend God;

for like is known by like. Leap clear of all that is corporeal, and make yourself

grown to a like expanse with that greatness which is beyond all measure; rise

above all time and become eternal; then you will apprehend God. Think that

for you too nothing is impossible; deem that you too are immortal, and that you

are able to grasp all things in your thought, to know every craft and science;

find your home in the haunts of every living creature; make yourself higher than

all heights and lower than all depths; bring together in yourself all opposites of

quality, heat and cold, dryness and fluidity; think that you are everywhere at

once, on land, at sea, in heaven; think that you are not yet begotten, that you

are in the womb, that you are young, that you are old, that you have died, that

you are in the world beyond the grave; grasp in your thought all of this at once,

all times and places, all substances and qualities and magnitudes together; then

you can apprehend God.

But if you shut up your soul in your body, and abase yourself, and say ‘I know

nothing, I can do nothing; I am afraid of earth and sea, I cannot mount to

heaven; I know not what I was, nor what I shall be,’ then what have you to do

with God?”- Hermes Trismegistus.

To GAOTU ,
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Elvira Romera(UGR), Emilio San Fabián(UA), Antonio Ureña(UGR), Juan

Carlos Angulo(UGR), Francisco Gálvez(UGR), David Peralta(UGR), Rosa Ca-
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CGA Csányi, Goedecker and Arias functional

GU Goedecker and Umrigar functional

FL Fermi level

PNOF Piris natural orbital functional

xiv



List of Figures

Figure 1. Delocalization Index for N2 at the Hartree-Fock equilibrium dis-

tance (RNN = 1.078 Å) computed with aug-cc-pVDZ basis (Fig.

taken from Ref. [1]). . . . . . . . . . . . . . . . . . . . . . . 40

Figure 2. Full configuration interaction contour plot of ELF for BH at the

equilibrium distance with the aug-cc-pVDZ basis computed with

our RHO OPS [2] program (isocontour=0.8). . . . . . . . . . . 44

Figure 3. On the l.h.s the experimental (obtained from X-Ray scattering

cross-sections) and on the r.h.s. the computational (obtained with

CASSCF(6,6) and RHO2 OPS [3] code) radial IPD. . . . . . . 46

Figure 4. Partition of the three-electron Harmonium atom using the radius

rA and rB to generate regions A, B and C, that contain only one

electron NA = NB = NC = 1. . . . . . . . . . . . . . . . . . 185

Figure 5. Error in the trace for all 3-RDM approximations. Solid lines corre-

spond to the doublet state whereas dotted ones correspond to the

quartet state. . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Figure 6. Error in the 3c-ESI for all 3-RDM approximations. Solid lines cor-

respond to the doublet state whereas dotted ones correspond to the

quartet state. . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Figure 7. Trace error for all 2-RDM approximations. BBC2, CA, CGA, MBB,

PNOF2 and PNOF4 have not been included because they satisfy

the sum rule by definition. . . . . . . . . . . . . . . . . . . . . 192

Figure 8. Cumulative absolute error in the trace for the diagonal elements

of all 2-RDM approximations. PNOF4 and PNOF2 have not been

included because they present errors lower than 10−4. . . . . . . 193

Figure 9. Cumulative absolute error for all 2-RDM approximations. . . . . . 194

Figure 10. Sum of all negative eigenvalues of P, Q and G matrices. PNOF2

and PNOF4 are not included since they satisfy these three conditions.195

Figure 11. Difference between the exact and the approximate radial intracule

density for three values of ω (1000, 0.5 and 0.03). . . . . . . . . . 199

xv



Figure 12. Approximated radial intracule probability densities for ω = 0.03 in

the small r12 region. . . . . . . . . . . . . . . . . . . . . . . 200

Figure 13. ∆h(s) of H2 at different bond lengths (all R in Å). . . . . . . . . 204
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Abstract

Quantum chemistry deals with the analysis of the electronic structure of molecules.

Unfortunately, the exact electronic structure requires the solution of the Schrödin-

ger equation, which can only be exactly solved for hydrogen atom. A practical

solution of the Schrödinger equation is performed using finite basis sets and

building approximated wavefunctions, which are optimized according to the

variational principle. Another approach is based on the reformulation of the

problem where instead of solving the Schrödinger equation, energy expressions

in terms of reduced quantities (the electronic density and reduced density ma-

trices) are assumed. Density functional theory is probably the most famous

methodology within the last approach, where the reduced quantity used is the

electronic density. Nevertheless, some other less familiar approaches can be

found in the literature. Among these approximations, reduced density matrix

functional theory and the Contracted Schrödinger equation are the genesis of

the present thesis.

In the Contracted Schrödinger equation methodology up to fourth-order reduced

density matrices are required for the computation of the electronic energy. Nev-

ertheless, to reduce the computational cost high-order reduced density matrices

are approximated from lower order ones. In this thesis, we have focused on the

approximations suggested for the reconstruction of third-order reduced density

matrices from the second- and first-order ones. There was not any exhaustive

benchmark in the literature that focused on how electron correlation affects

these approximations, thus we have developed it in order to improve the ap-

proximations suggested up to now. For the first study, we worked with the

three-electron Harmonium atom (in the 2P and 4P states) and tuned correla-

tion effects by playing with the ω parameter (i.e. with the confinement). In

this study, we analyzed how electron correlation affects some properties with

respect to the exact results. We have studied: a) electron sharing indexes, b)
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N -representability conditions, and c) the sum rule, among others. Our study

revealed that Valdemoro approximation is an excellent approximation for com-

puting electron sharing indexes, but it was closely followed by the approximation

suggested by Matito and coworkers. Secondly, we have seen that Fermi correla-

tion seems to be easier to model than the Coulomb one (which is obviously much

more convoluted). From this study, we have also gathered information about

the importance of the Fermi level in the definition of σp phase factors of Nakat-

suji and Mazziotti approximations. In our second study, we have also tested

how well these approximations perform for the computation of electron shar-

ing indexes in three-center two electrons and three-center four electron bonds.

From the last study, we observed that Valdemoro and Matito and coworkers ap-

proximations provide the most accurate results when compared to the reference

values.

In reduced density matrix functional theory, the energy expression is an explicit

functional of the first-order reduced density matrix, and therefore the second-

order reduced density needed for the computation of the Coulomb electron-

electron interaction is reconstructed from the first-order one. Usually, the first-

order reduced density matrix is taken in the diagonal representation, where the

basis are the natural orbitals and the diagonal elements of the matrix are the

natural orbital occupancies. In reduced density matrix functional theory the re-

constructed second-order reduced density matrix elements are built as functions

of the natural orbital occupancies. In the same spirit as we did for third-order

reduced density matrices, we have studied how electron correlation affects these

approximations. To that end, we have worked with the two-electron Harmo-

nium atom in the 1S state (the ground state) and tuned correlation effects by

playing with the ω parameter. The benchmark that we have developed is based

on the analysis of several properties of the reconstructed matrices, and pro-

vides new insights for the development of more robust approximations. In this

study, we have also analyzed how electron correlation affects some properties,

namely we have studied: a) delocalization index, b) N -representability condi-
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tions, c) the sum rule, d) intracule probability densities, and e) the Coulomb

electron-electron repulsion energy, among others. Our results have proven that

the Fixed-Phases approximation is almost exact for any correlation regime, and

only deviates from the exact result in the strong-correlation limit. In this study

we have worked with PNOFi and JK-only approximations, where the latter

only produce the second-order reduced density matrix elements which are ac-

companied by the Coulomb (J) or the exchange (K) integrals. We have also

proven that PNOFi approximations perform better than JK-only approxima-

tions in the majority of tests (specially for the N -representablity conditions

and the antisymmetry tests). We have also analyzed how some JK-only ap-

proximations produce unphysical elements for the reconstructed matrices that

account for some properties (like the sum rule) but fail to many other properties

(e.g. they introduce self-interaction errors). Besides, we have also proven that a

self-interaction correction applied a posteriori is not the best way to avoid the

introduction of unphysical elements (see the Results and Discussions section

for more details). Finally, our results demonstrated that more robust approxi-

mations can be obtained by imposing as many conditions as possible from the

beginning (i.e. in the construction of the approximation).

In this thesis, we have also worked with the radial intracule probability den-

sity obtained from the second-order reduced density matrix, actually, from the

diagonal part of this matrix (i.e. the two-particle probability density). The

two-particle probability density provides the probability density to find electron

pairs, where one electron is placed at r1 and another is placed at r2, and it

represents a 6D-function that cannot be reproduced in 2D or 3D plots unless

some coordinates are fixed. The intracule coordinate r12 = r2 − r1 allows us to

fix some coordinates and gather some of the information contained in the two-

particle probability density. The radial intracule probability density is obtained

by selecting all possible pairs at a given interelectronic distance, |r12|, and af-

ter performing the spherical average. In this thesis, we have analyzed how the

latter evolves during the bond dissociation/formation process of some diatomic
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molecules. In our first study, we focused on 1,3Πu excited states of H2. Tal and

Katriel, and Colbourn found and reported the counterintuitive non-monotonic

behavior of the electron repulsion energy in the 3Πu excited state of H2 as a

function of the internuclear separation. It was observed an increase of the Vee

at Hartree-Fock level, accompanied by a decrease of the 〈r12〉, when the H-H

bond is stretched; we have confirmed this effect using FCI calculations. From

Hund’s rule, the triplet should be much more stable than the singlet due to

the reduction of repulsion as a consequence of the Pauli principle. We have

observed that the electronic cloud is more compact for the triplet state and the

screening of the external potential produced by the nuclei is less effective, thus

the electron-nucleus attraction is much larger in this state than in the singlet.

The larger electron-nucleus attraction obtained for the triplet state compen-

sates the unexpected larger Vee of the triplet state, and makes the triplet state

more stable (in good agreement with Hund’s rule). In our second study, we

focused on the electron rearrangements that occur in the bond formation of

some diatomic molecules. In this study, we analyzed the difference between the

exact radial intracule probability density and the non-relaxed one. Our results

provide a classification of the bonds in single and double bonds according to

the profile obtained along the bond formation, and we could also observe the

formation of electrons pairs in Li2 between the electrons localized in the nuclei

and the electron at the non-nuclear attractor. Unfortunately, it was impossible

to track the harpoon mechanism followed by LiH, nevertheless, we could observe

that a covalent bond profile is obtained at large interatomic distances whereas at

small interatomic distances the ionic profile was recovered. In this work, we also

suggested an approximation to the exact and usually expensive radial intracule

probability density by using CCSD natural occupancies and the Müller or Buijse

and Baerends approximation for the second-order reduced density matrix. This

study demonstrated that the approximation suggested produces results compa-

rable to the exact ones and reduces the computational cost. Lastly, we used the

radial intracule probability density for the description of a shoulder observed

in the Coulomb hole of Neon atom. We constructed a set of even-tempered
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basis and used CISD calculations (that retrieved more than 95% of the electron

correlation) to prove that the shoulder was not an artifact but a real effect pro-

duced by the electron correlation of the core electrons. We also proved in this

work that there was not an important transfer of the electronic density between

the K and L shells, which suggetss that there is only an electron rearrangement

within the K shell that produces the shoulder observed.

Finally, in the last work of this thesis we have studied the harpoon mechanism,

which is observed in gas phase for some molecules formed by atoms that present

a small difference between ionization potential and the electron affinity. The

Potential Energy Surface (PES) for molecules formed by the harpoon mecha-

nism changes the character from covalent to ionic when the bond is formed,

which occurs by means of an electron transfer. The change of character on the

PES is very fast and, therefore, this mechanism presents an Avoided Crossing

(AC) at the geometry where the electron transfer takes place. In this work,

we used chemical descriptors applied to some diatomic molecules in an attempt

to characterize this mechanism within the Born-Oppenheimer approximation.

The set of diatomic molecules chosen for this study includes LiH, BH, BeH, LiF,

CO, N2, He2, H2 and F2 (the last five species were taken as counterexamples).

We have proven that the analysis of the atomic population is not enough to

characterize this mechanism. Our study showed that only the delocalization

index is able to recognize the harpoon mechanism (if we use Quantum Theory

of Atoms in Molecules (QTAIM) or Topological Fuzzy Voronoi Cells (TFVC)

atomic partitions). The electron localization function and the Laplacian of the

electron density provided means to visualize the electron transfer that happens

due to the harpoon mechanism. Actually, the scan of these quantities along

the interatomic axis permits the visualization of the transfer. Finally, among

the information theory quantities, only the Fisher informations (in position and

momentum spaces) were able to distinguish between the systems that follow the

harpoon mechanism and the other systems (only H2 was incorrectly assigned

by the Fisher informations as a system formed by the harpoon mechanism).
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Resum

La qúımica quàntica tracta el problema de l’anàlisi de l’estructura electrònica

de les molècules. Malauradament, un anàlisi rigurós de l’estructura electrònica

requereix la solució exacta de l’equació d’Schrödinger, que només es pot resoldre

exactament per a l’àtom d’hidrogen. Una solució pràctica per resoldre l’equació

d’Schrödinger consisteix en emprar un conjunt finit de funcions de base per con-

struir funcions d’ona aproximades, que s’optimizen d’acord amb el principi varia-

cional. Un altre procediment planteja la reformulació del problema en termes

de densitats redüıdes (com la densitat electrònica o les matrius redüıdes de la

densitat), en comptes d’intentar resoldre directament l’equació d’Schrödinger en

termes de la funció d’ona del sistema. Probablement, la metodologia més famosa

d’aquest tipus la coneguda com a teoria del funcional de la densitat (DFT), que

utiliza una formulació en termes de la densitat electrònica. Aix́ı mateix, ex-

isteixen altres procediments menys coneguts, com la teoria del funcional de la

matriu redüıda de la densidad de segon order i l’equació d’Schrödinger contreta,

que són part de la motivació d’aquesta tesi.

La teoria de l’equació d’Schrödinger contreta emprea matrius redüıdes de la

densidad fins a quart ordre per tal de calcular l’energia electrònica d’un sis-

tema. No obstant, les matrius redüıdes d’ordre més gran són freqüentment

aproximades a partir de les matrius d’ordre més petit. En aquesta tesi ens

hem centrat bàsicament en les aproximacions de la matriu redüıda de la densi-

tat de tercer ordre, a partir de les matrius de primer i segon ordre. Fins ara,

no existia un estudi exhastiu que permetés calibrar les aproximacions existents

en funció de la correlació electrònica del sistema. Per aquesta raó, hem real-

itzat aquest anàlisi per tal d’avaluar totes les aproximacions de la matriu de

la densitat redüıda a tercer ordre que s’han proposat fins ara. Com a estudi

pilot, primer hem analitzat els estats electrònics 2P i 4P de l’àtom harmònic de

tres electrons jugant amb els efectes de correlació a partir de la modificació del
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paràmetre de confinament, ω. S’ha analitzat com la correlació afecta algunes

propietats comparant-les amb el resultat exacte. S’ha estudiat entre d’altres: a)

els ı́ndexs de compartició electrònica, b) les condicions de N -representabilitat, i

c) la regla de la suma. El nostre estudi mostra que l’aproximació de Valdemoro

dóna resultats excel·lents en el càlcul d’́ındexs de compartició electrònica, quasi

tan bons com els obtinguts amb l’aproximació de Matito i col·laboradors. Tant

mateix, hem comprovat que la correlació de Fermi és més fàcil de tractar que

la correlació de Coulomb (que, òbviament, és molt més complexa). També hem

obtingut informació sobre la importància del nivell de Fermi en la definició del

factors de fase, σp, de les aproximacions de Nakatuji i Mazziotti. En un segon

treball, hem testat les esmentades aproximacions de la matriu redüıda de la

densitat a tercer ordre en el càlcul dels ı́ndexs de compartició electrònica en

molècules amb enllaços de tres centres i dos electrons, aix́ı com de tres centres i

quatre electrons. D’aquest estudi se’n desprèn que la aproximació de Valdemoro

i, la de Matito i col·laboradors donen els millors resultats.

En la teoria del funcional de la matriu redüıda de la densidad, l’expressió de

l’energia és un funcional expĺıcit de la matriu redüıda de la densitat a primer

ordre i, per tant, la matriu redüıda de la densitat a segon ordre (que cal per a

fer el càlcul de l’interacció Coulòmbica entre electrons) es reconstrueix a partir

matriu redüıda de la densitat a primer ordre. Normalment, es pren la repre-

sentació diagonal de la matriu redüıda a primer ordre en termes dels orbitals

naturals i les seves ocupacions. En la teoria del funcional de la matriu redüıda

de la densitat, els elements de la matriu redüıda a segon ordre es construeixen

en termes de les ocupacions dels orbitals na- turals. En ĺınia amb l’estudi an-

terior sobre les matrius redüıdes a tercer ordre, hem analitzat com la correlació

electrònica afecta a aquestes aproximacions. Amb aquest objectiu, hem treballat

amb l’estat fonamental (1S) de l’atòmic harmòmic de dos electrons i hem modifi-

cat els efectes de correlació electrònica jugant amb el paràmetre de confinament,

ω. S’ha avaluat vàries propietats de les matrius reconstrüıdes amb l’objectiu

de donar vàries claus per a la construcció d’aproximacions més robustes. En
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aquest estudi també hem analitzat com la correlació electrònica afecta a certes

propietats. S’ha estudiat entre d’altres: a) l’́ındex de deslocalització, b) vàries

condicions de N -representabilitat, c) la regla de la suma, d) la densitat intrac-

ular de probabilitat, i e) l’energia de repulsió Coulòmbica entre electrons. Els

nostres resultats mostren que l’aproximació de les fases fixes és pràcticament

exacta, independentment del règim de correlació del sistema, només presenta

lleugeres desviacions en la regió de correlació forta. En aquest article, hem em-

prat les aproximacions dels funcionals PNOFi i les basades només en integrals

J i K (Coulomb i intercanvi, respectivament), conegudes com a JK. També

hem demostrat que les aproximacions PNOFi donen millors resultats que les

JK en la majoria de tests (especialment en aquells on es proven les condicions

de N -representabilitat i d’antisimetria). Aix́ı mateix, en aquesta tesi es mostra

que les aproximacions JK produeixen matrius amb elements mancats de sentit

f́ısic que, malgrat donar resultats positius en alguns tests (com la regla de la

suma), fallen en molts altres tests (per exemple, aquests elements introdueixen

importants errors d’auto-interacció electrònica). D’altra banda, hem pogut com-

provar que la correcció de l’error d’autointeracció electrònica a posteriori, no és

la millor manera d’evitar la introducció d’elements de matriu mancats de sentit

f́ısic (veure la secció Resultats i Discussió per a més detalls). Finalment, els

nostres resultats mostren que la imposició de vàries condicions exactes, porta a

la construcció d’aproximacions de les matrius de segon ordre que són molt més

robustes.

També hem treballat amb la densitat de probabilitat intracular radial, que s’obté

a partir de la diagonal de la matriu redüıda de la densitat a segon ordre, és a

dir, de la densitat de probabilitat de dues part́ıcules (o densitat de parells). La

densitat de parells dóna la probabilitat de trobar parells d’electrons, amb un

electró col·locat a la posició r1, i l’altre a la posició r2. És una funció de sis

coordenades que no es pot representar en gràfiques de dues i tres dimensions,

llevat que es fixin algunes d’aquestes coordenades. La coordenada intracular,

r12 = r1−r2, permet fixar unes coordenades i obtenir part de la informació con-
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tinguda en la densitat de parells. La densitat de probabilitat intracular radial

s’obté seleccionant tots els possibles parells a una certa distància electrònica,

|r12|, i després realizant un promig esfèric. S’ha analitzat com aquesta quantitat

canvia durant el procés de formació/dissociació de l’enllaç d’algunes molècules

diàtomiques. En un primer treball hem centrat els esforços en l’estudi dels es-

tats excitats 1,3Πu de la molècula d’hidrogen. Tal i Katriel, aix́ı com Colbourn

i col·laboradors, van trobar un comportament contraintüıtiu (no monotòn) de

l’energia de repulsió electrònica en l’estat 3Πu de la molècula d’hidrogen respecte

a la distància interatòmica. Van observar un increment de la repulsió electrònica

que venia acompanyat d’una disminució de la distància interelectrònica promig

a l’allargar la distànca entre els àtoms d’hidrogen en un càlcul Hartree-Fock.

A partir de càlculs FCI, hem pogut confirmar aquests resultats. D’acord amb

la regla de Hund, el triplet hauria de ser molt més estable que el singlet degut

a la reducció de la repulsió electrònica imposada pel principi de Pauli. En el

triplet, el núvol electrònic és més compacte i l’apantallament del potencial extern

prodüıt pels nuclis és menys eficient. En altres paraules, l’atracció electró-nucli

és molt més gran en el triplet que en el singlet, compensant la gran repulsió

electrònica del triplet en comparació al singlet i fent el triplet més estable que el

singlet (d’acord amb la regla de Hund). En un segon estudi, ens hem centrat en

els reordenaments electrònics que succeixen en el procés de formació de l’enllaç

de molècules diatòmiques. En concret, ens centrem en la diferència entre la

densitat de probabilitat intracular radial exacta i la seva anàloga no relaxada.

Els nostres resultats permeten donar una classificació dels enllaços en dobles i

simples, d’acord amb el perfil obtingut al llarg de la formació de la molècula i,

observar la formació de parells d’electrons en la molècula de Li2 entre un àtom

de liti i l’atractor no nuclear. Malauradament, no ha estat possible seguir el

mecanisme tipus arpó que es dóna en la formació de la molècula de LiH us-

ant aquesta eina. No obstant, śı que es reconeix el perfil d’enllaç covalent a

distàncies llargues, i iònic a distàncies curtes, en la molèula de LiH. En aquest

mateix treball també hem suggerit una aproximació a l’exacta i sovint costosa

(computacionalment) probabilitat de densitat intracular radial utilizant ocupa-
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cions dels orbitals naturals d’un càlcul CCSD i l’aproximació de Müller (també

coneguda com a Baerends-Buijse) pel càlcul de la matriu redüıda de la densitat

a segon ordre. Els resultats mostren que l’aproximació proporciona resultats

comparables als exactes i redueix el cost computacional del càlcul. Finalment,

hem emprat la probabilitat densitat intracular radial per analitzar el colze que

s’observa en el forat de Coulomb de l’àtom de neó. S’ha constrüıt un conjunt

de funcions de base emprant exponents variables que depenen només de dos

paràmetres (es coneixen en anglès com a even-tempered) i les hem utilitzat en

càlculs CISD (permetent recuperar més d’un 95% de l’energia de correlació del

sistema) per demostrar que el colze no és artificial, sinó un efecte real prodüıt

per la correlació dels electrons interns del neó. En aquest estudi també s’ha

pogut mostrar que no hi ha una transferència important d’electrons entre les

capes K i L de l’àtom i, per tant, el colze observat és degut a un procés de

reorganizació dels electrons de la capa K.

Per acabar, en l’últim treball d’aquesta tesii, hem estudiat el mecanisme de

l’arpó que s’observa en la formació en fase gas d’algunes molècules que presenten

dos atòms amb diferències molt petites entre el potencial de ionització de l’un

i l’afinitat electrònica de l’altre. Les superf́ıcies d’energia potencial (PES, de

les sigles en anglès) de molècules formades per un mecanisme de tipus arpó,

canvien el caràcter covalent de l’enllaç a iònic durant el procés de formació(el

de la molècula en el seu estat fonamental). Aquest procés de canvi és molt ràpid

i està caracterizat per la presència d’un punt de creuament evitable en la zona on

hi ha el canvi de caràcter de l’enllaç. En aquest treball hem utilizat descriptors

qúımics en molècules diàtomiques per tal de caracteritzar el mecanisme dins de

l’aproximació de Born-Oppenheimer. El conjunt de molècules que hem escollit

per aquest estudi inclou LiH, BH, BeH, LiF, CO, N2, He2, H2 i F2 (les últimes

cinc espècies s’han escollit com a contraexemples del mecanisme de l’arpó).

S’ha pogut demostrar que l’anàlisi de les poblacions electròniques dels àtoms

no és suficient per tal de caracteritzar aquest mecanisme. Els resultats mostren

que només l’́ındex de deslocalització pot reconèixer el mecanisme de l’arpó dels
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altres casos (sempre i quan utilitzem les particions àtomiques QTAIM o TFVC).

La funció de localització electrònica i la Laplaciana de la densitat electrònica

permeten visualitzar la tranferència de l’electró que té lloc degut al mecanisme

de l’arpó. De fet, el perfil d’aquesta quantitat al llarg de l’eix interatòmic mostra

la transferència de l’electró d’un àtom a l’altre. Per últim, de totes les eines

basades en la teoria de la informació, només la informació de Fischer (en l’espai

de posicions i de moments) permet distingir entre molècules que segueixen el

mecanisme de l’arpó i les altres espècies (d’acord amb la informació de Fischer,

només la molècula H2 s’assigna incorrectament com a molècula formada pel

mecanisme de l’arpó).
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Resumen

La qúımica cuántica se ocupa del análisis de la estructura electrónica de las

moléculas. Desafortunadamente, la estructura electrónica requiere la solución

exacta de la ecuación de Schrödinger, que solo se puede resolver anaĺıticamente

para el átomo de hidrógeno. A nivel práctico la solución de la ecuación de

Schrödinger se suele realizar usando bases finitas y mediante la construcción de

funciones de onda aproximadas, que son optimizadas de acuerdo con el princi-

pio variacional. Otro enfoque se basa en la reformulación del problema, donde

en lugar de resolver la ecuación de Schrödinger se usan expresiones de enerǵıa

en términos de cantidades reducidas (e.g la densidad y las matrices densidad),

siendo la teoŕıa del funcional de la densidad probablemente la metodoloǵıa más

famosa dentro del último enfoque (donde la cantidad reducida utilizada es la

densidad electrónica). Sin embargo, otros enfoques menos familiares se pueden

encontrar en la literatura. Entre las aproximaciones menos familiares, la teoŕıa

del funcional de la matriz densidad y la ecuación de Schrödinger contráıda son

el génesis de la presente tesis.

En la metodoloǵıa de la ecuación de Schrödinger contráıda se requieren matrices

densidad de hasta cuarto orden para el cálculo de la enerǵıa. Sin embargo, para

reducir el coste computacional, las matrices densidad de alto orden se aprox-

iman a partir de las de orden inferior. En esta tesis, nos hemos centrado en

las aproximaciones sugeridas para la reconstrucción de matrices densidad de

tercer orden, constrúıdas a partir de las de segundo y de primer orden. No ex-

ist́ıa en la literatura un estudio detallado sobre cómo la correlación electrónica

afecta a estas aproximaciones. Por tal motivo, hemos llevado a cabo dicho es-

tudio para mejorar las aproximaciones sugeridas hasta ahora. Para el primer

estudio, trabajamos con el átomo armónico de tres electrones (en los estados

2P y 4P ) y modificamos los efectos de correlación usando el parámetro ω (i.e.

el confinamiento). En este estudio, analizamos cómo la correlación afecta al-
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gunas propiedades con respecto a los resultados exactos. Se ha estudiado: a)

ı́ndices de compartición de electrones, b) condiciones de N -representabilidad, y

c) la regla de la suma, entre otras. Nuestro estudio reveló que la aproximación

de Valdemoro es excelente para calcular ı́ndices de compartición de electrones,

pero es seguida de cerca por la aproximación sugerida por Matito y sus colab-

oradores. En segundo lugar, hemos visto que la correlación de Fermi parece

ser más fácil para modelar que la de Coulomb (que obviamente es mucho más

complicada). A partir de este estudio, también hemos recopilado información

sobre la importancia del nivel de Fermi en la definición del factor de fase, σp,

de las aproximaciones de Nakatsuji y de Mazziotti. En nuestro segundo estu-

dio, hemos analizado la exactitud que se puede obtener con las aproximaciones

para el cálculo de los ı́ndices de compartición de electrones para sistemas de

tres centros con dos electrones y de tres centros con cuatro electrones. Del

último estudio, observamos que las aproximaciones de Valdemoro y de Matito

y sus colaboradores proporcionan los resultados más cercanos a los de referencia.

En teoŕıa funcional de la matriz densidad, la expresión de enerǵıa es una función

expĺıcita de la matriz densidad de primer orden, y por lo tanto la densidad de

segundo orden necesaria para el cálculo de la repulsión interelectrónica se re-

construye a partir de la de primer orden. Usualmente, la matriz densidad de

primer orden se toma en la representación diagonal, donde la base son los or-

bitales naturales y los elementos diagonales de la matriz son las ocupaciones

de los orbitales naturales. Los elementos de la matriz densidad de segundo

orden son reconstrúıdos como funciones de las ocupaciones de los orbitales nat-

urales. Tal y como hicimos para las matrices densidad de tercer orden, nuestro

estudio se basó en ver cómo la correlación electrónica afecta a estas aproxi-

maciones. Con este fin, hemos trabajado con el átomo armónico de dos elec-

trones en el estado 1S (el estado fundamental) y modificamos los efectos de

correlación por medio del parámetro ω. Para el presente estudio, hemos lle-

vado a acabo el análisis de varias propiedades de las matrices reconstruidas.

Esperamos que nuestro estudio proporcione nuevos conocimientos para el de-
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sarrollo de aproximaciones más robustas. En este estudio, se analizó cómo la

correlación electrónica afecta algunas propiedades, es decir, hemos estudiado:

a) el ı́ndice de deslocalización, b) condiciones de N -representabilidad, c) la regla

de suma, d) las probabilidades intraculares, y e) la repulsión interelectrónica,

entre otros. Nuestros resultados han demostrado que la aproximación de fases

fijas es casi exacta para cualquier régimen de correlación, y solo se desv́ıa del

resultado exacto en el ĺımite de fuerte correlación. En este estudio hemos tra-

bajado con las aproximaciones PNOFi y JK, donde las últimas solo producen

los elementos de matriz densidad de segundo orden que están acompañados por

las integrales Coulomb (J) o de intercambio (K). Se ha demostrado que las

aproximaciones PNOFi producen mejores resultados que las JK en la mayoŕıa

de las pruebas (especialmente para las condiciones de N -representabilidad y la

prueba de antisimetŕıa). También hemos analizado cómo algunas aproxima-

ciones JK producen elementos no f́ısicos al reconstruir las matrices, que si bien

es cierto que corrigen algunas propiedades (como la regla de suma) deterioran

muchas otras propiedades (por ejemplo, introducen errores de autointeracción).

Además, hemos demostrado que la corrección de auto interacción aplicada a

posteriori, no es la mejor manera de evitar la generación de elementos no f́ısicos

(ver la sección de Resultados y Discusiones para más detalles). Finalmente,

nuestros resultados han demostrado que se pueden obtener aproximaciones más

robustas imponiendo tantas condiciones como sea posible desde el principio (es

decir, en la construcción de la aproximación).

En esta tesis también hemos trabajado con la densidad de probabilidad intrac-

ular radial obtenida de la matriz densidad de segundo orden, espećıficamente,

de la parte diagonal de esta matriz (es decir, la densidad de probabilidad de

dos part́ıculas). La densidad de probabilidad de dos part́ıculas proporciona la

densidad de probabilidad para encontrar pares de electrones, donde un electrón

se coloca en r1 y otro se coloca en r2, y representa una función 6D que no

se puede representar en gráficos 2D o 3D a menos que se fijen algunas coor-

denadas. La coordenada intracular, r12 = r2 − r1, nos permite fijar algunas
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coordenadas y recopilar algo de la información de la densidad de probabilidad

de dos part́ıculas. La densidad de probabilidad intracular radial se obtiene al

seleccionar de todos los pares posibles, los que se encuentran a una distancia in-

terelectrónica dada, |r12|, y después llevar a cabo un promedio esférico. En esta

tesis, se ha analizado cómo evoluciona este último durante la disociación /for-

mación del enlace de algunas moléculas diatómicas. En nuestro primer estudio,

nos enfocamos en los estados excitados 1,3Πu del H2. Tal y Katriel, y Colbourn

encontraron y reportaron un comportamiento contraintuitivo no monotónico de

la repulsión de electrones en el estado excitado 3Πu de la molécula de hidrógeno

respecto a la distancia inter atómica. Se observó un aumento del Vee a nivel de

Hartree-Fock, acompañado por una disminución de la 〈r12〉, cuando el enlace

se estira; hemos confirmado este efecto usando cálculos FCI. La regla de Hund

establece que el triplete debeŕıa ser mucho más estable que el singlete debido

a la reducción de la repulsión como consecuencia del principio de Pauli. Se ha

observado que la nube electrónica es más compacta para el triplete y el apan-

tallamiento del potencial externo producido por los núcleos es menos efectivo,

por lo que la atracción electrón-núcleo es mucho más grande en este estado que

en el singlete. La enerǵıa de atracción núcleo-electrón obtenida para el estado

triplete compensa el mayor (e inesperado) Vee del estado triplete, y hace que el

estado del triplete sea más estable (de acuerdo con la regla de Hund). En nue-

stro segundo estudio, nos centramos en los reordenamientos que occurren con

los electrones durante la formación de enlaces de algunas moléculas diatómicas.

En este estudio, analizamos la diferencia entre la densidad de probabilidad in-

tracular radial exacta y la no relajada. Nuestros resultados proporcionan una

clasificación de los tipos de enlaces en simples y dobles de acuerdo con el perfil

obtenido a lo largo de la formación de enlaces, y también podemos observar

la formación de pares de electrones en la molécula de Li2 entre los electrones

localizados en los núcleos y el electrón en el atractor no nuclear. Desafortunada-

mente, fue imposible rastrear el mecanismo del arpón seguido por las molécula

de LiH, sin embargo, pudimos observar que un perfil de enlace covalente se

obtiene a grandes distancias interatómicas mientras que a pequeñas distancias
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interatómicas se recuperó el perfil iónico. En este trabajo también sugerimos

una aproximación a la exacta y generalmente costosa densidad de probabilidad

intracular radial mediante el uso de las ocupaciones de los orbitales naturales

CCSD y la aproximación de Müller o Buijse y Baerends para la matriz densidad

de segundo orden. Este estudio demostró que la aproximación sugerida produce

resultados comparables a los exactos y reduce el tiempo del cálculo computa-

cional. Por último, utilizamos la densidad de probabilidad intracular radial para

el estudio de un hombro observado en el agujero de Coulomb del átomo de Neón.

Constrúımos para este estudio un conjunto de bases even-tempered y usamos

cálculos CISD (que recuperan más del 95% de la correlación electrónica) para

demostrar que el codo no es un error de las bases, sino un efecto real producido

por la correlación electrónica que afecta a los electrones de la capa K. También

demostramos en este trabajo que no hab́ıa un transferencia importante de la

densidad electrónica entre las capas K y L, lo que sugiere que solo hay una re-

organización de electrones dentro de la capaK que produce el hombro reportado.

Finalmente, en el último trabajo de esta tesis hemos estudiado el mecanismo

del arpón, que se observa en fase gaseosa para algunas moléculas formadas por

átomos que presentan una pequeña diferencia entre el potencial de ionización y

la electroafinidad. La superficie de enerǵıa potencial para moléculas formadas

por el mecanismo del arpón cambia el carácter de covalente a iónico cuando se

forma un enlace, que ocurre por medio de una transferencia de electrones. El

cambio de carácter en el superficie de enerǵıa potencial es muy rápido y, por lo

tanto, este mecanismo presenta un cruce evitado en la geometŕıa donde tiene

lugar la transferencia de electrones. En este trabajo, utilizamos descriptores

qúımicos aplicados a algunas moléculas diatómicas en un intento de caracterizar

este mecanismo dentro de la aproximación de Born-Oppenheimer. El conjunto

de moléculas diatómicas elegidas para este estudio incluye LiH, BH, BeH, LiF,

CO, N2, He2, H 2 y F2 (las últimas cinco especies fueron tomadas como con-

traejemplos). Se ha demostrado que el análisis de la población atómica no es

suficiente para caracterizar este mecanismo. Nuestro estudio mostró también
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que solo el ı́ndice de deslocalización es capaz de reconocer el mecanismo del

arpón (si usamos particiones atómicas QTAIM o TFVC). La función de local-

ización de electrones y el Laplaciano de la densidad de electrones proporcionan

medios para visualizar la transferencia de electrones. En realidad, el escaneo

de estas cantidades a lo largo del eje interatómico permite la visualización de

la transferencia de electrones. Finalmente, de las cantidades de la teoŕıa de la

información, solo las informaciones de Fisher (en el espacio de posiciones y en el

espacio de momentos) fueron capaces de distinguir entre los sistemas que siguen

el mecanismo del arpón y los otros sistemas (lamentablemente, la molécula de H2

fue incorrectamente clasificada por la información de Fisher como una molécula

formada por el mecanismo del arpón).
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I) Introduction

1.1) From Classical Mechanics to Quantum Mechanics

By the beginning of the 20th century a new discipline was born in physics. It

was proposed to explain some fundamental questions which arose from some

experiments that could not be explained with classical mechanics [5, 6] and

Maxwell’s equations [7]. Experiments such as: a) the spectroscopic series of Hy-

drogen [8–11], b) the black body radiation [12], c) the photoelectric effect [13],

and d) the double-slit experiment [14], made physics (and our conception of the

nature) change because new concepts such as the energy quantization [15] were

needed to explain them. A new era of advances in physics followed the intro-

duction of the energy quantization, that also changed what we knew in many

other sciences such as chemistry, biology, and medicine, among others. In 1901,

Planck [15] introduced the concept of energy quantization to explain the black-

body radiation experiment, and the application of this concept to describe mat-

ter and light was achieved some years later (mid-1920s) by Schrödinger [16] and

Heisenberg [17,18] with the development of quantum mechanics. Schrödinger’s

approach to quantum mechanics was based on the usage of partial differential

equations, while Heisenberg’s approach employed matrices. The algebra of ma-

trices with infinite rows and columns was not known by physicists at that time,

therefore, Schrödinger’s approach eventually got more adepts and it is nowa-

days the most common approach used when we apply quantum mechanics to

study matter and light. Nevertheless, we would like to remark at this

point that matrices have accompanied quantum mechanics develop-

ment throughout this time.

In 1920 Bohr published his work about the “Correspondence Principle” [19]

which states the relationship between quantum mechanics and classical me-

chanics, where the latter is retrieved from the first one in the limit of large
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quantum numbers. The limit of large quantum numbers is always produced by

macroscopic systems, therefore, we only require quantum mechanics for study-

ing small particles such as molecules, atoms, and electrons, among others. The

advent of quantum mechanics changed our conception of nature by introducing

unexpected properties of matter and light such as: a) Tunneling energy bar-

riers, which is fundamental in biological processes (see for example Ref. [20]),

b) Entanglement between particles, that has changed our way of coding infor-

mation (see for example Ref. [21]), c) Uncertainty relations (e.g. Heisenberg’s

uncertainty principle1), and d) That particles may behave like waves [23] (e.g

photons), among others.

1.2) From Chemistry to Quantum Chemistry

Chemistry is an old science derived from the ancient alchemy, it separated from

alchemy in 1661 when Boyle published his work “The Sceptical Chymist” [24]

that settle the difference between chemistry and alchemy by making the first

one be based on the scientific method. By the end of the 18th century, chemistry

became a science thanks to the works of Lomonosov2 and Lavoisier.3 At the

beginning of the 19th century, Dalton [27] recovered Democritus’ [28] ideas and

proposed the Modern Atomic Theory.4 The application of the Schrödinger equa-

tion in 1926 for the description of the spectroscopic series of Hydrogen atom [16]

changed what we knew about the structure of atoms. One year later, Walter

Heitler and Fritz London published the first application of quantum mechan-

ics to study a diatomic hydrogen molecule [29], which provided a new vision

of the chemical bond concept. Thus, the proper description of the structure

of molecules and the changes that occur during the chemical reaction is only

1Heisenberg’s uncertainty principle [22] states that the more precisely the position of some

particle is determined, the less precisely its momentum (speed) can be known, and vice versa.
2He presented the law of conservation of mass in 1756 [25].
3Due to his outstanding work, people gave him the appellation of the “father of modern

chemistry”. He also produced the first modern chemistry textbook [26].
4He suggested that in order to study the matter, one has to first understand its constituents

(the atoms).

20



possible using quantum mechanics. The application of quantum mechan-

ics in chemistry is, hence, called quantum chemistry. In the following

years, quantum chemistry expanded thanks to the works of Mulliken [30, 31],

Hund [32], Born [18, 33], Born-Oppenheimer [34], Hückel [35–38], and specially

Pauling [39–43],5 among others. The application of quantum chemistry as a

routine methodology was only possible with the advent of more powerful com-

puters and the works of Pople [44–51] and Kohn [52–55], who introduced the

efficient implementation of Gaussian type orbitals and foundations of the Den-

sity Functional Theory, respectively.6

1.3) Quantum Chemistry

The starting point to apply quantum chemistry for studying any system, is

usually to write the non-relativistic time-dependent Schrödinger [16] equation,

i~
∂ψ(X, t)

∂t
= Ĥ(X)ψ(X, t), (1)

where i =
√
−1 is the imaginary unit, ~ = h

2π (where h is Planck’s constant [15]),

X represents all the spatial coordinates of all nuclei and electrons of the sys-

tem, Ĥ(X) is known as the Hamiltonian operator7 and ψ(X, t) is known as the

wavefunction of the system. In order to solve Eq. 1, which is a partial differen-

tial equation, we could apply the usual method of separation of variables and

suggest a solution of the form ψi(X, t) = Φi(t)ϕi(X). Applying the separation

of variables yields

Φi(t) = exp

[−iEit
~

]
, (2)

5Pauling is seen as one of the founders of quantum chemistry and was awarded with the

Nobel Prize in chemistry (in 1954) for his contribution to the field.
6Their advances made quantum chemistry become a routine methodology. They were

awarded with the Nobel Prize in chemistry (in 1998) for their work.
7Considered to be independent of time in this case when we are interested in the structure

of the system. In many other situations, like in the interaction between light and matter,

the Hamiltonian also depends on time Ĥ(X, t) and we can not use the separation of variables

method.
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where the particular set of energies ({Ei}∞i=0) is said to produce an stationary

state.8 For stationary states Eq. 1 reduces to the time-independent Schrödinger

equation [16],

Ĥ(X)ϕi(X) = Eiϕi(X), (3)

where the Hamiltonian for molecular systems takes the form

Ĥ(X) = Ĥ(R1,R2, ...,RNa , r1, r2, ..., rN ) (4)

= −
Na∑

i

∇2
Ri

2
−

N∑

i

∇2
ri

2
−

Na∑

i

N∑

j

Zi
|Ri − rj |

(5)

+

Na∑

i,j<i

ZiZj
|Ri −Rj |

+

N∑

i,j<i

1

|ri − rj |
,

where Na is the number of nuclei, N is the number of electrons, and the oper-

ators of Eq. 5 correspond to: a) the kinetic energy of the nuclei, b) the kinetic

energy of the electrons, c) the Coulomb interaction between the electrons and

the nuclei, d) the Coulomb interaction between the nuclei, and e) the Coulomb

interaction between the electrons, respectively. In order to solve Eq. 3, we

usually apply the Born-Oppenheimer approximation [34].9 Using this approxi-

mation, the wavefunction is written as a product

ϕi(R1,R2, ...,RNa , r1, r2, ..., rN ) = ϑi(R1,R2, ...,RNa)Ψi(r1, r2, ..., rN ), (6)

where ϑi(R1,R2, ...,RNa) corresponds to the nuclear wavefunction and

Ψi(r1, r2, ..., rN ) corresponds to the electronic wavefunction (the subindex i is

omitted hereafter to simplify the notation). Within this approximation the

Hamiltonian is decoupled in two operators

Ĥ(R1,R2, ...,RNa , r1, r2, ..., rN ) = Ĥnuc(R1,R2, ...,RNa) + Ĥel(r1, r2, ..., rN ),

(7)

8A state is stationary when all observable properties of the state are constant in time (e.g.

the energy Ei, the probability distribution |ψi(X, t)|2 = |ϕi(X)|2, among others).
9It consists in the assumption that the motion of atomic nuclei and electrons in a molecule

can be separated. This is often justified by stating that “the heavy nuclei move more slowly

than the light electrons”.
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where

Ĥel(r1, r2, ..., rN ) = −
N∑

i

∇2
ri

2
−

Na∑

i

N∑

j

Zi
|Ri − rj |

(8)

+

Na∑

i,j<i

ZiZj
|Ri −Rj |

+

N∑

i,j<i

1

|ri − rj |
,

which satisfies the electronic Schrödinger equation: ĤelΨ = EelΨ (from now

on we will use E and Ĥ to refer to Eel and Ĥel, respectively), and Ĥnuc =

−∑Na
i

∇2
Ri

2 + E(R1,R2, ...,RNa), that satisfies the nuclear Schrödinger equa-

tion: Ĥnucϑ = Eiϑ. From the nuclear Schrödinger equation we notice that

the Born-Oppenheimer approximation gives rise to the Potential Energy Sur-

face (PES) concept, which is crucial in modern quantum chemistry to study,

among others, reaction mechanisms [29, 56, 57].10 Notice that Ei is the total

energy of the system (see Eq. 3) which contains the electronic energy, the vi-

brational energy, the rotational energy and the nuclear kinetic energy. The

Born-Oppenheimer approximation can only be trusted when the energy levels

obtained from solving the electronic Schrödinger equation, {En}∞n=0, are well

separated between each other for any atomic configuration, which is not always

the case (e.g. systems formed by the harpoon mechanism [58]). However, in

this thesis we have used Born-Oppenheimer electronic wavefunctions (and some

chemical descriptors) in an attempt to track the harpoon mechanism from the

sudden changes that occur to these wavefunctions in the region where the en-

ergy levels get close to each other (see chapter VIII for more details).

In quantum chemistry we usually work with Born-Oppenheimer approximation

and the problem reduces in most of the cases to find E for a given atomic

configuration, because E can be used to: a) compare the stability between

systems, b) characterize energy barriers, c) find reaction paths, among other

applications. In order to find E we need to solve the electronic Schrödinger

equation (from now on we will refer to it as the Schrödinger equation). Since

10Notice that E = E(R1,R2, ...,RNa ) and the PES only depend on the coordinates of the

nuclei (i.e. on a given configuration of the atoms).
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the problem in quantum chemistry is to find E and therefore the problem is

fully defined, Paul A. M. Dirac suggested 1929 that [59]:“The fundamental laws

necessary for the mathematical treatment of a large part of physics and the

whole of chemistry are thus completely known, and the difficulty lies only in the

fact that application of these laws leads to equations that are too complex to be

solved”. The Schrödinger equation is a complicated partial differential equation

and two families of approaches have been suggested to find E.

1.3.1) Wavefunction Methods

The solution of the Schrödinger equation can be attempted by suggesting a

trial wavefunction,
∼
Ψ, and optimize some parameters attending to the varia-

tional principle.11 This trial wavefunction is usually expressed using some basis

functions of Hilbert’s space [60]. Nonetheless, electrons are fermionic particles

which imposes that Ψ must be antisymmetric with respect to the exchange of

the coordinates of two electrons. To satisfy the antisymmetry condition, the

first approximation suggested (using some basis functions) for a
∼
Ψ was to use

a Slater determinant (Ξ) [61], which introduced the Hartree-Fock approxima-

tion [62] (also known as the self-consistent field method). Within this approxi-

mation, the basis is optimized in order to minimize the energy which produces

an orthonormal basis that is known as the canonical orbitals basis. Unfortu-

nately, the optimized wavefunction obtained from Hartree-Fock approximation

(constructed using the canonical orbitals) treats the opposite-spin electrons as

independent particles and lacks the correlation energy (Ecorr) [63],12 which

11Which states that for any given trial wavefunction,
∼
Ψ, E0 ≤

∫∼
Ψ
∗Ĥ
∼
Ψdr1dr2...drN∫∼

Ψ∗
∼
Ψdr1dr2...drN

, where

E0 is the ground state energy and the equality is attained for the ground state wavefunction

(
∼
Ψ≡ Ψ0).
12The term correlation energy was coined by Löwdin as the difference between the exact

energy and the restricted Hartree-Fock energy [63], some other authors take the unrestricted

Hartree-Fock energy as reference [64] but in this thesis we have worked with Löwdin’s defini-

tion. In Löwdin’s definition, the Ecorr is essentially a measure of the error in the Hartree-Fock

method [65]. In Hartree-Fock the instantaneous electron-electron repulsion is replaced by the

repulsion of each electron with an average electron charge cloud, thus, the electron correlation
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is usually small but an important component of E. In order to have a

proper description of any system of interest, Ecorr must be accurately calcu-

lated [66–68]. Actually, the problem in quantum chemistry relies es-

sentially in providing an accurate value for the Ecorr. The Hartree-Fock

wavefunction can be improved by adding to it all possible Slater determinants

that we can construct for a given basis function,

∼
Ψ=

∑

i

CiΞi, (9)

where the Ci coefficients are then optimized using the variational principle. The

trial wavefunction given by Eq. 9 is known as the Full-Configuration Interac-

tion (FCI) wavefunction.13 FCI wavefunctions require important computational

resources and are in most cases impractical [66–68], despite the important ad-

vances that computers have experienced in the last decades. As an alternative

to the FCI wavefunction, two types of approximations have been suggested in

quantum chemistry (see Ref. [67]).

• The first group of methods is based on using only some Slater determi-

nants of Eq. 9. In this group we have: a) methods based on the truncation

the FCI wavefunction by fixing the maximum number of excitations with

respect to the Hartree-Fock wavefunction (e.g including only singles and

doubles excitations we obtain the CISD wavefunction), b) the coupled-

cluster (CC) methods,14 which use the operator eT (see Ref. [67] for more

details) and also restrict the number of excitations (e.g the CC including

only singles and doubles excitations (CCSD)), and c) methods based on

is a measure of how much the movement of one electron is influenced by the presence of the

rest of electrons.
13The FCI wavefunction provides the exact E for the system if an infinite basis set is used.

Unfortunately, we can only work with finite basis functions, thus, the E obtained is said to

be the exact energy within the given finite basis.
14It is worth to mention that CC methods are based on generating a wavefunction using

the eT operator, nevertheless, the wavefunction is not optimized attending to the variational

principle. The problem is solved using a projection (see Ref. [67] for more details) and the

energy obtained might not be variational but it is size-consistent.
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the multiconfiguration self-consistent field, which generate a qualitatively

correct reference state when Hartree-Fock approximation is a poor refer-

ence due to near degeneracies of the orbitals (e.g. CASSCF).15

In the first two methods the Hartree-Fock Slater determinant is the most

important contribution to the CI expansion, thus the Ecorr retrieved is

said to be of dynamic type. For the last family of methods (which are

employed when the Hartree-Fock wavefunction is a poor reference) the

Ecorr retrieved is said to be of nondynamic type.16

• The second group is based on Perturbation theory [71], where the missing

Ecorr is assumed to be a small perturbation to the reference energy (usu-

ally the Hartree-Fock wavefunction is taken as reference). In this group

the most important approach in quantum chemistry is the Møller-Plesset

(MPi) approach [72], where i is the order of the perturbation correction

considered. In practical applications, MP2 is the most usual approach,

where only up to second-order corrections to the Hartree-Fock wavefunc-

tion are included. When MP2 calculations are performed, the Ecorr re-

trieved is known to be of dynamic type (e.g. a first approximation for the

description of weak interactions can be obtained from MP2 results (see

for example Ref. [73])). Thus, MP2 is usually applied as an on top correc-

tion to the Hartree-Fock wavefunction or to the CASSCF wave function

(CASPT2), in an attempt to retrieve the missing dynamic correlation.

The approximations already introduced are based on suggesting a
∼
Ψ that is

as close as possible to the exact FCI wavefunction (Eq. 9), however, usually

15
∼
Ψ must be constructed including as many Slater determinants as needed in order to treat

in a proper way the near degeneracies of the canonical orbitals.
16Dynamic correlation is retrieved by CI expansions where the Hartree-Fock Slater deter-

minant is the most important contribution to the CI expansion (e.g. dynamic correlation is

fundamental for the description of weak interactions [69,70] (van der Waals interactions)). On

the other hand, nondynamic correlation is present due to near degeneracies (e.g. it appears

in the description of the bond dissociation process due to the degeneracies observed between

the bonding and antibonding orbitals [68]).
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the number of Slater determinants required by these approximations is still

very large. Consequently, these methods still require important computational

resources and, therefore, they are not feasible when the number of electrons

and basis functions increases. Let us mention that most of these methods were

developed in the last century and they belong to the consolidated methods of

quantum chemistry. Nowadays, the research within these methods is mostly

devoted to reduce the computational resources needed (see for example Ref.

[74]).

1.3.2) Reduced Quantities Methods

As we have mentioned, the proper description of the Ecorr is the fundamental

search of quantum chemistry. The reduction of the computational cost with

respect to the wavefunction methods when computing E, which includes an ac-

curate Ecorr, can be performed by using reduced quantities. Reduced quantities

are obtained from the wavefunction upon integration of some coordinates, hence

for example we could obtain the electronic density,

ρ(r) = N

∫
Ψ∗(r, r2, ..., rN )Ψ(r, r2, ..., rN )dr2dr3...drN , (10)

where an N factor is being introduced to make ρ(r) integrate to the number

of electrons. The electronic density is the key ingredient of Density Functional

Theory [53, 75–77] (DFT), which is the most popular alternative to wavefunc-

tion methods for the computation of E. DFT is based on Hohenberg and Kohn

theorems [53], which state the existence of an energy functional that explic-

itly depends on the electronic density E = E [ρ(r)]. The E [ρ(r)] functional

is valid for the ground state energy (E0) for local external potentials (see the

Methodology section for more details) and when the ground state is not degen-

erated.17 In DFT, the unknown functionals are kinetic energy functional (T [ρ])

17An electronic energy level Ei is degenerated when more that one Ψ produces the same

energy for the same system. Some approaches, like Levy’s constrained-search formulation,

permit the application of DFT to degenerated states [78].
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and the electron-electron repulsion functional Vee [ρ(r)].

In 1965, Kohn-Sham provided a practical way to calculate E0 in DFT [54],

they proposed to use a reference system of noninteracting particles subject to

some external potential, vs(r), so that its density, ρs(r), should be the same as

the ground state density of the actual system (ρs(r) = ρ(r)). In Kohn-Sham

scheme, the Exc [ρ(r)] functional accounts for the exchange, correlation and the

correlation kinetic energy.18 (see Ref. [77] for more details). Since the reference

system is composed of noninteracting particles, a Slater determinant is an exact

solution of the Kohn-Sham system. Hence, the density ρs(r) is defined from a

Slater determinant wavefunction.

Several approximations to Exc [ρ(r)] can be found in the literature (see Refs.

[75–77, 79]). Some approximations rely on strong-theoretical grounds and at-

tempt to fulfill as many constraints as possible, where the constraints are im-

posed from physical and mathematical conditions that the exact functional must

attain (being the SCAN functional [80] probably the most representative func-

tional of this group). On the other hand, some functionals [81–83] use a large

number of parameters that are fitted to minimize the mean absolute error in the

computation of properties (e.g. atomization energies, ionization potentials, elec-

tron affinities, energy barriers, among others.) for large sets of molecules, being

the Minnesota family of functionals probably the most representative functionals

of this group. The development of new Exc [ρ(r)] functionals is always accom-

panied by an exhaustive benchmark, where people usually compare the mean

absolute error of energy related properties obtained with some previous func-

tionals and the new properties obtained with the new approximation suggested.

Nevertheless, some authors [84] have recently pointed out the importance of

include in the analysis some other properties when we present a benchmark of

18The kinetic energy of the noninteracting system is not the same as for the interacting one.

Therefore, we can define the correlation kinetic energy as Tc = T [ρ] − Ts [ρ], where T [ρ] is

the exact kinetic energy and Ts [ρ] is the kinetic energy of the noninteracting system.
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functional approximations. In this vein, the usage of model systems opens

an avenue for developing and benchmarking new functionals, because

for model systems highly accurate results (FCI results in most of

the cases) can be obtained and later used as reference. In previous

works [85], we used FCI results obtained for the Harmonium atom model [86]

as reference for benchmarking some of the most popular DFT functionals, and

then we analyzed how to reparameterize the famous B3LYP functional in order

to provide an accurate description of the Harmonium atom model.

DFT is the most common reduced quantity methodology used as an alterna-

tive to wavefunction methods, nonetheless, DFT is not the only method based

on reduced quantities available. Some other approaches rely on the first-order

reduced density matrix (1-RDM) or even in higher order reduced density ma-

trices. When the reduced quantity used is the 1-RDM the works of Gilbert [87],

Donnelly and Parr [88], Levy [89] and Valone [90] provided the basis of Reduced

Density Matrix Functional Theory (RDMFT), within this theory the existence

of a universal functional of the energy that depends only on the 1-RDM is the

equivalent to the DFT universal functional. The most important advantage

with respect to DFT is that the kinetic energy functional is fully determined

in RDMFT (T = T [ 1-RDM]), hence only the Coulomb electron-electron

repulsion remains unknown in terms of the 1-RDM. RDMFT has not

been so extensively studied and only a few reduced density matrix approxi-

mations can be found in the literature (see the Methodology section for more

details). On the other hand, some other methodologies require higher order

reduced density matrices like: a) variational 2-reduced density matrix [91], b)

the Contracted Schrödinger Equation [92–98] and, c) the Antihermitian Con-

tracted Schrödinger Equation [99]. All these methodologies are based on the

reconstruction of high-order reduced density matrices from lower order ones.

In this thesis, we have focus on the development of some comprehensive bench-

marks for reconstructions of second- and third-order reduced density matrices
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(see chapters IV and V). These benchmarks consist of a battery of tests19 where

we analyze how the properties obtained from the reconstructed matrices match

the exact results. This kind of benchmarks were not available,20 thus the im-

portance of our work (and this thesis) is to provide the scientific community

with new tools that can be use in the development of more robust approxima-

tions. In chapters IV and V, we have used the Harmonium atom model system

to tune correlation effects in order to study how electron correlation affects the

reconstructed matrices. Moreover, for third-order reduced density matrices we

have also analyze how the reconstructed matrices perform for the computation

of electron sharing indices [102–104].

Reduced quantities give access to many physical properties that in some cases

can even be compared with experiments, e.g. the radial intracule probability

density (see the section 2.2.4 for more details). Therefore, in this thesis we

have also focused on understanding the features of these properties. To that

end, in chapters VI and VII we have studied how the radial intracule prob-

ability density evolves due to the electron rearrangements that occur in the

bond formation/dissociation process. In section 6.2 we have suggested a new

approximation to the exact (obtained from FCI wave functions) radial intracule

probability density, there we used CCSD results and one of the reconstructions

of second-order reduced density matrices that we analyzed in the chapter V. In

chapter VII, we have also used the radial intracule probability density to un-

derstand the electron rearrangements that happen to the core electrons of Neon

atom, which lead to a certain feature of the Coulomb hole of this system.

Finally, in chapter VIII, we have used Born-Oppenheimer FCI wavefunctions in

19In accordance with recent studies [84] which suggest that several properties should be

used when we present a benchmark and not only focus on the energy E obtained.
20To our knowledge, the most complete benchmark for second-order reduced density ma-

trix approximations available in the literature was done by Cioslowski and coworkers [100].

Nevertheless, they only focused on the energy and did not analyze other properties of the re-

constructed matrices, which is usually what some other authors do (see for example Ref. [101]).
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order to describe the harpoon mechanism. Recall that systems formed by the

harpoon mechanism should be studied without using the Born-Oppenheimer

approximation, notwithstanding, in this chapter we have analyzed how some

chemical descriptors allow us to follow this mechanism from Born-Oppenheimer

FCI wavefunctions. The chemical descriptors used in chapter VIII are all based

in reduced quantities: a) the electronic density, and b) the second-order reduced

density matrix.

So, this thesis has been entirely focused on reduced quantities and properties

that we can obtain from them. We covered from benchmarking reconstruc-

tions to applications. Our benchmarks can be used in the development

of more robust approximations to second- and third-order reduced

density matrices. We have also provided manners to obtain approximated

electron sharing indices (chapters IV and V) and radial intracule probability

densities (chapter VI) by using reconstructed density matrices. In all the ap-

plications we used chemical descriptors, based on reduced quantities,

to study some problems of chemical interest such as: a) the analysis of

how the electron rearrangements that occur in the bond formation/dissociation

process affect the radial intracule probability density, b) the correlation effects in

the core electrons of the Neon atom (with special attention to how these effects

modify the Coulomb hole), and c) the qualitative description of the harpoon

mechanism from highly accurate wavefunctions.
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II) Methodology

This section is organized in three parts. In the first part, we introduce the

concept of Density Matrices and Reduced Density Matrices (RDMs), discussing

in detail the probabilistic information contained within density matrices. In

addition, we discuss how the energy is actually a functional of the 2-RDM. Sec-

ondly, we introduce some magnitudes widely used in quantum chemistry: a)

the Electron Sharing Index, b) the Electron Localization Function, c) the radial

intracule probability density, and d) Information Theory Quantities. On the

second section, we introduce approximate 3- and 2-order density matrices from

lower-order matrices, with special attention to the N -representability problem

of 1-, 2-, and 3-order RDMs. In the last section, we introduce the model system

which we have used to test how electron correlation affects these approxima-

tions. This model system is more than a simple model because it can be used

to study quantum dots and Wigner crystals, among other systems. Therefore,

is actually a realistic playground, and its simplicity allows us to easily interpret

how electron correlation affects these approximations, and gather fundamental

hints for the development of RDM approximations. We also cover the systems

which served as a yardstick to understand the approximations and tools ana-

lyzed in this thesis.

2.1) Density Matrices

Quantum systems are known to exist in nature either as pure states or mixed

states. Pure states are solutions to the Schrödinger equation,

ĤΨ(x1,x2, ...,xN ) = EΨ(x1,x2, ...,xN ), (11)

which in the case of dealing with electrons, xi variables correspond to the 3D

spatial coordinates plus the spin (xi ≡ ri, si). The wavefunction Ψ is therefore

a function in the coordinate space and in the spin space. Since the Hamiltonian
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operator used in most of the electronic structure calculations only involves the

spatial coordinates (i.e. the Hamiltonian does not depend on the spin), Eq.

11 represents a partial differential equation of 3N coordinates. Clearly, it is

a very complicated problem from the mathematical perspective; only solvable

with numerical methods in the majority of cases.

For an N electron system, the N -order density matrix can be constructed from

the N -electron wavefunction in the following manner:

γN (x′1, ...,x
′
N ; x1, ...,xN ) = Ψ∗(x′1, ...,x

′
N ),Ψ(x1, ...,xN ) (12)

which depends on 8N variables. m-order RDMs are obtained from the N −m
partial trace (integration) of Eq. 12:

γm(x′1, ...,x
′
m; x1, ...,xm) =

(
N

m

)
m!

∫
γN (x′1, ...,x

′
N ; x1, ...,xN ) (13)

×∆N
m+1dxm+1...dxNdx

′
m+1...dx

′
N ,

where ∆N
m+1 =

∏N
i=m+1 δ(x

′
i − xi), (δ(x′i − xi) being the usual Dirac delta

function) and the factor
(
N
m

)
m! is being introduced for normalization in order

to account for all possible groups of electrons of size m that can be produced

(which is known as McWeeny’s normalization [105]). Fortunately, the reduction

of order gives rise to functions that still contain most of the information needed

for calculating physical magnitudes of interest. For instance, using RDMs we

can compute the probability of the m-electron distribution, given by setting

x′1 = x1, x′2 = x2,...,x′m = xm in Eq. 13. Notice that the probabilistic char-

acter attributed to density matrices comes from Born’s interpretation [106] of

the wavefunction which states that for one-particle systems, the square modulus

of the wavefunction, |Ψ(x)|2, is proportional to the probability of finding the

particle at any particular point x (i.e. |Ψ(x)|2 is thus a probability density).
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As first example, let us introduce the 3-order RDM (3-RDM) obtained from an

N -particle RDM (N > 3)

γ3(x′1,x
′
2,x
′
3; x1,x2,x3) = N(N − 1)(N − 2) (14)

×
∫
γN (x′1, ...,x

′
N ; x1, ...,xN )∆N

4 dx4...dxNdx
′
4...dx

′
N .

Integration over spin coordinates produces the spinless 3-RDM,

ρ3(r′1, r
′
2, r
′
3; r1, r2, r3) =

∫
γ3(x′1,x

′
2,x
′
3; x1,x2,x3)|s1=s′1,s2=s′2,s3=s′3

ds1ds2ds3.

(15)

The diagonal part of the 3-RDM (Eq. 14) provides the probability of finding

three electrons at r1, r2 and r3 with spin σ1, σ2 and σ3, respectively. The

3-RDM is given by

γ3(x1,x2,x3) =

∫
γ3(x′1,x

′
2,x
′
3; x1,x2,x3) (16)

× δ(x′1 − x1)δ(x′2 − x2)δ(x′3 − x3)dx′1dx
′
2dx
′
3,

which is known as the (spin-with) 3-particle probability density. Integration

over spin coordinates produces the spinless 3-particle probability density,

ρ3(r1, r2, r3) =

∫
γ3(x1,x2,x3)ds1ds2ds3. (17)

As we did for the 3-RDM (Eq. 14), we can obtain the 2-RDM using Eq. 13 on

its corresponding spinless RDM,

ρ2(r′1, r
′
2; r1, r2) =

∫
γ2(x′1,x

′
2; x1,x2)|s1=s′1,s2=s′2

ds1ds2. (18)

Also, we may define the probability of finding electron pairs, with any given spin,

using the (spin-with) 2-particle probability density obtained from the diagonal

part of the 2-RDM,

γ2(x1,x2) =

∫
γ2(x′1,x

′
2; x1,x2)

× δ(x′1 − x1)δ(x′2 − x2)dx′1dx
′
2, (19)
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Integration over spin coordinates produces the spinless 2-particle probability

density (or simply the 2-particle probability density (2-PPD)),

ρ2(r1, r2) =

∫
γ2(x1,x2)ds1ds2. (20)

In this vein, we can finally introduce the (spin-with) 1-particle probability den-

sity from the 1-RDM

γ(x) = γ1(x′; x), (21)

which is usually normalized to the number of electrons (N). Upon integration

over the spin coordinate, Eq. 21 produces the electronic density or simply the

density, usually written as ρ(r).

It is possible to express all previous quantities using some basis of atomic or

molecular orbitals {φi}Mi=1 (where M is the size of the basis). For example, the

spinless 2-RDM can be expressed as

ρ2(r′1, r
′
2; r1, r2) =

M∑

ijkl

2Dij,klφi(r
′
1)φj(r

′
2)φk(r1)φl(r2) (22)

where the set of all 2Dij,kl elements (i.e. 2D matrix) is also usually known as

the 2-RDM. In the same manner, the spinless 1-RDM can also be expressed on

an orbital basis as

ρ1(r′; r) =

M∑

ij

1Di,jφi(r
′)φj(r), (23)

likewise, the set of elements 1Di,j is also usually known as the 1-RDM. The

density written in this basis is ρ(r) =
∑M
ij

1Di,jφi(r)φj(r). The matrix that

contains all 1Di,j elements (i.e. 1D matrix) can be brought to a diagonal form

through an unitary transformation,

ρ1(r′; r) =

M∑

i

niχi(r
′)χi(r), (24)

where the ni elements are known as the natural orbital occupancies and the

{χi}Mi=1 as the natural orbitals, being the latter formed as a linear combination

of the φi.
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The wavefunction (Ψ in Eq. 11) is a function of 4N coordinates (including the

spin), thus storing it and computing magnitudes of physical interest from it is

usually expensive (from the computational perspective). On the contrary, using

RDMs requires less stored information and computation of physical magnitudes

is, therefore, much more convenient from them. Also, reduced density matrices

can be used to describe mixed states (where there is an statistical mixture of

pure states that can not be described by a single wavefunction) [107], making

density matrices more versatile than wavefunctions.

Moreover, one of the most coveted quantities of interest, the energy, only de-

pends on the 2-RDM when electrons interact via Coulomb forces. The energy

is calculated as an expectation value E = 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 and is one of the most im-

portant quantities in chemistry because it determines the most stable structure,

energy barriers, etc. The energy can be considered as an explicit functional of

the spinless 2-RDM

E[ρ2(r′1, r
′
2; r1, r2)] = T [ρ1(r′1; r1)] + Vext[ρ1(r′1; r1)] + Vee[ρ2(r1, r2)] (25)

where

T [ρ1(r′1; r1)] = −1

2

∫
∇2

r1ρ1(r′1; r1)|r′1=r1dr
′
1 (26)

is the kinetic energy,

Vext[ρ1(r′1; r1)] =

∫
ρ1(r′1; r1)vext(r

′
1, r1)dr′1dr1 (27)

is the interaction between the electrons and the external potential (which in the

case of a local external potential is simply Vext[ρ(r)] =
∫
ρ(r)vext(r)dr) and

Vee[ρ2(r1, r2)] =
1

2

∫
ρ2(r1, r2)

|r2 − r1|
dr1dr2, (28)

the usual Coulomb electron-electron interaction. Eqs. 25 and 27 are valid for

any local (e.g. produced by the nuclei) or non-local external potential that does

not introduce interactions between the electrons. The advantage of using Eq.

25 over Eq. 11 is clear, noticing that the evaluation of the energy only requires

the 2-RDM which is less expensive to store and use than the total wavefunction.
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2.2) Statistical Quantities Based on Density Matrices

In this section we introduce: the Delocalization Index, the Electron Sharing

Index, the Electron Localization Function and the Intracule Probability Density.

These four quantities require the probabilistic interpretation of RDMs and some

concepts/definitions borrowed from statistics. These quantities are used either

as benchmark tools or as chemical descriptors in the present thesis.

2.2.1) The Delocalization Index

In 1807 Dalton [27] recovered Democritus’ [28] ideas and proposed the Modern

Atomic Theory. Dalton suggested that in order to study the matter, one has to

first understand its constituents (the atoms). Actually, he assumed that atoms

retained their identity even as constituents of larger structures. Later, in 1916

Lewis [108] suggested that atoms are held by sharing a pair of electrons between

them, giving a first definition of the chemical bond. Hence, chemistry was born

with the idea of an atom in a molecule (AIM) where the electronic structure of

molecules is given by the role of the constituent atoms. Characterizing atoms

inside a molecule requires the introduction of an atomic partition. An atomic

partition subdivides the atoms in a molecule and there are two ways to define an

atomic partition: a) by partitioning the Hilbert space (the mathematical space

where the wavefunction is defined) or b) by partitioning the Cartesian space.

The most famous Cartesian space partition was proposed by R. F. W. Bader

and gives rise to the Quantum Theory of Atoms in Molecules(QTAIM) [109],

where the atomic domains are contoured by the so-called zero-flux regions. The

integration of the atomic density within the atomic domain A provides the

number of electrons (or population) in that region,

N(A) = 〈N̂A〉 =

∫

A

γ(x)dx = NA, (29)

where N̂A is the particle operator applied on atom A and N(A) (sometimes

written as NA) is the atomic population of atom A. Analogously, the integration
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of the pair density using two atomic domains A and B defines pair populations,

N(A,B) = 〈N̂AN̂B〉 =

∫

A

∫

B

γ2(x1,x2)dx1dx2. (30)

The difference between the pair population and the product of independent

monoelectronic densities is known as the covariance. The covariance, defined

in statistics, is the measure of the joint variability of two variables. From the

covariance we define the Delocalization Index (DI) [110–115]

δ(A,B) = −2cov(N(A), N(B)) (31)

= −2〈(N̂A −NA)(N̂B −NB)〉

= 2[N(A)N(B)−N(A,B)].

The DI is a measure of the number of electrons pairs shared between two centers;

it provides non-integer values closely related somewhat to the concept of bond

order. From Eq. 30, we notice that the DI depends on the (spin-with) 2-particle

probability density defined in Eq. 19. Therefore, the DI can be written in terms

of the (spin-with) 2-particle probability density expressed using some basis (in

analogy to Eq. 22) as

δ(A,B) = −2

M∑

ijkl

σσ′

2Dσσ′

ij,klSik(A)Sjl(B) + 2N(A)N(B), (32)

where σ, σ′ ∈ {α, β} and Sab(X) =
∫
X
φa(r)φb(r)dr is the overlap between or-

bitals a and b in the domain defining atom X. We can also define the localization

index as

λ(A) =

∫

A

∫

A

[γ(x1)γ(x2)− γ2(x1,x2)] dx1dx2. (33)

It is straight-forward to prove that

N =
∑

A

N(A) =
∑

B,A<B

δ(A,B) +
∑

A

λ(A) (34)

An electron totally localized within an atom contributes 1 to the localization

index. A localized pair of electrons contributes 2 to the localization index and

an electron shared between two atoms contributes 1/2 to the localization index
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and 1/2 to the delocalization index [116]. For example, in Fig. 1 we observe

that for N2 at Hartree-Fock equilibrium distance (RNN = 1.0783 Å) using aug-

cc-pVDZ basis a DI of δ(N1, N2) = 3.040 and two equal localization indexes of

λ(N1) = λ(N2) = 5.480 are obtained. We know that N has a configuration like

this: 1s22s22p3 and N2 shows a triple bond (2 × 2p3). Each N has a lone pair

(2s2) and two core electrons 1s2. There is a total of 14 electrons distributed as

3 delocalized (each of the 3 electrons shared by each N contribute 1/2) and 11

localized (5.5 per N atom: two from the core electrons, two from the lone pair

and 3 × 1/2 from each electron shared). The computed numbers match well

with this counting.

Figure 1 – Delocalization Index for N2 at the Hartree-Fock equilibrium distance (RNN =

1.078 Å) computed with aug-cc-pVDZ basis (Fig. taken from Ref. [1]).

Finally, the total delocalization in a given atom is defined as

δ(A) =
∑

B 6=A
δ(A,B), (35)

which has been related to the valence of an atom [117], providing a division of

the electrons localized and delocalized in an atom,

N(A) =
1

2
δ(A) + λ(A). (36)

2.2.2) The Electron Sharing Index

In chemistry, Lewis theory is still widely used to describe and rationalize many

bonds. The DI introduced in the previous section is a modern tool, based
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on the idea of pairs of electrons, to characterize the bonding between two

atoms. Nevertheless, a number of molecular species do not fit the model sug-

gested by Lewis. Most of them include more than two atoms such as B2H6

ring that is held by 4 electrons forming two 3-center 2-electrons bonds. Some

other examples are: agostic bonds, organic/inorganic aromaticity, hyperconju-

gation/conjugation and 3-center 4-electrons bonds (like allyl-anion). In all those

cases, the electron sharing is described with the n-center Electron Sharing Index

(nc-ESI), which is defined as

δ(A1, A2, ..., An) =
(−2)n−1

(n− 1)!
〈
n∏

i=1

(N̂Ai −NAi)〉, (37)

which reduces to Eq. 32 for n = 2. This generalization was introduced by

Giambiagi [118] in 1994. For the n = 3 case, we have

δ(A1, A2, A3) = 2〈N̂A1
N̂A2

N̂A3
〉 − 2〈N̂A1

N̂A2
〉NA3

(38)

− 2〈N̂A2N̂A3〉NA1 − 2〈N̂A1N̂A3〉NA2

+ 4NA1
NA2

NA3

the evaluation of the first term of Eq. 38:

〈N̂A1
N̂A2

N̂A3
〉 =

∫

A1

∫

A2

∫

A3

γ3(x1,x2,x3)dx1dx2dx3 (39)

requires up to the 3-RDM. The 3c-ESI, δ(A1, A2, A3), gives a measure of how

the electron distribution is skewed from its mean, which may be related to the

simultaneous electron fluctuation among the atomic population of the atomic

domains (A1, A2, A3).

Up to now we have introduced the mean value of the number of electrons of

an atom, N(A) (see Eq. 29), the DI related to the fluctuation of electrons

between two atoms (see Eq. 32), the localization index λ(A) on the number

of electrons of an atom (see Eq. 33) and the 3c-ESI (see Eq. 38) related to

the fluctuation among three atoms. From statistics we know that N(A) is the

first cumulant of the distribution of the number of electrons in the atom A
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and δ(A) (see Eqs. 35 and 36) corresponds to the variance (also known as the

second cumulant). We also know that cumulants and moments are intimately

related through their corresponding generating functions (see Ref. [119] for more

details). Actually, it can be proven that a moment of n-th order is an nth-

degree polynomial in the first n cumulants [119]. Thus, from the relationship

between moments and cumulants, and the definition given for the nc-ESI (see

Eqs. 37 and 38) is easy to relate these indices to the n-th order cumulants.

As we have seen, cumulants appeared naturally in this context. Therefore, it

is not surprising that lower-order cumulants have also been used as building

blocks to construct approximations to higher-order n-order RDMs (see below

the Approximate density matrices section).

2.2.3) The Electron Localization Function

The next physical magnitude of interest that we want to introduce, arising from

the probabilistic nature of density matrices is the Electron Localization Function

(ELF). The ELF [120] was introduced by Becke and Edgecombe in 1990 as a

measure of the likelihood of finding an electron in the neighborhood space of a

reference electron located at a given point and with the same spin. In order to

define it, we need to split the pair density into the following spin cases:

ρ2(r1, r2) =
∑

σ

ρσσ2 (r1, r2) +
∑

σ 6=σ′
ρσσ

′

2 (r1, r2) σ, σ′ ∈ {α, β} (40)

where ρσσ2 (r1, r2) (ρσσ
′

2 (r1, r2)) represents the contribution from the same (op-

posite) spin elements to the 2-PPD. Since the pair density contains informa-

tion about electron pairs, correlation effects are also contained within it. For

the same spin case, the so-called Coulomb and Fermi correlations are included

whereas for the opposite pair density only the Coulomb correlation is present.21

Here we also need to split the density in spin cases: ρ(r) = ρα(r)+ρβ(r). Again,

21The Fermi correlation prevents two same-spin electrons from being found at the same point

in space while Coulomb correlation describes the correlation between the spatial position of

electrons due to their Coulomb repulsion.
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borrowing a concept from statistics, we can define the conditional probability

density as

P (r1, r2) =
ρ2(r1, r2)

ρ(r1)
, (41)

which provides the probability of finding electron 2 nearby r2 when electron 1 is

at r1. Using the conditional probability, Becke and Edgecombe defined the ELF

in order to account for the Fermi contribution to the conditional probability

(CP), Pσσ(r1, r2) =
ρσσ2 (r1,r2)
ρσ(r) . In Hartree-Fock approximation, the 2-RDM

depends only on the 1-RDM, defined from the determinant:

γHF
2 (x′1,x

′
2; x1,x2) =

∣∣∣∣∣∣∣∣∣

γ1(x′1; x1) γ1(x′1; x2)

γ1(x′2; x1) γ1(x′2; x2)

∣∣∣∣∣∣∣∣∣
. (42)

For x′1 = x1 and x′2 = x2, the product of the two diagonal elements produces the

Coulomb term (i.e. the term formed by two independent one-electron densities

repealing through a Coulomb interaction component of the Vee energy). On

the other hand, the product of off-diagonal elements produces the so-called

exchange contribution. The corresponding spinless 2-RDM is obtained from

ρHF
2 (r′1, r

′
2; r1, r2) =

∫
γHF

2 (x′1,x
′
2; x1,x2)s1=s′1,s2=s′2

ds1ds2 which in the r′1 = r1

and r′2 = r2 case, produces the 2-PPD. From HF approximation we know that

only same spin electrons produce exchange contributions. Thus, for the HF

same spin CP (obtained after spin integration) we have

Pσσ(r1, r2) =
ρσ(r1)ρσ(r2)− ρx(r1, r2)

ρσ(r1)
, (43)

where ρx(r1, r2) = ρ1(r1; r2)ρ1(r2; r1) is known as the exchange density. Becke

developed the Taylor series expansion for this function. In fact, he worked with

Pσσ(r, r + s) expansion at s = 0 using the es·∇ operator to produce the Taylor

series expansion. Then, he performed the spherical average for any given scalar

s distance, and arrived to the following expression for the CP [121]:

P
σσ

(r, s) =
1

3

[
τσ(r)− 1

4

|∇ρσ(r)|2
ρσ(r)

]
s2 + ..., (44)

where τσ(r) =
∑
i |∇φi(r)|2 is the kinetic energy density, r are the coordinates of

the reference electron and s is the radius of the shell where the second electron
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is located after the spherical average (the overline over Pσσ indicates that a

spherical average is being performed). The smaller the probability of finding an

electron near the reference point r, the more localized the reference electron is.

Thus, electron localization is related to Dσ = τσ(r)− 1
4
|∇ρσ(r)|2
ρσ(r) . Dσ vanishes for

one-electron systems and also for many-electron systems with regions dominated

by one single σ orbital. It is important to notice that the relationship with

localization is inverse with respect to Dσ. Hence the ELF is finally given by the

ratio:

ELF (r) =
1

1 + χ2
σ(r)

, (45)

where χ2
σ(r) = Dσ(r)/D0

σ(r), D0
σ(r) = 3

5 (6π2)2/3ρ
5/3
σ (r), being D0

σ(r) the ref-

erence taken from the uniform electron gas. The ELF as defined in Eq. 45 is

bounded between [0, 1], being 1 for perfect localization and 1/2 in the electron-

gas-like case. The ELF for BH at the equilibrium distance is shown as an

example in Fig. 2, where we observe that the ELF is highly localized on top of

H atom and on the atomic domain of B atom but it is negligible along the bond.

We know that BH is formed through a covalent bond that is highly polarized,

that is why the ELF is almost zero in the bond region but large in the atomic

domains because the electrons are mostly localized on the atomic domain of B

and H atoms.

Figure 2 – Full configuration interaction contour plot of ELF for BH at the equilibrium

distance with the aug-cc-pVDZ basis computed with our RHO OPS [2] program (isocon-

tour=0.8).
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2.2.4) The Intracule Probability Density

The next magnitude related to the probabilistic nature that we want to intro-

duce is the Intracule Probability Density (IPD). From the 2-PPD defined in

Eq. 20, the analysis is still complicated because it represents a 6D-function

that cannot be represented in 2D or 3D plots unless some coordinates are fixed.

The usage of the intracule coordinate r12 = r2 − r1 in the IPD provides a 3D

representation of part of the information contained in the 2-PPD. Let us define

the IPD as

I(s) =
1

2

∫
ρ2(r1, r2)δ(s− r12)dr1dr2, (46)

where the Dirac delta function excludes all possibilities except those where s =

r2 − r1, which are the only ones that contribute for a given s. The spherical

integration of the IPD

I(s) = s2

∫
I(s)dΩs, (47)

where dΩs = sin θsdθsdφs produces the radial IPD. The radial IPD is a funda-

mental function because the Vee can be written as an explicit functional of the

radial intracule probability density,

Vee[I(s)] =

∫
I(s)

s
ds. (48)

The difference between the exact (full configuration interation) I(s) and the

Hartree-Fock I(s) provides information about correlation effects and is known

as Coulson’s Coulomb hole [122]

h(s) = IFCI(s)− IHF(s). (49)

Actually, for any method which includes electron correlation, it is possible to

define the corresponding Coulomb hole,

h(s) = IX(s)− IHF(s), (50)

which can be used to analyze the treatment of electron correlation from different

methods, and can also be used to classify and quantify electron correlation by
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introducing the concept of range separation [70,123,124].22 Hence, some authors

based the development of new electron correlation methods on the reconstruc-

tion of Coulomb holes (see for example Refs. [125,126]). It is worth to mention

that the radial IPD can actually be obtained experimentally from X-Ray scat-

tering cross-sections [127–129]. Thus, the radial IPD is actually an observable

based on the probabilistic nature of the 2-PPD, which we can compare with

experiments (see for example Fig. 3). In Fig. 3 we observe that the maximum

of the radial IPD lies near the interatomic distance (RCO) because the nuclei

gather the electronic density and many pairs of electrons can be formed from

electrons separated by RCO.

Figure 3 – On the l.h.s the experimental (obtained from X-Ray scattering cross-sections)

and on the r.h.s. the computational (obtained with CASSCF(6,6) and RHO2 OPS [3] code)

radial IPD.

2.2.5) Information Theory Quantities

Finally, the last quantities we want to introduce are based on the electronic

density ρ(r) but also on the electronic density in the momentum space π(p).

The first magnitude has already been introduced but, the momentum space

density requires some explanation. The Schrödinger equation as written in

22The range separation concept is based on the interactions between the electrons, and it is

used to classify them as short- and long-range interactions (i.e. attending to the interelectronic

distance where the interactions take place).
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Eq. 11 is in spatial coordinates if we set xi = (ri, si). But, if we replace

xi → yi = (pi, si) with pi defined as the momentum vector of electron i whose

components are pi = (pxi, pyi, pzi) in Cartesian coordinates and rewrite the

operators of the Hamiltonian in momentum space, the wavefunction obtained

from the Schrödinger equation is Ψ(p1,p2, ...,pN ). The transformation from

spatial coordinates to momentum space coordinates is performed through a

Fourier transformation, that is to say,

Ψ(p1,p2, ...,pN ) = (2π)−3N/2

∫
exp [−i(p1 · r1 + p2 · r2 + ...+ pN · rN )]

×Ψ(r1, r2, ..., rN )dr1dr2...drN . (51)

Setting yi = (pi, si) allows us to define equations completely equivalent to Eqs.

12-19, for instance the 2-PPD is defined as

π2(p1,p2) =

∫
γ2(y1; y2)ds1ds2, (52)

which represents the probability of finding an electron with momentum p1 and a

second electron with momentum p2 regardless the momentum of the other elec-

trons. In the same manner, we may write an expression completely equivalent

to Eq. 21 which upon spin integration produces the electronic density in the

momentum space π(p). When transforming n-order RDMs from spatial space

to the momentum space through a Fourier transform, we must perform a trans-

formation of 2N xi coordinates (for an N -electron system) because coordinates

and primed coordinates are changed independently. Only after computing the

2N Fourier transform, we set primed coordinates equal to the non-primed ones

in order to obtain Eq. 52 and π(p). The Fourier transform of the position-space

electronic density does not produce the momentum space one,

π(p) 6= (2π)−3/2

∫
ρ(r) exp [−ip · r] dr. (53)

Following the orbital expansions introduced in Eqs. 22-24 for the spinless 2-

order and 1-order RDMs, it is easy to prove using Plancherel’s theorem [130]

that any orthonormal basis in the position space ({φi(r)}Mi=1) transforms into
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an orthonormal basis ({ηi(p)}Mi=1) in the momentum space. With a one-to-one

correspondence between these two basis (e.g. the φ1 orbital transforms into the

η1 one).

From information theory, it is possible to define the entropy of any distribution.

This entropy measures the unpredictability of a certain distribution i.e., the

spread of the distribution. Hence, we may define the Shannon entropy for the

electronic densities as

S[ρ(r)] = −
∫
ρ(r) ln ρ(r)dr, (54)

and

S[π(p)] = −
∫
π(p) lnπ(p)dp, (55)

where ρ(r) and π(p) are the electronic densities normalized to 1. These entropies

play an important role quantum mechanics because the uncertainty principle

can be written using them as S[ρ(r)] + S[π(p)] ≥ 3(1 + lnπ) which was proven

by Hirschman [131], Beckener [132], Bialynicki-Birula and Mycielski [133]. An-

other quantity borrowed from information theory is the Fisher information. The

Fisher informations for our density distributions are

F [ρ(r)] =

∫ |∇ρ(r)|2
ρ(r)

dr, (56)

and

F [π(p)] =

∫ |∇π(p)|2
π(p)

dp, (57)

which measure local changes of the electron densities (i.e. mostly the sharp-

ness of ρ(r) and π(p)). The position space entropy is closely related to the

Weizsäcker kinetic energy (only differing from it by a multiplicative constant

1
8N ). Information theory quantities have been previously used to characterize

some bonding patterns and we used them in chapter VIII in an attempt to

characterize the harpoon mechanism.
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2.3) Approximate Density Matrices

Using density matrices, we reduce the cost of storage and managing informa-

tion compared to wavefunction methods. Nevertheless, in many cases density

matrices are still large objects that are not easy to store and use. As an ex-

ample, consider a system with 300 basis, thus 3004 2-RDM elements (2Dij,kl)

are produced.23 Taking into account that double precision numbers require 8

bytes, already 64.8 gigabytes are needed for storing this matrix. On the other

hand, for the same system the 1-RDM would only require 720 megabytes.22

Therefore, is much more convenient to try to approximate high-order RDMs

from lower-order ones.

2.3.1) N-Representability

Reconstruction of higher order RDMs from lower order ones is not a trivial

task. The partial trace (integration) reduces the order of density matrices but

there is no recipe to recover the information lost during the integration process

and it is thus recommendable to impose physical requirements on the recon-

struction of approximate RDMs. One physical requirement to impose is the

N -representability, which imposes that the reconstructed n-RDM must corre-

spond to an antisymmetric wavefunction for fermionic systems. Unfortunately,

all the necessary and sufficient conditions are not known in general for all n-

RDMs. Only the whole set of conditions is known for 2-RDMs but they are not

practical [134], because this set requires for N > 2 the knowledge of all higher

order density matrices from 3- up to N -order.

Some N -representability conditions rely on the fact that the whole spectrum

of some operators must be positive semidefinite (all their eigenvalues must be

greater or equal to 0). The set of conditions related to these operators are

23Assuming that no symmetry and/or antisymmetry properties of the 2-RDM are consid-

ered. For instance, when symmetry is taken into account savings of the order of ∼ 2n! are

produced for an n-RDM.
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called positivity conditions. If we define an operator Â as a linear combination

of strings of creation (a†aσ′) and/or annihilation (aaσ′) operators, with Â† being

its corresponding adjoint counterpart, the expectation value of

〈Ψ|Â†Â|Ψ〉 ≥ 0 (58)

must hold when Â is not a singular operator because then Â†Â is a Hermitian

operator (is actually a hermitian non-negative operator). The a†aσ (aaσ) is the

usual creation (annihilation) operator acting over orbital φa with spin σ.

By setting Â =
∑
σ′
∑
j xjσ′ajσ′ in Eq. 58 we get the 1D matrix elements,

1Dσσ′

i,j = 〈Ψ|a†iσajσ′ |Ψ〉. (59)

Then, we proceed to diagonalize this matrix (as we did in Eq. 24) and we have

to prove that the eigenvalues (the natural orbital occupancies {ni}Mi=1) must be

greater or equal to 0. Setting Â =
∑
σ′
∑
j xjσ′a

†
jσ′ in Eq. 58, we produce the

1Q matrix elements

1Qσσ
′

i,j = 〈Ψ|aiσa†jσ′ |Ψ〉, (60)

where we can use the anticonmutation relation {aiσ, a†jσ′} = δiσjσ′ to write the

1Q matrix as

1Q = I− 1D, (61)

that after diagonalization leads to the conclusion that the occupancies should

be lower or equal to 1. Therefore, the positivity conditions impose that the

whole set of occupancies must be in the interval [0, 1]. This condition is enough

to ensure that the matrix is N -representable [107]. Nevertheless, this condition

only ensures N -representability but not that the 1-RDM corresponds to a pure

state; mixed states may arise if we only impose this condition. Recently, some

authors have suggested the usage of the so-called Generalize Pauli constraints

to ensure that only pure states are generated (see Refs. [135–137]). Nonethe-

less, we have not considered these constraints in the present thesis, and we only

mention their existence for completeness.
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In the case of the 2-RDM, the P (Löwdin), Q (Garrod and Percus) and G (Wein-

hold and Wilson) conditions define strong constraints for the diagonal elements

(also known as the (2,2)-positivity conditions). These three conditions require

only the 2-RDM; they arise naturally from setting Â =
∑
σσ′
∑
lk xlσ′kσalσ′akσ,

Â =
∑
σσ′
∑
lk xlσ′kσa

†
lσ′a
†
kσ and Â =

∑
σσ′
∑
lk xlσ′kσ a

†
lσ′akσ in Eq. 58, re-

spectively. Using these operators we build the following matrices P, Q and

G:

Pσσ
′

ij,kl = 〈Ψ|a†iσa†jσ′alσ′akσ|Ψ〉 , (62)

Qσσ
′

ij,kl = 〈Ψ|aiσajσ′a†lσ′a
†
kσ|Ψ〉 , (63)

Gσσ
′

ij,kl = 〈Ψ|aiσa†jσ′a†lσ′akσ|Ψ〉 , (64)

that must be diagonalized in order to analyze their positive semidefinite charac-

ter (by checking that all eigenvalues produced are greater or equal to zero). The

first matrix coincides with the 2D, thus proving the P condition is equivalent

to prove that geminal occupancies are non-negative. The Q matrix involves the

positive semidefinite character of the holes while the G matrix involves the posi-

tive semidefinite character of particle-hole probabilities. Notice that all possible

permutations between creation and annihilation operators that generate inde-

pendent positivity conditions have been taken into account in Eqs. 62-64 [138].

These conditions have been analyzed in detail for many approximations to the

2-RDM in chapter V.

Finally, for 3-RDMs, employing creation and annihilation operators, it is possi-

ble to produce the corresponding P and Q matrices. Additionally, two G-like

matrices involving particle-hole probabilities can be constructed. The positive

semidefinite character of these matrices must be proved upon diagonalization

and analysis of their eigenvalues. Notwithstanding, the 3-order matrices to diag-

onalize are in general extensive, making it computational unaffordable for large

systems. For this reason, it is convenient to express these matrices in terms of

the n-RDMs, generating expressions that can be checked in a given basis. Upon

direct usage of the Â string operators, we obtain the following inequalities which
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must be satisfied in any basis set,

3Dijk,ijk ≥ 0 (65)

1−1 Di,i −1 Dj,j −1 Dk,k +2 Dij,ij +2 Dik,ik +2 Djk,jk −3 Dijk,ijk ≥ 0 (66)

2Dij,ij −3 Dijk,ijk ≥ 0 (67)

1Di,i −2 Dij,ij −2 Dik,ik +3 Dijk,ijk ≥ 0 (68)

These conditions correspond to P-, Q-, G- and G-like conditions and are related

to the particles, holes and particle-hole conditions. Since they must hold for

any basis, they are also valid within the canonical basis (or the natural orbitals

basis if preferred). Obviously, the analysis of these inequalities only with the

canonical orbitals is a condition much more relaxed than the conditions ob-

tained from the full diagonalization of P, Q and G matrices. Nevertheless, if

any approximated 3-RDM does not satisfy these inequalities in any given basis,

there will always be violations of the more stringent conditions obtained upon

diagonalization.

All positivity conditions that we have introduced are necessary but unfortu-

nately not sufficient to ensure that an 1-, 2- or 3-RDM is N -representable and

it is recommendable to impose other known necessary conditions (for instance

for 2-RDM see Ref. [138]).

2.3.2) The Sum Rule

Additionally, RDMs must fulfill the sum rule (i.e. appropriate normalization),

which is written as

Tr[1D] =
∑

i

1Di,i = N, (69)

Tr[2D] =
∑

ij

2Dij,ij = N(N − 1) (70)

and

Tr[3D] =
∑

ijk

3Dijk,ijk = N(N − 1)(N − 2). (71)
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where Tr stands for the trace of these matrices.

2.3.3) Symmetry Properties

n-order RDMs must present some symmetry properties. The 1-RDM is hermi-

tian with respect to the exchange of indices

1Dσσ′

i,j = 〈Ψ|a†iσ′ajσ|Ψ〉 = 〈Ψ|a†jσaiσ′ |Ψ〉∗ = 1Dσ′σ∗
j,i (72)

where the ∗ denotes complex conjugated, which for real 1D matrices implies

that 1Dσσ′

i,j = 1Dσ′σ
j,i . In the same fashion, it can be proved that the equalities:

2Dσσ′

ij,kl = 2Dσσ′

kl,ij (73)

and

3Dσσ′σ′′

ijk,lmn = 3Dσσ′σ′′

lmn,ijk (74)

where σ′′ ∈ {α, β} hold for real 2- and 3-RDMs, respectively. Equivalent sym-

metry properties can be written for higher order RDMs.

2.3.4) Antisymmetry Properties

Due to the fermionic nature of the electrons, which imposes that the wave-

function Ψ must be antisymmetric, n-order RDMs (n ≥ 2) must fulfill some

antisymmetry conditions. For the same spin elements of the 2-RDM, the fol-

lowing equalities

2Dσσ
ij,kl = −2Dσσ

ji,kl = 2Dσσ
ji,lk = −2Dσσ

ij,lk. (75)

must hold. In the same manner, 3-RDM elements of the same spin also meet the

antisymmetry condition with respect to the exchange of indices. The exchange

of indices leads to the following equalities

3Dσσσ′

ijk,lmn = −3Dσσσ′

jik,lmn = 3Dσσσ′

ijk,mln = ..., (76)

notice that σ′ can be equal or not to σ. If it is equal to σ, we can also permute

it with the rest of indices and the antisymmetry condition must hold; otherwise,
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if it is not equal to σ we have no information when we permute it with the rest

of indices.

We have used the sum rule and the symmetry conditions to analyze the good-

ness of RDM approximations available in the literature in chapters IV and V.

Violations of these conditions produces spurious results when using these ma-

trices.

2.3.5) n-RDM Approximations

Approximations to matrices of 2- and 3-order were tested in the present thesis,

being in all cases built from lower order matrices. That is to say, the 2-RDM

is approximated from the 1-order one and the 3-RDM is approximated from

the 2-order and the 1-order ones. Most of these approximations were devel-

oped in order to provide methodologies for solving the Schrödinger equation

(see Refs. [93, 94,96,139–146] for some examples).

2.3.5.a) 2-RDM Approximations a

2-RDM approximations are used in RDMFT [145,146]. RDMFT was brought to

light in 1975 by Gilbert’s theorem [87] which is an extension of the Hohenberg-

Kohn theorem [53] for nonlocal external potentials. In his work Gilbert demon-

strated the existence of an energy functional of the 1-RDM, E[1D], which along

with the works of Donnelly and Parr [88], Levy [89] and Valone [90] established

the foundations of RDMFT. As we have shown in Eq. 25, the energy is an

explicit functional of the 2-RDM but only the Vee depends explicitly on the

2-RDM (the rest of energy components depend only on the 1-RDM)

E[1D] = T [1D] + Vext[
1D] + Vee[

2D]. (77)

In order to write Eq. 77 as a functional of the 1-RDM we need to express the 2-

RDM as a functional of the 1-RDM (2D[1D]). The functional E[1D], that exists

54



according to Gilbert’s theorem, must be independent of the basis used to ex-

pand the 1-RDM. Thus far, most of the approximations to the 2-RDM are only

given in terms of the natural orbitals and natural orbital occupancies. However,

many approximations employ expressions that are non orbital invariant24 and

thus, one cannot reconstruct the actual 1-RDM, which is need to guarantee the

existence of E[1D]. Consequently, most energy functionals of the 1-RDM are

actually just functional approximations of the 2-RDM (2D[{ni}Mi=1, {χi}Mi=1]).

Before we introduce the 2-RDM approximations analyzed in this thesis, it is

worth to mention that in 1956 Löwdin and Shull [148] noticed that the wave-

function for a closed-shell two-electron system can be written in the basis of

natural orbitals as

Ψ(x1,x2) =
1√
2

(α1β2 − α2β1)
∑

k

ckχk(r1)χk(r2) (78)

where the coefficients ck = ±n1/2
k , nk being the natural orbital occupancy of

orbital χk. Notice that there is a ± sign which is sometimes called the phase

factor [149]. From Eq. 78, we obtain the 2-RDM

γ2(x′1,x
′
2; x1,x2) =

1

2
(α′1β

′
2 − α′2β′1)(α1β2 − α2β1)

×
∑

kl

ckclχk(r′1)χk(r′2)χl(r1)χl(r2) (79)

where the product of coefficients ckcl = Φkl
√
nknl includes undetermined phase

factors, Φkl. Therefore, two-electron system wavefunctions and 2-RDMs are

completely determined by natural orbital occupancies except for some phase

factors, Φkl = {−1, 1}. This expression was used by some authors [125,143,150]

to define the Fixed-Phases (FP) functional from the phases of some two-electron

systems. It was observed that in most cases if natural orbitals are ordered ac-

cording to their occupancy in most two-electron systems: Φ1k = −1 (k 6= 1)

24It was proven by Lathiotakis and coworkers [147] that for many approximations to the

2-RDM, unitary transformations in the subspace of degenerate occupation numbers produce

changes in the energy.
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and all other phases were positive. Thus, it is possible to define the Fermi level

which only has one orbital, the χ1, below it. The FP functional defined by

fixing Φlk = −1 (if l = 1∧ k 6= 1) and equal to +1 otherwise, recovers the exact

wavefunction in the weak-correlation regime of closed-shell two-electron systems.

Nevertheless, some studies have proven that these phases do not remain fixed

and for example, some authors obtained that in the strong-correlation regime

for the 2e-Harmonium atom, phases change signs and there is not a fixed pat-

tern [151–154].

The starting point of many 2-RDM approximations is the Hartree-Fock expres-

sion for the 2-RDM (Eq.42) which in terms of natural orbitals is written as

2Dσσ′

ij,kl = nσi n
σ′

j δikδjl σ 6= σ′ (80)

for the opposite-spin components (where only Coulomb interactions are present),

whereas, for the same-spin components we have

2Dσσ
ij,kl = nσi n

σ
j (δikδjl − δilδjk) (81)

for which Coulomb and exchange interactions are taken into account. For

any Hartree-Fock energy calculation, the starting point is to define an ansatz

formed by one single Slater determinant as a trial wavefunction. Using a single-

determinant approach implies that the final 1-RDM contains only diagonal ele-

ments which are either one (for the occupied orbitals) or zero (for the unoccupied

ones). Moreover, the orbitals that minimize the Hartree-Fock energy expression

are the canonical orbitals but, since in the canonical basis the 1-RDM is al-

ready diagonal, the canonical orbitals and the natural orbitals coincide. It is

well known that the single-determinant approach ignores all correlation effects

between the electrons of the opposite spin because these electrons are treated

as independent particles (i.e. using Eqs. 24 and 80 in Eq. 22, makes the

opposite-spin component of the 2-PPD be: ρHF,σσ
′

2 (r1, r2) = ρσ(r1)ρσ
′
(r2) for

the Hartree-Fock approximation). Thus, in an attempt to retrieve correlation

effects, some authors have suggested to modify the exchange component of the
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functional expression [125, 155] (arguing that Fermi and Coulomb holes can be

modeled by tuning only the exchange effects). That is to say, work with the

following modified expression for the same-spin component,

2Dσσ
ij,kl = nσi n

σ
j δikδjl − f(ni, nj)δilδjk, (82)

where the whole set of f(ni, nj) functions used in the present thesis is collected

in Table 1. These approximations of the 2-RDM give rise to approximated func-

tionals of the energy, Ẽ[1D], through Eq. 77. The energy functionals that we

analyze in chapter V are:

2.3.5.a.1) MBB:

Introduced independently by Müller and by Buijse and Baerends [125,155,156],

it produces an approximated functional which fulfills the sum rule, Eq. 70. This

functional was derived from the requirement of minimal violation of the Pauli

principle and from the analysis of Fermi and Coulomb holes. Notice that the

term −√ninj has to take care of all exchange and correlation effects and make

the MBB resemble the FP functional. This functional performs well if the nat-

ural orbitals and natural orbital occupancies are not used in a self-consistent

procedure. Otherwise, non-variational energies can be obtained (see for exam-

ple Ref. [157]). Since this functional performs relatively well when applied in a

non-self-consistent manner, it has been used for computing approximate prop-

erties such as DIs [158], studying interacting quantum atoms electronic energy

partitions [159], among others.

2.3.5.a.2) POWER:

The POWER functional was introduce by Cioslowski and Pernal [160] to study

the properties of the (ninj)
α expression that generalizes the Hartree-Fock and

the MBB approximations. It was first proven that α ≥ 0.5565 was needed to

produce admissible densities (i.e. solutions that are: stable with respect to
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the corresponding Euler equations, N -representable and whose Vee satisfies the

Lieb-Oxford bound [161]). The POWER functional is mostly used in solid state

physics and, according to Sharma et al. [162], the MBB overcorrelates the elec-

trons and, thus, the POWER functional mediates with the overcorrelation of

the electrons by using a parameter α > 1/2. Notice that in some applications,

the bound α ≥ 0.5565 is not fixed and values like 0.53 are used [163].

2.3.5.a.3) BBC2:

It is based on physically motivated corrections to the MBB approximation.

BBC2 was developed by Gritsenko and coworkers [164], it requires a definition

of the Fermi level (FL) as: the last orbital whose occupancy is greater or equal

to N/2. It contains corrections to restore the positive sign for cross products

between weakly correlated orbitals but also to recover the exchange-type inter-

action for the strongly occupied natural orbitals. It only keeps the −√ninj to

account for the Coulomb correlation between the weakly and strongly occupied

orbitals.

2.3.5.a.4) CA:

Csányi and Arias functional [165] is based on the framework of tensor-product

expansions of the 2-RDM. This functional was developed as a correction to the

Hartree-Fock approximation in order to better describe a wide range of density

regimes of the homogeneous electron gas, retain the sum rule and exploit the

particle-hole symmetry. It clearly improves over the MBB approximation for a

wide range of densities of the homogeneous electron gas.

2.3.5.a.5) CGA:

Csányi, Goedecker and Arias functional [166] was developed in the same spirit as

CA functional using tensor-product expansions of the 2-RDM. It was developed
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as an intermediate case of HF and CA approaches. This functional dramatically

improves over the previous ones for high densities of the homogeneous electron

gas, it significantly improves the correlation energies at typical valence densi-

ties, and according to the authors it is comparable to the generalized-gradient

approximation performance in atoms [166].

2.3.5.a.6) ML:

Marques and Lathiotakis functional [167] was developed using a Padé approx-

imant from a fully empirical approach. This functional was built with three

parameters that were fitted to reproduce the correlation energy of the G2 set

and to recover the Hartree-Fock limit for integer occupation numbers.

2.3.5.a.7) MLSIC:

Marques and Lathiotakis functional corrected for self-interaction [167] is an im-

provement of the previous one, it was developed to correct the self-interaction

error produced by ML approximation but keeping the same structure of a Padé

approximant but reoptimizing the parameters.

2.3.5.a.8) GU:

Goedecker and Umrigar functional [150] only corrects the self-interaction error

present in MBB. It removes the elements producing the self-interaction error

but the rest of elements are completely equivalent to the MBB ones.

The eight functionals already introduced are known as JK-only functionals be-

cause the 2-RDM elements produced are 2Dσσ′

ij,ij(σ, σ
′ ∈ {α, β}) and 2Dσσ

ij,ji(σ ∈
{α, β}), which are either accompanied by the Coulomb integrals (Jij = 〈ij|ij〉)
or by exchange integral (Kij = 〈ij|ji〉) respectively. In the description of BBC2
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we have introduced the FL which is used in solid state physics to analyze the

energy levels. The FL can be considered to be an energy level of an electron,

such that at thermodynamic equilibrium this energy level would have a 50%

probability of being occupied at any given time (nFL ≥ 0.5) [168]. Unfortu-

nately, the inclusion of the FL in the definition of the approximation can also

thwart the orbital invariance and make the approximation not truly a functional

of the 1-RDM.

Table 1 – f(ni, nj) functions (see Eq. 82) that define the JK-only functionals, where FL is

the Fermi level defined as FL = N/2.

Functional f(ni, nj) parameters Ref.

MBB (ninj)
1/2 [125,156]

POWER (ninj)
α [160,162,169]

BBC2

ni i = j

[164]
−(ninj)

1/2 i 6= j ∧ i ∈ (FL;∞) ∧ j ∈ (FL;∞)

ninj i 6= j ∧ i ∈ [1;FL] ∧ j ∈ [1;FL]

(ninj)
1/2 otherwise

CA [ni(1− ni)nj(1− nj)]1/2 + ninj [165]

CGA
ninj+[ni(2−ni)nj(2−nj)]1/2

2 [166]
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ML ninj
a0+a1ninj
1+b1ninj

a0 = 126.3101

[167]
a1 = 2213.33

b1 = 2338.64

ninj
a0+a1ninj
1+b1ninj

i 6= j
a0 = 1298.78

MLSIC a1 = 35114.4 [167]

ninj i = j b1 = 36412.2

GU

(ninj)
1/2 i 6= j

[150]

ninj i = j

............................................................

Another approach for building approximated 2-RDMs is based on the cumulant

expansion. By adding to the Hartree-Fock expression of the 2-RDM, Eq. 42, a

cumulant matrix Γ is defined:

2Dσσ′

ij,kl = nσi n
σ′

j δikδjl +2 Γσσ
′

ij,kl σ 6= σ′ (83)

and

2Dσσ
ij,kl = nσi n

σ
j (δikδjl − δilδjk) +2 Γσσij,kl. (84)

Cumulants gather all correlation effects not contained in the Hartree-Fock ap-

proximation (recall that Hartree-Fock only treats correctly Fermi correlation).

Hence, the two matrices (2Γσσ
′

ij,kl and 2Γσσij,kl) should contain all the missing cor-

relation effects to construct the exact 2-RDM. We have seen that cumulants

appear naturally from the statistical nature of density matrices when we in-

troduced the nc-ESI. Actually, it is well known that n-order RDMs can be

expressed from lower order ones by employing approximations to the cumulant
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matrices [170].

2.3.5.a.9)PNOF Functionals:

To keep the approximations simple, instead of producing four index approxi-

mated matrices, it is much more suitable to stick to only two indices and set to

zero all elements that differ in three and four indices. Therefore, the cumulants

are approximated by means of the auxiliary matrices ∆ and Π in the following

manner

2Γσσ
′

ij,kl = −∆σσ′

ij δikδjl + Πikδijδkl σ 6= σ′ (85)

and

2Γσσij,kl = −∆σσ
ij δikδjl + ∆σσ

ij δilδjk, (86)

where the ∆ and Π matrices are constructed attending to the P-, Q-, and G-

N -representability conditions (when possible), to attain the sum rule and to

keep some fundamental properties of fermionic particles (〈S2〉, antisymmetry).

Different definitions of these matrices produce different implementations of the

PNOFi (i = 2, .., 7) functionals. The ∆ matrix is taken equal for both spin

cases (i.e. ∆σσ
ij = ∆σσ′

ij ), except for PNOF3 where ∆σσ
ij = 0. The whole family

of ∆ and Π matrices is collected in Table 2.
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Table 2 – ∆ and Π non-zero matrix elements. The diagonal elements coincide for all functionals: ∆ii = n2
i

and Πii = ni. SF =
∑FL
i=1 hi, Tij = ninj −∆ij , hi = 1− ni, and Sxγ and γi are defined in Eqs. 88 and 89,

respectively. Ωg is the subspace containing orbital g, which is below the Fermi level, and several orbitals above

the Fermi level.

∆ij Πij cases (i 6= j) Ref.

PNOF2

hihj
√
ninj +

√
hihj + Tij i ∧ j ∈ [1, FL]

[171]
njhi

(
1−SF
SF

) √
ninj −

√
njhi + Tij i ∈ [1, FL] ∧ j ∈ (FL,M ]

nihj

(
1−SF
SF

) √
ninj −

√
nihj + Tij j ∈ [1, FL] ∧ i ∈ (FL,M ]

ninj Tij i ∧ j ∈ (FL,M ]

PNOF3

hihj ninj −√ninj i ∧ j ∈ [1, FL]

[172]
njhi

(
1−SF
SF

)
ninj −√ninj −

√
njhi i ∈ [1, FL] ∧ j ∈ (FL,M ]

nihj

(
1−SF
SF

)
ninj −√ninj −

√
nihj j ∈ [1, FL] ∧ i ∈ (FL,M ]

ninj ninj +
√
ninj i ∧ j ∈ (FL,M ]
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PNOF4

hihj −
√
hihj i ∧ j ∈ [1, FL]

[173]
njhi

(
1−SF
SF

)
−
√(

hinj
SF

)(
ni − nj +

hinj
SF

)
i ∈ [1, FL] ∧ j ∈ (FL,M ]

nihj

(
1−SF
SF

)
−
√(

hjni
SF

)(
nj − ni +

hjni
SF

)
j ∈ [1, FL] ∧ i ∈ (FL,M ]

ninj
√
ninj i ∧ j ∈ (FL,M ]

PNOF5

ninj −√ninj (i ∧ j ∈ Ωg) ∧ (i = g ∨ j = g)

[174]

ninj
√
ninj (i ∧ j ∈ Ωg) ∧ (i ∧ j ∈ (FL,M ])

e−2SF hihj −e−SF
√
hihj i ∧ j ∈ [1, FL]

[175]
PNOF6x γiγj/S

x
γ −

√(
nihj +

γiγj
Sxγ

)(
njhi +

γiγj
Sxγ

)
i ∈ [1, FL] ∧ j ∈ (FL,M ]

x = d, u, h γiγj/S
x
γ −

√(
nihj +

γiγj
Sxγ

)(
njhi +

γiγj
Sxγ

)
j ∈ [1, FL] ∧ i ∈ (FL,M ]

e−2SF ninj e−SF
√
ninj i ∧ j ∈ (FL,M ]

PNOF7

ninj −√ninj (i ∧ j ∈ Ωg) ∧ (i = g ∨ j = g)

[176]
ninj

√
ninj (i ∧ j ∈ Ωg) ∧ (i ∧ j ∈ (FL,M ])

0 −
√
nihinjhj (i ∨ j) ∈ [1, FL] ∧ ((i ∈ Ωg ∧ j 6∈ Ωg) ∨ (j ∈ Ωg ∧ i 6∈ Ωg))

0
√
nihinjhj (i ∧ j) ∈ (FL,∞) ∧ ((i ∈ Ωg ∧ j 6∈ Ωg) ∨ (j ∈ Ωg ∧ i 6∈ Ωg))
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In Table 2 we have collected all non-zero elements of ∆ and Π matrices. PNOF5

was originally based on a perfect pairing approach. The perfect pairing approach

is given by the occupancies as

ni + nj = 1, (87)

where the occupancy ni of an orbital χi ∈ [1, FL) is coupled to the occupancy nj

of only one orbital χj ∈ (FL,∞). Later, PNOF5 was extended to produce the

PNOF5e functional, where the occupancy of an orbital χi ∈ [1, FL) is coupled to

the occupancies of a set of orbitals {χj} ∈ (FL,∞). PNOF6 was also conceived

in a perfect pairing approach but it has also been used in a extended version

(PNOF6e) for calculations. In this thesis, we used PNOF5e and PNOF6e func-

tionals but we kept the names PNOF5 and PNOF6 for them. PNOF6

requires the definition of Sxγ (see Table 2 for more details), thus, beyond the

perfect pairing approach (i.e. for the extended version of PNOF6) three differ-

ent definitions of Sxγ can be proposed. The three Sxγ s used in this thesis are

defined as

Sdγ =

FL∑

i=1

γi, Suγ =

M∑

i>FL

γi, Shγ =
Sd + Su

2
, (88)

where

γi = ni(1− ni) + κ2
i − κi

FL∑

i=j

κj , (89)

and

κi =

{
(1− ni)e−SF i ∈ [1, FL]

nie−SF i ∈ (FL,M ]
(90)

FL being the last occupied orbital below the Fermi level and SF =
∑FL
i=1(1−ni).

PNOFi approximations are known as JKL-only approximations because they

include Coulomb (Jij), exchange (Kij) and the exchange and time-inversion in-

tegrals (i.e. Lij = 〈ii|jj〉 in the usual bra-ket notation). All approximations

here introduced, rapidly approach to the Hartree-Fock approximation in the

weak-correlation regime. Thus, our concern about how correlation affects 2-

RDM approximations is clarified in chapter V, where we analyze ten properties
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of 2-RDM approximations (see below) at different correlation regimes of the

two-electron Harmonium atom.

Finally, let us mention that the formal cost of RDMFT calculations is of M4

(where M is the size of the basis) when the 2-RDM approximations are em-

ployed. RDMFT calculations require the transformation of the integrals from

the atomic orbital basis to the molecular orbital basis, which implies an addi-

tional cost of M5. Nevertheless, the self-consistent procedure used by RDMFT

calculations optimizes orbitals and occupancies, thus, the prefactor of the self-

consistent procedure is very large, resulting in a very large number of iterations.

Since many iterations are required, in practice the cost is much higher than the

formal M5 scaling.

2.3.5.b) 3-RDM Approximations a

High order approximations to n-RDMs also start from the corresponding n-

order Hartree-Fock RDMs, adding all missing correlation effects beyond the

Hartree-Fock approximation through the corresponding n-order cumulants. In

the present thesis, we worked with up to 3-RDMs approximations. Thus, the

starting point is a Slater determinant, and for this wavefunction, the HF 3-RDM

reads,

γHF
3 (x′1,x

′
2,x
′
3; x1,x2,x3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1(x′1; x1) γ1(x′1; x2) γ1(x′1; x3)

γ1(x′2; x1) γ1(x′2; x2) γ1(x′2; x3)

γ1(x′3; x1) γ1(x′3; x2) γ1(x′3; x3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (91)

In order to simplify the notation, let us introduce the Grassmann product also

known as wedge product [177]. This product allows the formation of an m-

dimensional matrix from permutations of indices of several qi-dimensional ma-

trices, so that
∑
i qi = m and the antisymmetry of the formed matrix is pre-

served. The Grassmann product of a and b matrices of dimension q and m− q
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is:

(a ∧ b)i1,i2,...,imj1,j2,...,jm
= a

i1,i2,...,iq
j1,j2,...,jq

∧ biq+1,iq+2,...,im
jq+1,jq+2,...,jn

(92)

=

(
1

n!

)2∑

π

∑

σ

π̂σ̂ε(π)ε(σ)a
i1,i2,...,iq
j1,j2,...,jq

b
iq+1,iq+2,...,im
jq+1,jq+2,...,jn

(93)

where π̂ permutes all superindices, σ̂ permutes all subindices, ε(π) and ε(σ)

return 1 [−1] for even [odd] permutations. Within this notation, the Hartree-

Fock 2-RDM is simply 2DHF = 1D ∧ 1D = 1D2. Notice that the correct

symmetry is generated thanks to the ε(π) and ε(σ) functions. Considering

the cumulant matrix (2Γ), any 2-RDM is written as 2D = 1D2 + 2Γ using

the Grassmann product. It is easy to demonstrate that for the Hartree-Fock

approximation the two cumulants: 2Γ and 3Γ are set to zero. Therefore, the

Hartree-Fock expression for the 3-RDM is simply

3DHF = 1D3. (94)

In this vein, any 3-RDM can be written using the Grassmann product, the exact

1-RDM and the exact 2-RDM as

3D = −3 1D3 + 9 2Γ ∧ 1D + 3Γ (95)

where 1D3 = 1D ∧ 1D ∧ 1D ,2Γ is the cumulant matrix for the 2-RDM and 3Γ

is the cumulant matrix for the 3-RDM. The last term collects only third-order

correlation effects, the rest of effects are captured by 9 2Γ ∧ 1D. The next

approximation that we want to introduce is Valdemoro’s approximation [95],

where the 3Γ = 0. This approximation is based on the relationship between

particles and holes. Within this approximation, all correlation effects introduced

are only captured through the 2Γ matrix. By setting 3Γ = 0 in Eq. 95, we obtain

3DVAL = 9 2D ∧ 1D− 12 1D3. (96)

In order to improve over Valdemoro’s approximation, Mazziotti [178] and Nakat-

suji [179] proposed some approximations to the missing 3Γ cumulant. Mazziotti

and Nakatsuji proposed the usage of the 2Γ matrix in the following manner

[
3DMAZ

]
ijk,lmn

=
[
3DVAL

]
ijk,lmn

− 1

ξlmnijk − 3

∑

p

Â
(

2Γij,lp
2Γpk,mn

)
(97)
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and
[
3DNAK

]
ijk,lmn

=
[
3DVAL

]
ijk,lmn

+
∑

p

σpÂ
(

2Γij,lp
2Γpk,mn

)
(98)

where Â performs the antisymmetric summation of i, j and k indices, and l, m

and n indices (without mixing them) excluding the p index from the permuta-

tions, for orbitals below the Fermi level and σp = −1 otherwise, σp = 1, and

ξlmnijk = 1Di,i + 1Dj,j + 1Dk,k + 1Dl,l + 1Dm,m + 1Dn,n. These approximations

are commonly used in solving the Contracted Schrödinger Equation25 [92–98]

and the Antihermitian Contracted Schrödinger Equation formalisms [99].

Matito and coworkers [102] have developed an approximation to the diagonal

elements of the 3D matrix. Their starting point is a reformulation of Eq. 95

only in terms of the 2D,

3D = −21D3 + 3 2D ∧ 1D + 3Γ, (99)

from Eq. 99, we could collect all diagonal elements and write

3Dijk,lmn = −21Di,l
1Dj,m

1Dk,n + 2Dij,lm
1Dk,n + 2Dik,ln

1Dj,m

+ 2Djk,mn
1Di,l + 3∆ijk,lmn (100)

where 3∆ijk,lmn contains all missing terms needed to recover the appropriate

antisymmetry but also the 3Γijk,lmn elements. They suggested the construction

of some of these elements (in the natural orbital basis) as

3∆ijk,lmn = 2δinδjlδkm(ninjnk)a, (101)

where a = 1, 1/2 or 1/3. Notice that the Kronecker delta forces that only

3∆ijk,jki elements are non zero. Therefore, not all elements are reconstructed

within this approximation. Nevertheless, it can be easy proven that the 3D

constructed taking a = 1/3 attains the correct normalization. The justification

of this approximation relies on simple and cheap approximation for the evalua-

tion of the 3c-ESI that generalizes Müller approximation for the DI. With this

25Actually, for the Contracted Schrödinger Equation we also need the 4-RDM.
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approximation, the 3c-ESI is simply

δ(A1, A2, A3) = 4
∑

ijk

(ninjnk)aSij(A1)Sjk(A2)Ski(A3) (102)

in the natural orbital basis. In consequence, the missing elements needed to

build the total 3∆ matrix have not been provided up to now because they are

not needed for the evaluation of the 3c-ESI.

All 2D and 3D approximations here presented have been put to the test with the

2- and 3-electrons Harmonium atom models because of the simplicity to tune

correlation effects within these systems. In chapters IV and V the corresponding

studies are presented and the most important conclusions are presented in the

Results and Discussions, and Conclusions sections.

2.4) The Harmonium Atom Model

The harmonium atom model is obtained by replacing the Coulomb electron-

nucleus attraction by a parabolic confinement − Z
|r| → 1

2ω
2r2 [86]. Hence, the

Hamiltonian for this system is

Ĥ =
∑

i

(
−∇

2
i

2
+

1

2
ω2r2

i

)
+
∑

i>j

1

|ri − rj |
(103)

Notice that the usual Coulomb electron-electron repulsion remains unchanged.

The ω parameter is called the confinement strength. This parameter allows

to easily tune correlation effects. For large ω values the electrons are strongly

confined and the kinetic energy dominates over the electron-electron repulsion;

thus electrons behave almost like independent particles in this region and any

mean field theory (like Hartree-Fock) is good enough for describing the system.

Thus large ω values define the low-correlation regime. The strong-correlation

regime is thus produced by small ω values and the multiconfiguration character

of the wavefunction in this region makes the occupancies of the natural orbitals

tend to zero. Small ω values introduce strong-correlation effects by reducing the
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kinetic energy of the system making the Vee dominant in this region. Actually,

in the ω →∞ limit a Wigner crystallization of the electrons is produced [180].

This model system is widely used for method benchmarking as well as devel-

oping new methods (specially for developing density functional approximations

in DFT). The 2-electron Harmonium atom is especially interesting since it was

proven by Santos [181] and later by Taut [182] that is analytically solvable for

an infinite set of ω values. That is to say, closed-form expressions for the wave-

functions can be found for the singlet and the triplet states for an infinite set

of ω values, making this system an excellent candidate for understanding corre-

lation effects because correlation effects seem to be independent of the external

potential as P. M. W. Gill and coworkers recently pointed out from his work

with Spherium atom model [183]. Therefore, the information gathered from this

system should be easily transferable to real atoms and molecules. It is worth

to mention that because of the nature of the external parabolic potential, this

model cannot ionize (i.e. all energy levels are quantized).

In this thesis, we have worked with the 2- and 3-electron harmonium atoms. For

the 2-electron case we worked with the 1S state (see chapter V) whereas for the

3-electron case we worked with the 2P and 4P states in chapter IV. We have

used this model system as a benchmark tool for analyzing how correlation ef-

fects affect 2-RDM and 3-RDM approximations. To do so, we used a set of 20 ω

values [184], ranging between 0.03 and 1000, for the 2-electron Harmonium atom

and with 12 ω values for the 3-electron case (ranging from 0.1 to 1000) [185],

covering a large spectrum of the strong- and weak-correlation regimes. In pre-

vious works, Cioslowski and coworkers developed a set of even-tempered basis

functions, ranging from 4SP to 8SPDF basis functions, for the set of ω values

that were also used in the present thesis [186–189]. In chapters IV and V we

used the 7SPDF even-tempered basis, which consists of 7s, 7p, 7d and 7f orbitals.
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2.5) Chemical Models

The chemical descriptors (e.g. the DI) are used to study properties such as:

electron delocalization [190–192], aromaticity [115, 193–196], characterize agos-

tic bonds [197], among others. We have used some of these chemical descriptors

(i.e. the DI, the ESI and the radial IPD) as benchmark tools of 2- and 3-RDM

matrices in chapters IV and V. Nevertheless, we also used them in this thesis for

chemical purposes to: a) visualize electron rearrangements (through the analy-

sis of the I(s)), b) understand a certain feature of the Coulomb hole of Ne atom

and c) to characterize the so-called harpoon mechanism.

In chapter VI we analyze the changes in I(s) (Eq. 47) along the dissociation

process in order to understand the electronic rearrangements during the bond

formation/dissociation process. To this end, we worked with H2 in its ground

state and some excited states (1,3Π), HeH+, LiH, BH, LiF, F2, CO and N2. In

this chapter we proposed a simple approximation to the usually expensive exact

radial intracule probability density using an approximate wavefunction and a

MBB reconstruction for the 2-RDM. Finally, we also tested the goodness and

advantages of using MBB approximation for computing the I(s) by comparing

the approximate I(s) with the exact one.

Next, we used the I(s) to study of the Coulomb hole of the Neon atom. It was

previously observed that in this Coulomb hole there is a shoulder for small r12

values (around 0.1 Å). In chapter VII we study the nature of Ne atom’s Coulomb

hole and unveil the reason for the existence of this shoulder from highly accurate

CISD wavefunctions. Some fundamental questions about the importance of the

basis functions needed to observe this shoulder are addressed and also discussed

in this chapter.

Finally, in chapter VIII we worked with some diatomic systems H2, He2, LiH,

BeH, BH, LiF, F2, CO and N2 to study the harpoon mechanism. In this mecha-
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nism, during the formation of the molecule, there is at least one avoided crossing

at some geometry RAB between two diabatic states one ionic and another cova-

lent, resulting into two Potential Energy Curves (PECs) of two adiabatic states

with varying ionic/covalent character. The resulting PEC for the ground-state

shows a change of character from ionic (at the equilibrium distance) to cova-

lent (at the dissociated limit where neutral atoms are formed), which occurs

around avoided crossing geometry RAB. We have worked with the Shannon

entropies (Eqs. 54 and 55), Fisher integrals (Eqs. 56 and 57), DI (Eq. 32),

ELF (Eq. 45) and −∇2ρ(r) (this is known as an indicator of density concen-

tration [109, 198]). In order to find a chemical descriptor able to recognize this

change in the ground-state wavefunction for systems expected to be formed

by the harpoon mechanism, LiH, BH, BeH and LiF. H2, F2, CO, N2 and He2

molecules were taken as counterexamples since the first four are formed by co-

valent bonds (formed by single or triple bonds) and the last one is formed by

dispersion forces (van der Waals interactions).
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III) Objectives

The main objective of this thesis is the development and application

of RDMs (and reduced quantities), focusing on the development of

benchmarks to analyze many properties that we can compute using

RDMs. We have introduced n-RDMs and the properties that we used in the

development of the benchmarks in the Methodology section. Moreover, we

have also used some properties that depend on n-RDMs to give new insights of

chemical reactions and the electronic structure of Ne atom. In this chapter the

detailed objectives of the thesis will be presented.

The emerging methodologies that use reduced quantities other than the elec-

tronic density for the computation of the energy (e.g. RDMFT, variational-

2RDM, CSE, among others.) have led to the development of functionals of the

energy in terms of the 1-RDM and the 2-RDM. These methodologies provide al-

ternatives to the widely used DFT method, usually improving DFT description

of strongly-correlated systems. Contrary to DFT, for which many benchmarks

are available, exhaustive benchmarks for approximations to the 2-RDM and

3-RDM were not available. Thus, one of the objectives of this thesis is to pro-

duce them. According to recent studies [84], benchmarks should include as many

properties as possible, thus we have proceed in consequence and evaluated many

properties of the approximate matrices (e.g. N -representability properties, sym-

metry properties, 3c-ESI, DI, radial IPDs, among others). The Hartree-Fock

approximation is an excellent approximation when electron-correlation effects

are negligible and, therefore, many 2-RDM and 3-RDM approximations retrieve

the Hartree-Fock approximation in the weak-correlation limit. Nevertheless, the

information of how electron correlations affects them was missing in the liter-

ature. In order to study how electron correlations affects the 2- and 3-RDM

approximations, we propose to work with the 2- and the 3-electron Harmonium

atoms, which allow an easy tunning of correlation effects. The benchmarks pro-
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posed in this thesis consist on a battery of tests, where the properties chosen are

easy to assess and not expensive (from the computational perspective). Our

benchmarks should not only serve as pure calibration tools for the

available approximations, they should also bring light on the draw-

backs present in the available approximations and provide clues to

develop better approximations in the future. The benchmarks should be

easily extended to molecular systems, where we will also use some properties like

the 3c-ESI to evaluate the performance of the approximations in these systems.

Another objective is to adquire a broader view of the radial IPD which

depends on density matrices. The radial IPD is used as a benchmark tool

in the first objective of this thesis but we need to understand the information

contained within this magnitude. Therefore, we propose to compute it along the

bond formation process of some simple but representative diatomic molecules

(H2, LiH, BH, Li2, F2, CO, among others) in order to analyze how electron

rearrangements can be visualize using it. The computation of the radial IPD is

usually expensive, thus, we will also try to propose some alternative to the exact

radial IPD. Secondly, the next objective was to analyze how electron cor-

relation affects the shell structure of atoms, thus Neon’s atom Coulomb

hole is an excellent candidate because it presents some shoulder in the small

interelectronic region that needs to be studied in detail. We will understand

what correlation effects of the K-shell electrons produce the shoulder and we

will also analyze how electron correlation affects the different shells by studying

the K and L shells separately.

Our last objective is to describe the harpoon mechanism using chemical

descriptors based on reduced quantities. This work must be carried out using

small diatomic systems that follow the mechanism and using also some coun-

terexamples, LiH being the simplest and most representative system formed

by this mechanism. This study should also provide a detailed analysis of the

ability of the chemical descriptors to track the electron transfer. The chemical
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descriptors proposed for the analysis are the ELF, the Laplacian of the elec-

tronic density, the analysis of the population and information theory quantities.

This study should also serve to test the ability to track the electron transfer

of descriptors proposed in the future. We also want to know how the atomic

partition affects the values obtained for the descriptors in this analysis.
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IV) Benchmarking 3-RDM Approxima-

tions

4.1) Electron Correlation Effects in Third-Order Densities
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Electron correlation effects in third-order
densities†

Mauricio Rodriguez-Mayorga,ab Eloy Ramos-Cordoba,ac Ferran Feixasb and
Eduard Matito*ad

The electronic energy of a system of fermions can be obtained from the second-order reduced density

matrix through the contracted Schrödinger equation or its anti-Hermitian counterpart. Both energy

expressions depend on the third-order reduced density matrix (3-RDM) which is usually approximated from

lower-order densities. The accuracy of these methods depends critically on the set of N-representability

conditions enforced in the calculation and the quality of the approximate 3-RDM. There are no benchmark

studies including most 3-RDM approximations and, thus far, no assessment of the deterioration of the

approximations with correlation effects has been performed. In this paper we introduce a series of tests to

assess the performance of 3-RDM approximations in a model system with varying electron correlation

effects, the three-electron harmonium atom. The results of this work put forward several limitations of the

currently most used 3-RDM approximations for systems with important electron correlation effects.

1 Introduction

The equations to calculate the electronic energy of an N-electron
system have been known for a long time, however, their exact
application leads to equations much too complicated to be
solved.1 Indeed, the energy is a well-known functional of the
wavefunction and there exist a plethora of methods to construct
increasingly accurate wavefunctions leading to corresponding
approximations of the electronic energy. The complex structure
of a wavefunction complicates the practical solutions of the
underlying mathematical equations and, therefore, many wave-
function methods can only be applied to molecules of modest
size. Conversely, there are robust theorems assessing the existence
of energy functionals of the density2 and the first-order reduced
density matrix (1-RDM),3 however, the exact functional is not
known and the accuracy of the corresponding approximations is
not so easily assessed.

A completely different set of approximations is obtained if the
working ansatz is the second-order reduced density matrix (2-RDM).
For a system of fermions subject to one and two-particle forces

the exact energy can be completely expressed in terms of the
2-RDM.4–7 Many authors have attempted the calculation of the
ground-state energy from the 2-RDM because it is a much
simpler object than the electronic wavefunction and, therefore,
it entails a reduced computational cost. The use of the variational
method to calculate the energy of a system involves the modification
of the 2-RDM subject to the N-representability conditions (see
Section 2.2). Although a complete set of N-representability
conditions of the 2-RDM is nowadays known,8 a practical solution
to the problem remains to be found. Besides, the N-representability
problem of n-order reduced density matrices (n-RDM), for n 4 2, is
still unsolved.

Notwithstanding, the contracted Schrödinger equation (CSE)9–17

and the anti-Hermitian counterpart (ACSE)18 have rekindled
the interest in methods that use the 2-RDM and higher-order
densities.19 Both CSE and ACSE energy expressions depend on
the 3-RDM (the CSE depends also on the 4-RDM),20,21 which is
usually approximated from lower-order densities.22–24 The
accuracy of these methods depends critically on the set of
N-representability conditions enforced in the calculation and
the quality of the approximate 3-RDM.7,19 There are not many
approximations to the 3-RDM,18,22,23,25 and, to our knowledge,
very few benchmark tests have been performed in order to
compare these approximations.24,26–29 Moreover, no assessment
of the deterioration of the approximations upon inclusion of
electron correlation has been carried out.

n-RDMs are also used in the context of density matrix
functional theory (DMFT)30,31—where the 2-RDM is approximated
from the exact 1-RDM—and in some variations of the density
matrix renormalization group (DMRG) that use up to the 5-RDM.32

a Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, and Donostia

International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain.

E-mail: ematito@gmail.com
b Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de
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The 3-RDM and higher orders are also used to calculate particle
number distributions in domains33–37 and to construct several
electronic structure descriptors such as multicenter indices38

and aromaticity descriptors.39–43

In this paper we submit the four most employed 3-RDM
approximations (the single-determinant approximation,44

Valdemoro’s,22 Nakatsuji’s23 and Mazziotti’s24) to a series of
constrictive tests that will put forward some important limitations
of these approximations and suggest new means to construct more
robust ones. We will employ highly-accurate full-configuration-
interaction (FCI) benchmark data for the three-electron harmonium
atom, a model system that permits us to test methods under varying
electron correlation regimes and has been successfully used in the
past to test DMFT45 and DFT methods.46–49 The present set of tests
does not involve electronic energies and, therefore, it is not biased
towards providing most accurate energies. In this sense, they add
to the list of benchmark tests that assess the other properties of
RDMs50 and can be used to complement the many existing
energy-based benchmarking tools.

2 Methodology
2.1 Density matrices

The n-order reduced density matrix (n-RDM) of an N-electron
system is obtained from the wavefunction upon integration
over N � n coordinates (see ref. 51 for notation),6

r 10; . . . ; n0; 1; . . . ; nð Þ ¼
N

n

 !
n!

ð
dnþ1 . . .

ð
dN

�C 10; . . . ; n0; nþ 1 . . . ;Nð ÞC� 1; . . . ;Nð Þ:
(1)

where C is the wavefunction describing the system and we have
assumed the McWeeny normalization.52 The n-density function
(n-DF, hereafter) corresponds to the diagonal part of the n-RDM, i.e.,

rnð1; ... ;nÞ¼
ð
d10 ...

ð
dn0r 10; ... ;n0;1; . .. ;nð Þd 10 � 1ð Þ ...d n0 � nð Þ

(2)

The n-RDM can be expanded in terms of a set of M orbitals,
{fi(1)}i=1, M, giving

r 10; . . . ; n0; 1; . . . ; nð Þ ¼
XM

i1 . . . in
j1 . . . jn

nDi1...in
j1...jn

fi1
� 10ð Þ . . .fin

� n0ð Þ

� fj1
ð1Þ . . .fjn

ðnÞ

(3)

where nDi1...in
j1...jn

are the elements of nD, which is the n-th order

density matrix (n-DM hereafter). In the following we will assume
that n-DM is expressed on the basis of canonical molecular
orbitals obtained from a Hartree–Fock calculation, unless other-
wise specified.

In practice, the calculation of the n-DM carries a large
computational cost and it is common to resort to approximate
n-DM constructed from lower-order matrices. Namely, for the

3-DM there exist four well-known approximations: the single-
determinant (SD) approximation (also referred as n = 1, vide infra),

3DSD = 1D41D41D = 1D3, (4)

Valdemoro’s approximation,22

3DVAL ¼ 3!
3
�2
2D� 21D2

� �
^ 1D ¼ 92D ^ 1D� 121D3; (5)

Nakatsuji’s approximation,23

3DNAK
� �pqs

ijk
¼ 3DVAL
� �pqs

ijk
þ
X
l

sl Â 2Dpl
ij

2Dqs
lk

� �
; (6)

and Mazziotti’s approximation,18

3DMAZ
� �pqs

ijk
¼ 3DVAL
� �pqs

ijk
� 1

wpqsijk � 3

X
l

Â 2Dpl
ij

2Dqs
lk

� �
(7)

where 2D = 2D� 1D2 is the cumulant of the 2-DM,53 Â performs the
antisymmetric summation of all superindices and all subindices
(without mixing superindices and subindices) excluding l, sl = 1
for orbitals below the Fermi level and �1 otherwise, and wpqs

ijk =
1Di

i + 1D j
j + 1Dk

k + 1D p
p + 1Dq

q + 1Ds
s. The latter expressions (eqn (4)–

(7)) use Grassmann algebra (notice the wedge product, 4),54 as
introduced by Mazziotti to provide a compact representation of
these approximations.24,55–58

2.2 N-Representability conditions

For a quantum-mechanical system of N identical fermions, the
N-representability problem is the problem of recognizing whether, for
a given n-RDM, there exists an antisymmetric N-particle wavefunction
fulfilling eqn (1). The N-representability problem, therefore, concerns
the determination of conditions (constraints), the N-representability
conditions, to be imposed on the approximate n-RDM to guarantee
the fulfillment of eqn (1).5 If the equality holds the n-RDM is said
to be N-representable. The full set of sufficient conditions for
N-representability of the n-RDM is only known for the 1-RDM5 and
the 2-RDM,8 the latter set carrying a large computational cost.

The use of non-N-representable n-RDM can lead to spurious
results such as non-variational electronic energies.6 Therefore,
methods that use approximate 2-RDM and higher-order densities
such as DMFT, CSE, ACSE or DMRG need to impose the necessary
N-representable conditions that are available. In this work we are
concerned with the assessment of the 3-RDM, and therefore we
will consider the following N-representability conditions that the
3-DM should satisfy:6,59

D (or P) condition:

3Dijk
ijk Z 0 (8)

G condition (I):

2Dij
ij �

3Dijk
ijk Z 0 (9)

G condition (II):

1Di
i � 2Dij

ij �
2Dik

ik + 3Dijk
ijk Z 0 (10)

Q condition:

1 � 1Di
i � 1D j

j � 1Dk
k + 2Dij

ij + 2Dik
ik + 2D jk

jk � 3Dijk
ijk Z 0 (11)
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These N-representability conditions are related to the prob-
ability of finding groups of three electrons in different orbitals
and, therefore, they can be easily illustrated with Venn dia-
grams (see Fig. 1). D condition accounts for the probability of
finding three electrons occupying orbitals i, j and k, Q condi-
tion is related to the probability that neither i, j nor k are
occupied, whereas G conditions I and II concern the prob-
ability of finding the three electrons in i and j but not in k and
the probability of finding the electrons in i but not in j or k,
respectively. These conditions hold for an arbitrary ortho-
normal orbital basis and, therefore, the full validation of
eqn (8)–(11) involves the positive definiteness condition of
the underlying operators.60 The simplest way to check these
conditions consists in finding the diagonal form of the
corresponding operators and check that each associated
eigenvalue is nonnegative. For a 3-DM this procedure involves
the very costly procedure of constructing the natural 3-states.6

In this paper we restrict ourselves to a less constrictive test
that consists in checking the D, G-I, G-II and Q conditions on
the basis of canonical molecular orbitals. 3-DM approxima-
tions that fail to fulfill a given condition on this basis set
obviously fail to satisfy the most general condition.

Apart from these conditions, the 3-DM should satisfy the
symmetry

3Dijk
lmn = 3Dlmn

ijk (12)

and antisymmetry conditions

3Dijk
lmn = �3D jik

lmn = 3Dkij
lmn = . . . (13)

as well as the sum rule imposed by eqn (1), i.e.,

Tr 3D
� �

¼
X
ijk

3D
ijk
ijk ¼ NðN � 1ÞðN � 2Þ (14)

2.3 Multicenter indices

The n-DF can be used to calculate the so-called n-center electron
sharing indices (nc-ESI),61 through the following formula:

d A1;A2; . . . ;Anð Þ ¼ ð�2Þ
n�1

ðn� 1Þ!

ð
A1

d1

ð
A2

d2 � � �
ð
An

dngð1; 2; . . . ; nÞ;

(15)

where

g(1,2,. . .,n) = h(r̂1 � �r1)(r̂2 � �r2). . .(r̂n � �rn)i, (16)

r̂ stands for the density operator6 (see eqn (17) and (19)) and �r
is its average value, i.e., �rA = hr̂iA. From g(1,2,. . .,n), 2n terms
arise and the computationally most expensive one involves the
n-DF,

r̂1 . . . r̂nh iA1...An
¼
ð
A1

d1 . . .

ð
An

dnrnð1; . . . ; nÞ; (17)

and the lower-order DF in a set of three-dimensional space
regions. d(A1,. . ., An) is invariant with respect to the order of the
atoms in the string and is proportional to the n-central moment
of the n-variate probability distribution, n-DF, integrated into
the atomic basins A1,. . ., An:62

d A1; . . . ;Anð Þ ¼ ð�2Þ
n�1

ðn� 1Þ!
Yn
i¼1

N̂Ai
� �NAi

� 	* +
(18)

where N̂A is the particle operator applied to region A and %NA is
the average number of electrons in A (or population of A):

�NA ¼ r̂1h iA¼
ð
d1N̂Arð1Þ �

ð
A

d1rð1Þ: (19)

The large cost associated with the 3c-ESI is mostly due to the
computation of the exact 3-DF, which by itself is a huge
computational task for non-single-determinant wavefunctions.
The 3c-ESI is thus often computed from approximate 3-DF.43,63,64

In a recent work65 we have put forward two new approximations
to the 3-DF that have been used to calculate the 3c-ESI in a series
of molecules. Our approximations were compared against the
Valdemoro,22 Nakatsuji23 and Mazziotti24 approximations, showing
that one of our proposals was clearly superior to the others.65,66 This
3-DF expression was named cube root (CR) or n = 1/3 approximation,
it is exact for single-determinant wavefunctions and is the only
approximation to satisfy the sum rule, eqn (14). It can be obtained by
setting a = 1/3 in the following general expression

ra
3(1,2,3) = ga(1,2,3) � 2r(1)r(2)r(3) + p̂3

1r2(1,2)r(3), (20)

where p̂3
1 is an operator which generates the two possible

subsets of indices of sizes 1 and 2 from the elements in the
set {1,2,3}, r2 is the 2-density function (2-DF) and

gað1; 2; 3Þ ¼ 2
X
ijk

ninjnk
� 	aZi�ð1ÞZjð1ÞZkð2ÞZj�ð2ÞZið3ÞZk�ð3Þ;

(21)

where Zi(1) is a natural orbital and ni its occupation number. The
CR approximation of the 3-DF bears a close resemblance with
Müller’s approximation of the 2-DF67 and provides a simple
expression to calculate the 3c-ESI only in terms of natural orbitals:

~dCR A1;A2;A3ð Þ ¼ 4
X
ijk

ninjnk
� 	1=3

Sij A1ð ÞSjk A2ð ÞSki A3ð Þ; (22)

Fig. 1 Venn diagrams representing the probabilities of occupying
orbitals i, j and k, according to the D, G-I, G-II and Q conditions of
the 3-DM.
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where Sij(A1) is the atomic overlap matrix (AOM) of atom A1,

Sij A1ð Þ ¼
ð
A1

d1Zi
�ð1ÞZjð1Þ: (23)

In the tests of this paper we include the 3c-ESI using two approx-
imations we have recently suggested,65,66 the latter eqn (22) and

edSR A1;A2;A3ð Þ ¼ 4
X
i; j;k

ninjnk
� 	1=2

Sij A1ð ÞSjk A2ð ÞSki A3ð Þ: (24)

which is also indicated as n = 1/2. These approximations, as
well as the single-determinant approximation (n = 1), i.e.,
eqn (4) substituted in eqn (15),edSD A1;A2;A3ð Þ ¼ 4

X
i; j;k

ninjnkSij A1ð ÞSjk A2ð ÞSki A3ð Þ; (25)

only require the calculation of the natural orbitals and their
occupancies and, therefore, bear a very reduced computational
cost (unlike the 3-DM formulations of Valdemoro, Mazziotti
and Nakatsuji that generate 3c-ESI approximations that implicitly
depend on the exact 2-DM). Conversely, the 3-DF approximations in
eqn (20) for a = 1, a = 1/2 and a = 1/3 are referred to as SD (n = 1), SR
(n = 1/2) and CR (n = 1/3), and depend on natural orbitals and the
2-DF. Except in the case of the SD approximation, no 3-DM can be
constructed from the latter formulae and, therefore, some of the
benchmark tests suggested in this paper cannot be applied. For
single-determinant wavefunctions all the approximations analyzed
in this study reduce to the exact formulation.

2.4 Harmonium atom

Our working system is the harmonium atom (HA),68 where the

electrons are confined on a parabolic potential,
1

2
o2r2, and

whose Hamiltonian reads

Ĥ ¼
XN
i

�1
2
r̂2

ri
þ 1

2
o2ri

2


 �
þ
XN
io j

1

rij
(26)

where o is the confinement strength. This model allows an easy
tuning of the amount of correlation by playing with the o parameter.
For large values of o electrons are in a low-correlation regime,
whereas the small-o region corresponds to highly correlated systems.
The two-electron harmonium has been widely used in calibration
and benchmarking of electronic structure methods45–49,69–75 due to
the availability of analytical76–78 and very accurate results.79–82

In the present study we have taken the lowest-lying quartet
(S = 3/2) and doublet (S = 1/2) states of the three-electron HA for
several values of the o parameter (o A [0.1,1000]). FCI calcula-
tions of quartet and doublet 3e-HA from a previous study49 have
been used to generate the exact 3-DM and various approxima-
tions. For the reader’s reference, let us note that the correlation
energy of the helium atom is very similar to the correlation
energy of two-electron harmonium at o = 1/2.

3 Computational details

FCI calculations were performed on the two lowest-lying states
(doublet and quartet) of the three-electron HA for 12 values of

the confinement parameter, o, namely 0.1, 0.15, 0.2, 0.3, 0.4,
0.5, 1.0, 2.0, 5.0, 10.0, 100.0, and 1000.0. We used a modified
version of the code developed by Knowles83,84 and a variationally-
optimized even-tempered basis set consisting of seven S, P, D
and F Gaussian functions, amounting a total of 112 basis
functions.49 1-DM, 2-DM and 3-DM were calculated from the
FCI expansion coefficients using the DMN code85 developed in
our group. The approximate 3-DMs were also generated with the
DMN code.

In this work we will test four 3-DM expressions, namely,
Valdemoro’s (eqn (5)), Nakatsuji’s (eqn (6)), Mazziotti’s (eqn (7)),
and the single-determinant approximation (eqn (4)). A series of
four tests will be used to analyze the performance of these 3-DM
approximations: (i) fulfillment of the sum rule, eqn (14),
(ii) attainment of the D-, G-I, G-II and Q conditions of the
3-DM, eqn (8)–(11) (see Fig. 1), (iii) calculation of the 3c-ESI
between three regions of the Cartesian space and (iv) a termwise
assessment, i.e.,

Tw 3DX
� �

¼
X

ðio jo kÞ�ðlomo nÞ

3DX
� �ijk

lmn
� 3D

ijk
lmn

��� ���: (27)

For the sake of completeness, in tests (i) and (iii) we have also
included the calculation of the two approximate 3-DF obtained
from eqn (20) by setting a = 1/2 and a = 1/3 (vide supra).

The 3c-ESI calculations were performed over several three-
region partitions of the Cartesian space occupied by the HA. In
the end, among many partitions tested we have decided for the
partition that was most affected by correlation effects and,
therefore, poses the most stringent test to the 3-DM approx-
imations. Namely, the Cartesian space is partitioned by two
concentric spheres with radii r1 and r2, which are selected in
such a way that there is one electron in each of the three
resulting regions. Obviously, r1 and r2 vary for each value of o
and each spin state, their values being collected in Table 1. The
calculation of the corresponding overlap matrices, eqn (23),
was performed with the in-house RHO_OPS code.86 The 3c-ESI
values were computed with the ESI-3D87–89 code developed in
our group.

Table 1 Values of r1 and r2 that define the partition of the 3e-HA in three
regions of the Cartesian space

S = 1/2 S = 3/2

o r1/a.u. r2/a.u. r1/a.u. r2/a.u.

0.10 4.03 5.66 4.35 5.92
0.15 3.25 4.54 3.45 4.70
0.20 2.75 3.86 2.93 4.03
0.30 2.17 3.07 2.33 3.21
0.40 1.84 2.62 1.99 2.74
0.50 1.62 2.31 1.76 2.43
1.0 1.10 1.59 1.21 1.68
2.0 0.76 1.10 0.84 1.17
5.0 0.47 0.68 0.52 0.73
10.0 0.33 0.47 0.37 0.52
100.0 0.10 0.15 0.11 0.16
1000.0 0.03 0.04 0.04 0.05
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4 Results
4.1 The sum rule

The plots in Fig. 2 correspond to the difference between the trace of
3D obtained from the different approximations via eqn (14) and the
trace of the exact 3-DM (which for a three-electron system equals
six) against the inverse of the confinement strength, o. The n = 1/3
approximation has not been included because it satisfies the sum
rule. The smaller the o value, the more important the correlation
effects in the HA. For large values of o, all the approximations
provide trace values very close to the exact result. However, as o
decreases, most approximations show significant deviations. The
single-determinant approximation gives a very poor estimate of the
trace with more than 50% of the error for the doublet state at
o = 0.1. Mazziotti’s 3-DM only performs marginally better than
the single-determinant approximation in this case. Valdemoro’s
approximation systematically underestimates the value of the
trace, but provides very accurate results. On the other hand,
Nakatsuji’s 3-DM and n = 1/2 (eqn (24)) approximation also
provide quite accurate trace values but show larger errors than
Valdemoro’s. The quartet state poses a less serious test for the
approximations, giving significantly smaller errors in the calculation
of the trace. In this case, Mazziotti’s 3-DM provides quite accurate
results, improving Nakatsuji’s values. Again, the Valdemoro approxi-
mation provides trace values systematically below the exact ones but
more accurate than any other approximation.

4.2 N-Representability

We have assessed the deviation from the N-representability condi-
tions introduced in Section 2.2 by summing the l.h.s. of eqn (8)–(11)
on the basis of canonical molecular orbitals. The resulting numbers
are plotted against o�1 in Fig. 3. As expected, a more significant
deviation from the N-representability conditions is observed as the
confinement strength is weakened.

The single-determinant approximation of the 3-DM satisfies
the D condition, however, it presents significant errors in the other
N-representability conditions for low values of o. Valdemoro’s
3-DM presents the largest deviations from the D condition for

both states, in line with the fact that it is the only approximation
that underestimates the trace value of 3D. In addition, it presents
non-negligible deviations in the G conditions for the doublet
state. Mazziotti’s approximation shows the smallest errors in the
D condition upon inclusion of electron correlation and, with the
exception of the G-I condition in the doublet state, it presents
the smallest deviations from N-representability conditions. There-
fore, in the case of Mazziotti’s approximation, the large errors in
the sum rule (eqn (14)) seem to be connected to the satisfaction of
the G-I condition. Interestingly, Nakatsuji’s 3-DM presents the
smallest deviations in the G-I condition for the doublet state and
it does not perform better than Mazziotti’s approximation in the
other N-representability conditions. Although there is no apparent
reason for that, on the basis of canonical molecular orbitals, the Q
condition is attained by all the approximate 3-DM, excepting the
single-determinant formulation.

4.3 3c-ESI

The 3c-ESI between regions A, B and C is a measure of the
simultaneous electron sharing between these regions.38,88 The
partition has been constructed to contain one electron in each of its
parts. Upon reduction of the confinement parameter the electron
distribution spreads and, consequently, regions A and B increase
their size. The 3c-ESI decreases with o, showing values between
0.38 and 0.33 for both spin states, which indicate that there is
substantial electron sharing between the three regions.

The difference between the approximate 3c-ESI and the exact
ones is plotted against the logarithm of the confinement
parameter in Fig. 4. In general, the approximations correctly
provide the gross electron sharing, with the exception of
Mazziotti’s in the doublet state. The latter always overestimates
the actual 3c-ESI and, as we have seen in previous tests, it presents
a very large error for low-o values of the doublet state, whereas it
gives very good estimates of the quartet state. For both states,
Valdemoro’s approximation systematically underestimates the
3c-ESI but it provides the most accurate values. Excepting the
doublet state at the strong correlation regime, Nakatsuji’s 3-DM

Fig. 2 Error in the trace of the 3-DM against the inverse of o for the
doublet (top) and quartet (bottom) states of three-electron harmonium.

Fig. 3 Errors associated with the N-representability conditions. Solid lines
are used for the doublet state and dashed lines are used for the quartet
state.
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provides results that are usually worse than Mazziotti’s. The
3-DF obtained from a = 1/3 and a = 1/2 gives better results than
the single-determinant approximation (a = 1) and, for both
states, the n = 1/3 approximation error seems to reach an
asymptotic value.

4.4 Termwise error

Thus far, we have examined the performance of 3-DM approxima-
tions in the properties that depend only on the diagonal part of the
3-DM. In Fig. 5 we find the accumulated termwise error of the 3D,
eqn (27), for the different 3-DM used in this work. Upon decrease of
the confinement strength, the electron correlation enhances
(especially in the doublet state) and the matrices present larger
termwise deviations, as expected. Indeed, for the quartet state,
the single-determinant approximation shows the worst results,
while the other three approximations show similar errors.
Surprisingly, the largest deviations (even larger than the single-
determinant approximation for low-o values) of the doublet state
are presented by Valdemoro’s formulation. Mazziotti’s 3-DM
performs only marginally better and Nakatsuji’s provides the

best results for the range of o values considered in this work.
However, the trends in Fig. 5 suggest that for very low o values
the total errors will be worse than the poor single-determinant
approximation. Finally, it is worth mentioning that the termwise
error increases as o�1 in all cases. On the other hand, the
termwise error of the diagonal elements of the 3-DM is not too
large in most approximations, except for the single-determinant
one (see Fig. 6). Nakatsuji’s approximation shows the smallest
errors at the weak confinement regime.

5 Conclusions

We have introduced a series of four tests for 3-DM approximations
that can be readily computed in a model three-electron system with
varying electron correlation effects. The results of this work put
forward several limitations of the currently most used 3-DM
approximations for systems with important electron correlation
effects. Our results show that most of the properties evaluated show
errors of the 3-DM approximations that increase as o�1 in the
three-electron harmonium atom. Although the approximations
perform reasonably well in accounting for the 3c-ESI, they fail to
satisfy several N-representability conditions. In addition, they also
show significant deviations from the trace numbers upon inclusion
of electron correlation.

The comparison of the quartet and doublet states permits
the analysis of the Coulomb correlation, which is only present
in the doublet state. For this reason, this state poses a most
serious challenge for the 3-DM approximations. Indeed, Mazziotti’s
3-DM performs remarkably bad for the low-spin state if we compare
it against Nakatsuji’s approximation, which provides better 3c-ESI
values and trace numbers for small values of the confinement
parameter. Since Mazziotti’s approximation gives small deviations
for all the tested N-representability conditions but G-I, one is
prompted to attribute the erratic behavior of this 3-DM approxi-
mation to the violation of the G-I condition. Furthermore,
Nakatsuji’s approximation performs reasonably well for this
state and, therefore, one is tempted to conclude that the phase

Fig. 4 3c-ESI errors of the approximate 3-DM for the doublet (above) and
quartet (below) states of 3e-HA plotted against the logarithm of o.

Fig. 5 Termwise errors of the 3-DM approximations for the doublet
(solid) and quartet (dashed) states plotted against the inverse of o.

Fig. 6 Termwise errors of the diagonal elements of the 3-DM approx-
imations for the doublet (solid) and quartet (dashed) states plotted against
the inverse of o.
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factor sl of eqn (6) is responsible for this fact. Investigation along
these lines is currently being pursued in our laboratory.

Finally, one should mention that analytical solutions of two-
and three-electron harmonium atoms at o - 0 have recently
become available and could be used to calibrate 3-DM approx-
imations at this highly correlated limit.90

In general, it is advisable to use approximations other than
the single-determinant formulations, which provide the largest
errors for most tests. However, for large correlation effects, all
approximations fail to satisfy at least one of the tests, suggesting
caution when using the current 3-DM approximations in this
context. In this sense, we expect that the construction of new
3-DM approximations will benefit from the deficiencies shown
by the present test set.
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a b s t r a c t

Several approximations to the third-order reduced density matrices (3-RDM) are applied to compute
approximate three-center electron sharing indices (3c-ESI) and average number of three particles (3-
AN) for correlated and uncorrelated wave functions with different atomic partition schemes. Exact and
approximated 3c-ESI are calculated for a set of molecules with three-center two-electron (3c-2e) and
three-center four-electron (3c-4e) bonding. Results show that 3c-2e bonding is associated with positive
values of 3c-ESI irrespective of the method of calculation, atomic partition employed, and approximation
to the third-order density matrix used. Single-determinant calculations yield negative 3c-ESI values for
3c-4e bonds, whereas the exact CASSCF 3c-ESIs are positive or close to zero. Some approximations to
the 3-RDM preserve the negative sign of the 3-ESI for 3c-4e bonds, however they perform poorly on
the calculation of 3-AN. The adequacy of the 3-RDM approximation to calculate 3-AN is also analyzed,
revealing that Valdemoro’s approximation to the 3-RDM is the best approximation while Mazziotti’s
and natural-orbital based approximations yield the lowest maximum errors.

Published by Elsevier B.V.

1. Introduction

The importance of the electron pair bond concept was recog-
nized by Lewis already in 1916 [1]. Most chemical interactions in
molecules can be described with a set of localized two-center
two-electron bonds (2c-2e). Although these 2c-2e bonds are cer-
tainly able to describe the molecular structure of most of mole-
cules, some molecules have more complicated bonding patterns
involving interactions between more than two atoms that result
in multicenter bonds. One of the paradigmatic cases is diborane
that contains a B2H2 ring that is held by four electrons forming
two 3-center 2-electron (3c-2e) bonds as described first by Lips-
comb [2,3]. 3c-2c bonds are present not only in boranes but also
in a number of non-classical systems such as metal clusters, dis-
torted lithiocarbons, etc. [4,5]. Apart from the 3c-2e bonds, 3c-4e
chemical interactions are needed to interpret the bonding in
hypervalent systems like XeF2, PF5 or SF4 and in electron-rich orbi-
tal-deficient molecules such as the trihalide anions X3

� or hydrogen
bihalide anions XHX� [4] as well as in more special bonding situa-
tions like in Fischer carbenes [6]. According to Bridgeman and
Empson [5], although a number of 4-, 5-, and 6-center bonds have
been described [4,7–14], the 3-center bonding interactions

represent by far the most significant multicenter bonding
situations found in molecular systems.

There are several ways to analyze multicenter bonding in quan-
tum chemistry [15–18]. Probably one of the most widely used is
the calculation of multicenter electronic indices (nc-ESIs). The
3c-ESI was defined for the first time in 1990 by Giambiagi et al.
[19]. Using this definition several authors found that, for single-
determinant wave functions, 3c-2e bonds are characterized by
positive values of the 3c-ESI whereas 3c-4e bonding yield negative
values. On the other hand, the absence of 3c-bonding is reflected
by low values of the 3c-ESI [20–22]. The integrations over atomic
basins in the first 3c-ESI calculations were performed with a Mul-
liken-like partitioning of the molecular space [23]. Later on, 3c-ESI
calculations were also carried out using Bader’s quantum theory of
atoms in molecules (QTAIM) [24–26] and fuzzy atom [27] topolog-
ical partitions. It was found that the qualitative results obtained do
not depend on the partition used [28–30], except in very few cases
(the 3c-ESI of N3

� with the D95++ basis set changes of sign when
going from Mulliken to QTAIM partition [30]). The qualitative
results are not dependent on the basis set either, especially in
the case of QTAIM partitioning [30]. Another aspect that has been
investigated is the effect of electron correlation on 3c-ESI values.
Previous results at the correlated level show that 3c-ESI in 3c-2e
bonds keep the positive sign when going from single-determinant
to multi-determinant wave functions [31,32]. For 3c-4e bonding
the results are less conclusive. In most reported cases, 3c-ESIs for
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3c-4e bonds remain negative but their absolute values are drasti-
cally reduced at the correlated level [32–34], whereas in other
reported examples 3c-ESIs become positive, changing their
expected negative sign [35]. According to Ponec and coworkers
[32], the reason for the change of sign is that electron correlation
transforms the 3c-4e bonding scheme into a pattern of two very
polar 2c-2e bonds. The 3c-4e molecular orbital (MO) bonding
mechanism described by Rundle [36,37] and Pimentel [38] is
depicted in Scheme 1 for F3

� and CO2 that have r and p 3c-4e
bonds, respectively. From this mechanism, one can already antici-
pate relatively large 2c-ESI between the two nonbonded atoms and
this is actually what is found [29,39,40].

Average number of s particles (s-AN) in a given domain is a
relevant quantity for the calculation of many-particle distribu-
tions and probabilities [41–44]. These quantities have been used
for a wide variety of purposes linked one way or another to the
electronic characterization of molecular structures. In particular,
from the 1-AN and N-AN one can calculate the probability of find-
ing only a given number of electrons in a given molecular region
[41,45], from these probabilities one can also try to find the best
three-dimensional decomposition of the molecular structure into
regions (loges) [41,46,47] with the most probable division into
localized groups of electrons. In addition, the s-AN from s lower
or equal to n are used to calculate nc-ESI [35]. The s-AN are com-
puted from the s-order reduced density matrices (s-RDM) and,
therefore, they can be used to assess the goodness of a given s-
RDM approximation.

In this work we analyze a large set of molecules with 3c-bond-
ing at the single-determinant and correlated level with the exact 3-
RDM (at the CASSCF level) and different approximations to the 3-
RDM using CASSCF lower-order RDMs, natural orbitals and their
occupancies. We will use the many instances of 3-AN needed to
compute the 3c-ESI from Ref. [35] to analyze the accuracy of sev-
eral 3-RDM approximations. We aim at four objectives: first, to
examine the 3c-ESIs computed from correlated and uncorrelated
wave functions of a relatively large set of molecules with and with-
out 3c-bonding; second, to discuss whether the changes in 3c-ESI
values when going from HF to correlated wave functions are
accounted by the approximate 3-RDMs; third, to report for the first
time 3c-ESI values calculated with the exact and approximate 3-
RDMs using the topological fuzzy Voronoi cells (TFVC); and finally,
to analyze the accuracy of the 3-RDM approximations by assess-
ment of the 3-AN values.

2. Computational details

2.1. Methods

All molecules were optimized at the full valence CASSCF/6-
311G(d,p) level [48]. The correlated 3-RDMs were computed from
the CASSCF expansion coefficients using an algorithm imple-
mented in our own program [49]. The deviation from idempotency
was calculated using the natural occupancies of the CASSCF calcu-
lations. In addition, we performed single-point B3LYP [50–52],
Hartree–Fock (HF), MP2 [53], and CCSD [54] using 6-311G(d,p)
with the Gaussian 03 software [55] for a series of molecules with
3c-bonds of different nature, as well as for some molecules without
3c-bonds. Atomic overlap matrices (AOM) were computed with the
QTAIM partition [24–26] using the AIMPAC collection of programs
[56]. The numerical integrations over the atomic domains to obtain
AOM were also carried out within the ‘‘fuzzy atom’’ framework
[27] using the topological fuzzy Voronoi cells (TFVC) partitioning
scheme [57] with the APOST-3D program [58]. These AOM and
the exact and approximate 3-RDMs were used by ESI-3D [59–61]
to calculate 3c-ESIs.

2.2. Multicenter Indices

The 3-RDM was used to calculate the 3c-ESI through the follow-
ing expression [35]:

dðA;B;CÞ ¼ 2
ZZZ

ABC
cð~r1;~r2;~r3Þ~dr1

~dr2
~dr3; ð1Þ

where c reads

cð~r1;~r2;~r3Þ ¼ hðq̂1 � �q1Þðq̂2 � �q2Þðq̂3 � �q3Þi; ð2Þ

and the expected number of n particles, n-AN, is calculated as
follows

hq̂1 . . . q̂ni ¼
Z

A1

d~r1 . . .

Z
An

d~rnqnð~r1; . . . ;~rnÞ; ð3Þ

qnð~r1; . . . ;~rnÞ being the n-RDM. Therefore the exact calculation of
cð~r1;~r2;~r3Þ involves the computation of the exact 3-, 2-, and 1-
RDMs. For the case of closed-shell single-determinant wave func-
tions, Eq. (1) can be written as:

dðA;B;CÞ ¼ 4
Xocc

i1 ;i2 ;i3

Si1 i2 ðAÞSi2 i3 ðBÞSi3 i1 ðCÞ; ð4Þ

where Sij(A) is the atomic overlap matrix (AOM) of atom A that is
given by:

SijðAÞ ¼
Z

A
u�i ð~rÞujð~rÞd~r; ð5Þ

uið~rÞ being an occupied molecular spin–orbital. d(A, B, C) is a mea-
sure of how electron density is skewed from its mean, which may
be related to simultaneous electron fluctuation between the atomic
basins of atoms A, B, and C. In the particular case of the 2c-ESI,
d(A, B), values are usually positive, whereas d(A, B, C) can take posi-
tive and negative values as pointed out in the Introduction.

Apart from the exact expression of 3c-ESI, in this work we have
used three different approximations to the 3-RDM [35] that leads
to following three approximate formulas for the calculation of
3c-ESI in correlated wave functions in terms of the AOM of the nat-
ural orbitals and their occupations ni:

dSDðA;B;CÞ ¼ 4
X

i1 ;i2 ;i3

ni1 ni2 ni3 Si1 i2 ðAÞSi2 i3 ðBÞSi3 i1 ðCÞ ð6Þ

dMULðA;B;CÞ ¼ 4
X

i1 ;i2 ;i3

ðni1 ni2 ni3 Þ
1=2Si1 i2 ðAÞSi2 i3 ðBÞSi3 i1 ðCÞ ð7Þ

dCRðA;B;CÞ ¼ 4
X

i1 ;i2 ;i3

ðni1 ni2 ni3 Þ
1=3Si1 i2 ðAÞSi2 i3 ðBÞSi3 i1 ðCÞ; ð8Þ

π
u

π
g

π
u*

O OC

σ
u

σ
g

σ
u*

F FF

Scheme 1. Schematic molecular orbitals for the 3c-4e bond model of [F3]� and CO2

molecules.
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where SD, MUL, and CR stands for single determinant, Müller-like
[62], and cube root approximations [35], respectively. Among the
approximations used in this work, only the CR approach fulfills
the sum rule. The sum rule can be straightforwardly enforced by
using an appropriate scaling of the 3-RDM components, however,
the 3c-ESI thus obtained do not improve significantly compared
to the unscaled values (in this work we have included normalized
values for Eqs. (6)–(8)). These methods provide an inexpensive
means to calculate the 3c-ESI analysis and avoid the computation-
ally demanding calculation of the 3-RDM. In a previous work, we
showed that for a collection of molecules the CR approximation
gives the closest numbers to the ones obtained with the exact 3-
RDM [35]. In the current paper we will study the effect of the type
of correlated wave function and the atomic partition used on these
quantities.

Finally, to calculate AOM with the TFVC partition of the molec-
ular space [57], one defines at every point r of the space a weight
factor wA(r) for each atom A to measure to which extent the given
point belongs to atom A. These atomic weight factors are chosen to
be non-negative and satisfy the following condition when sum-
ming over all atoms of the system:X

A

wAð~rÞ ¼ 1: ð9Þ

There is many different ways to choose these weights, in this
work we will use a variant of Becke’s multicenter integration tech-
nique known as TFVC. This method uses information on the topol-
ogy of the electron density and provide results close to Bader’s
quantum theory of atoms in molecules (QTAIM) partition [57].
With this integration procedure, the AOM elements for an atom
A are obtained as:

SijðAÞ ¼
Z

A
u�i ð~rÞwAð~rÞujð~rÞd~r: ð10Þ

3. Results and discussion

Table 1 lists the 3c-ESI values for the set of molecules calculated
with HF, CASSCF, and CCSD with the QTAIM partition. For HF and
CASSCF the 3c-ESI results using TFVC partition are also included.
On the other hand, B3LYP and MP2 3c-ESI values are given in the
Supporting Information. The CASSCF 3c-ESIs were obtained from
the exact 3-RDM and with the various approximations to the 3-
RDM abovementioned. CCSD and MP2 results are obtained only
with the approximations of the 3-RDM because these methodolo-
gies do not provide an unambiguous means to obtain the 3-RDM
[59].

As found in previous works [5,21,22,28,30], at single-determi-
nant level 3c-2e bonds are characterized by relatively large and
positive 3c-ESI values with values larger than 0.1 for 3c-bonds con-
taining three heavy atoms and larger than 0.04 if the 3c-2e bonds
involve H atoms. For the systems without 3c-bonding one gets val-
ues in between zero and 0.04. Finally for the species having 3c-4e
bonds the 3c-ESI values are negative. CH2Li2 is a very particular
case. It is a planar molecule with a lone pair occupying the 2pz orbi-
tal of C perpendicular to the molecular plane. The C–H bonds are
regular 2c-2e bonds and the remaining two valence electrons par-
ticipate in the C–Li bonds. The Li–C–Li interaction is usually dis-
cussed in terms of a 3c-2e bond [31]. For this particular 3c-2e
interaction, Ponec and Cooper reported that, contrary to what is
usually found, correlation increases the value of the 3-ESI. They
attributed this increase to the polarity of the C–Li interaction. Our
calculations also show an increase of the 3-ESI when going from
HF to CASSCF but values of 3-ESI below 0.02 do not support the
presence of a 3c-2e Li–C–Li bond. The values of 3c-ESI notably
increase when TFVC partition is used for this molecule (see Table 1).

With some exceptions, for most of the molecules there is a
reduction in the absolute value of the 3c-ESI when correlation is
included at the CASSCF level. This is not unexpected taking into
account that the same reduction is observed in the case of the
2c-ESI [59,63]. The exceptions in the reduction of the 3c-ESI at
the CASSCF level correspond basically to molecules without 3c-
bonding, for which the 3c-ESI is close to zero. Another important
difference between the HF and CASSCF values is that 3c-ESI com-
puted at the CASSCF level are all positive with only the exception
of FHF� that has a negative 3c-ESI although with a value very close
to zero. Results in Table 1 show that 3c-2e bonding is associated
with positive values of 3c-ESI at both HF and CASSCF levels of the-
ory. Moreover, for molecules without 3c-bonding such as BH3, CH4,
NH3, H2O and BeH2, the HF and CASSCF 3c-ESI values are for the
two methods close to zero. On the other hand, for 3c-4e bonding,
whereas HF yield negative 3c-ESI values, the exact CASSCF 3c-ESIs
are positive or close to zero. Ponec and coworkers [31,32] found an
important reduction in the absolute value of the 3c-ESI of the 3c-4e
bonds in SF4, PF5, F3

�, FHF�, and CH2N2 when electron correlation is
included in the calculation via the spin-coupled valence bond
method. The authors attributed this change to the transformation
of the 3c-4e bonds into two very polar 2c-2e bonds. We have not
investigated this point further because this would require a deep
analysis of the nature of the bonding that is out of the scope of this
work.

Let us now consider the results of the three different approxi-
mations to calculate the CASSCF 3c-ESI that have been used: (i)
SD approximation (Eq. (6)), (ii) the Müller-like approach (MUL,
Eq. (7)), and (iii) the CR (Eq. (8)) approximation. The 3c-ESI results
obtained with the SD approximation are closer to the HF results
than to the exact CASSCF results. In fact, with this approach the
sign of all 3c-ESIs is the same as that found at the HF level. There-
fore, the effect of electron correlation contained in the CASSCF
wave function is not reflected in the 3c-ESIs obtained with the
SD approximation. For the MUL approximation, the 3c-ESIs become
more similar to the exact CASSCF results but still the sign of all 3c-
ESIs is the same as that found at the HF level. The best estimates
when compared to the exact 3-ESI values are obtained with the
CR approximation [35]. There are four molecules (C3H5

�, F3
�, N2O,

and N3
�) for which the sign given by the CR approximation is incor-

rect, but the 3c-ESI for these molecules is close to zero.
When the three approximations are applied to methods that

incorporate dynamic correlation such as CCSD and MP2, the results
obtained show similar trends (MP2 results are qualitatively similar
to CCSD ones and are included in Table S1 in the Supporting Infor-
mation). The SD approximation yields CCSD 3c-ESI values that are
not only qualitatively but also quantitatively very close to the val-
ues obtained at the HF level and also to the CASSCF values obtained
with the same SD method. For the MUL approximation, the CCSD
and MP2 3c-ESI become more similar to the CASSCF result but still
the sign of all 3c-ESI is the same as that found at the HF level with
the exception of the FHF� species that has a 3c-ESI very close to
zero. As before, the CR approximation is the one that provides clo-
ser values to the exact CASSCF results. Still, we find six molecules
that do not have the correct sign when compared to exact CASSCF
results, but as before the 3c-ESI for these molecules is close to zero.
For all approximations, the MP2 3c-ESI values are very similar to
those obtained at the CCSD level (see Table S1), the signs being
the same (SO2 with the CR approximation is the only exception)
and differences being not larger than a few hundredths or even a
few thousandths of an a.u. From the results of Tables 1 and S1,
we can conclude that 3c-ESIs calculated with the CR approximation
are a good and cheaper alternative to exact and expensive 3c-ESI
using the 3-RDM, regardless the computational method used.

Finally, if we compare the results of the two different atomic
partitions used, we find that the use of TFVC atomic partition gives
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Table 1
Deviation from idempotency (for the CASSCF wave function) and 3c-ESI values calculated exactly at the HF and CASSCF levels together with CASSCF, and CCSD values calculated using the three approximations (SD, MUL, and RC) tested
that avoid explicit computation of the 3-RDM.a

Species 3c-ESI CAS (n,m) Dev. Idemp.b HF CAS CASSD CASMUL CASCR CCSDSD CCSDMUL CCSDRC HFc CASc CASSD,c CASMUL,c CASCR,c

C3H3
+ C–C–C 2,3 0.007 0.3936 0.2499 0.3647 0.3140 0.2544 0.3491 0.2866 0.2128 0.4079 0.2735 0.3797 0.3326 0.2761

SiC3 C–C–C 8,8 0.045 0.3430 0.2712 0.3138 0.2732 0.2323 0.3125 0.2558 0.1908 0.3656 0.2935 0.3359 0.2982 0.2588
C3H5

+ C–C–C 6,7 0.034 0.2559 0.0801 0.2114 0.1584 0.1091 0.2168 0.1649 0.1132 0.2723 0.0934 0.2403 0.1776 0.1252
C2B2H4 C–B–B 8,8 0.040 0.1309 0.1452 0.1266 0.1310 0.1369 0.1179 0.1118 0.0967 0.1423 0.1658 0.1467 0.1515 0.1577
H2S H–S–H 8,8 0.008 0.0709 0.0549 0.0596 0.0567 0.0519 0.0425 0.0390 0.0329 0.1797 0.1359 0.1499 0.1462 0.1383
CH2Li2 H–C–H 8,8 0.023 0.0598 0.0477 0.0457 0.0442 0.0413 0.0470 0.0432 0.0360 0.0534 0.0546 0.0433 0.0434 0.0498
SiC3 Si–C–C 8,8 0.045 0.0566 0.0465 0.0484 0.0412 0.0347 0.0575 0.0445 0.0307 0.0626 0.0520 0.0539 0.0465 0.0396
B2H6 B–H–B 4,6 0.005 0.0391 0.0259 0.0418 0.0363 0.0286 0.0459 0.0384 0.0287 0.0392 0.0259 0.0401 0.0352 0.0282
BH3 H–B–H 8,7 0.004 0.0377 0.0314 0.0346 0.0375 0.0407 0.0350 0.0376 0.0378 0.0483 0.0439 0.0463 0.0494 0.0529
CH4 H–C–H 8,8 0.007 0.0355 0.0285 0.0304 0.0287 0.0260 0.0306 0.0279 0.0232 0.0490 0.0351 0.0414 0.0393 0.0358
NH3 H–N–H 8,8 0.008 0.0217 0.0449 0.0213 0.0207 0.0196 0.0214 0.0194 0.0158 0.0312 0.0517 0.0300 0.0292 0.0279
CH2Li2 Li–C–H 8,8 0.023 0.0173 0.0211 0.0152 0.0155 0.0155 0.0156 0.0146 0.0121 0.0613 0.0880 0.1154 0.1249 0.1350
H2O H–O–H 8,8 0.007 0.0112 0.0411 0.0123 0.0127 0.0131 0.0128 0.0120 0.0102 0.0139 0.0450 0.0152 0.0156 0.0160
BeH2 H–Be–H 6,7 0.004 0.0104 0.0164 0.0109 0.0145 0.0192 0.0105 0.0140 0.0182 �0.0037 0.0015 �0.0044 �0.0019 0.0057
CH2Li2 Li–C–Li 8,8 0.023 0.0082 0.0127 0.0088 0.0108 0.0135 0.0086 0.0095 0.0092 0.0986 0.0638 0.0579 0.0543 0.0498
FHF� F–H–F 8,8 0.002 �0.0030 �0.0028 �0.0029 �0.0028 �0.0026 �0.0037 0.0076 0.0175 0.0047 0.0046 0.0045 0.0046 0.0048
CO2 O–C–O 8,6 0.020 �0.0380 0.0635 �0.0582 �0.0088 0.0307 �0.0712 �0.0227 0.0068 �0.0637 0.0781 �0.0468 0.0041 0.0435
SO2 O–S–O 8,8 0.043 �0.0603 0.0378 �0.0778 �0.0252 0.0048 �0.0856 �0.0290 0.0048 0.0035 0.1161 0.0039 0.0533 0.0796
C3H5

� C–C–C 8,7 0.013 �0.0725 0.0100 �0.0713 �0.0321 �0.0080 �0.0684 �0.0342 �0.0131 �0.0514 0.0175 �0.0488 �0.0169 0.0016
HCNO C–N–O 8,6 0.045 �0.0782 0.0129 �0.0890 �0.0398 0.0119 �0.0944 �0.0348 �0.0062 �0.0535 0.0304 �0.0557 0.0046 0.0296
F3
� F–F–F 8,8 0.159 �0.1439 0.0216 �0.1093 �0.0468 �0.0213 �0.1320 �0.0633 �0.0304 �0.1235 0.0303 �0.1093 �0.0468 �0.0213

N2O N–N–O 8,6 0.051 �0.1530 0.0006 �0.1622 �0.0675 �0.0185 �0.1704 �0.0851 �0.0374 �0.1154 0.0210 �0.1142 �0.0314 0.0077
N3
� N–N–N 8,6 0.068 �0.2491 0.0104 �0.2076 �0.0772 �0.0118 �0.2265 �0.1139 �0.0510 �0.1207 0.0422 �0.1136 �0.0083 0.0363

a Units are a.u.
b The deviation from idempotency is calculated using the occupancies of the natural orbitals from the CASSCF wave function.
c All the data in this table uses the QTAIM partition except for these columns that make use of the TFVC partition.
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qualitatively the same results than the QTAIM one. Except for mol-
ecules containing S or Li atoms, differences are not larger than a
few hundredths of an a.u. In some cases we observe a change of
sign in the value of the 3c-ESI when comparing the QTAIM and
TFVC results obtained at certain level of theory but, in general,
these changes correspond to molecules with 3c-ESI values close
to zero.

Table 2 collects the errors committed in the calculation of the
expected number of particle triads using different 3-RDM approx-
imations at the CASSCF level: Valdemoro’s [64], Nakatsuji’s [65,66],
and Mazziotti’s [67–70]. These values are calculated using Eq. (3)
for n = 3 and different 3-RDM approximations integrated over
three atomic regions. The errors are calculated as the sum of the
absolute differences between the exact CASSCF value and the value
obtained employing the actual 3-RDM approximation, thus being a
direct evaluation of 3-RDM’s accuracy. The values are separated
into three groups according to the expected location of the three
particles: AAA accounts for the expected number of groups of three
particles in region A, AAB considers groups of three particles, two
located in region A and one in region B, while ABC considers the
expected number of three particles each lying in a different region.
The latter quantity is a key ingredient in the calculation of 3c-ESI
(see Ref. [35]). We have performed the statistical analysis from
all possible permutations of the elements of a string of three atoms
picked up from the target molecular set.

The first clear conclusion we can take from the data in Table 2 is
the poor performance of the SD approximation, which always
reports the largest average and maximum errors among all approx-
imations with the only exception of ABC values. These results put
forward the very approximate nature of the single-determinant
3-RDM expression. On the other hand, Valdemoro’s approximation
yields remarkably good results, giving the smallest average errors
for AAA and AAB and performing reasonably well in other cases.
Nakatsuji’s approach for the 3-RDM affords similar errors to those
reported for Valdemoro’s approximation, excepting in the ABC tri-
ads that are badly estimated by this method. Mazziotti’s expres-
sion for the 3-RDM gives pretty large average errors, however, it
shows the smallest maximum error for AAA and AAB values.
MUL approximation improves over the SD expression and obtains
the smallest maximum error for ABC values. In general the CR
approximation gives the best performance among the natural-orbi-
tal based approximations, showing the smallest average error and
very small maximum errors for the calculation of ABC triads. The
ability to reproduce ABC 3-AN is closely connected to the potential
to reproduce accurate ABC 3c-ESI. Indeed, these results are in
accord with the finding of Ref. [35], where 3c-ESI indices where
best reproduced by the CR approximation.

Finally, to analyze the effect of electron correlation we have
inspected the performance of the different 3-RDM approximation
as a function of the electron correlation included in the molecule
(see deviation from idempotency in Table 1). Valdemoro’s and Nak-
atsuji’s approximations performs better when the molecules do not
suffer from strong correlation effects, while Mazziotti’s and CR
approximations improve in performance with respect to other
approaches for molecules with more important correlation

effects. This finding raises the question whether for highly corre-
lated systems these approximations can actually perform much
better than their competitors. Research in this line is being devel-
oped in our laboratory.

4. Conclusions

nc-ESI is a powerful tool to analyze the multicenter electron
delocalization in molecules. In single-determinant wave functions,
these indices allow for a clear separation between 3c-2e and 3c-4e
bonds. However, the use of 3-RDM from correlated wave functions
to calculate 3c-ESI eliminates this feature. Our results demonstrate
that the single-determinant approximation to the 3-RDM permits
to distinguish between the two bonding patterns. The better the
approximation used, the more difficult the distinction between
3c-2e and 3c-4e becomes. Therefore, if one wants a clear-cut clas-
sification of three-center bonds into 3c-2e and 3c-4e, we recom-
mend the calculation of the 3c-ESI using the single-determinant
expression because it bears no cost (whereas the actual 3-RDM is
out of reach for medium-sized molecules). Obviously, the 3c-ESI
calculated in this way does not necessarily reflect the simultaneous
electron fluctuation between three molecular fragments.

On the other hand, we have analyzed the accuracy of several
approximate 3-RDM. To this aim, average numbers of three elec-
trons have been computed. Our results show that in this context
the single-determinant expression is far off the exact expression
and should be avoided. Interestingly, Valdemoro’s approximation
provides the best performance among the different methods. Alto-
gether, depending on the purpose of the calculation one should use
one or another 3-RDM approximation.

Besides, we have tested the role of the atomic partition, finding
that the use of TFVC atomic partition gives qualitatively the same
results than the QTAIM one. The only exceptions involve S or Li
atoms. In addition, the role of the source wave function in the cal-
culation of the natural orbital approximations to the 3-RDM has
been assessed. Our results indicate that MP2, CCSD, and CASSCF
provide similar 3c-ESI values for the approximations tested, thus
opening the door to use the approximate 3-RDM calculated from
natural orbitals and occupancies of MP2 or CCSD methods, for
which the calculation of 3-RDM becomes a complicated task not
exempt of controversy.
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Comprehensive benchmarking of density matrix
functional approximations†‡

Mauricio Rodrı́guez-Mayorga,ab Eloy Ramos-Cordoba, ac Mireia Via-Nadal,a

Mario Pirisad and Eduard Matito *ad

The energy usually serves as a yardstick in assessing the performance of approximate methods in

computational chemistry. After all, these methods are mostly used for the calculation of the electronic

energy of chemical systems. However, computational methods should be also aimed at reproducing other

properties, such strategy leading to more robust approximations with a wider range of applicability. In this

study, we suggest a battery of ten tests with the aim to analyze density matrix functional approximations

(DMFAs), including several properties that the exact functional should satisfy. The tests are performed on

a model system with varying electron correlation, carrying a very small computational effort. Our results

not only put forward a complete and exhaustive benchmark test for DMFAs, currently lacking, but also

reveal serious deficiencies of existing approximations that lead to important clues in the construction of

more robust DMFAs.

1 Introduction

Density matrix functional theory (DMFT) is among the compu-
tational methods that have experienced a most important
advance in the last years. Its foundations are more than
forty years old1 but the most important progress in the field
has occurred in the last twenty years.2,3 Namely, the use of
the natural orbital representation of the first-order reduced
density matrix has brought many4–22 density matrix functional
approximations (DMFAs) within the context of what is known in
the literature as natural orbital functional theory. Some of these
functionals provide very accurate energies, sometimes competing
with high-level electronic structure methods.23–27

Despite the success, the account of dynamic correlation still
poses a great challenge for DMFAs2,14,23 and calls for means to
separate dynamic and nondynamic correlation within DMFT.22,28,29

The development of more accurate DMFAs also depends on
appropriate benchmark tests and, to our knowledge, only a
recent paper addresses the validation of most DMFAs in the

literature, comparing their performance in the energy calcula-
tion of few-electron systems with different electron correlation.23

Since functionals are mostly used to calculate the electronic
energy of chemical systems, it does not strike as a surprise that
the energy usually serves as a yardstick in benchmarking
DMFAs. However, it is becoming commonly accepted that energy
functionals should be also aimed at reproducing other properties30

in order to construct more robust approximations with a wider
range of applicability. In this line, some of us have recently
tested the spin structure of several DMFAs27,31 using the local
spin32 as a benchmarking tool.

In the present study, we suggest a battery of ten tests to
analyze DMFAs, including several properties that the exact
functional should satisfy. We submit fifteen functionals to this
series of constrictive tests using a model system with varying
electron correlation, the two-electron harmonium atom,33 carrying
a very small computational effort.

Although the construction of computational methods that
can tackle both one- and two-electron systems is relevant in
other frameworks such as density functional theory,34 it is
believed that they do not pose a serious challenge in DMFT.
The reason behind this idea is the existence of a quasi-exact
closed-shell two-electron expression of the second-order
reduced density matrix in terms of natural orbitals.35 However,
there are several facts that go against this idea. First of all,
most DMFAs do not reduce to the quasi-exact expression for
two-electron systems and, therefore, their calibration is justi-
fied. Second, the latter expression depends on some phase
factors (vide infra) that change importantly under certain
circumstances,36–39 including the strong-correlation regime of
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the system studied in this work. Finally, whereas energetic
differences between the quasi-exact result and the exact one
are often negligible, there are several properties studied in this
paper that show non-negligible differences for the quasi-exact
functional.

All in all, we shall see that the set of tests suggested in this
work poses a great challenge for DMFAs and reveals various
defects of the approximations that were hindered by a reason-
able performance in energy benchmark tests. The current
strategy can be easily extended to a larger number of electrons,
thus setting new challenges for the few DMFAs that reduce
to the quasi-exact expression. We are confident that DMFT
developers will benefit from the results obtained in this paper
and will use this test set as a means to construct more robust
approximations.

2 Methodology

The second-order reduced density matrix (2-RDM),40,41

r2ðx1; x2; x
0
1; x

0
2Þ ¼ NðN � 1Þ

ð
dx3 � � �

ð
dxN

� C�ðx 01; x
0
2; x3; . . . ; xNÞCðx1; x2; x3; . . . ; xNÞ;

(1)

where we have adopted McWeeny’s normalization41 and x = (r,s),
is the simplest function in terms of which the explicit expression
of the electronic energy of a physical system is known.42 Hence,
approximations to the 2-RDM in terms of simpler quantities
provide estimates of the energy that, in principle, should reduce
the associated computational cost. Most quantum mechanical
calculations employ orbital basis sets, and it is thus costumary
to express the 2-RDM in a given orbital basis. In this paper, we
adopt the basis of natural orbitals,

2Dss0
ij;kl ¼ C a

y
isa
y
js0als0aks

��� ���CD E
; (2)

where a
y
is (ais) is the creation (annihilation) operator acting over

natural orbital i with spin s; hereafter we will refer to 2Dss0
ij;kl as

the two-density matrix (2-DM). The spinless 2-RDM is a twelve-
variable function, whereas the 2-DM is a four-index tensor of
dimension M4. In the present study we focus on 2-DM approx-
imations built from natural occupation numbers (ONs), {ni}

M
i=1,

where M is the size of the basis set.1–3 The approximate 2-DMs
here studied are built upon the simplification of the 2-DM being
a sparse matrix with only three types of non-zero elements:
2Dss

ij,ij and 2Dss0
ij;ij ,

2Dss
ij,ji and 2Dss0

ij;ji, and 2Dss0
ii;jj . The opposite-spin

elements are actually sufficient to express the exact 2-DM of a
two-electron closed-shell system (see eqn (12)). Each ON-based
2-DM approximation actually provides a DMFA. Among the DMFAs,
the simplest one is the single-determinant (SD) approximation,
whose expression reads40

2DSD,ab
ij,kl = na

i nb
j dikdjl (3)

for the opposite-spin elements and

2DSD,aa
ij,kl = na

i na
j (dikdjl � dildjk) (4)

for the like-spin ones. Upon optimization of natural orbitals
and ONs, the SD approximation produces the Hartree–Fock
energy. In this work, we optimize neither the orbitals nor the
occupations (vide infra) and, in order to avoid confusion with
the Hartree–Fock method (which does not employ fractional
occupancies), we have preferred to call this approximation SD.
We will consider 15 DMFAs, all of which are JKL-only func-
tionals, i.e., functionals that only need Coulomb, exchange and
time-inversion two-electron integrals.43 We have classified
them in two groups: those that only modify the exchange part
of the functional and those that modify both the exchange
and Coulomb parts. The latter group corresponds to the func-
tionals developed by one of us and known as Piris natural
orbital functionals (PNOFs). The first group of DMFAs uses
eqn (3) and

2DX,aa
ij,kl = na

i na
j dikdjl � fX(na

i ,na
j )dildjk, (5)

the expression of fX(ni,nj) determining the functional.44 These
functionals are JK-only functionals but, in practice, they use
the simple SD approximation for the terms involving two-
electron Coulomb integrals (J) and, therefore, they will be
referred as K-functionals hereafter. Their expressions are collected
in Table 1.

PNOFs actually correspond to approximations to the
two-particle cumulant matrix (2G),11 which is defined as the

Table 1 f (ni,nj) functions (see eqn (5)) that define the K-functionals. In a
two-electron closed-shell system FL = 1

DMFA f (ni,nj) Parameters Ref.

SD ninj 40
MBBa (ninj)

1/2 4 and 5
BBC2b ni i ¼ j

� ninj
� �1=2

iaj ^ i 2 FL;1ð Þ ^ j 2 FL;1ð Þ
ninj iaj ^ i 2 1;FL½ � ^ j 2 1;FL½ �
ninj
� �1=2

Otherwise

10

CAc [ni(1 � ni)nj (1 � nj)]
1/2 + ninj 7

CGAd
ninj þ ni 2� nið Þnj 2� nj

� �� �1=2
2

9

MLe

ninj
a0 þ a1ninj

1þ b1ninj

a0 = 126.3101 13
a1 = 2213.33
b1 = 2338.64

MLSICf

ninj
a0 þ a1ninj

1þ b1ninj
iaj

ninj i ¼ j

a0 = 1298.78 13
a1 = 35114.4
b1 = 36412.2

GUg
ninj
� �1=2

iaj
ninj i ¼ j

6

POWERh (ninj)
a 15–17

a Introduced independently by Müller and by Buijse and Baerends.5,8

b The BBC2 functional coincides with BBC110 for a two-electron closed-
shell system. c Csányi and Arias functional. d Csányi, Goedecker and
Arias functional. e Marques and Lathiotakis functional. f Marques
and Lathiotakis functional corrected for self-interaction. g Goedecker
and Umrigar functional. h The a parameter of the POWER functional
is fitted for each o, a(o), in order to reproduce the exact Vee value (see
the ESI for further details).

Paper PCCP

Pu
bl

is
he

d 
on

 1
4 

A
ug

us
t 2

01
7.

 D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
D

A
D

 D
E

L
 P

A
IS

 V
A

SC
O

 o
n 

19
/0

4/
20

18
 1

5:
30

:2
8.

 
View Article Online



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 24029--24041 | 24031

difference between the exact 2-DM and the SD approximation,45

2Dss0
ij;kl ¼ 2DSD;ss0

ij;kl þ 2Gss0
ij;kl : (6)

The different PNOF expressions are constructed in terms of
the auxiliary D and P matrices according to the following
recipe:

2GPNOFn,ab
ij,kl = �Dab

ij dikdjl + Pikdijdkl, (7)

2GPNOFn,aa
ij,kl = �Daa

ij (dikdjl � dildjk). (8)

Table 2 collects D and P matrices for all PNOFs. In all
PNOFs Daa

ij = Dab
ij � Dij excepting PNOF3 that takes Daa

ij = 0.
In this work, approximate 2-DMs are constructed from
full configuration interaction (FCI) ONs and, therefore, the
original PNOF5 and PNOF6,20,21 which impose perfect-pairing
constraints in the ONs, cannot be employed. Alternatively, in

this paper we employ the extended versions of PNOF546 and
PNOF647 that are free of these restrictions for a closed-shell
two-electron system. Hereafter, the names PNOF5 and PNOF6
refer to the extended versions of these DMFAs. Unlike
the original PNOF6, the extended version of PNOF6 can be
actually calculated in three different ways, depending on the
definition of Sg, which will be called down (d), up (u) and
average (h),

Sd
g ¼

XFL
i¼1

gi; Su
g ¼

XM
i4FL

gi; Sh
g ¼

Sd þ Su

2
; (9)

where

gi ¼ ni 1� nið Þ þ ki2 � ki
XFL
i¼j

kj ; (10)

Table 2 D and P non-zero matrix elements. The diagonal elements coincide for all functionals: Dii = ni
2 and Pii = ni. SF ¼

PFL
i¼1

hi , Tij = ninj � Dij, hi = 1 � ni,

and Sx
g and gi are defined in eqn (9) and (10), respectively. Og is the subspace containing orbital g, which is below the Fermi level, and several orbitals above

the Fermi level. In a two-electron closed-shell system FL = 1

Dij Pij Cases (i a j) Ref.

PNOF2 hihj
ffiffiffiffiffiffiffiffi
ninj
p þ

ffiffiffiffiffiffiffiffi
hihj

p
þ Tij i 4 j A [1,FL] 12

njhi
1� SF

SF

� 	 ffiffiffiffiffiffiffiffi
ninj
p �

ffiffiffiffiffiffiffiffi
njhi

p
þ Tij i A [1,FL] 4 j A (FL,M]

nihj
1� SF

SF

� 	 ffiffiffiffiffiffiffiffi
ninj
p �

ffiffiffiffiffiffiffiffi
nihj

p
þ Tij j A [1,FL] 4 i A (FL,M]

ninj Tij i 4 j A (FL,M]

PNOF3 hihj ninj �
ffiffiffiffiffiffiffiffi
ninj
p

i 4 j A [1,FL] 18

njhi
1� SF

SF

� 	
ninj �

ffiffiffiffiffiffiffiffi
ninj
p �

ffiffiffiffiffiffiffiffi
njhi

p
i A [1,FL] 4 j A (FL, M]

nihj
1� SF

SF

� 	
ninj �

ffiffiffiffiffiffiffiffi
ninj
p �

ffiffiffiffiffiffiffiffi
nihj

p
j A [1,FL] 4 i A (FL,M]

ninj ninj þ
ffiffiffiffiffiffiffiffi
ninj
p

i 4 j A (FL, M]

PNOF4 hihj �
ffiffiffiffiffiffiffiffi
hihj

p
i 4 j A [1,FL]

njhi
1� SF

SF

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hinj

SF

� 	
ni � nj þ

hinj

SF

� 	s
i A [1,FL] 4 j A (FL,M]

nihj
1� SF

SF

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjni

SF

� 	
nj � ni þ

hjni

SF

� 	s
j A [1,FL] 4 i A (FL,M]

ninj
ffiffiffiffiffiffiffiffi
ninj
p

i 4 j A (FL,M]

PNOF5 ninj � ffiffiffiffiffiffiffiffi
ninj
p

(i 4 j A Og) 4 (i = g 3 j = g) 20
ninj

ffiffiffiffiffiffiffiffi
ninj
p

(i 4 j A Og) 4 (i 4 j A (FL,M])

PNOF6x e�2SFhihj �e�SF
ffiffiffiffiffiffiffiffi
hihj

p
i 4 j A [1,FL] 21

gigj/S
x
g

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nihj þ

gigj
Sx
g

 !
njhi þ

gigj
Sx
g

 !vuut i A [1,FL] 4 j A (FL,M]

x = d, u, h gigj/S
x
g

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nihj þ

gigj
Sx
g

 !
njhi þ

gigj
Sx
g

 !vuut j A [1,FL] 4 i A (FL,M]

e�2SFninj e�SF
ffiffiffiffiffiffiffiffi
ninj
p i 4 j A (FL,M]

PNOF7 ninj � ffiffiffiffiffiffiffiffi
ninj
p

(i 4 j A Og) 4 (i = g 3 j = g) 22
ninj

ffiffiffiffiffiffiffiffi
ninj
p

(i 4 j A Og) 4 (i 4 j A (FL,M])
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nihinjhj

p
(i 3 j) A [1,FL] 4 ((i A Og 4 j e Og) 3 ( j A Og 4 i e Og))

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nihinjhj

p
(i 4 j) A (FL,N) 4 ((i A Og 4 j e Og) 3 ( j A Og 4 i e Og))

PCCP Paper

Pu
bl

is
he

d 
on

 1
4 

A
ug

us
t 2

01
7.

 D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
D

A
D

 D
E

L
 P

A
IS

 V
A

SC
O

 o
n 

19
/0

4/
20

18
 1

5:
30

:2
8.

 
View Article Online



24032 | Phys. Chem. Chem. Phys., 2017, 19, 24029--24041 This journal is© the Owner Societies 2017

and

ki ¼
1� nið Þe�SF i 2 1;FL½ �

nie
�SF i 2 FL;Mð �

(
(11)

FL being the last occupied orbital below the Fermi level.
For two-electron closed-shell systems, the 2-DM in terms of

ONs is known up to a phase factor, Fij,
35 the following being the

only non-zero elements:

2D
ab
ii;jj ¼ Fij

ffiffiffiffiffiffiffiffiffi
nai n

b
j

q
ðiajÞ; (12)

where Fij = �1, depending on the nature of orbitals i and j. The
most convenient way to choose the phase factors is to split the
set of orbitals into two groups: the orbitals above and below
the Fermi level, and choose Fij = 1 for i and j belonging to the
same group and Fij =�1 otherwise.36 Let us call this approximation
the fixed-phases (FP) approximation. FP is very accurate for most
two-electron systems3,36 with only a few exceptions37,39,48 that
Giesbertz et al. attribute to long-range Coulomb interactions.38 For
two-electron systems, PNOF4, PNOF5 and PNOF7 reduce to FP with
the mentioned phase factors, i.e., eqn (12) with F1i = �1(i a 1)
and Fij = 1 for all other cases. Hence, hereafter we will only
discuss PNOF4 results. Conversely, PNOF2, PNOF3 and PNOF6
expressions were not defined for two-electron systems and,
therefore, the expression given in Table 2 does not reduce to
FP.49 In this work we have decided to study these expressions
in a two-electron model.

Not all approximate 2-DMs correspond to an N-particle
fermionic wavefunction. The set of 2-DMs that satisfy
this condition are called N-representable 2-DMs. Non
N-representable 2-DMs might lead to spurious results such
as non-variational energies.19,42 The set of conditions that
guarantees the N-representability of the 2-DM is known50 but
its calculation involves higher-order density matrices. There are
three conditions that only require the 2-DM for its calculation,
the P-, G- and Q-conditions,51–53 which concern the positive
semidefinite character of P, Q and G matrices,44

Pss0
ij;kl ¼ C a

y
isa
y
js0als0aks

��� ���CD E
; (13)

Qss0
ij;kl ¼ C aisajs0a

y
ls0a
y
ks

��� ���CD E
; (14)

Gss0
ij;kl ¼ C aisa

y
js0a
y
ls0aks

��� ���CD E
: (15)

In order to test these conditions, one must build these matrices
and check the sign of the corresponding eigenvalues. Notice
that the P matrix coincides with the 2-DM and, therefore, the P
condition is equivalent to the non-negativity condition of the
geminal occupancies.

The pair density, r2(r1,r2), is the diagonal part of the 2-RDM
(i.e., eqn (1) when r1 = r01 and r2 = r02) upon integration over spin
and it is the only part of the 2-RDM needed to calculate the
electron–electron repulsion energy (Vee). Although r2(r1,r2) is a
simpler function than the 2-RDM, it depends on six variables
and it is difficult to analyze. Fortunately, there is no need of the

full knowledge of r2(r1,r2) to compute Vee. The calculation of
the electronic repulsion only requires the radial intracule54

density41

I r12ð Þ ¼ r 212

ð
dr
0
1dr

0
2dO12r2ðr

0
1; r

0
2Þdðr12 � r

0
1 þ r

0
2Þ; (16)

where dO12 = sin y12dy12df12. The radial intracule density is a
one dimensional function that provides a graphical means to
analyze r2(r1,r2) at different interelectronic separations and a
simple expression to calculate Vee,

Vee ¼
ð1
0

dr12
I r12ð Þ
r12

: (17)

r2(r1,r2) also enters the expression of the so-called delocaliza-
tion index (DI),55,56 which is a measure of covariance between
the electron population of two regions, A and B,

dðA;BÞ ¼ �2
ð
A

ð
B

dr1dr2 r2 r1; r2ð Þ � r r1ð Þr r2ð Þ½ �; (18)

where r(r) is the electron density. The DI has been used
in the past to calibrate the performance of several
approximations.57–64 In the present work, the DMFAs use the
exact natural orbitals and occupancies and, therefore, the
second term in the r.h.s. of eqn (18) is identical in both the exact
calculation and the DMFA. Hence, the DI difference actually
measures the difference between the exact and the DMFA number
of electron pairs (one in region A and another in B).

3 Computational details

We will test several DMFAs in the two-electron harmonium
atom—a model system with the following Hamiltonian,33,65,66

H ¼ �1
2
r1

2 � 1

2
r2

2 þ 1

2
o2r21 þ

1

2
o2r22 þ

1

r2 � r1j j; (19)

where the o parameter is the confinement strength and tunes
the electron correlation in a continuous manner: low-o values
correspond to a strong-correlation regime whereas weakly
correlated systems are produced at large o. The harmonium
atom has been widely used for benchmarking and developing
functionals23,64,67–77 due to the availability of benchmark
results.48,78–80 The harmonium atom is one of the most difficult
systems for computational methods64,68,76,77 and, therefore, is a
formidable test-bed for DMFAs. In addition to harmonium,
there are other model systems that pose a great challenge
for computational methods, such as the Hubbard model81 or
uniform gases of electrons trapped in rings, spheres and
geometrical objects of higher dimensions.82–85

FCI calculations were performed for the ground-state singlet
two-electron harmonium atom using 20 values of the o para-
meter: 0.03, 0.033, 0.036, 0.0365373, 0.04, 0.05, 0.06, 0.08, 0.1,
0.15, 0.2, 0.3, 0.4, 0.5, 1, 2, 5, 10, 100 and 1000.86 We used a
modified version of the code developed by Knowles and
Handy87,88 and a variationally optimized even-tempered basis
set of seven S, P, D and F Gaussian functions, which form a
total of 112 basis functions.86 The exact 2-DM and the ONs were
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calculated from the FCI expansion coefficients using the DMN89

in-house code. The radial intracule density was computed
using RHO2_OPS90 code which uses the algorithm proposed
by Cioslowski and Liu.91 The calculation of the DI was performed
with the in-house RHO_OPS92 and ESI-3D57,93,94 codes.

In the current study, exact (within the given basis set)
natural orbitals and occupancies are used in fifteen DMFAs
(BBC2, CA, CGA, GU, MBB, POWER, ML, MLSIC, PNOF2,
PNOF3, PNOF4, three PNOF6 definitions and SD) to evaluate
their performance in a series of tests. Namely, we have used the
expressions given in Tables 1 and 2 with FCI ONs to generate
the corresponding approximate 2-DM, which are subsequently
analyzed using ten different tests:

(i) calculation of the 2-DM trace, (ii) cumulative absolute
error (CAE) for the diagonal elements, i.e.,

CAED
2DX
� �

¼
X
ij
ss0

2DX;ss0
ij;ij � 2Dss0

ij;ij

��� ���; (20)

(iii) CAE for all the elements of the 2-DM,

CAE 2DX
� �

¼
X
ijkl
ss0

2DX ;ss0

ij;kl �
2Dss0

ij;kl

��� ���; (21)

(iv) the correct antisymmetry of the 2-DM, i.e.,

ErrA
2DX ;ss0
h i

¼
X
ijkl;s

2DX ;ss
ij;kl þ

2DX;ss
ij;lk þ

2DX;ss
ji;lk þ

2DX ;ss
ji;kl

��� ���;
(22)

(v) P, Q, and G N-representability conditions, eqn (13)–(15),
(vi) the DI between the two symmetric regions generated by a
bisecting plane passing through the center of mass, (vii) the
average interelectronic distance and (viii) its variance, (ix) the
interelectronic repulsion, Vee, and (x) the radial intracule den-
sity profile.

4 Results
4.1 The diagonal elements: sum rule and cumulative absolute
error

The plot in Fig. 1 shows the 2-DM trace errors for several DMFAs
(the exact trace equals two in McWeeny’s normalization41).
BBC2, CA, CGA, MBB, PNOF2 and PNOF4 have not been
included in this plot because they satisfy the sum rule. The
larger the o value, the less important the correlation effects
in the harmonium atom. Indeed, for large values of o all
approximations perform very well because correlation effects
are negligible. However, when correlation increases, SD pro-
duces very poor results. GU and MLSIC have the same diagonal
elements ( f (ni,ni) = ni

2) and, therefore, give exactly the same
trace as the SD approximation for the two-electron case. PNOF3
coincides with SD because the former only modifies the
opposite-spin elements in the cumulant construction and the
opposite-spin cumulant of PNOF3 (like the exact one) does
not contribute to the sum rule. ML is based on a Padé approx-
imant including some fitted parameters that result in wrong

trace numbers. The POWER functional presents non-negligible
errors in the trace as the correlation increases. PNOF6 shows
small trace deviations, the three PNOF6 versions (PNOF6u,
PNOF6h and PNOF6d) differing on the value of Sg (actually,
the Sg definition, eqn (9), is responsible for the violation of the
sum rule). The Sg of PNOF6h provides the smallest error.

To get further insight about the error committed in the
2-DM diagonal elements, we have analyzed the diagonal CAE,
eqn (20), as a function of o�1/2 (Fig. 2). PNOF2 and PNOF4
approximations have not been included in Fig. 2 because the
error produced by these approximations is lower than 10�4. GU
and MLSIC produce exactly the same error as the SD approxi-
mation because the self-interaction correction enforced in
these approximations results in 2Dij,ij terms equal to those
produced by SD. ML, which showed better trace numbers than
SD for all o values, presents a larger diagonal CAE indicating
important error cancellation in the calculation of the trace.
PNOF3 shows smaller diagonal CAE than SD, which necessarily
come from the opposite-spin diagonal components, because
the same-spin components of the 2-DM are identical in both

Fig. 1 2-DM trace error against o�1/2. BBC2, CA, CGA, MBB, PNOF2 and
PNOF4 have not been included because they satisfy the sum rule.

Fig. 2 Cumulative absolute error (CAE) for the diagonal elements of the
2-DM against o�1/2 (eqn (20)). PNOF2 and PNOF4 approximations have
not been included because they present errors lower than 10�4.
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approximations. All PNOF6 versions provide very small CAE,
the best among the three definitions being PNOF6u (hence
PNOF6h best trace numbers were due to error cancellation).
BBC2, CA, CGA, MBB and POWER show larger diagonal CAE
than SD due to the unphysical 2Dss

ii,ii elements that provide a
correct total trace but contribute to important self-interaction
errors. In fact, any K-functional studied in this work produces
the same diagonal elements than the SD approximation (i.e.,
f (ni,ni) = ni

2) if we remove the unphysical elements 2Dss
ii,ii that are

included in some DMFAs.

4.2 Cumulative absolute error

The total CAE (eqn (21)) is plotted against o�1/2 in Fig. 3.
All fifteen DMFAs provide CAE when correlation increases.
A troublesome result is that all K-functionals perform worse
than the SD approximation for all o values. Most of the
approximations show a monotonic increase of the error except-
ing MLSIC, probably due to the parameterization of this approxi-
mation. BBC2 and MBB values coincide for all o and present the
largest total CAE. Their 2-DMs do fully not coincide but for a
closed-shell two-electron system these two DMFAs only differ in
the phase of some unphysical 2Dss

ii,ii elements, which obviously
contribute to the same CAE. All PNOFs perform better than SD
indicating that the cumulant correction of PNOFs improves in
the right direction. The most recently developed approximations,
PNOF4 to PNOF7, show the best agreement with the exact 2-DM,
giving only a small total CAE. Among the three PNOF6, PNOF6u
performs marginally better than the rest. PNOF4 is actually exact
in a wide range of o values, only deviating at the high-correlation
regime. In the high-correlation regime (o r 0.1) several phases
of PNOF4 do not coincide with the exact ones, preventing PNOF4
from reproducing the exact elements of the 2-DM.

4.3 Antisymmetry

The electronic wavefunction must be antisymmetric due to the
fermionic character of electrons. The 2-DM preserves the anti-
symmetric nature inherited from the wavefunction and, there-
fore, deviations from the antisymmetry condition, eqn (22), can
be also regarded as violations of a necessary N-representability

condition. Functionals that do not satisfy this condition fail to
correctly treat the fermionic nature of electrons.

PNOFs were built in order to satisfy the correct antisymme-
try of the 2-DM by constructing approximations from an
inherently antisymmetric cumulant structure. SD is also anti-
symmetric by construction. Fig. 4 shows eqn (22) against o�1/2

for the other DMFAs. The best K-functional is ML, which error
is almost half the error of MBB in the high-correlation regime.
The DMFAs that deviate most from the antisymmetry condition
are BBC2, CA, CGA, and MBB with errors growing as o�1/2.
Conversely, the only DMFA that does not show a monotonic
increase of the error with correlation is MLSIC, once again,
putting forward the parameterized nature of this DMFA.
A self-interaction correction applied to MBB produces the GU
approximation,8 resulting in smaller antisymmetry errors. One
can easily prove that among all K-functionals that one could
devise, the only one that satisfies the antisymmetric condition
is SD. This result evinces the need for designing functionals
that, at least, include J and K components, beyond the SD
approximation.

4.4 N-Representability

In order to check the deviation from the N-representability
conditions, we have computed the eigenvalues of matrices P, Q
and G (eqn (13)–(15)) and summed all negative ones. In Fig. 5
we have plotted the result of the sum against o�1/2.

The 2-DMs of PNOFs give rise to non-negative basis-set-
independent eigenvalues associated to P-, Q- and G-conditions
(see Appendix I for the basis-set dependent and independent
eigenvalues). However, one cannot anticipate the conditions
that the basis-set-dependent eigenvalues might impose in the
functional structure and only PNOF2, PNOF4 and SD satisfy the
N-representability conditions studied in this work. PNOF3
and PNOF6 perform very well even in the high-correlation
regime with the only exception of PNOF3 that shows significant
deviations in the G-condition when correlation increases, in
line with previous findings.19 PNOF6 shows small negative

Fig. 3 Cumulative absolute error (CAE) for the whole 2-DM against o�1/2

(eqn (21)).

Fig. 4 Antisymmetry error of the 2-DMs (eqn (22)) against o�1/2. PNOFs
and SD have not been included because they satisfy the antisymmetry
condition.
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eigenvalues of the P matrix that change depending on the
definition of Sg. In fact, if the wavefunction would correspond
to a perfect-pairing situation (in which natural orbitals are
coupled by pairs, each pair occupancy summing exactly to
one electron) the P-condition would be satisfied for a two-
electron closed-shell system regardless the definition of Sg.
All K-functionals show significant deviations from P-, Q- and
G-conditions that rapidly increase with electron correlation.
The largest errors are presented by MBB, but BBC2, CA, CGA,
GU and POWER also present non-negligible errors. ML and
MLSIC approximations show non-monotonic increase of the
errors due to their parameterized nature.

4.5 Delocalization index

The difference between the approximate DI and the exact one is
plotted in Fig. 6. In the present case, where the density is
computed from exact ONs for both methods (see eqn (18)), the
latter quantity also corresponds to the difference between the
exact and the approximate number of electron pairs between

two regions. Upon increase of electron correlation effects, the
number of electron pairs between regions is expected to
decrease, as found by other calculations of the DI in molecules
under DMFAs (see the ESI‡ for the exact values).57,60,95–97

In general, the gross number of pairs is pretty well described
by BCC2, MBB, PNOF4, PNOF6 and POWER (that present errors
below 3%), whereas CA, GU, MLSIC, PNOF2, PNOF3 and SD
present errors ranging between 20% to 75%. Interestingly, GU,
MBB, MLSIC, PNOF3 and PNOF6u systematically underesti-
mate the DI (i.e., they overestimate the number of electron
pairs) whereas BBC2, CA, CGA, PNOF2 and PNOF6d always
overestimate it. In line with the results obtained in the sum rule
and N-representability tests, PNOF6h provides better results
than PNOF6u and PNOF6d.

4.6 Interelectronic distance

In this section we analyze four quantities related to the inter-
electronic distance: (i) the mean value, hr12i, (ii) the variance,
s2 = hr2

12i � hr12i2, (iii) the interelectronic density distribution
through radial intracule density profiles, and (iv) the Vee. All
these quantities can be calculated from the radial intracule
density, eqn (16).

4.6.1 hr12i and r2. The analysis of the hr12i and the s2

reveals important aspects of the effects of electron correlation
in DMFAs. Usually large hr12i values go with smaller Vee, but
some exceptions exist.98 Hence, large (small) Dhr12i are com-
mon in methods that overestimate (underestimate) electron
correlation, whereas the variance of the probability distribution
measures the spread of the interelectronic distribution. Fig. 7
shows that all DMFAs deviate from the exact hr12i as correlation
increases. BBC2(EMBB), PNOF3, PNOF6d and PNOF6h over-
estimate correlation effects, whereas CA, CGA, GU, ML, MLSIC,
POWER, PNOF2, PNOF4, PNOF6u and SD underestimate
electron correlation at all o values. This is actually the only
test (together with Vee, vide infra) where SD performs clearly and
systematically worse than the other DMFAs. The error of PNOF4
is small and only due to the choice of phase factors. PNOF6h
performs somewhat better than the other two PNOF6 versions.

Fig. 8 plots the difference between the approximate variance,
computed from DMFAs, and the exact one against o�2.

Fig. 5 Sum of all negative eigenvalues of P, Q and G matrices against o�1/2.
PNOF2, PNOF4 and SD have not been included because they satisfy the
N-representability conditions studied.

Fig. 6 Error in the DI against o�1/2. (top) DMFAs with errors below 3% and
(bottom) DMFAs with errors above 3%. Fig. 7 Error in hr12i against o�1.
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Only PNOF4 and PNOF6 show a good agreement with both the
exact hr12i and s2. Interestingly, all DMFAs either underestimate
or overestimate the distribution spread around the average
value, the SD approximation showing the largest overestimation
and MBB presenting the sharpest distribution among all DMFAs.

4.6.2 Radial intracule density. In Fig. 9 we have plotted the
difference between the DMFA and the exact radial intracule
density for three values of the o parameter which cover low-
(o = 1000), medium- (o = 0.5) and high-correlation (o = 0.03)
regimes. These profiles allow a range-separation analysis of
electron correlation, the typical profile of the method that lacks
electron correlation being negative at short distances and
positive at large distances.99 The negative and the positive
regions compensate for all DMFAs that satisfy the sum rule.
For o = 1000 we observe that all DMFAs produce exact results
except CA, CGA, ML, MLSIC and SD. One should keep in mind
that there is residual correlation even at the limit of large o,48,78

however, thus far this is the only analyzed property that some
DMFAs fail to reproduce at the weak correlation limit. CA and
SD actually coincide because CA recovers the SD expression at
this limit. At the medium-correlation regime, no functional is
exact except PNOF4 and PNOF6, whereas at the high-
correlation regime even PNOF4 and PNOF6 show some devia-
tions. PNOF4 presents the smallest error while PNOF6h shows
the best performance among PNOF6 versions. GU, ML, MLSIC,
PNOF3 and SD exhibit larger negative values at short and
medium ranges that are not compensated by positive ones
at larger separations because these functionals do not satisfy
the sum rule.

We may classify the functionals according to their profile.
The only functionals that are not included in this classification
are PNOF4 and PNOF6, which show the smallest errors, and
MLSIC which presents the largest errors. In Fig. 9, for the
medium-correlation regime (see the l.h.s. o = 0.5 plot), there is
a first type of profile including CA, ML, PNOF2 and SD, which
consists in the typical profile of methods that underestimate
electron correlation. Namely, CA and SD underestimate short-
range correlation, whereas ML and PNOF2 underestimate mid-
range correlation. These four DMFAs also underestimated

importantly the value of hr12i. The r.h.s. of the o = 0.5 plot,
including BBC2, CGA, GU, MBB, PNOF3 and POWER, shows an
unusual intracule density profile with overestimation of short-
range correlation and underestimation of mid- and long-range
correlation. The latter group of functionals actually provided
quite accurate hr12i for small and medium-correlation regimes
and, at high correlation, either overestimated hr12i or presented
values that are not much smaller than the exact one (see Fig. 7).
The profile of the intracule density at o = 0.03 can be also used
to classify the functionals. We first find a group of DMFAs
(including BBC2, CA, CGA, MBB and POWER), which presents
two maxima: one at short-range and the other at long-range (see
o = 0.03 r.h.s plot in Fig. 9). A second group of DMFAs includes
GU and PNOF3 that underestimate the interelectronic separa-
tion at all ranges except at very short range (see also o = 0.03 r.h.s
plot in Fig. 9). The last group of DMFAs (ML, MLSIC, PNOF2 and
SD) show large underestimation of short- and medium-range
correlation (see o = 0.03 l.h.s plot in Fig. 9).

Although most DMFAs show similar profiles at different
electron correlation regimes, the values of r12 at which they
underestimate/overestimate the interelectronic separation
changes with o. Hence, if one would use these functionals (at
least those that preserve the profile with electron correlation) in
a range-separation scheme100,101 the attenuating parameter102

should depend on o.103,104 An inspection of the intersection
values at different o puts forward that DI(r12) = 0 occurs at
values of r12 that change with o�1/2. Taking the latter point as
the point at which short- and long-range separation functions
coincide would ensure that errors are kept at different correla-
tion regimes. If we choose the error function, erf(mr12), as
the range-separation function it is easy to prove that the
attenuating parameter, m, should be proportional to o1/2, in
line with the well-known fact that the attenuating parameter
should change with electron correlation.103–106

The radial intracule density of harmonium atom at o = 0.03
presents negative probabilities in the short-range region
(Fig. S2 in the ESI‡). Hence, we are prompted to attribute the
overestimation of short-range correlation at the high-correlation
regime in a number of DMFAs (BBC2, CA, CGA, GU, MBB,
PNOF3, PNOF6 and POWER) to the unphysical behavior of the
associated pair density, which can be traced back to the violation
of the P condition. The only functional that actually shows
overestimation of short-range correlation at o = 0.03 and it is
not due to negative radial intracule density values is PNOF4.
Despite their negative radial intracule density values, the hr12i
values computed with BBC2, CA, CGA, GU, MBB, POWER,
PNOF3 and PNOF6 functionals are not among the worst ones.

4.6.3 Electron repulsion energy. Thus far, all the tests
considered in this work did not measure the ability of DMFAs
to reproduce the electronic energy. In this section, we analyze
the performance of the DMFAs in reproducing the Vee, the only
fraction of the energy that is actually approximated in DMFT.
See previous publications of our group for a similar analysis of
DMFAs in other systems.23,27

Fig. 10 shows the relative error in the Vee against o�1/2.
We have not included the POWER functional because it wasFig. 8 Error in s2 against o�2.
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optimized to reproduce the exact Vee, yielding errors below
10�5 a.u. (see the ESI‡ for further details). CA, GU, ML, PNOF2,
PNOF4, PNOF6u and PNOF6h underestimate correlation
energy, whereas BBC2, CGA, MBB, MLSIC and PNOF6d over-
estimate it. SD performs very poorly with a relative correlation
error that grows linearly with o�1/2. Interestingly, despite the
wrong behavior found in the previous tests, all other DMFAs
perform better. Namely, BBC2, CA, CGA, PNOF4 and PNOF6
present errors below 10%. PNOF4 is virtually exact for all values
of o, whereas PNOF6h and PNOF6d provide very accurate
estimates and only show some minor deviations at the

high-correlation regime. This fact puts forward the need for
tests not based in the energy to reveal some inherent important
problems in DMFAs.

5 Discussion and conclusions

Despite its simplicity, the two-electron harmonium atom has
proven an excellent model for benchmarking.64,107 Even though
two-electron systems should not pose a great challenge for
DMFAs, the present paper has unveiled many problems and

Fig. 9 Difference between the exact and the approximate radial intracule density (eqn (16)) for three values of o (1000, 0.5 and 0.03).
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strengths of current approximations. In the following we
summarize these results and put forward various suggestions
for the development of DMFAs.

The study of the diagonal and the antisymmetry of the 2-DM
reveals the limited accuracy of K-functionals. The only
K-functional that can satisfy the antisymmetry requirements
of the 2-DM is the SD approximation, which, actually, performs
better than (or equal to) any other K-functional in the calcula-
tion of the trace and the assessment of the CAE diagonal
elements. These results evince that the construction of a DMFA
needs to consider, at least, both J and K terms.

Results obtained with ML and MLSIC functionals, which
present errors oscillating with the confinement strength in
many tests, suggest caution in using fitted parameters for the
construction of DMFAs.

The DI test warns against the use of the SD approximation in
strongly correlated systems. The widely used MBB approxi-
mation remains a good approximation in any correlation
regime57 but we suggest the usage of PNOF6h or PNOF7 as
they provide more accurate results. However, the performance
of DMFAs in the DI for molecules is an open question that
needs to be addressed.

As expected, the results of PNOF4 (equivalent to PNOF5,
PNOF7 and FP) are significantly better than those obtained
with other DMFAs with the only exception of PNOF6. PNOF4
test results reveal that the phase dilemma36 reminds an open
problem, which affects the energy in a lesser extent than other
properties. Namely, at the high-correlation regime, non-negligible
errors arise in the off-diagonal elements of the 2-DM that result in
inaccurate DI, interelectronic distances, variances, and radial
intracule densities.

The study of radial intracule densities unveils that many
DMFAs present negative probabilities at short interelectronic
distances, in connection with the violation of the P condition.
On the other hand, numerical inspection indicates that most
DMFAs present DI(r12) = 0 for r12 values that are proportional
to o�1/2. In this sense, it seems natural to choose the latter
point as the crossing point between the attenuating functions
that separate short- and long-range regions in range-separated

functionals. Assuming that the attenuating functions are error
functions depending on an attenuating parameter,100,101 m, it is
easy to show that m should be proportional to o1/2. This fact
can be exploited in the construction of new range-separation
methods.

Let us notice that many functionals performed reasonably
well in the calculation of the exact electronic energy but
produce important errors in the calculation of other properties,
supporting the claim that functional development should
consider other properties besides the electronic energy.30,31 In
the calibration of DMFAs one can use properties such as the
intracule pair density, which are particularly challenging for
DMFAs, or other properties, such as the expected value of
the interelectronic separation and its variance, which are con-
venient because they are easy to compute.

Finally, we can draw the conclusion that a DMFA should
attain as many N-representable properties as possible because
the best-performing functionals are those that satisfy most of
these conditions. Some of these N-representable conditions can
be imposed in the construction of the functional.

The results of this work suggest the construction of a DMFA
following some simple and somewhat expected rules: (i) consider
both J and K energy components beyond the single-determinant
approximation, (ii) impose the known N-representability condi-
tions, (iii) refrain from using empirical parameterization; and
calibrate the functionals using (iv) the energy and other proper-
ties, (v) a model with tunable electron correlation to consider
various correlation regimes.

In the present study we have suggested a battery of ten tests
to analyze DMFAs, including several properties that the exact
functional should satisfy. The tests are performed on a two-
electron model system with varying electron correlation and
carrying a very small computational effort. The test can be
easily extended to a larger number of electrons, thus setting
new challenges for DMFAs. We are confident that DMFA
developers will benefit from the results obtained in this paper
and will use this test set as a means to construct more robust
approximations.

Conflicts of interest

There are no conflicts to declare.

Appendix I: N-representability
conditions

The analysis of P, Q and G N-representability conditions,
involves the diagonalization of the P, Q and G matrices
(eqn (13)–(15)) for each spin case (aa, bb, ab and ba). Some of
these matrices render themselves to an analytic diagonaliza-
tion, producing eigenvalues that can be used to constrain the
2-DM elements that enter DMFAs; other matrices cannot be
diagonalized and they only impose conditions that can be
checked a posteriori. In this section we present the eigenvalues

Fig. 10 Relative error in Vee against o�1/2.

Paper PCCP

Pu
bl

is
he

d 
on

 1
4 

A
ug

us
t 2

01
7.

 D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
D

A
D

 D
E

L
 P

A
IS

 V
A

SC
O

 o
n 

19
/0

4/
20

18
 1

5:
30

:2
8.

 
View Article Online



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 24029--24041 | 24039

and the constraints associated to the P, Q and G conditions
produced by K-functionals and PNOFs.

K-Functionals

These DMFAs assume that the opposite-spin cumulant terms
are zero. Hence, the eigenvalues associated to the opposite-spin
P, Q and G matrices are identical for all methods:
	 P-condition (opposite-spin):

�P
ss0

ij ¼ nsi n
s0
j 
 0 (23)

	 G-condition (opposite-spin):

�G
ss0

ij ¼ nsi 1� ns
0

j


 �

 0 (24)

	 Q-condition (opposite-spin):

�Q
ss0

ij ¼ 1� nsi
� �

1� ns
0

j


 �

 0 (25)

These eigenvalues are necessarily non-negative and, therefore,
the opposite-spin matrices do not impose additional con-
straints in these functionals. Conversely, the same-spin
matrices depend on the definition of f (ni,nj) and thus produce
ad hoc eigenvalues. These eigenvalues are collected in the
following matrices:
	 P-condition (same-spin):

�P
ss
ij ¼

ni
2 � f ni; nið Þ if i ¼ j

ninj þ f ni; nj
� �

if io j

ninj � f nj ; ni
� �

if i4 j

8>>><>>>: (26)

	 Q-condition (same-spin):

�Q
ss
ij ¼

ni
2 � f ni; nið Þ if i ¼ j

ninj � f ni; nj
� �

if io j

2 1� ni � nj
� �

þ ninj þ f ðni; njÞ if i4 j

8>>><>>>: (27)

	 G-condition (same-spin):

�G
ss
ij ¼

gi if i ¼ j

ni � f ni; nj
� �

if io j

nj � f ni; nj
� �

if i4 j

8>>><>>>: (28)

where �gi are the (basis-set dependent) eigenvalues of the
following matrix:

gij ¼
ni ni þ 1ð Þ � f ni; nið Þ if i ¼ j

ninj if iaj

(
(29)

where we have assumed that all occupancies ni refer to s-spin
natural orbitals (i.e., ni � ns

i ). The latter matrices dimension is
M, the size of the basis set. In the case of P and Q conditions, K-
functionals produce two sets (one for each spin case: aa and bb)
of M2 basis-set-independent eigenvalues, giving rise to some
conditions that one can impose in the corresponding func-
tional. The G condition, on the other hand, produces M(M � 1)
basis-set independent eigenvalues (and some corresponding

conditions on f (ni,nj)) and M basis-set-dependent eigenvalues
that can only be checked a posteriori.

PNOF

In the case of PNOF, the matrices to diagonalize are given
in terms of D and P. The conditions will involve like-
and opposite-spin components of the 2-DM because, unlike
K-functionals, PNOFs construct all the spin-components of the
cumulant. We collect below the eigenvalues of these matrices:
	 P-condition (same-spin):

�P
ss
ij ¼

2 ninj � Dij

� �
if i4 j

0 if i � j

(
(30)

	 Q-condition (same-spin):

�Q
ss
ij ¼

2 hihj � Dij

� �
if i4 j

0 if i � j

(
(31)

	 G-condition (same-spin):

�G
ss
ij ¼

nihj þ Dij if iaj

�gi if i ¼ j

(
(32)

where hi = (1 � ni) and �gi are the (basis-set dependent)
eigenvalues of the following matrix:

gij ¼
ni if i ¼ j

ninj � Dij if iaj

(
(33)

where ni = ns
i for eqn (30)–(33).

The opposite-spin components of P, Q and G matrices
produce the following eigenvalues:
	 P-condition (opposite-spin):

�P
ss0

ij ¼
ninj � Dij if iaj

�gi if i ¼ j

(
(34)

where �gi are the (basis-set dependent) eigenvalues of the
following matrix:

gij ¼
ni if i ¼ j

Pij if iaj

(
(35)

	 Q-condition (opposite-spin):

�Q
ss0

ij ¼
hihj � Dij if iaj

�gi if i ¼ j

(
(36)

�gi are the (basis-set dependent) eigenvalues of the following
matrix:

gij ¼
hi if i ¼ j

Pij if iaj

(
(37)
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	 G-condition (opposite-spin):

�G
ss0

ij ¼

nihj þ Dij þ Dji þ njhi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nihj � njhi
� �2þ 4Pij

2

q
2

if io j

nihj þ Dij þ Dji þ njhi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nihj � njhi
� �2þ 4Pij

2

q
2

if i4 j

ni if i ¼ j

8>>>>>>>>><>>>>>>>>>:
(38)

where ni = ns
i for eqn (34)–(38), which are only valid for a

closed-shell restricted system.
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96 F. Feixas, J. Jiménez-Halla, E. Matito, J. Poater and M. Solà,
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1 α(ω) optimization for the POWER1–3 Functional

The best α(ω) parameters were obtained by taking the two-electron integrals in the basis

of natural orbitals and first scanning the interval 0 ≤ α ≤ 1. Then selecting the best

alpha iteratively reducing the size of the interval until the error was ≤ 10−5. The exact

Vee, the best α and the errors are collected in Table 1.
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Table 1: α(ω) values which minimize the difference V POWER
ee − Vee

ω Vee (a.u.) α

0.03 0.07564 0.540430

0.033 0.08052 0.539340

0.036 0.08524 0.538200

0.0365373 0.08607 0.538020

0.04 0.09132 0.537110

0.05 0.10563 0.536140

0.06 0.11891 0.536110

0.08 0.14319 0.535190

0.10 0.16523 0.534120

0.15 0.21376 0.531544

0.20 0.25600 0.529410

0.30 0.32880 0.526060

0.40 0.39157 0.523610

0.50 0.44762 0.521657

1.00 0.67184 0.516090

2.00 0.99493 0.511085

5.00 1.64342 0.506484

10.0 2.37889 0.502882

100.0 7.82805 0.493154

1000.0 25.0768 0.474605

2 Exact DI

The exact value of the DI between regions A and B is plotted in Figure 1. The decay

of the DI with ω−1/2 is due to two effects: the less compact electronic density which is

produced by the weakening of the harmonic confinement and the enhanced role of the

electron-electron repulsion.
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Figure 1: Exact delocalization index between regions A and B against ω−1/2.

3 Short-range radial intracule density for ω = 0.03
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Figure 2: Radial intracule density (Eq. 16 in the text) against r12 for ω = 0.03. ML,
MLSIC, PNOF2, PNOF4 and SD have been not been included because they do not
present negative radial intracule density values.

Where MBB, BBC2, CA, CGA, GU, PNOF3, PNOF6 and the POWER functionals

produce negative radial intracule densities for small r12 values.
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ARTICLE

The electron-pair density distribution of the 1,3�u excited
states of H2
J.M. Mercero, M. Rodríguez-Mayorga, E. Matito, X. Lopez, and J.M. Ugalde

Abstract: The non-monotonic behavior of the electron repulsion energy and the inter-electronic distance, as a function of the
internuclear separation, in the 3�u excited state of the hydrogen molecule has been assessed by explicit calculation and analysis
of the electron-pair density distribution functions from high level ab initio full configuration interaction wave functions, for
both the 3�u and the 1�u states. Additionally, Hund’s rule as applied to these two states has been accounted for in terms of simple
electronic shielding effects induced by wave function antisymmetrization.

Key words: electron correlation, excited states, electron-pair density, intracular density, Hund’s rule.

Résumé : Nous avons évalué le comportement non monotonique de l’énergie de répulsion électronique et de la distance
interélectronique comme une fonction de la séparation internucléaire dans l’état excité 3u de la molécule d’hydrogène. Pour ce
faire, nous avons effectué le calcul explicite et l’analyse des fonctions de distribution de la densité de sa paire d’électrons à partir
des fonctions d’onde à pleine interaction de configuration issues de calculs ab initio au niveau élevé pour les états 3u et 1u. De
plus, nous avons établi que la règle de Hund appliquée à ces deux états s’explique par de simples effets de blindage électronique
induits par l’antisymétrie de la fonction d’onde. [Traduit par la Rédaction]

Mots-clés : corrélation électronique, états excités, densité de paire d’électrons, densité intraculaire, règle de Hund.

Introduction
Electron-pair densities describe the relative motion of any two

electrons of a system and were first introduced by Coulson et al. to
gain insight into the physical consequences of electron correla-
tion.1–3 Nowadays, however, interest in electron-pair densities
stems from their usage to develop faster and more accurate com-
putational methods within both molecular orbital theory4 and
density functional theory frameworks.5 Additionally, electron-
pair densities have recently been used to unveil the distinctive
features of two-electron density in different types of chemical
bonds.6–10

Electron-pair densities do also reveal, even for electronic ground
states,11–13 a number of features of quantum correlations between
electrons that are challenging to predict at first sight because in
many cases they are counterintuitive. Excited states, as expected,
exhibit such counterintuitive effects more commonly. Thus, the
double-well first and second excited states of 1�g

� symmetry,
known respectively as the EF and GK excited states, of the hy-
drogen molecule show an intriguing non-monotonic behavior of
the mean electron-electron distance with respect to increases in
the internuclear distance. Indeed, at sharp variance with the
ground state,14 the mean electron-electron distance decreases as
the internuclear distance increases in the transition from the E to

the F minima15 and in the transition from the G to the K minima,16

respectively.
In this vein, Tal and Katriel17 and Colbourn18 reported the (coun-

terintuitive) non-monotonic behavior of the electron repulsion
energy in the 3�u excited state of H2. Indeed, based on their
(crude) Hartree–Fock (HF) calculations, with a small basis set con-
sisting of four uncontracted sp primitives, they found that an
increase in the internuclear distance carries an increase of the
electron repulsion energy and a concomitant decrease of the
mean interelectronic distance, in the domain of the short inter-
nuclear distances. This remarkable counterintuitive feature is not
seen in the parent, arising from the same 1�11�u

1 configuration, 1�u
excited state. For this state, the electron repulsion energy de-
creases monotonically as the internuclear separation increases, in
the whole range of internuclear separations, in accordance with
common (classical) intuition. One is naturally prone to attribute
this unexpected counterintuitive behavior of the triplet state to
the expected failure of HF method for states like these, which bear
substantial multiconfigurational character, in spite of Tal and
Katriel hypothesis: …the non-monotonic trend is real rather than a
Hartree–Fock artifact.

In this paper, electron-pair densities obtained from high-level
ab initio full configuration interaction calculations will be used to
examine these issues and to put into proper perspective earlier
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preliminary calculations,19 demonstrating that the Tal and Katriel
hypothesis is true.

Calculations
The radial electron-pair density distribution, h(u), of an elec-

tronic state |�� is

(1) h(u) � u2� I(u) d�u

where I(u), the so-called20 intracule density

(2) I(u) � ��|�
i	j


(u � ri � rj)|��

stands for the probability density of the coordinates ri and rj of any
two electrons to be separated by the vector u. �u, in eq. 1, stands for
the solid angle subtended by the interelectronic vector u.

Observe that the moments of radial electron-pair density

(3) �un� � �
0

∞

unh(u)du

yield various interesting two-electron properties, such as the elec-
tron repulsion for n = –1, the number of electron pairs, n = 0, and
the mean interelectronic distance for n = 1. Additionally, it is
worth noting that the intracule density can be inferred from ac-
curate total X-ray intensities.21

Results
We have calculated the intracule density, I(u), and its spheri-

cally averaged electron-pair density distribution function, h(u), for
both the 3�u and the 1�u states of H2 from an accurate full config-
uration interaction (FCI) wave function, constructed from a large
Gaussian basis set which is described in detail in Ref. 22.

The calculated potential energy curves resulting from the cal-
culations are shown in Fig. 1, and Table 1 gives the spectroscopic
constants calculated at the equilibrium geometries, along with
the available experimental data. Observe that the equilibrium
distance of both states and the harmonic vibrational frequencies,
�e, are given rather accurately with respect to their experimental
marks.

The inset graph of Fig. 1 shows that the 1�u state rises above the
dissociation limit asymptote at R = 7.17 a.u., and reaches a tiny
maximum at the large internuclear distance of R = 9.0 a.u. Its
height with respect to the dissociation asymptote is 0.014 eV.
These results are consistent with respect to earlier calculations of
the potential energy curve of this state23 and lend support to the
accuracy of our calculated wave functions.

The calculated mean values (n = ±1) of the intracular coordinate
u, evaluated in eq. 3, are shown in Fig. 2 as a function of the
internuclear separation, R. The counterintuitive bahavior of both
the electron repulsion energy and the inter-electronic distance,
within the domain of short internuclear separations, i.e.: R � [0.2 −
0.5] a.u., for the 3�u state is readily seen upon inspection of Fig. 2,
which is in sharp contrast with the smoothly monotonic behavior
observed for its parent 1�u state.

This demonstrates that the non-monotonic behavior of the elec-
tron repulsion and its associated interelectronic distance in the
3�u state, in the domain of short internuclear distances, is not an
artifact arising from the crudeness of its HF description.

Inspection of the difference between the electron-pair density
distribution functions calculated at two internuclear distances

(4) 
h(u; R, 
R) � h(u; R) � h(u; R � 
R) 
R 	 0

provides an alternative view of these unusual correlation effects,
relative to the more familiar h(u) − hHF(u) difference. Indeed, as
seen in Fig. 3, we observe that for the 1�u state, increasing the
internuclear distance from R = 0.2 a.u. to R = 0.5 a.u., from R = 0.5 a.u.
to R = 0.75 a.u., and from R = 1.5 a.u to R = 1.95 a.u. results in a
decreased probability of finding the electrons at short distances
and a concomitant increased probability of finding the electrons
at larger distances. Notice that the three curves in the right panel
of Fig. 3 are positive for small inter-electronic distances, hence the
probability of finding two electrons within these short inter-
electronic distances is larger for the small internuclear distance,
and vice-versa for large inter-electronic distances.

However, for the 3�u state, the probability of finding the elec-
trons at short relative distances is larger for R = 0.2 a.u. than for
R = 0.5 a.u. in spite of the tiny positive peak at u � 1.25 a.u., and
clearly much larger for R = 0.75 a.u. than for R = 0.5 a.u. (see dotted
curve in the left panel of Fig. 3), opposite to what is found for
larger internuclear distances. For instance, the probability of find-
ing the two electrons close to each other is larger at R = 1.5 a.u.
than at R = 1.95 a.u., in accordance with intuition.

But, as mentioned above, at smaller internuclear distances, in-
creasing the internuclear distance increases the probability of
finding the electrons at short interelectronic distances. This be-
havior is counterintuitive and should be seen as one more (unex-
pected) effect of the symmetry constraints imposed by the Pauli
principle.

Fig. 1. Calculated potential energy curves for the 1,3�u excited states
of H2. Energy and internuclear distance, R, in a.u.

Table 1. Equilibrium distances are given
in a.u, energies in a.u., vibrational fre-
quencies in cm−1, electron repulsion
energies in a.u., and electron−electron
coalescence densities in a.u for the 1,3�u

excited states of H2.
1�u

3�u

Re 1.95 1.96
(1.952) (1.961)

E −0.716055 −0.736850
�e 2446.2 2460.9

(2442.7) (2465.0)
�u−1� 0.229863 0.246438
I(0) 0.81×10−2 0.26×10−6

Note: Experimenatal values in parentheses
are taken from Herzberg.24
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Hund’s Rule in the 1,3�u states of H2

The parent 1,3�u states of the hydrogen molecule differ because
of the different symmetry constraints, which Pauli’s principle
imposes to the spatial part of their corresponding wave functions.
Thus, while the singlet state transforms symmetrically with re-
spect to exchanging the electronic coordinates, r1 ↔ r2, the triplet
state’s spatial part of the wave function must do it antisymmetri-
cally:

(5) �(r1, r2) � ��(r2, r1) ∀(r1, r2)

and consequently:

(6) �(r1, r1) � 0 ∀r1

This allows for the straightforward evaluation of the electron–
electron coalescence density,25 namely: I(u = 0), for the triplet
state as

(7)

I(0) � ��|
(r1 � r2)|��

� � dr1dr2�
�(r1, r2)�(r1, r2)
(r1 � r2)

� � dr1�
�(r1, r1)�(r1, r1) � 0

Our explicitly calculated values for I(0) for the 3�u state, shown in
Table 1, agree with this prediction and lend further support to our
calculated intracule densities.

Furthermore, due to the continuity of the intracule density
function, it is expected that the spherically averaged electron-pair
density distribution function, h(u), will start building up slower in
the triplet state than in the singlet, because in the singlet state
I(0) > 0 (see Table 1). Consequently, one expects that the probabil-
ity of finding two electrons at short inter-electronic distances will
be larger for the singlet than for the triplet.

The electron-pair density distribution function differences of
the 3�u state minus that of 1�u state, at a number of selected
internuclear distances, plotted in Fig. 4, confirm this assumption.
That is, as stated above, h(u) is smaller at small inter-electronic
distances, u, for the triplet than for the singlet, hence the negative
values shown in Fig. 4 at short inter-electronic distances u, irre-
spective of the internuclear distance.

The Pauli principle, therefore, prevents electrons from coming
into close proximity of each other, as is well known. A natural
consequence of this is (hypothesized) that the electron repulsion
in the triplet state should be smaller than in its parent same-
configuration singlet state, where electrons are not impeded from
approaching each other, and consequently, due to associated de-
creased electron repulsion energy, the triplet (high) spin state is
more stable that the singlet (low) spin state. This has been claimed
to constitute the physical basis of the Hund’s rule,26–28 which the
1,3�u excited states of H2 strictly fulfill.

However, the data reported in Table 1 and in Fig. 2 show that
this is not the case for the 1,3�u excited states of H2. Indeed, the
electron repulsion energy for the triplet state is larger than for the
singlet state, irrespective of the internuclear distance. Addition-
ally, it is worth recalling that numerous explicit evaluations of the
electron repulsion energy for the various spin states arising from
the same configuration found, with no exception, that the elec-
tron repulsion energy is larger in the high-spin state (see Ref. 29,
p. 234). This invalidates the explanation outlined above for Hund’s

Fig. 2. Dependence of the mean inter-electronic repulsion energy
�u−1�, (left panel) and the mean interelectronic separation �u+1�, (right
panel) in the 3�u state (solid curve) and in the 1�u state (dashed
curve).

Fig. 3. Difference of the electron-pair density probability function
for the 3�u state (left panel) and for the 1�u state (right panel). Solid
curve: h(u; R = 0.2) − h(u; R = 0.5), dotted curved: h(u; R = 0.5) − h(u; R = 0.75),
and dashed curve: h(u; R = 1.5) − h(u; R = 1.95).

Fig. 4. Difference between the electron-pair density probability
functions of the 3�u state and the 1�u state. Solid curve: R = 0.2 a.u.,
dashed curve R = 0.5 a.u., dotted curve: R = 1.5 a.u., dotted and
dashed curve: R = 1.95 a.u.
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rule, as it was elegantly put forward by Boyd30,31 and subsequently
elaborated on by others.32,33

The physical basis of the lower energy of the 3�u, with respect to
its parent 1�u state, is shown in Fig. 4. Notice that although the
probability of finding the electron in close proximity is smaller in
the triplet than in the singlet state, the triplet favors intermediate
inter-electronic distances, compared with the singlet state. Addi-
tionally, notice also that the probability of finding the electrons
at large separation is larger in the singlet than in the triplet state,
unlike the behavior found for short inter-electronic distances. The
triplet state, therefore, favors intermediate inter-electronic dis-
tances, which makes the electronic cloud more compact in the
triplet than in the singlet state, and consequently makes the
electron–nucleus attraction energy larger in the triplet than in
the singlet state, in such an amount that it outweighs the larger
electron repulsion of the latter.34–38

In other words, since the electrons of the triplet state avoid each
other in the vicinity of the nuclei, they screen less the nuclear
charge and consequently the electron cloud becomes more com-
pact than in the singlet state, for which the nuclear charge is
screened more efficiently.39 This leads ultimately to an increased
electron–nucleus attraction for the triplet, which overweighs the
larger electron repulsion of the triplet state, yielding, therefore, a
more stable triplet state.

Summary
We have demonstrated, in accordance with Tal and Katriel,17

that the non-monotonic behavior with respect to the internuclear
separation of the electron repulsion energy and its associated
mean inter-electronic distance in the 3�u excited state of the hy-
drogen atom are real, counterintuitive, effects of the symmetry con-
straints imposed by the Pauli principle on the wave function of
triplet states. High-level FCI calculations show that while in the
1�u excited state the electron repulsion energy and its associated
mean inter-electronic distance behave monotonically, in the 3�u

excited state, the electron repulsion energy increases and the
mean inter-electronic distance decreases as the internuclear sep-
aration increases.

Finally, we have found that Hund’s rule, which holds also for
these 1,3�u same-configuration 1�g

1�u
1 excited states, can be ac-

counted for in terms of simple electronic shielding effects in-
duced by wave function antisymmetrization, in accordance with
the accepted interpretation.31
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6.2) Electron-Pair Distribution in Chemical Bond Forma-

tion
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ABSTRACT: The chemical formation process has been studied from
relaxation holes, Δh(u), resulting from the difference between the radial
intracule density and the nonrelaxed counterpart, which is obtained from
atomic radial intracule densities and the pair density constructed from the
overlap of the atomic densities. Δh(u) plots show that the internal
reorganization of electron pairs prior to bond formation and the covalent
bond formation from electrons in separate atoms are completely
recognizable processes from the shape of the relaxation hole, Δh(u). The
magnitude of Δh(u), the shape of Δh(u) ∀ u < Req, and the distance
between the minimum and the maximum in Δh(u) provide further
information about the nature of the chemical bond formed. A computational
affordable approach to calculate the radial intracule density from
approximate pair densities has been also suggested, paving the way to
study electron-pair distributions in larger systems.

■ INTRODUCTION

Understanding chemical processes requires a proper character-
ization of bond formation. The formation of bonds is usually
analyzed from the energy gain or loss, through the study of
potential energy surfaces,1 suggested by Rene ́Marcelin in 1913.
Since the advent of quantum mechanics, the chemical bond has
been also investigated from descriptors based on the electron
density.2−4 Many tools have been designed to this aim, the
quantum theory of atoms in molecules5 (QTAIM) of Bader
probably being the most popular one. Another avenue consists
in the study of electron pair formation in chemical bond, as
pioneered by the classical work of Lewis in 1916.6 Since the
landmark paper of Lewis, there have been many attemps to fit
the classic idea of electron pairs in the chemical bond within the
framework of quantum mechanics, mostly using electron-pair
distributions.7−21 The electron-pair distribution or pair density
provides a quantum-mechanical description of the distribution
of electron pairs in the space.22,23 Although the pair density has
a simple probabilistic interpretation, it is a complicated six-
coordinate function that is not easy to analyses. Most analysis
of the pair density employ transformations that reduce the
dimensionality,10,24,25 use statistical quantities such the average
number of pairs,7−9,11−14,16,18,26,27 or employ two-electron
expectation values such as the energy28−35 or the square of the
total spin angular momentum.36−39 One of the most

convenient transformations of the pair density is the so-called
intracule density, which results from the integration of the pair
density over the extracule coordinate. The radial or isotropic
intracule density depends only on one coordinate, the
interelectronic distance, but it still retains information about
the electron-pair distribution and it is also the simplest quantity
in terms of which an explicit expression of the electron−
electron energy is known. Interestingly, the intracule density is
related to an experimental observable, as it can be obtained
from X-ray scattering techniques.40−42 The intracule density
has been previously used to analyze the electronic structure and
electron correlation of some molecular systems,24,43−59 but very
few studies of the intracule density have been devoted to the
investigation of bond formation.60−62

The aim of this paper is to understand the changes occurring
in the intracule density during the chemical bond formation. To
this aim, we have chosen three simple molecules: (i) H2 and
(ii) HeH+, which have a chemical bond consisting of a single
electron pair, and (iii) BH, which contains several electron
pairs, only one of which is involved in the chemical bond. The
study is complemented with molecules presenting more
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complicated bonding situations such as CO, Li2, F2, or the
ground and first excited states of LiH. Finally, we consider the
cost of the intracule density plots and suggest a means to obtain
it at a reduced computational overhead.

■ METHODOLOGY
The pair probability density or simply pair density25,63 (2-PD) is
defined as

∫ρ = − |Ψ |N N
dr r r r r r r r( , )

( 1)
2

( , , ,... , ) d ...N N2 1 2 1 2 3
2

3

(1)

for any electronic wave function Ψ of a N-electron system. It is
proportional to the probability of finding a pair of electrons at
r1 and at r2, regardless the position of the other N − 2
electrons. Among all electron-pair distributions, we may select
the ones that satisfy u = r2 − r1 for a fixed u,

∫ ρ δ= − +I u r r u r r r r( ) ( , ) ( ) d d2 1 2 1 2 1 2 (2)

which is known as the intracule probability density or simply
intracule density. Upon integration over the solid angle Ωu we
obtain the radial or isotropic intracule density,

∫= ΩI u u I u( ) ( ) d u
2

(3)

This function only depends on the interelectronic distance,
and therefore it provides a simple visualization of the
distribution of electron−electron separations. By monitoring
the changes of this distribution as we stretch a chemical bond,
we should observe the formation and breaking of electron pairs
and the electron reorganization in the molecule. Unfortunately,
the radial intracule density contains all the information on the
N(N − 1) electron pairs in the molecule, most of which is
superflous to explain the chemical bond formation. To select
the chemical important information within the radial intracule
density, some of us62 defined the relaxation hole,

Δ ≡ Δ = −h u h u I u I u( ) ( ) ( ) ( )rel nrel (4)

as the difference between the actual radial intracule density and
the nonrelaxed one,

∑ ∑= +
>

I u I u I u( ) ( ) ( )nrel
A

A
A B

AB
(5)

where the first term at the right-hand side accounts for the
atomic contribution and is computed from isolated atoms, and
the second term involves the summation of all interatomic
contributions computed using nonrelaxed densities,

∫ ρ ρ δ= − + ΩI u u r r u r r r r( ) ( ) ( ) ( ) d d d uAB
2

A 1 B 2 1 2 1 2 (6)

where ρA(r1) is the density of the isolated atom A. The
nonrelaxed density is thus the intracule density that can be
obtained using atomic information only. Notice that the
nonrelaxed density considers the distribution of electron pairs
within the atoms but also the electron pairs generated from the
two individual atomic densities, ρAρB. Inrel(u) was proven to be
a “poor man’s approach to the real I(u)”,62 and insufficient to
characterize van der Waals interactions.54,62 However, the
structure of Δhrel(u) was shown to provide valuable
information about the bonding nature of small few-electron
systems.62 In this work we are concerned with the bond
formation process in species with larger numbers of electrons,

which we will study through the analysis of Δhrel(u) at different
bond lengths for various diatomic molecules.
The computational cost of the intracule density is quite high

because it involves the calculation of the second-order reduced
density matrix (2-RDM) from a highly accurate wave function
(typically a full-configuration interaction, FCI) and the
numerical integration with a Gauss−Hermite quadrature of
eq 2 and a surface integration using a Lebedev quadrature (eq
3). In this paper we will consider two different approximations
that can reduce the computational cost (see Supporting
Information for performance values). First of all, we will
substitute the FCI calculation with a sufficiently accurate wave
function. Namely, we will consider coupled-cluster single and
doubles (CCSD) and complete active space self-consistent field
(CASSCF) wave functions as substitutes of the FCI calculation
in the presence of dynamic and nondynamic correlation effects,
respectively.64,65 Second, we will use an approximation of the 2-
RDM that only includes two-index elements66,67 and, therefore,
reduces the 2-RDM from the exact four-index quantity to an
approximate two-index one.
CCSD wave functions do not satisfy the Hellmann−

Feynman theorem and usually the expensive energy-derivative
2-RDM are employed.35,68−70 To reduce the cost, several
authors14,20,71−73 have used 2-PD approximations extracted
from the reduced density matrix functional theory
(RDMFT).53,74−76 In this paper we opt for the same solution
to reduce the cost of CASSCF and CCSD 2-RDM. Among the
different RDMFT approximations, we have chosen the simple
Müller approximation66 (also known as Baerends−Buijse
approximation67,77) that provides reliable results in the
calculation of chemical bonding descriptors.14,20,53

FCI calculations of the potential energy curves (PECs) have
been performed for H2, HeH

+, BH, Li2, and LiH (for LiH both
ground and first excited states are considered) with a modified
version of the code developed by Knowles and Handy.78,79 For
F2 and CO, CASSCF calculations of the PEC were performed
using Gaussian 0980 taking ten electrons in six orbitals for F2
and six electrons in six orbitals, including a state average of six
energy levels, for CO. The Gaussian 09 package was employed
to perform CCSD calculations for all diatomics but CO and
two-electron molecules. The computation of approximate
Δh(u) using CCSD wave functions employed the unrestricted
formalism to compute the total radial intracule density and the
nonrelaxed ones (which often involve open-shell species) in the
same grounds. All CCSD calculations included the correlation
of all the electrons except for F2, for which we performed
frozen-core calculations to produce a meaningful comparison
between CCSD and CASSCF results. In all cases the aug-cc-
pVDZ basis was used. PECs of all the studied systems are
collected in Figure S1. 2-RDMs were produced from the
expansion coefficients of CASSCF and FCI wave functions
using the in-house DMn code.81,82 Intracule densities were
computed with the RHO2_OPS83 code using the algorithm of
Cioslowski and Liu.84

■ RESULTS
H2, HeH

+, and BH. All the equilibrium distances at the
corresponding level of theory are collected in Table 1. The
formation of the covalent bond in H2 is due to a partial
deformation of the electron density of the two isolated atoms,
which is relocated between them. The same phenomenon can
be studied in terms of the pair density, by comparing the radial
intracule density of H2 to the nonrelaxed radial intracule
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density described in the previous section. The formation of an
electron pair between the two atoms is evident from the plots
in Figure 1, where we observe that Δh(u) peaks at the bond
length or at shorter distances and is negative at larger distances.
In other words, the electron-pair distance shrinks upon the
formation of the chemical bond. The distance between the
maximum and minimum of Δh(u) provides information about
the deformation of the electron-pairs length (Table 1). In H2,
this length systematically reduces as the molecule is formed,
increasing the probability of having the electron pair at shorter
distances.
HeH+ is formed from He and H+, and therefore, the

nonrelaxed intracule density of this diatomic molecule is rather
simple because H+ does not contribute to atomic or diatomic
components of the nonrelaxed intracule density (the density
and the pair density of H+ are zero). Hence, Δh(u) only has
contributions from the atomic He component and it results
from the difference of the radial intracule density of HeH+ and
He. The redistribution of the electron-pair probability density
upon bond formation is less important than in the hydrogen
molecule, as the values of Δh(u) are 1 order of magnitude
smaller. The formation of the covalent bond in this molecule is
actually completely opposite to the latter case, as we can see in
Figure 1. First, as the helium atom approaches the proton, the
electron pair within He stretches, reducing the probability of
having the electrons separated ca. 0.5 Å and increasing it
around the bond length. Only at the equilibrium, R = 0.8 Å, is
the electron-pair density at larger distances reduced. The fact
that the pair density is dragged from short distances always
around the same position (around 0.3−0.5 Å) is in accord with
the fact that this molecule is just experiencing an internal pair
reorganization of the electrons within He.

The formation of BH from B and H is an intermediate case
where a bonding electron pair is formed from two electrons
that come one from each atom, and there is simultaneously an
internal reorganization of the electron pairs in B. At large
atomic separations, as a result of the deformation of the
electron density within B atom, electrons move toward H and,
hence, the electron-pair distribution shifts to larger distances
(Figure 2). Eventually, the two atoms get quite close and the

profile of Δh(u) reverses: the electron-pair distribution
increases around the bond length by reducing the density of
electron pairs at shorter and longer distances. Finally, the bond
is completely formed and the peak of Δh(u) is entirely due to
the reduction of the distance of electron pairs. As we can see,
the internal reorganization of electron pairs prior to bond
formation and the covalent bond formation from electrons in
separate atoms are completely recognizable processes from the
shape of the relaxation hole.

Li2, CO, F2, and LiH. In this section we analyze the intracule
densities during the bond formation of Li2, CO, F2 and LiH
from the neutral atoms in gas phase. In the latter case we study
both the ground and the first excited states, X1Σ+ and A1Σ+,
respectively. All these diatomic molecules dissociate into
neutral atoms in the gas phase and there is, at least, some
partial covalent character in the bonds of these molecules at
equilibrium.85

In F2 the reorganization of electron pairs occurs faster than in
BH (Figure 3). Indeed, the first appreciable variation of the
electron pair distribution does not occur until the atoms are

Table 1. First Maximum (M) and Minimum (m) of Δh(u)
for All the Systems Studieda

molecule Req uM um Δh(uM) Δh(um)

H2 0.7 0.76 1.86 0.113 −0.071
HeH+ 0.8 0.84 0.31 0.026 −0.014
BH 1.3 1.16 2.17 0.192 −0.067
Li2 2.7 2.02 4.08 0.344 −0.239
CO 1.1 0.69 1.19 1.287 −1.038
F2 1.5 0.77 1.32 0.516 −0.903
LiH (X1Σ+) 1.6 1.37 3.04 0.322 −0.185
LiH (A1Σ+) 2.6 6.05 2.21 0.263 −0.409

au and Req (the equilibrium distance) are in Å.

Figure 1. Δh(u) of H2 (left) and HeH+ (right) at different bond lengths. All R and u in Å.

Figure 2. Δh(u) of BH along the bond formation process. All R and u
in Å.
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separated 2.5 Å, i.e., at 1.2 Å from the equilibrium distance. The
first significant values of Δh(u) occur at R = 2.1 Å, where the
electron-pair distribution is shifted to shorter distances,
augmenting the probability of finding electron pairs between
the F atoms. Unlike H2 or BH, the maximum of the relaxation
hole, Δh(u), occurs at values of u significantly shorter than the
equilibrium distance (Table 1), suggesting that two bonding
electrons lie in the bonding region as opposed to the situation
in which the electrons of the bonding pair are sitting close to
the nuclei. The same situation is reproduced in Li2 and CO, and
therefore, we are deemed to conclude that this profile is typical
in covalent bonds. Obviously, H2 constitutes an exception
because there are no core electrons in this molecule and,
therefore, the electrons in the bonding pair are highly attracted
toward the closest nucleus.
Let us now examine Li2, which presents a non-nuclear

attractor (NNA) in the middle of the bond at various bond
lengths (RLiLi ∈ [2.7−3.3] Å)86 and is the smallest electride

documented thus far.87 At equilibrium, we find that Δh(u) > 0
for all u < Req and significant large Δh(u) at u = Req/2,
indicating the additional formation of electron pairs between
the electrons at the NNA and the ones at each Li atom. In this
case, the formation of the molecule occurs less abruptly than in
F2 and involves the reorganization of electron pairs at larger
distances.
The Δh(u) evolution with the bond length in CO has also

some resemblance with the latter two cases. There are,
however, three important differences. The first one is that the
CO bond formation takes place in a shorter span than in Li2 but
larger than in F2, the first important electron-pair redistribution
occurring only at about 1 Å from the equilibrium distance. The
second one is the long-range peaks of Δh(u), showing at
distances larger than the bond length, suggesting a non-
negligible reorganization of the lone pairs prior to bond
formation. Finally, we find that Δh(u) is systematically larger
than in Li2 and F2, as it corresponds to the formation of three
electron pairs in CO. Interestingly, CO and F2 have the shortest
distance between the maximum and the minimum of Δh(u)
(Table 1), indicating that these molecules experience a less
drastic deformation of the electron-pair length upon bond
formation. This fact is in agreement with the more electro-
negative character of the composing atoms, conferring them
with a lower capacity to be deformed.
A most interesting electron reorganization occurs in LiH

ground and first excited states.85 The X1Σ+ and A1Σ+ states
dissociate into H(2S) + Li(2S) and H(2S) + Li(2P), respectively.
The adiabatic ground state, X1Σ+, is dominated by a diabatic
ionic state at the equilibrium but, as the molecule stretches, the
PEC passes through an avoided crossing and the state is
predominantly covalent in nature. In this sense, the character of
the bond in LiH changes from covalent to ionic as the molecule
is formed. This change of bond character is accompanied by an
electron transfer from hydrogen to lithium, which is commonly
known as the harpoon mechanism. This peculiar mechanism is
given by the crossing between two diabatic states, the ionic and
the lowest-lying covalent ones, around 3 Å. The A1Σ+ state is
even more complicated because it results from the crossing of
three diabatic states, the ionic and the two lowest-lying covalent
diabatic states, giving rise to two avoided crossings (the first of
which obviously is shared with the ground state). Hence, when
the molecule is formed, the bonding character of A1Σ+ LiH
changes from covalent to ionic and, then, back to covalent. The
second avoided crossing takes places when Li and H are
separated about 6 Å. The electron transfers occur in the regions
close to the avoided crossings and were fully characterized in
our previous work.85

The profile of Δh(u) for X1Σ+ at equilibrium resembles BH,
peaking not far from the equilibrium distance. However, as we
stretch the bond, one does not observe electron-pair depletion
at short distances. In fact, it is only after we have passed the
avoided crossing that we start to observe an increase of the
probability at short electron−electron distances. In other
words, the typical profile of covalent bond dissociation is
only reproduced when we are in the part of the potential energy
surface that is purely covalent. Although the profiles of Δh(u)
for large R are very similar for the ground and excited states, the
situation at short bond lengths is reversed for the A1Σ+ state. As
we approach the equilibrium distance, the profile does not
reverse and we barely observe the formation of short-range
electron pairs. This plot puts forward the rather polarized
character of this bond, which is characterized by significant

Figure 3. Relaxation holes for Li2, CO, F2, and LiH at different bond
lengths (R). The ground (X1Σ+) and excited (A1Σ+) states of LiH were
analyzed. The minimal bond length corresponds to the equilibrium
geometry in all cases. All R and u in Å.
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electron-pair stretching upon bond formation, i.e., completely
opposite to all the molecules studied in this work. Even HeH+

is a quite different case because in this molecule there was only
internal reorganization of the electron pairs, which were never
shifted to distances much larger than the bond length.
Approximate Radial Intracule Densities. In this section

we assess the performance of approximate radial intracule
densities in reproducing the plots of the previous sections. Thus
far, we have employed CASSCF wave functions for F2 and CO,
and FCI for H2, HeH

+, BH, Li2, and LiH (both states). Both
FCI and CASSCF yield N-representable 2-RDMs.
First of all, we replace the FCI/CASSCF calculation by

CCSD for all the systems, except CO, for which a
multideterminant calculation is mandatory. Second, we use an
approximate 2-RDM calculated from CCSD natural orbital
occupancies. Namely, we apply the Müller approximation66,67,77

using the energy-derivative CCSD 1-RDMs obtained from
Gaussian. The latter are not N-representable and, thus, might
present natural occupancies outside the physical range [0,1].
However, in the present cases, only a few populations did not
meet this condition and the deviations from the occupation
boundaries were small, producing no quantitative effect on the
results presented.
We did not include H2 and HeH+ because, for these two-

electron systems, the CCSD wave functions actually correspond
to the exact solution and, therefore, only the 2-RDM could be
approximated. In addition, as we have just recently proven, the
Müller approximation performs quite accurately in a weakly
correlated regime.53 Accordingly, our calculations on these
systems confirm this finding, producing intracule plots that are
indistinguishable from the exact ones, and therefore, we have
omitted them in the manuscript. We have also omitted the
excited state of LiH. The approximate Δh(u) plots for the rest
of the molecules are plotted in Figure 4 (see Supporting
Information for error plots). In all cases there is a very good
agreement between the original calculations using FCI/
CASSCF and the exact 2-RDM and these approximate wave
functions using CCSD and Müller’s approximation. The small
difference occurs for the short-range part of Δh(u) of F2, which
can be attributed to the fact that CASSCF calculations did not
include the 2σ orbital in the active space whereas the CCSD
wave function takes the correlation effects of this orbital into
account. We also collect the information on the minima and the
maxima of Δh(u) in Table 2. Comparison with the numbers in
Table 1 reveals very small differences between the original and
the approximate Δh(u), validating the use of the approx-
imations to retrieve information about the electron pairing in
electronic structures.

■ CONCLUSIONS
In this paper we have studied the chemical formation process
from the study of radial intracule densities. We have analyzed
the relaxation holes, Δh(u), resulting from the difference
between the actual radial intracule density and the nonrelaxed
one constructed from atomic radial intracule densities and the
pair density obtained from the overlap of the atomic densities.
Our results show that the mechanism of electron-pair formation
is contained in Δh(u). In particular, the internal reorganization
of electron pairs prior to bond formation and the covalent bond
formation from electrons in separate atoms are completely
recognizable processes from the shape of the relaxation hole,
Δh(u). The magnitude of Δh(u), the shape of Δh(u) ∀ u < Req,
and the distance between the minimum and the maximum in

Δh(u) provide information about the nature of the chemical
bond formed.
We have also suggested a computational affordable approach

to calculate the radial intracule density from approximate pair
densities and adequate wave functions such as CCSD or
CASSCF as replacements of FCI in regimes of dynamic and

Figure 4. Approximate Δh(u) for Li2, F2, LiH, BH, and CO at different
bond lengths (R). The 2-RDM uses the Müller approximation from
CCSD (Li2, F2, BH, and LiH) and CASSCF (CO) wave functions. All
R and u in Å.

Table 2. First Maximum (M) and Minimum (m) of Δh(u)
for the Systems Analyzed with the Approximate Relaxation
Hole at the Equilibrium Distance (Table 1)a

molecule uM um Δh(uM) Δh(um)

BH 1.15 2.08 0.207 −0.076
Li2 2.04 4.10 0.353 −0.241
CO 0.70 1.19 1.322 −1.000
F2 0.80 1.35 0.657 −0.970
LiH (X1Σ+) 1.36 3.03 0.325 −0.184

au in Å.
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nondynamic correlation, respectively. In all cases, there is a
qualitative agreement with the reference calculation and, quite
often, the relaxation holes produced from both methodologies
are barely distinguishable. This approach paves the way to study
electron-pair distributions in larger systems.
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1 Potential Energy Curves
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Figure S1: Potential energy curves for all systems studied obtained with FCI or CASSCF.
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1.2 CCSD
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Figure S2: Potential energy curves obtained with CCSD.

2 ∆[∆h(u)]

Analysis of the error between the reference ∆h(u) and the approximated one ∆̃h(u), obtained

from CCSD or CASSCF natural occupancies using the MBB approximation.

∆[∆h(u)] = ∆̃h(u) − ∆h(u) (1)

S3



−0.2

0.0

0.2

 0  1  2  3  4
∆[

∆h
(
u
)
]

u (Å)

CO

R=1.1
R=1.5
R=1.9

R=2.1
R=2.5
R=4.0

−0.05

−0.03

0.00

0.03

0.05

 0  2  4  6  8  10

∆[
∆h

(
u
)
]

u (Å)

Li2

R=2.7
R=3.6
R=4.2

R=5.1
R=5.5
R=13.0

−0.2

−0.1

0.0

0.1

0.2

 0  1  2  3  4

∆[
∆h

(
u
)
]

u (Å)

F2

R=1.5
R=1.7
R=1.9

R=2.1
R=2.5
R=4.0

−0.015

−0.007

0.000

0.007

0.015

 0  1  2  3  4  5  6  7

∆[
∆h

(
u
)
]

u (Å)

LiH (X
1Σ+)

R=1.6
R=2.2
R=2.6

R=3.4
R=3.7
R=5.0

−0.050

−0.025

0.000

0.025

0.050

 0  1  2  3  4  5

∆[
∆h

(
u
)
]

u (Å)

BH

R=1.3
R=1.5
R=2.0

R=2.5
R=3.3
R=6.0

Figure S3: ∆[∆h(u)] using MBB and natural orbital occupancies. CCSD natural occupancies
were used in all cases but CO, for which CASSCF natural occupancies were employed.
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In Fig. S3 we observe small differences between the exact and approximate ∆h(u). F2

presents the largest deviations because CCSD involves many more non-zero natural orbital

occupancies than CASSCF (for which only the active space orbitals are correlated).

3 Computational saving using the approximation

Table S1 collects the memory needs to store the second order reduced density matrix (2-

RDM). As we can observe the memory requirements are very similar for small molecules,

but as the size of the exact 2-RDM matrix grows, the size of the approximate 2-RDM

reduces significantly. The larger the memory matrix, the larger computational time needed

to perform the calculation of the relaxation hole.

Table S1: Average memory in Kb required to store the exact and the approximate 2-RDM
for the studied systems.

Memory in Kb

Molecule FCI/CASSCF CCSD or CASSCF in MBB

H2 76 60

HeH+ 270 260

LiH 3900 3400

BH 75000 20000

Li2 2500 1900

F2 30 100

CO 4000 3200
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7.1) The Coulomb Hole of the Ne Atom
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The Coulomb Hole of the Ne atom
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We analyze the Coulomb hole of Ne from highly-accurate CISD wave functions obtained from
optimized even-tempered basis sets. Using a two-fold extrapolation procedure we obtain highly
accurate results that recover 97% of the correlation energy. We confirm the existence of a shoulder
in the short-range region of the Coulomb hole of the Ne atom, which is due to the correlation of
the core electrons in the K shell. The feature is not displayed in the Coulomb hole calculated with
certain basis sets, such as the cc-pVnZ basis set of Dunning, proving that a proper description of
the core electrons requires the usage of, at least, the cc-pCVnZ basis set. The shoulder is due to an
internal reorganization of the K shell, where electrons are pushed towards the K-shell boundary. A
short-range feature of the Coulomb hole is not exclusive to Ne atom and it is also present in most
of second-row atoms, suggesting that it is due to the core correlation effects.

I. INTRODUCTION

Electron correlation is still a central problem in physics
and chemistry. Its study often provides physical in-
sights to develop new computational methods to tackle
the electronic structure of molecules. The primitive de-
scription provided by the Hartree-Fock (HF) wave func-
tion has been improved by consideration of different
types of electron correlation, such as dynamic and non-
dynamic correlation, in the so-called post-HF methods
as well as in methods that do not employ wave func-
tions, such as the density and reduced-density matrix
functional theories (DFT1 and RDMFT2–4). The im-
provement of computational methods, the correct choice
of a computational protocol to address a given problem,
and our understanding of the electron correlation, hinge
on the development of appropriate descriptors of elec-
tron correlation.5–13 Lately, our efforts have concentrated
in this direction, resulting in the development of simple
electron correlation descriptors capable of separating dy-
namic and nondynamic correlation.10–12

The Coulomb hole stands among the classical descrip-
tors that are used to study the electron correlation due
to its conceptual simplicity and its connection with the
electron-electron interaction energy.14–17 The Coulomb
hole provides a practical picture of how the electron cor-
relation affects the interelectronic separation. Namely, it
reflects the change of the electron-electron distance dis-
tribution upon the inclusion of electron correlation. From
this quantity the correlation effects on the average inter-
electronic distance, its variance, and the electron-electron
repulsion are easily assessed. The topological features
of the Coulomb hole have also been studied, leading to
some relevant conclusions about the nature of electron
correlation.18–20 Some of us have also recently used the
long-range part of the Coulomb hole to characterize van
der Waals interactions.12,21

In this work, we analyze a key feature of the Coulomb
hole of the Ne atom that, thus far, has been largely
ignored by many quantum mechanics practitioners. In
1969, Bunge and coworkers identified a shoulder struc-
ture in the short-range part of the Coulomb hole of the
Ne atom,22 which was corroborated by Cioslowski and
Liu thirty years later.23 Bunge attributed this peculiarity
to the K-shell electrons, whereas Cioslowski did not com-
ment on this feature. We have found that the shoulder is
very sensible to the quality of the basis sets employed in
the calculation, turning into a mininum or vanishing de-
pending on the basis set. In order to confirm the presence
of the shoulder we have performed CISD and FCI calcu-
lations employing large optimized even-tempered basis
sets, which provide energy estimates that compare well
with the most accurate values obtained by Bunge.22,24–26

Our results provide a thorough study on the origin of the
shoulder, identifying the causes that are responsible for
its presence. Finally, we prove that this feature is not
exclusive to Ne atom.

II. METHODOLOGY

There are two different ways to define correlation holes:
McWeeny’s15 and Coulson’s.14 The former is statistically
motivated and it does not employ reference wave func-
tions, whereas Coulson’s definition uses HF as the un-
correlated reference. In this work, we are concerned with
Coulson’s definition, which is connected with an experi-
mental observable. Coulson’s Coulomb hole is obtained
from the difference between the exact and the HF in-
tracule densities. The radial intracule density provides a
distribution of the electron-electron distances,

I(u) =

∫ ∫
dr1dr2 n2(r1, r2)δ(u− r12) , (1)
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where n2(r1, r2) is the pair density and r12 is the module
of the intracule coordinate, r12 = r1 − r2.

Recall that the electron correlation hole studied in the
present work differs from the exchange-correlation hole
of Kohn-Sham DFT.27 The latter represents the rear-
rangement of a test electron’s density arround a reference
electron due to the DFT exchange-correlation, which in-
cludes some non negligible excess kinetic energy contri-
bution. Our intracule based Coulomb hole averages the
position of the reference electron and, consequently, re-
flects the effect of the electron correlation due to Coulomb
like interactions within an averaged electron pair.

The X-ray scattering intensity is essentially determined
by the Fourier-Bessel transform of the intracule pair den-
sity28,29 and it is employed in the study of elastic and in-
elastic scattering of electrons.22 The total X-ray scatter-
ing intensity for short wavelengths is actually governed
by the value of the intracule at the coalescence points,
I(0).30

The difference between the exact pair density and an
uncorrelated reference, represents the change in electron
pair distribution upon the introduction of electron corre-
lation. Coulson’s Coulomb hole14 sets HF intracule pair
density as the uncorrelated reference,

hC(u) = I(u) − IHF(u) (2)

giving negative (positive) values for the interelectronic
separations u that are increased (decreased) upon the
inclusion of correlation. The integration of hC(u) over u
gives zero.

The optimization of the basis sets employs an ana-
loguous procedure to the one developed elsewhere.31 This
procedure has been successfully used to generate highly-
accurate basis functions to test model systems and cali-
brate a number of methods.31–35 First of all, a family of
uncontracted basis sets consisting of spherical Gaussian
primitives is constructed by selecting the optimized expo-
nents that minimize the CISD energies (the coefficients
that multiply the primitives are equal to 1 and do not en-
ter the optimization procedure). From these values, the
complete-basis set (CBS) estimate of Ne CISD energies
are obtained by a two-fold extrapolation procedure.

The family of basis sets employs functions with ex-
ponents ζkL,N that are even-tempered36 according to the
expression

ζkL,N = αL,N [βL,N ]
k−1

, 1 ≤ k ≤ N. (3)

Each basis set is characterized by the maximum angular
momentum, L, and the number of basis functions for
each function type, N . For instance, 6SP (L = 1, N = 6)
basis set consists of six groups of functions containing
one S and three P functions (px, py and pz) sharing the
same exponent. The exponent assigned to each group
is given by k in Eq.3, which runs from 1 to N . αL,N

and βL,N are, therefore, unique for each basis set and
determined by minimization of the CISD energy of Ne
with a simplex method (minimal accuracy 10−7 a.u.).

The family includes basis sets with angular momentum
between 0 and L (1 ≤ L ≤ 4) and involve equal numbers
N (6 ≤ N ≤ 16) of spherical Gaussian primitives with
exponents ζkL,N , giving rise to 44 different basis sets.

The computed energies EL,N have been extrapolated
to the respective N → ∞ limits EL by fitting the ac-
tual energy values for N = 12, 13, 14, 15 and 16 with the
double-exponential expression

EL,N = EL + aLe
−αL,NN + bLe

−βL,NN , (4)

which generalizes the Dunning extrapolation.37 The re-
sulting system of five non-linear equations has been
solved analytically with Mathematica38 employing the
Ramanujan algorithm.39

In turn, the estimates EL have been extrapolated to
the respective CBS limits E by fitting the values of EL

for L = 2, 3, and 4 to the expression40–42

EL = E +
B

[L + 1]
3 . (5)

These extrapolations, EL and E, provide lower-energy
estimates of the total energy that are not variational.

In the case of HF, the energy results are almost con-
verged using only S and P basis functions. Therefore, we
take the SP-energy limit as a good estimate of the CBS-
extrapoled result. The numerical estimate is obtained
from N = 16, 17, 18, 19 and 20 calculations applying the
fitting of Eq. 5.

The full-configuration interaction (FCI) calculations
have been carried out with a modified version of the FCI
program of Knowles and Handy43 and the CISD calcula-
tions have been performed with Gaussian.44 The calcu-
lations of the second-order reduced density matrices (2-
RDM) have been calculated from the FCI/CISD expan-
sions coefficients using the in-house DMN code.45,46 The
radial intracule density was computed with the in-house
RHO2 OPS code,47 which uses the algorithm proposed
by Cioslowski and Liu.48

III. RESULTS

A. Benchmark data

Following the procedure described in the previous sec-
tion we have obtained a CISD extrapolated energy of
−128.9254609 a.u., which represents an energy lowering
of −0.0143843 a.u. with respect to the best variational
estimate, E4,16 (see Table I). These results compare well
with the best non-relativistic FCI estimate available in
the literature, −128.937588 a.u.26

Our CISD SPDF-energy limit, −128.8984284 a.u., is in
good agreement with the FCI value −128.897±0.002 a.u.
calculated by Bunge.24 This and the other partial waves
reported in Table I are also in accord with the second-
order correlation energies of Lindgren and Salomonson.49
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TABLE I. CISD energies (a.u.) for the basis set family devel-
oped in this work and the corresponding partial waves.

N E1,N E2,N E3,N E4,N

5 -127.8146757 -127.9311638 -127.9638254 -127.9755176

6 -128.3326841 -128.4543077 -128.4887366 -128.5010355

7 -128.5692718 -128.6923709 -128.7272631 -128.7395973

8 -128.6612022 -128.7855792 -128.8209903 -128.8335145

9 -128.6987672 -128.8240698 -128.8598984 -128.8725885

10 -128.7176209 -128.8433421 -128.8794251 -128.8922251

11 -128.7265782 -128.8526131 -128.8888882 -128.9017858

12 -128.7304973 -128.8567898 -128.8932237 -128.9062091

13 -128.7323966 -128.8588808 -128.8954410 -128.9085010

14 -128.7334758 -128.8600836 -128.8967326 -128.9098489

15 -128.7340477 -128.8607425 -128.8974582 -128.9106198

16 -128.7343430 -128.8611063 -128.8978764 -128.9110766

∞ -128.7346499 -128.8615534 -128.8984284 -128.9117007

Our extrapolated HF energy, −128.547100 a.u., which
also corresponds to the SP-energy limit, is in excellent
agreement with the numerical HF results, −128.547098
a.u., reported elsewhere.50 Our best CISD estimate of the
correlation energy is, therefore, −0.378361 a.u., which
represents 97% of the correlation energy of Ne.51 Our
best variational estimate of the correlation energy, based
on the CISD/16SPDFG calculation (including 400 ba-
sis functions), recovers 93% of the correlation energy.
Our calculations on the angular and the radial corre-
lation52 indicators of Kutzelnigg53 show no qualitivative
improvement in the description of correlation beyond the
11SPDF basis set (see Figs. S1 and S2) and Bunge and
coworkers report very small effects upon introduction of
the triple and quadruple excitations (less than 0.01%
change on the density).54 Therefore, we conclude that
our CISD calculations provide an accurate description of
electron correlation in Ne.

We have also explored the convergence of certain prop-
erties related to the Coulomb hole with the size of the
basis set. Our results indicate that the average interelec-
tronic distance and its variance are much more affected
by the number of basis functions than by the inclusion
of functions of large angular momentum. In this respect,
the use of 9SP basis functions provides a reasonable de-
scription of these indicators (see Figs. S3 and S4). For
this reason, we have chosen the CISD/9SP wave function
to provide a qualitative explanation of the Coulomb hole
in Ne atom. In some selected cases, analysis with larger
basis sets have been performed to confirm our conclu-
sions.

B. The Coulomb hole of the Ne atom

In his seminal paper, Bunge22 reported a small shoul-
der of the Coulomb hole of Ne in the short interelec-
tronic distances domain that he attributed to the elec-
tron correlation within the K-shell. This calculation
was based on a FCI wave function that yield an elec-
tronic energy of −128.8602 a.u. and, thus, only re-
trieved 85% of the correlation energy.24 Thirty years
later, Cioslowski and Liu confirmed this result using 2-
RDMs obtained from energy derivatives of MP2 calcu-
lations with a non-optimized even-tempered basis set of
50 functions (20s10p).23 We have tried to reproduce the
results of Bunge and Cioslowski and have encountered a
major difficulty choosing the appropriate basis set. We
have performed over hundred CISD calculations (and
some FCI calculations as well) using different basis with
and without the frozen core approximation, finding that
the shoulder is only reproduced in about half of the cases
(see Tables S1 and S2). No frozen-core calculation could
reproduce the shoulder structure regardless the size of the
basis set, supporting the idea that this feature, if real, is a
result of the correlation of the core K-shell electrons. The
basis set families show similar results among its members.
Pople’s 6-311G and larger basis of this family as well as
the first family of basis sets developed by Dunning (nZ)
and the core correlated-consistent basis sets cc-pCVnZ
display the shoulder structure.55,56 Conversely, the fam-
ily of correlated-consistent basis sets of Dunning57 (cc-
pVnZ) and the series of basis sets of Petersson58 (nZaP)
cannot reproduce the shoulder structure (see Fig. 1 for
some examples).
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FIG. 1. The CISD Coulomb hole of Ne for some selected basis
sets.

In order to solve this controversy, we have built a series
of even-tempered basis sets following the procedure de-
scribed above. For all these basis sets, regardless the size,
the shoulder structure shows at ca. 0.1Å (see Fig. 2).
For small basis sets, including only S and P functions,
the shoulder is actually a minimum, in accord with the
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results presented by Cioslowski and Liu that also em-
ployed only S and P functions.23 The shoulder structure,
as reported by Bunge and Cioslowski22,23 shows using S,
P and D functions. Augmenting with F functions does
not produce a large change, and the addition of G func-
tions barely changes the Coulomb hole, thus suggesting
that the presence of the shoulder is not due to a basis set
completeness problem (see Fig. 2). Actually, the pres-
ence of the shoulder structure was also reported using
Monte Carlo calculations.59 The role of core orbitals is
evident because the corresponding frozen-core CISD (fc-
CISD) calculations do not show any shoulder structure
(see Fig. S5 in the Supporting Information).
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FIG. 2. The CISD Coulomb hole of Ne for some even-
tempered basis sets.

C. The origin of the shoulder

In this section we analyze the reasons for the existence
of the shoulder in the Coulomb hole of Ne. We have al-
ready established that the correlation of core electrons is
responsible for it. Let us now consider the importance of
different configurations by removing some of them from
the CISD expansion calculated with the 9SP basis set. In
Fig. 3 we have plotted the Coulomb hole generated with
this wave function and other wave functions in which
we have deleted various excitations from the core orbital
(1s). The CISD expansion in which we have removed
all the excitations from the core orbital except the single
excitations (CISD(nc)+A in Fig. 3) produces a Coulomb
hole that is virtually identical to the fc-CISD one. The
double excitations involving only one electron in 1s2 pro-
duce likewise a Coulomb hole qualitatively similar to the
fc-CISD wave function (CISD(nc)+B). Among the dou-
ble excitations the most important ones are those excit-
ing simultaneously both 1s2 electrons as evidenced from
the shoulder structure of the Coulomb hole of the CISD
wave function where only these excitations from the core
orbital are retained (CISD(nc)+C). A detailed analysis

of the double excitations from the 1s orbital shows that
the preferred virtual orbitals are 4s, 5s, 5p, and 6p (see
CISD(nc)+D Coulomb hole in Fig. 3). These results have
been qualitatively confirmed with the CISD/16SPDFG
wave function (see Fig. S9 in the Supporting Informa-
tion).
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FIG. 3. The CISD/9SP Coulomb hole in terms of several ex-
pansions. fc-CISD calculations were obtained from a CISD
calculation in which no excitations from core orbitals were
allowed, whereas CISD(nc) is a regular CISD calculation in
which the configurations involving excitations from the core
orbital have been removed a posteriori. A-C are groups of
configurations including various excitations from the core or-
bital: (A) single excitations, (B) double excitations involving
only one electron in the core orbital, (C) double excitations
involving the two electrons in the core orbital excited to one
single orbital, and (D) double excitations involving the two
electrons in the core orbital excited to orbitals 4s, 5s, 5p and
6p. After removal and addition of these configurations, the
expansion coefficients have been rescaled to attain the nor-
malization of the wave function.

Fig. 4 plots the Coulomb hole for CISD expansions
that only include the HF configuration and some chosen
configurations involving excitations from the 1s orbital.
Unlike the previous CISD expansions, these ones only
include correlation effects due to the core electrons in Ne
and, therefore, should reflect the importance of certain
configurations in retrieving the shoulder. The inclusion
of double excitations from the core orbitals gives rise to a
hole structure (see HF+E in Fig. 4) that is responsible for
the shoulder structure of the complete CISD expansion.
From this plot is also evident that double excitations and
particularly those involving 4s, 5s, 5p and 6p are mostly
responsible for the shoulder structure.

Thus far, we have firmly established that the presence
of the shoulder in the Coulomb hole of Ne is due to
the electron correlation of the core electrons. In the
following, we will analyze how the correlation affects
the electronic structure of Ne and the particular role
that the core electrons play in this context using the
CISD/16SP wave function. First of all, we will con-
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FIG. 4. The CISD/9SP Coulomb hole in terms of several
expansions. The groups of configurations allowed involve ex-
citations from the core orbitals to some particular virtual or-
bitals (see the caption of Fig. 3 for C and D). The E group
includes configurations involving double excitations from 1s
to all virtual orbitals.

sider the shell-structure of Ne. There has been some
controversy in the literature concerning the descriptor
that should be employed to identify the shell structure
and shell numbers in atoms,60–62 in our opinion, the
one-electron potential (OEP) of Kohout being the most
robust suggestion made thus far.63 According to the
OEP, we find that the radius of the K shell does not
change upon inclusion of electron correlation effects
(rK = 0.138Å) and the K-shell number only increases
3 · 10−3 electrons due to correlation (nHF

K = 2.0019 e.).
Therefore, according to the shell structure determined
by the OEP, we conclude that electron correlation does
not cause an expansion or contraction of the K shell,
but a small reorganization within the K shell, pushing
some electron density towards the K-shell boundary
with the L shell.

We have also checked the convergence of the electron-
electron repulsion and the electron-nucleus attraction to
see how these quantities are affected by the frozen-core
approximation. These energy components show a con-
vergence pattern that alternates fc-CISD results with
CISD results, suggesting that wave functions that do not
show the shoulder structure do not converge these prop-
erties differently (see Figs. S6 and S7). Conversely, as
one could expect, we have found that the intracule of
the pair density at the coalescence point divided by the
charge-concentration index,

∫
ρ2(r)dr,20,64 is affected by

the inclusion of core correlation (see Fig. S8).

Finally, let us assess the type of correlation affecting
the shoulder structure. We will use our recently intro-
duced separation of dynamic and nondynamic correla-
tion scheme10,11 that we have lately extended to sepa-
rate the correlation in Coulomb holes.12 In Fig. 5 we can

see that the short-range part of the Coulomb hole corre-
sponds mostly to dynamic correlation and that the shoul-
der structure is also present in this part of the Coulomb
hole.
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FIG. 5. The dynamic part (hD) and the total (hT ) Coulomb
hole of Ne at the CISD/16SPDFG level of theory.

D. Second-row atoms and molecules.

It is well known that the Coulomb holes of He and Li
do not present such a shoulder.65,66 However, the rest of
atoms of the second row in their ground states always
some feature is obtained for small interelectronic sepa-
rations as we shown in Fig. 6 (the complete holes can
be found in Fig. S10). In Fig. 6 we plot the Coulomb
hole divided by the square of the atomic charge (Z2) in
order to make all the holes fit in the same scale. The
Coulomb holes reported for the open-shell systems were
obtained using an unrestricted formalism (i.e. they cor-
respond to the difference between the UCISD and the
UHF radial intracule densities). Our study reveals that
for Be, B and F atoms, a maximum of the Coulomb hole
is observed, while for C, N, and O atoms, a shoulder is
produced. When fc-CISD wave functions are used the
shoulder or the maximum vanish (see Fig. S10), which
proves that the features observed correspond to correla-
tion effects of the core 1s2 electrons. The analysis of the
OEP reveals that in all cases, the radius of the K shell
does not change upon inclusion of electron correlation
effects, and only an internal small reorganization within
the K shell is produced (see Table S4 for more details).
Interestingly, the shoulder is also present in the short-
range part of the Coulomb hole of noble-gas molecules,
such as Ne2 (see Fig. S12).
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IV. CONCLUSIONS

We have analyzed the Coulomb hole of Ne from highly-
accurate CISD wave functions. Our energy estimates
have been obtained from a two-fold extrapolation of op-
timized even-tempered basis sets and compare well with
the best estimates available in the literature (we recover
97% of the correlation energy of Ne).

We have confirmed the existence of a shoulder in the
short-range region of the Coulomb hole of the Ne atom,
which is due to the correlation of the core electrons in the
K shell. Double excitations from the core orbital give
rise to the most important configurations in the CISD
expansion that contribute to the shoulder. The shoul-
der is due to an internal reorganization of the K shell,
where electrons are pushed towards the K-shell bound-
ary. The correlation nature of the shoulder is dynamic,
as one would expect.

The feature is not displayed in the Coulomb hole cal-
culated with certain basis sets, such as the cc-pVnZ basis
set of Dunning, proving that a proper description of the
core electrons requires the usage of, at least, the core
correlated-consistent cc-pCVnZ basis set.
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FIG. 6. Zoom of the short-range CISD/6-311G* Coulomb
holes of the second-row atoms.

Finally, we have proven that for the rest of second-row
atoms, except Li, a shoulder or a maximum in the short-
range region of the Coulomb hole is obtained, which is
due to the correlation of the core electrons in the K shell.
In all cases, the shoulder or the maximum corresponds
to an internal reorganization of the K shell.
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47 M. Rodŕıguez-Mayorga, “RHO2-OPS: 2-dm operations.”
(2016), Institute of Computational Chemistry and Catal-
ysis, University of Girona, Catalonia, Spain.

48 J. Cioslowski and G. Liu, J. Chem. Phys. 105, 4151 (1996).
49 I. Lindgren and S. Salomonson, Physica Scripta 21, 335

(1980).
50 J. Kobus, Comput. Phys. Comm. 184, 799 (2013).
51 The correlation energy fraction is calculated from the es-

timates provided in Ref. 26.
52 J. E. Lennard-Jones, J. Chem. Phys. 20, 1024 (1952).
53 W. Kutzelnigg, G. Del Re, and G. Berthier, Phys. Rev.

172, 49 (1968).
54 A. V. Bunge and R. O. Esquivel, Phys. Rev. A 34, 853

(1986).
55 T. H. Dunning Jr. and P. J. Hay, in Modern Theoretical

Chemistry, Vol. 3, edited by H. F. Schaefer III (Plenum,
New York, 1977) pp. 1–28.

56 D. E. Woon and T. H. Dunning Jr, J. Chem. Phys. 103,
4572 (1995).

57 T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).
58 D. S. Ranasinghe and G. A. Petersson, J. Chem. Phys.

138, 144104 (2013).
59 A. Sarsa, F. Gálvez, and E. Buendıa, J. Chem. Phys. 109,

7075 (1998).
60 H. Schmider, R. P. Sagar, and V. H. Smith Jr, J. Chem.

Phys. 94, 8627 (1991).
61 M. Kohout and A. Savin, Int. J. Quant. Chem. 60, 875

(1996).
62 E. Matito, B. Silvi, M. Duran, and M. Solà, J. Chem.
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Xabier Lopez,1 Miquel Solà,2 Jesus M. Ugalde,1 and Eduard Matito1,4,∗
1Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU),

and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain.
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TABLE S1: CISD energies (a.u.) with a large variety of basis sets.

Basis CISD Energy Orbitals Total Orb. Shoulder
fc-5SP -127.77104975 5s,5p 20 no
5SP -127.81467566 5s,5p 20 yes
fc-5SPD -127.87192601 5s,5p,5d 45 no
fc-5SPDF -127.90213928 5s,5p,5d,5f 80 no
fc-5SPDFG -127.91318231 5s,5p,5d,5f,5g 125 no
5SPD -127.93116378 5s,5p,5d 45 yes
5SPDF -127.96382539 5s,5p,5d,5f 80 yes
5SPDFG -127.97551756 5s,5p,5d,5f,5g 125 yes
fc-6SP -128.28775711 6s,6p 24 no
6SP -128.33268410 6s,6p 24 yes
fc-6SPD -128.39354873 6s,6p,6d 54 no
fc-6SPDF -128.42545039 6s,6p,6d,6f 96 no
fc-6SPDFG -128.43707561 6s,6p,6d,6f,6g 150 no
6SPD -128.45430770 6s,6p,6d 54 yes
6SPDF -128.48873660 6s,6p,6d,6f 96 yes
6SPDFG -128.50103554 6s,6p,6d,6f,6g 150 yes
fc-7SP -128.52405361 7s,7p 28 no
7SP -128.56927176 7s,7p 28 yes
fc-8SP -128.61574220 8s,8p 32 no
fc-DZ Dunning -128.62188366 4s,2p 10 no
fc-7SPD -128.63140882 7s,7p,7d 63 no
DZ Dunning -128.63462232 4s,2p 10 yes
fc-6-311g -128.65111350 4s,3p,1d 13 no
fc-9SP -128.65316089 9s,9p 36 no
8SP -128.66120220 8s,8p 32 yes
fc-7SPDF -128.66373571 7s,7p,7d,7f 112 no
6-311G -128.66668345 4s,3p,1d 13 yes
fc-DZP Dunning -128.66863312 4s,2p,1d 15 no
fc-10SP -128.67193945 10s,10p 40 no
fc-TZ Dunning -128.67379599 5s,3p 14 no
fc-7SPDFG -128.67536095 7s,7p,7d,7f,7g 175 no
fc-cc-pCVDZ -128.67795662 4s,3p,1d 18 no
fc-11SP -128.68084555 11s,11p 44 no
DZP Dunning -128.68152560 4s,2p,1d 15 yes
fc-12SP -128.68473222 12s,12p 48 no
fc-13SP -128.68660915 13s,13p 52 no
fc-14SP -128.68767247 14s,14p 56 no
fc-15SP -128.68823406 15s,15p 60 no
fc-16SP -128.68852202 16s,16p 64 no
TZ Dunning -128.68913475 5s,3p 14 yes
7SPD -128.69237085 7s,7p,7d 63 yes
9SP -128.69876715 9s,9p 36 yes
10SP -128.71762085 10s,10p 40 yes
cc-pCVDZ -128.71587097 4s,3p,1d 18 yes
fc-8SPD -128.72426761 8s,8p,8d 72 no
11SP -128.72657815 11s,11p 44 yes
7SPDF -128.72726305 7s,7p,7d,7f 112 yes
fc-6-311G* -128.72839556 4s,3p,1d 18 no
12SP -128.73049730 12s,12p 48 yes
13SP -128.73239655 13s,13p 52 yes
14SP -128.73347579 14s,14p 56 yes
15SP -128.73404767 15s,15p 60 yes
16SP -128.73434299 16s,16p 64 yes
fc-6-311+G* -128.73530543 5s,4p,1d 22 no
7SPDFG -128.73959732 7s,7p,7d,7f,7g 175 yes
6-311G* -128.74683538 4s,3p,1d 18 yes
6-311+G* -128.75395221 5s,4p,1d 22 yes
fc-8SPDF -128.75707242 8s,8p,8d,8f 128 yes
8SPD -128.78557924 8s,8p,8d 72 yes
fc-9SPD -128.76254609 9s,9p,9d 81 no
fc-8SPDFG -128.76886845 8s,8p,8d,8f,8g 200 no
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fc-10SPD -128.78172130 10s,10p,10d 90 no
fc-11SPD -128.79091465 11s,11p,11d 99 no
fc-12SPD -128.79503587 12s,12p,12d 108 no
fc-9SPDF -128.79573424 9s,9p,9d,9f 144 no
fc-TZP Dunning -128.79603876 5s,3p,2d,1f 34 no
fc-13SPD -128.79708854 13s,13p,13d 117 no
fc-14SPD -128.79826515 14s,14p,14d 126 no
fc-cc-pCVTZ -128.79868187 6s,5p,3d,1f 43 no
fc-15SPD -128.79890557 15s,15p,15d 135 no
fc-16SPD -128.79925598 16s,16p,16d 144 no
cc-pVTZ -128.80416500 4s,3p,2d,1f 30 no
fc-9SPDFG -128.80767786 9s,9p,9d,9f,9g 225 no
TZP Dunning -128.81472950 5s,3p,2d,1f 34 yes
fc-10SPDF -128.81513872 10s,10p,10d,10f 160 no
8SPDF -128.82099029 8s,8p,8d,8f 128 yes
fc-11SPDF -128.82450725 11s,11p,11d,11f 176 no
fc-10SPDFG -128.82717723 10s,10p,10d,10f,10g 250 no
9SPDF -128.85989837 9s,9p,9d,9f 144 yes
3ZaP -128.82273667 5s,4p,2d,1f 34 no
9SPD -128.82406981 9s,9p,9d 81 yes
fc-12SPDF -128.82877381 12s,12p,12d,12f 192 no
fc-13SPDF -128.83094175 13s,13p,13d,13f 208 no
fc-14SPDF -128.83219920 14s,14p,14d,14f 224 no
fc-QZP Dunning -128.83229798 6s,4p,3d,2f,1g 56 no
fc-15SPDF -128.83290033 15s,15p,15d,15f 240 no
fc-16SPDF -128.83329990 16s,16p,16d,16f 256 no
8SPDFG -128.83351449 8s,8p,8d,8f,8g 200 yes
fc-11SPDFG -128.83663377 11s,11p,11d,11f,11g 275 no
fc-12SPDFG -128.84097997 12s,12p,12d,12f,12g 300 no
fc-13SPDFG -128.84321506 13s,13p,13d,13f,13g 325 no
10SPD -128.84334214 10s,10p,10d 90 yes
fc-14SPDFG -128.84452306 14s,14p,14d,14f,14g 350 no
fc-15SPDFG -128.84526482 15s,15p,15d,15f,15g 375 no
fc-16SPDFG -128.84569969 16s,16p,16d,16f,16g 400 no
11SPD -128.85261311 11s,11p,11d 99 yes
cc-pCVTZ -128.85525663 6s,5p,3d,1f 43 yes
12SPD -128.85678981 12s,12p,12d 108 yes
13SPD -128.85888080 13s,13p,13d 117 yes
14SPD -128.86008359 14s,14p,14d 126 yes
15SPD -128.86074254 15s,15p,15d 135 yes
16SPD -128.86110629 16s,16p,16d 144 yes
QZP Dunning -128.86242743 6s,4p,3d,2f,1g 56 yes
4ZaP -128.86918690 6s,4p,3d,2f,1g 56 no
9SPDFG -128.87258845 9s,9p,9d,9f,9g 225 yes
10SPDF -128.87942505 10s,10p,10d,10f 160 yes
10SPDFG -128.89222510 10s,10p,10d,10f,10g 250 yes
11SPDF -128.88888815 11s,11p,11d,11f 176 yes
12SPDF -128.89322368 12s,12p,12d,12f 192 yes
13SPDF -128.89544100 13s,13p,13d,13f 208 yes
14SPDF -128.89673260 14s,14p,14d,14f 224 yes
15SPDF -128.89745823 15s,15p,15d,15f 240 yes
16SPDF -128.89787641 16s,16p,16d,16f 256 yes
11SPDFG -128.90178579 11s,11p,11d,11f,11g 275 yes
12SPDFG -128.90620911 12s,12p,12d,12f,12g 300 yes
13SPDFG -128.90850103 13s,13p,13d,13f,13g 325 yes
14SPDFG -128.90984894 14s,14p,14d,14f,14g 350 yes
15SPDFG -128.91061975 15s,15p,15d,15f,15g 375 yes
16SPDFG -128.91107662 16s,16p,16d,16f,16g 400 yes
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TABLE S2: FCI energies (a.u.) with different basis sets.

Basis FCI Energy Orbitals Total Orbs Shoulder
STO-3G -126.60452509 2s,1p 5 no
3-21G -127.91898852 3s,2p 9 no
3-21+G -127.98028596 4s,3p 13 no
6-31G -128.58980235 3s,2p 9 no
fc-DZ Dunning -128.62579080 4s,2p 10 no
6-31G* -128.62995598 3s,2p,1d 15 no
DZ Dunning -128.63880898 4s,2p 10 yes
6-31+G* -128.64536419 4s,3p,1d 18 no
fc-6-311G -128.65597963 4s,3p,1d 13 no
6-311G -128.67188511 4s,3p 13 yes
fc-DZP Dunning -128.67403307 4s,2p,1d 15 no
fc-TZ Dunning -128.67884748 5s,3p 14 no
cc-pVDZ -128.68088113 3s,2p,1d 14 no
DZP Dunning -128.68730452 4s,2p,1d 15 yes
TZ Dunning -128.69455258 5s,3p 14 yes
aug-cc-pVDZ -128.71147489 4s,3p,2d 23 no
fc-6-311G* -128.73538842 4s,3p,1d 18 no
2ZaP -128.73640663 4s,3p,1d 18 no
6-311G* -128.75434359 4s,3p,1d 18 yes
6-311+G* -128.76220259 5s,4p,1d 22 yes
cc-pVTZ -128.81521344 4s,3p,2d,1f 30 no
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TABLE S3. Optimized αL,N and βL,N parameters for the even-tempered basis.

L=1 L=2 L=3 L=4

N αL,N βL,N αL,N βL,N αL,N βL,N αL,N βL,N

5 0.7447008 4.987933 0.7468682 4.975678 0.7481146 4.970626 0.7486768 4.968260

6 0.5855851 4.235044 0.5879834 4.226252 0.5896187 4.221960 0.5896036 4.221960

7 0.4331290 3.827501 0.4372306 3.816989 0.4396631 3.811919 0.4408068 3.809588

8 0.3832597 3.540438 0.3868512 3.527534 0.3887524 3.521848 0.3898830 3.519020

9 0.3295404 3.268363 0.3335108 3.255642 0.3353360 3.249659 0.3365048 3.246530

10 0.2685024 3.067461 0.2746154 3.053101 0.2771096 3.045830 0.2786413 3.042154

11 0.2432995 2.923246 0.2483912 2.906247 0.2511414 2.896871 0.2521809 2.891937

12 0.2267954 2.791407 0.2310510 2.771277 0.2330325 2.759503 0.2341548 2.753617

13 0.2051878 2.665739 0.2089870 2.644094 0.2114696 2.631279 0.2126607 2.624009

14 0.1836303 2.564108 0.1886687 2.540909 0.1916617 2.526210 0.1937285 2.517031

15 0.1705574 2.482135 0.1768171 2.452739 0.1794341 2.435215 0.1821470 2.423519

16 0.1624894 2.405121 0.1677557 2.371700 0.1707450 2.349419 0.1721495 2.336306

TABLE S4. One electron potential of Kohout.1 Radii of the K shell (rK), Hartree-Fock K shell density (nHF
K ) and change in

the density due to electron correlation (∆nK = nFCI
K − nHF

K ).

Atom rK (a.u.) nHF
K (e.) ∆nK (e.)

Li aaa 1.37 aaa 1.9940 aa < 10−3

Be aaa 1.00 aaa 2.0069 aa < 10−3

B aaa 0.61 aaa 1.9986 aa 0.003

C aaa 0.49 aaa 2.0044 aa 0.002

N aaa 0.41 aaa 1.9909 aa < 10−3

O aaa 0.35 aaa 2.0000 aa < 10−3

F aaa 0.31 aaa 1.9982 aa 0.002
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FIG. S1. The angular correlation descriptor of Kutzelnigg2 in terms of the total number of basis functions (per angular
momentum), N , and the maximum angular momentum, L.

1 M. Kohout, Int. J. Quant. Chem. 83, 324 (2001).
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2 W. Kutzelnigg, G. Del Re, and G. Berthier, Phys. Rev. 172, 49 (1968).
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FIG. S5. The frozen-core CISD Coulomb hole for some even-tempered basis sets.
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Abstract 

The lowest lying states of LiH have been widely used to develop and calibrate many different 
methods in quantum mechanics. In this paper, we show that the electron-transfer processes 
occurring in these two states are a difficult test for chemical bonding descriptors and can be used to 
assess new bonding descriptors on its ability to recognise the harpoon mechanism. To this aim, we 
study the bond formation mechanism in a series of diatomic molecules. In all studied electron 
reorganisation mechanisms, the maximal electron-transfer variation point along the bond formation 
path occurs when about half electron has been transferred from one atom to another. If the process 
takes place through a harpoon mechanism, this point of the reaction path coincides with the 
avoided crossing. The electron sharing indices and one-dimensional plots of the electron localisation 
function and the Laplacian of the electron density along the molecular axis can be used to monitor 
the bond formation in diatomics and provide a distinction between the harpoon mechanism and a 
regular electron reorganisation process. 
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IX) Results and Discussions

In order to summarize the results of this thesis, we will briefly comment the

most important results obtained in chapters IV-VIII. We have divided this sec-

tion into four parts. The first part is devoted to 3-RDM approximations, where

we analyze how electron correlation affects these approximations but we also an-

alyze the performance of these approximations for describing electron sharing

among three centers. In the second section, the most important results from

the analysis of correlation effects in 2-RDM approximations are commented.

The robustness of 2-RDM and 3-RDM is tested using the two-electron and

three-electron Harmonium atom models, by tuning electron correlation effects

playing with the ω parameter, and we also provide clues for developing more

robust n-RDM approximations. Following, the third section is dedicated to a

function linked to 2-RDM approximations, the radial intracule probability den-

sity (I(s)). We focus in three important aspects: a) the analysis of how the

I(s) evolves during the bond formation/cleavage of some simple but represen-

tative diatomic molecules, b) provide an approximation to the exact I(s) that

reduces the computational cost by using the MBB 2-RDM approximation and

CCSD or CASSCF natural orbital occupancies, c) analyze the open question

about the shoulder present in the Coulomb hole, h(s), of Ne atom. Finally,

the last section is purely descriptive of some chemical issue. The topic is the

proper description of the harpoon mechanism, which is based on magnitudes

that we previously used merely as benchmark tools but can also be employed

as chemical descriptors. In this part, we analyze the ability of these indicators

to provide an explanation of the electronic rearrangements leading to the for-

mation of ionic species from neutral ones for some diatomic systems in gas phase.
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9.1) 3-RDM Approximations Benchmark

9.1.1) Benchmark of Electron Correlation Effects

In chapter IV, we first analyze how electron correlation affects 3-RDM density

matrix approximations. Actually, it is easy to prove that all suggested 3-RDM

reduce to the Hartree-Fock approximation (also known as Hartree-Fock like ap-

proximation (HFl)) in the weak-correlation regime. But the open question was:

How these approximations perform when correlation effects are not negligible?

Thus, in this chapter we used the states 2P and 3P of the 3e-Harmonium Atom

model system. We use this model because varying the ω parameter allows us

to easily tune correlation effects. We used 12 ω values (ω ∈ [0.1, 1000]) for

which Cioslowski and coworkers [186] developed a set of even-tempered basis.26

In this work we used the 7SPDF basis which involves 7s, 7p, 7d and 7f basis

functions. For large-ω values it is known [186,187,199] that the correlation en-

ergy, Ecorr, is not zero but correlation effects are negligible. On the other hand,

for small-ω values, a good account of correlation effects is fundamental for a

correct description of the system (even more than in many molecular systems).

Therefore, the three-electron harmonium atom using ω values in the interval

[0.1, 1000] allows us to cover a wide range of correlation regimes (the interval is

large enough to cover part of the strong-correlation regime but also most of the

weak-correlation regime). Actually, for ω = 1000, the Hartree-Fock approxima-

tion is an excellent approximation that obviously deteriorates when correlation

increases. In this chapter, we used as benckmark tools: a) the 3c-ESI, b) the

trace of the approximate 3-RDM, 3DX , c) the N -representability conditions,

and d) the cumulative absolute error. The 3c-ESI was computed among three

26It is worth to mention that the electronic density of the correlated Harmonium Atom

model is different to the density of Coulombic systems (e.g. of atoms) in the strong-correlation

regime because the electron-nucleus cusp is not present in the Harmonium Atom model [151].

Thus, the usual basis used for Coulombic systems are not accurate enough and need to be

reoptimize for this model system. Actually, it is easy to prove that the one-electron Harmo-

nium Atom Hamiltonian reduces to the usual 3D oscillator problem, and thus the Hermite

polynomials are a better basis than the Slater orbitals for this system.
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regions A, B and C, which are delimited by two spheres centered at the origin,

whose radius (rA and rB) were adjusted to make each region contain only one

electron NA = NB = NC = 1, as illustrated in Fig. 4.

Figure 4 – Partition of the three-electron Harmonium atom using the radius rA and rB to

generate regions A, B and C, that contain only one electron NA = NB = NC = 1.

The cumulative absolute error (called the termwise error in chapter IV) defined

as

CAE[3DX ] =
∑

(i<j<k)≤(l<m<n)

|3DX
ijk,lmn − 3Dijk,lmn|, (104)

where we subtract the approximate terms 3DX
ijk,lmn to the exact ones. In this

study, we worked with Valdemoro’s [95], Mazziotti’s [178] and Nakatsuji’s [179]

approximations to the 3-RDM and analyzed the four properties above men-

tioned. For the approximate 3-RDM elements proposed by Matito and cowork-

ers [102], we only analyzed the approximated 3c-ESI and trace of the 3-RDM

produced. The main conclusion from this battery of tests is that all approxi-

mations deteriorate when correlation effects become more and more important.

The second most important result is that Fermi correlation seems to be easier

to be modeled than the Coulomb one; our results for the 4P state compared to

the ones obtained for the 2P state support this statement.27 In general, the sum

rule, the N -representability conditions (the P-, Q- and two G-like conditions)

and the cumulative absolute error test show a linear increase of the errors with

respect to ω−1 in the ω →∞ limit (see Fig 5). On the other hand, the deviation

of the 3c-ESI is logarithmic (Log10[ω]) in this limit (see Fig. 6), which means

27Recall that the Fermi correlation is smaller than Coulomb correlation.
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Figure 5 – Error in the trace for all 3-RDM approximations. Solid lines correspond to the

doublet state whereas dotted ones correspond to the quartet state.

that 3c-ESI is less affected by correlation effects than the rest of properties here

analyzed. In all tests, we have always subtracted the approximated value to the

exact one. Notice that the Hartree-Fock approximation is retrieved by setting

a = 1 in Matito and coworkers approximation (in this section the letter n was

used instead of a in this work to denote the exponent) see Eq. 101.

Only the Hartree-Fock approximation satisfies the N -representability conditions

here analyzed but it fulfills them by construction because its starting point is a

single-determinant wavefunction. Unfortunately, the trace of the Hartree-Fock

approximation is only correct when the occupancies are either 0 or 1, hence,

the trace deviates from the exact value when fractional occupancies are used,

which occurs in the presence of electron correlation. Actually, the worst traces

are produced by this approximation; the violation of the sum rule makes the

Hartree-Fock approximation not N -representable when fractional occupancies

are used. In view of the results obtained, Nakatsuji approximation provides a

much better 3-RDMs than the rest of approximations despite its clear violations
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of the P, Q and G N -representability conditions and its incorrect trace (see Fig.

3 in section 4.1). Surprisingly, the Nakatsuji 3-RDM is much closer to the exact

one than the rest of approximated 3-RDMs (see Fig. 5 in section 4.1). Despite

the similarity of their expressions (see Eqs. 97 and 98), Nakatsuji and Mazziotti

approximations differ a lot in many tests, which suggests that the phase factor

σp is clearly responsible for this fact. Recall that the phase factor is only present

in Nakatsuji approximation and that it depends on the Fermi level (it is +1 for

orbitals below the Fermi level and −1 otherwise). This observation introduces

the question of whether more attention should be put to the selection of these

phases when developing 3-RDM approximations. Finally, from the 3c-ESI and

trace tests, it is clear that the a = 1/3 approximation produces excellent results

in good agreement with the exact ones because these two quantities are known

to be intimately related (a good trace seems to be a necessary condition to ob-

tain accurate 3c-ESI).
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9.1.2) Benchmark in Molecular Systems

In the second part of chapter IV, we analyzed the performance of the above men-

tioned approximations to the 3-RDM for the computation of the 3c-ESI as well

as the average number of three particles (i.e. 〈Â1Â2Â3〉) for a set of molecules.

Also in the second part of chapter IV, we focused on two aspects to consider

when computing the 3c-ESI: a) the difference between the 3c-ESI computed from

uncorrelated wavefunctions and the 3c-ESI computed from correlated wavefunc-

tions, and b) the change in the partition scheme from QTAIM to topological

fuzzy Voronoi cells (TFVC). In all cases, CASSCF calculations and QTAIM par-

titions were taken as reference. As we did with the 3e-Harmonium model, all

3-RDM approximations (Hartree-Fock, Valdemoro, Mazziotti, Nakatsuji, and

Matito and coworkers (setting a = 1/2 and a = 1/3 in Eq. 101)) were used to

compute the 3c-ESI and compared it against the reference one. For the set of

chosen molecules, our results demonstrate that Valdemoro’s approximation is

again, as it was for Harmonium, the most competitive approximation closely

followed by the a = 1/3 approximation. Since the average number of three par-

ticles is the only component of the 3c-ESI with an explicit dependence to the

3-RDM, we checked the mean absolute deviation from the average number of

three particles committed by the approximations. We checked the errors com-

mitted for: 〈Â1Â1Â1〉, 〈Â1Â1Â2〉 and 〈Â1Â2Â3〉 type of terms for A1 6= A2 6= A3

(which allows us to test not only the electron sharing but also the electron lo-

calization28). The first expectation value corresponds to the number of three

particles within the same atom, the second one between two different atoms and

the last one among three atoms (which contributes to the 3c-ESI). Our results

for the average number of three particles demonstrate that Valdemoro’s approx-

28Notice that 〈Â1Â1Â1〉 accounts for the expected number of groups of three particles in

region A1 and 〈Â1Â1Â2〉 considers groups of three particles, two located in region A1 and

one in region A2, thus, these two expectation values account for localization of electrons in

some specific regions. Whereas the last expectation value, 〈Â1Â2Â3〉, considers the expected

number of three particles each lying in a different region (i.e. 〈Â1Â2Â3〉 is related to the

sharing of particles instead of localization).
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imation was the best approximation for this test but again closely followed by

the a = 1/3 approximation. Due to the good results obtained by the latter

approximation, we also computed the 3c-ESI using the a = 1, a = 1/2 and

a = 1/3 schemes employing the natural orbitals and occupancies obtained from

MP2 and CCSD calculations (recall that for these methods the n-RDMs are not

uniquely defined). From these tests, we may argue that the a = 1/3 approxima-

tion provides reliable results which match well with the reference ones (i.e. the

CASSCF ones), opening an avenue for computing 3c-ESI from MP2 and CCSD

calculations specially in the weak-correlation regime. In the strong-correlation

regime, MP2 and CCSD approximations will dramatically fail for many systems

even if an unrestricted formalism is adopted, therefore, we suggest the usage of

CASSCF occupancies and the a = 1/3 approximation in the strong-correlation

regime.

The study of how electron correlation affects the 3c-ESI was performed compar-

ing CASSCF wave functions and single-determinant Hartree-Fock ones. In all

cases we observed that electron correlation reduces the 3c-ESI values. Neverthe-

less, the single-determinant wavefunction retains the classical description of the

three-center indices [200], which can be distinguished by the 3c-ESI sign.29 Con-

versely, the CASSCF wavefunction provides positive values (apart from some

exceptions like FHF−) which precludes the identification of the type of bond.

Finally, our study suggested that TFCV and QTAIM partition results are in

good agreement except for bonds involving Li and S atoms. For example, for

the H-S-H bond, the reference QTAIM value is 0.0549 whereas with TFVC is

0.1359. Further studies must be carried out to clarify the differences obtained

between TFVC and QTAIM for bonds including Li and S atoms.

29Where positive values of the 3c-ESI correspond to 3c-2e bonds while negative values

correspond to 3c-4e bonds.
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9.2) 2-RDM Approximations Benchmark

In chapter V, we studied how electron correlation affects the 2-RDM approxima-

tions introduced in the Methodology section. As we did for 3-RDM approxima-

tions, we used the Harmonium atom model as benchmarking system due to the

simplicity of tuning correlation effects through its confinement parameter (ω).

In this study, we worked with the two-electron Harmonium atom in the 1S state

which corresponds to the ground state of the system. We worked with a set of

20 optimized even-tempered 7SDPF basis [189], and the range of ω values taken

was from 0.03 to 1000 in order to cover the strong- and the weak-correlation

regimes, respectively. The α parameter of the POWER [160,162,169] functional

was properly optimized in order to produce an approximate Vee that differs from

the exact one in less than 10−5 a.u. for each ω.

Before we start our analysis, it is worth to mention that for a closed-shell two-

electron system, PNOF4, PNOF5 and PNOF7 approximations recover the exact

FP expression. Thus, the results presented in chapter V for the FP approxima-

tion are also valid for PNOF4, PNOF5 and PNOF7 approximations. Hence, in

this study we have just reported the results of PNOF4.

In chapter V, we developed a battery of tests for 2-RDM approximations, con-

sidering 10 tests: (i) the calculation of the trace, (ii) cumulative absolute error

for the diagonal elements, i.e.,

CAED[2DX ] =
∑

ij,σσ′

|2DX,σσ′

ij,ij − 2Dσσ′

ij,ij |, (105)

(iii) cumulative absolute error for the whole matrix

CAE[2DX ] =
∑

ijkl,σσ′

|2DX,σσ′

ij,kl − 2Dσσ′

ij,kl|, (106)

(iv) the correct antisymmetry of the 2-RDM, i.e.,

ErrA[2DX ] =
∑

ijkl,σ

|2DX,σσ
ij,kl + 2DX,σσ

ij,lk + 2DX,σσ
ji,lk + 2DX,σσ

ji,kl |, (107)
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(v) the P , Q and G N -representability conditions, (vi) the DI between two

symmetric regions generated by a bisecting plane passing through the center of

mass, (vii) the average interelectronic distance 〈s〉 =
∫
sI(s)ds (denoted as 〈u〉

in chapter V) and (viii) its variance σ2 = 〈s2〉 − 〈s〉2 (where 〈s2〉 =
∫
s2I(s)ds),

(ix) the interelectronic repulsion, Vee, and (x) the radial intracule density pro-

file. Notice that we have used 2DX to refer to the approximated 2-RDM.

From this battery of tests, we obtained that all approximations deteriorate when

the electron correlation increases. Even PNOF4, which is exact for closed-shell

two-electron systems except for some phases, fails to reproduce the exact results

for all tests, failing for the DI, the 〈u〉, variance, the Vee and the radial intracule

density profile. This approximation only fails due to the incorrect selection of

the phases in the strong-correlation regime. Nevertheless, our results suggest

that this functional expression must be a cornerstone when developing 2-RDM

approximations.

9.2.1) The Sum Rule

First of all, we focus on the diagonal elements and the analysis of the sum rule

and the CAED[2DX ]. The exact trace is N(N−1) in McWeeny’s normalization,

which for a two-electron system is equal to 2. Only BBC2, CA, CGA, MBB,

PNOF2 and PNOF4 satisfy the sum rule. In Fig. 7 we have plotted the error in

the trace with respect to ω−1/2, thus, correlation effects increase from the left

to right; it is clear that the increase of correlation affects some approximations

that deteriorate and produce incorrect traces. The GU and MLSIC approxima-

tions coincide with the HFl approximation for this test because their diagonal

elements are the same for a closed-shell two-electron system. Let us remark that

many JK-only approximations considered in this work produce unphysical ele-

ments like 2Dσσ
ii,ii, which correspond to probabilities of finding like-spin electron

pairs in the same spatial orbital. Recall that MLSIC and GU approximations
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do not produce these unphysical elements (GU is simply MBB approximation

removing the unphysical elements). Unfortunately, these unphysical elements

are responsible for correcting the trace with respect to the initial HFl approx-

imation in BBC2, CA, CGA and MBB approximations. Therefore, GU and

MLSIC do not include the unphysical elements but introduce errors in the trace

which proves that this kind of self-interaction correction is not satisfactory in

the development of 2-RDM approximations. PNOF3 approximation produces

the same trace as HFl approximation because the former only modifies the

opposite-spin elements in the cumulant with respect to the HFl approxima-

tion. Only PNOF6 approximation slightly deviates from the correct trace in

the strong-correlation limit due to the Sγ parameter, being PNOF6h the best

among the three PNOF6s.
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Figure 7 – Trace error for all 2-RDM approximations. BBC2, CA, CGA, MBB, PNOF2 and

PNOF4 have not been included because they satisfy the sum rule by definition.

10.2.2) CAE for the Diagonal Elements

The analysis of the trace was complemented by the analysis of the CAED[2DX ],

which is plotted in Fig. 8, where we observe that only PNOFi approxima-

tions produce elements in good agreement with the exact ones. Indeed, all
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JK-only approximations that produce unphysical elements, 2Dσσ
ii,ii, obviously

correct the trace but introduce large CAED[2DX ] errors. The aforedescribed

self-interaction correction done for GU and MLSIC reduces the diagonal ele-

ments to the HFl approximation. Among the approximations that do not attain

the sum rule, only PNOF6 approximation produces small deviations but mainly

in the strong-correlation regime. To complement the study of CAED[2DX ], we

also studied the whole cumulative absolute error. This study proved that all

2-RDM approximations deviate from the exact 2-RDM in the strong-correlation

regime. Even PNOF4 deviates due to some phases, Φkl, that reverse the sign

(for ω ≤ 0.1) when correlation effects become more important. Nevertheless,

the most remarkable result is that only PNOFs improve over the HFl approxi-

mation, whereas all JK-only approximations produce elements that are clearly

worse than the HFl ones (see Fig. 9).
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9.2.3) Antisymmetry of the 2-RDM

Our next test consists in checking that the proper antisymmetry of the 2-RDM

was produced by these approximations. Only all JK-only approximations vi-

olate the antisymmetry condition and the error produced increases with cor-

relation. Let us point out that ML and MLSIC were developed using Padé

approximants employing some parameters, thus it is not surprissing that ML

approximation does not present a monotonic increase. These parameterization

casts doubts on the use of parameterized approximations in the development of

2-RDM approximations.

9.2.4) The Fulfillment of N-Representability Conditions

In the benchmark of 3-RDM approximations we used the fulfillment of N -

representability conditions (i.e. P, Q and G conditions) as benchmark tools,

here, for the benchmark of 2-RDM approximations we have also included the

fulfillment of these conditions in the battery of tests. In contrast to our work

with 3-RDM, where we only checked these conditions in the canonical basis,
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are not included since they satisfy these three conditions.

in this study we have analyzed the actual positive semidefinite character of P,

Q and G matrices (i.e. checking whether the eigenvalues produced from the

diagonalization of these matrices are greater than or equal to zero). All approx-

imations considered in this work are built using only two indices (see Eqs. 82, 85

and 86), thus, it is easy to demonstrate that the P, Q and G matrices present

blocks which simplify the diagonalization procedure. Some blocks are basis-set

dependent (M×M blocks) and we used a Jacobi diagonalization procedure to

obtain the corresponding eigenvalues, while some other blocks are not basis-set

dependent (see Ref. [201] for some examples) and analytic eigenvalues30 can be

obtained. In Fig. 10 we have collected the sum of all negative eigenvalues of

P, Q and G matrices. HFl, PNOF2 and PNOF4 are not included since they

satisfy these three conditions. In agreement with previous findings, our results

demonstrate that PNOFs that were built attending to some N -representability

conditions, perform well in general for this test, except PNOF3 which is known

to violate the G condition when correlation effects are more important [173].

30Analytic eigenvalues that depend either on the f(ni, nj) functions for JK-only functionals

or on ∆ and Π matrix elements for PNOFs.
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Clearly, all JK-only approximations deviate from the N -respresentability and

only negligible errors are present in the weak-correlation limit. But, as soon as

correlation effects are important, the number of violations of the conditions is

increased. Lastly, let us remark that the analytic eigenvalues of P, Q and G

matrices [202] impose bounds on the elements of ∆ and Π matrices of PNOFs.

Unfortunately, for all PNOFs there are always blocks that are basis-set de-

pendent precluding from a complete knowledge of the bounds imposed on the

elements of ∆ and Π matrices. Nevertheless, our results suggest that, for a

closed-shell two-electron system, imposing the analytic bounds in the construc-

tion of PNOFs is sufficient to produce a functional that fulfills the P, Q and G

conditions.

9.2.5) The Delocalization Index

The next test focused on the analysis of the DI, where we also noticed that all

approximations deviate from the exact DI when correlation effects are increased.

In these tests, PNOF6h was proven to be the best approximation followed by

PNOF4 and MBB. Notice that PNOF6h was the best among the three PNOF6s

in the trace test; thus, it was reasonable that it should perform better than the

previous ones for the DI test. BBC2, MBB, PNOF4, PNOF6 and the fitted

POWER functional describe well the gross number of pairs with errors below

3%. The rest on approximations presented errors ranging between 20 to 75%.

9.2.6) Properties Dependent of the Interelectronic Distance

Finally, we studied properties that are dependent on the interelectronic dis-

tance. The first test consisted in the analysis of the I(s) distribution, where

we checked the mean value (〈s〉) and the variance (σ2). For all 2-RDM approx-

imations 〈s〉 and σ2 deviate from the exact values when correlation increases.

The HFl approximation produces the worst values when correlation increases,
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whereas PNOF4 fails only due to the incorrect phases. PNOF6h produces very

accurate 〈s〉 and σ2 values for all correlation regimes and is the best approxi-

mation among the three PNOF6 approximations. Here, we observed that there

is a quasi-linear dependence of the error with respect to the mean value and,

likewise for the variance with respect to ω−1 and ω−2, respectively (see Figs.

7 and 8 of Ref. [184]). Hence, the variance of the I(s) distribution is more af-

fected by correlation than the mean value. The rest of tests analyzed in chapter

V show a quasi-linear dependence with respect to ω−1/2 in the ω → ∞ limit,

which means that they are less affected by correlation than the mean value.

The analysis of the profile of the radial intracule probability density and the

comparison with respect to the exact profile can be plotted in a simple 2D plot

(∆I(s) = IX(s)−I(s)). Let us start with HFl approximation, it lacks many cor-

relation effects due to the absence of the cumulant (recall that 2D = 1D2 + 2Γ

and 2Γ = 0 in HFl approximation). Thus, it is expected that the difference

between the exact and the HFl radial intracule probability densities produces

first a decrease to a minimum and then an increase to a maximum in the plot

of h(s) vs s (s ≡ r12). This shape resembles the so-called Coulomb hole. In

Fig. 11 we have plotted the difference between the approximate and the exact

radial intracule probability densities for three ω values, covering from the weak-

(ω = 1000) to the strong-correlation (ω = 0.03) regimes.

For ω = 1000, correlation effects are negligible and many approximations pro-

duce almost exact results. Nevertheless, the HFl approximation misses correla-

tion effects contained in the cumulant and the shape of a Coulomb hole is re-

trieved. CA approximation recovers exactly the HFl approximation in this limit.

Notice that even in the weak-correlation limit HFl, CA, ML, CGA, POWER

and MLSIC are unable to reproduce the correct intracule.

In the medium correlation regime (ω = 0.5), only PNOF4 and PNOF6s ap-

proximations are able to produce accurate radial intracule probability densities.
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From the shape of the profile, we may argue that there are two types of approxi-

mations: a) approximations that underestimate correlation effects like HFl, and

b) approximations that overestimate correlation effects and produce “inverted

Coulomb holes” (in Fig. 11 is easy to distinguish between the two types). We

have separated the approximations on the l.h.s and on the r.h.s according to

the shape of the Coulomb hole produced. Notice that the usual Coulomb hole

integrates to zero because the integration of I(s) should be N(N − 1)/2, but,

we have seen that some approximations do not show a proper trace thus, their

I(s) integrates to an incorrect number and the positive and negative differences

do not compensate (see for example MLSIC for ω = 0.5).

Lastly, in the strong-correlation limit (ω = 0.03), none of the approximations

retrieves the exact intracule. Only PNOF4 and PNOF6s approximations pro-

vide the most reliable results. The Coulomb holes of MBB, BBC2, CA, CGA,

GU, PNOF3, PNOF4, PNOF6s, and the POWER approximations show a max-

imum for small r12 values, thus, these approximations seem to overestimate

correlation effects in the strong-correlation limit. Nonetheless, we have plot-

ted the I(s) for these approximations to confirm that they overestimate cor-

relation effects. When we plotted the radial intracule probability density we

noticed that negative probabilities were produced by some approximations (see

Fig. 12). Clearly, these approximations produce unphysical profiles. The exact

profile should never be negative since probabilities cannot be negative. More-

over, this incorrect profile should be obviously related to the violation of the P

N -representability condition which causes this unphysical behavior. The only

approximation that truly overestimates correlation effects is PNOF4 (because

of the incorrect phases).
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Figure 11 – Difference between the exact and the approximate radial intracule density for

three values of ω (1000, 0.5 and 0.03).
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r12 region.

9.2.7) The Vee Energy

Our last test consisted in the analysis of the Vee energy produced using these ap-

proximations. Recall that this component is the only one that is approximated

by all the functionals here studied. Our results demonstrate that the relative

error in the Vee energy increases with correlation but, in general, all approxi-

mations perform relatively well in reproducing the Vee energy. The POWER

functional was fitted to produce Vee that differs in less than 10−5 a.u. with

respect to the exact Vee, therefore, it was not included in the analysis.
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9.3) Characterization of Bonds from Electron-Pair Distri-

butions

9.3.1) The 1,3Πu Excited States of H2

In chapter VI, we studied the evolution of electron-pair distributions along the

bond formation/cleavage process. Our first analysis focused on the electron-pair

distribution of the 1,3Πu excited states of H2. Correlations between electrons are

sometimes counterintuitive, a rather simple but counterintuitive case given by

the 3Πu electronic excited state of H2. Tal and Katriel [203], and Colbourn [204]

found and reported the counterintuitive non-monotonic behavior of the electron

repulsion energy in the 3Πu excited state of H2 as a function of the internuclear

separation. It was observed by comparison with some Hartree-Fock calculations

an increase of the Vee, accompanied by a decrease of the 〈s〉, when the H-H bond

is stretched. The configuration 1σ11π1
u produces the 3Πu state and also the 1Πu

state, but the latter does not present any counterintuitive effect when the bond

is stretched. In order to confirm this effect, we performed FCI calculations to

obtain potential energy curves for 3Πu and 1Πu excited states and we checked

that the computed data matched well with the available experimental data (see

Table 3). Then, we observed that for the geometries which lie in the interval

RHH ∈ [0.2, 0.5], the counterintuitive effect in the 3Πu was confirmed at the

FCI level of theory. From the Pauli principle it is well known that the spatial

part of the electronic wavefunction for the triplet state must be antisymmetric

with respect to the exchange of the electronic coordinates r1 ↔ r2. Thus, it is

easy to prove that I(0) = 0 for the triplet state. Our computed values for the

I(0) lend further support to the accuracy of our calculated intracule densities.

For the singlet state I(0) > 0 was obtained (see Table 3) and we know that

the intracule density is a continuous function. Therefore, one expects that the

probability for finding electrons close to each other should be larger in the

singlet than in the triplet. Following Hund’s rule, the triplet should be much

more stable than the singlet due to the reduction of repulsion that is imposed
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by the Pauli principle. Nevertheless, this is not the case if we look at the Vee

reported in Table 3. Actually, it is well-established that the Vee is larger for high

spin states than lower spin ones for the same configuration. The only reason for

the triplet to be lower in energy than the singlet is that the triplet state favors

intermediate interelectronic distance with respect to the singlet (that shows

non null probabilities for larger interelectronic distances). When intermediate

interelectronic distances are favored, the electronic cloud is more compact and

the screening of the external potential, produced by the nuclei, is less strong;

the electron-nucleus attraction is much larger in the triplet than in the singlet,

compensating, the larger Vee obtained for the triplet state.

Table 3 – Equilibrium distances given in a.u., energies in a.u., vibrational frequencies in

cm−1, Vee in a.u. and electron-electron coalescence densities in a.u. for 3Πu and 1Πu excited

states. In parentheses we provide the experimental data taken from Herzberg [4].

1Πu
3Πu

Re 1.95 1.96

(1.952) (1.961)

E -0.716055 -0.736850

ωe 2446.2 2460.9

(2442.7) (2465.0)

Vee 0.229863 0.246438

I(0) 0.81×10−2 0.26×10−6

202



9.3.2) The Electron-Pair Density Distribution Along the Bond For-

mation Process

Our second study covers the changes of the electron-pair density distribution

along the bond formation process. A set of diatomic molecules is used to un-

derstand the rearrangements that lead to changes on the electron-pair density

distribution. In order to follow these rearrangements, we decided to work with

the I(s) but subtracting from it the non-relaxed one, Inrel(s), the latter being

defined as

Inrel(s) =
∑

A

IA(s) +
∑

A<B

IAB(s), (108)

where the first term at the r.h.s accounts for atomic contributions and is com-

puted from isolated atoms, and the second term involves the summation of all

interatomic contributions computed from nonrelaxed densities,

IAB(s) = s2

∫
ρA(r1)ρB(r2)dr1dr2dΩs, (109)

where ρA(r1) is the density of the isolated atom A. The Inrel(s) was proven

to be a “poor man’s” approach to the real I(s) by Piris et al. [205], and not

enough to capture many electronic effects such as the ones producing van der

Waals interactions. The difference I(s) − Inrel(s) = ∆h(s) was computed for

several geometries in an interval that covers from the nearly isolated species till

the equilibrium distance (Re) for the following set of diatomic molecules: H2,

HeH+, BH, Li2, CO, F2 and LiH (in its ground state X1Σ+ and its first excited

state A1Σ+).

The first bond formation studied was the covalent bond of H2 molecule (in the

ground state). For this purpose, we performed FCI calculations using aug-cc-

pVDZ basis, then we computed the ∆h(s) (called the ∆h(u) in this work) and

plotted it in Fig. 13 for some different bond lengths. We observed that the

pair density shrinks upon the formation of the chemical bond increasing the

probability of having the electron pair at shorter distances. The bond of HeH+

ion was also used to study the changes in the electron-pair probability density.
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Figure 13 – ∆h(s) of H2 at different bond lengths (all R in Å).

This two-electron system is formed from a He atom and a proton (H+), and

the Inrel(s) is always that of the isolate He atom. In Fig. 14, we have plotted

∆h(s) for this system, and observed that the redistribution of the electron-pair

probability density is less important than in H2 because the values of ∆h(s) are

one order of magnitude lower than in the previous case. We know that when

the He atom approaches the proton, the electronic density, ρ(r), is redistributed

between the two centers. We observed a maximum of the ∆h(s) which lies near

the interatomic distance and a minimum around ca. 0.5 Åthat allows us to

conclude that Inrel(s)(≡ IHe(s)) puts more electron-pair probability density at

smaller interelectronic distance than the actual I(s). Only at the equilibrium

distance, there is a decease of the electron-pair probability at small and at large

interelectronic distance with respect to the isolated He atom. The decrease, in

this latter case, is accompanied by an increase in the neighborhood of the inter-

atomic distance. The minimum observed around 0.3-0.5 Åis in accord with the

fact that only an internal pair reorganization of He atom electrons is produced

within this molecule.

The next bond we analyzed was the covalent bond of BH molecule. In this

system the bond is formed with two electrons, one that belongs to the B atom
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Figure 14 – ∆h(s) of HeH+ at different bond lengths (all R in Å).

and the second one, which belongs to the H atom. As we can see in Fig. 15,

at large interatomic distances, the B atom electronic cloud is distorted making

the electrons move towards the H atom, hence the electron pair density shifts

to larger distances. Near the equilibrium geometry, the profile of ∆h(s) changes

because the electron-pairs are located around the bond length. The previous

example makes clear that the internal reorganization is easily followed from the

analysis of ∆h(s).

The rest of systems studied were F2, Li2, CO and LiH (in the latter, we studied

two states as we mentioned above). We observed that the reorganization for F2

takes places in a shorter span than for BH but the maximum of the relaxation

hole in this case lies at smaller interelectronic values, suggesting that the two

bonding electrons lie in the bonding region instead of on the top of the atoms.

The same trending outcome was observed for Li2 and CO, which allows us to

conclude that this must be a feature of covalent bonds. In regard of Li2, the

change is less abrupt and we could appreciate an additional formation of elec-

trons pairs between the electrons of each Li atom and the electron localized in

the middle of the two Li atoms (in the non-nuclear attractor). Regarding CO,

at large interatomic distances, a first reorganization of the lone pairs is observed
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Figure 15 – ∆h(s) of BH at different bond lengths (all R in Å).

and only at around Re+1 Å, occurs the most important electron-pair reorgani-

zation before the bond is formed. The distance between the maximum of ∆h(s)

and its minimum is the shortest among those studied in this work, only followed

by F2, which is due to the more electronegative character of the C and O atoms,

preventing these atoms to experience larger deformations on the electron pair

density. Finally, the last system under study is LiH in its ground X1Σ+ and ex-

cited A1Σ+ states. These states dissociate to H(2S) and Li(2S), and H(2S) and

Li(2P ), respectively. We have used them to characterize the so-called harpoon

mechanism,31 where an electron is transferred from the H to the Li atom to

form the bond. In this mechanism, the adiabatic potential energy curve passes

through an avoided crossing and changes the character from covalent (when the

system is dissociated) to ionic (when the systems is bonded). In the ground

state, the avoided crossing happens at around RLiH = 3.6 Å, whereas in the ex-

cited state, the avoided crossing lies around RLiH = 6 Å. Our results shown that

the ∆h(s) profile of the ground state only resembles the usual profile of covalent

bonds for large RLiH distances (where the covalent character is dominant). On

31We will focus on this mechanism in more detail in the last part of the Results and

Discussions section.

206



the other hand, near the equilibrium distance the ∆h(s) profile resembles the

profile of BH. Actually, for large RLiH distances the X1Σ+ and A1Σ+ states

produce similar ∆h(s) profiles. Only for small interatomic distances, the profile

for the A1Σ+ is different to the rest due to the rather polarized character of this

bond with little formation of short-range electron pairs.

In this study, we also explored the usage of approximate intracules for visualizing

the changes in the electron-pair distribution along the bond formation process.

In the results presented above, we used highly accurate wavefunctions (FCI or

CASSCF) and exact 2-RDMs extracted from these wavefunctions. Nevertheless,

to make this kind of analysis much more affordable (from the computational

cost perspective) for large and complex systems, it is mandatory to suggest

alternatives to the exact FCI wavefunction. Thus, we suggested in this work

the usage of the unrestricted coupled-cluster with singles and doubles included

(UCCSD) approximation to replace the FCI wavefunction in systems where dy-

namic correlation effects are dominant. Unfortunately, (U)CCSD wavefunctions

do not satisfy the Hellmann-Feynman theorem [206] and usually an expensive

energy-derivative procedure is employed to obtain 2-RDMs from CCSD wave-

functions [67]. Thus, in this work we also decided to approximate the 2-RDM

construction and we chose MBB approximation to this end because this approx-

imation is being widely used for computing some other chemical descriptors like

the DI [115]. From our UCCSD calculation, natural orbitals and natural or-

bitals occupancies were built and later used to construct the 2-RDM needed

for computing the I(s). An unrestricted formalism was chosen because for the

isolated species usually the ground state was an open-shell atom (that is better

described by an unrestricted formalism) and, to be consistent, we were forced

to compute the I(s) also using an UCCSD wavefunction. Also, our tests proved

that at the RAB → ∞, the ∆h(s) did not tend to zero as we would expect.

Our results demonstrated that using UCCSD and MBB produces results prac-

tically indistinguishable from the reference ones. Interestingly, even if we take

the CASSCF occupancies and natural orbitals for CO, and use the MBB ap-
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proximation instead of the exact 2-RDM, the results are in good agreement with

the reference CASSCF exact ones; proving that even in this system dominated

by nondynamic correlation effects, using MBB approximation is indeed a good

approximation to the exact 2-RDM.

9.4) Some Feature of the Coulomb Hole of Neon Atom

In this thesis, in chapter VII, we used the electron-pair distribution density

to understand a certain feature produced by correlations that is present in the

Coulomb hole of Neon atom. Bunge and coworkers [207], in 1969, and Cioslowski

and Liu [208], thirty years later, obtained the Coulson’s Coulomb hole for Neon

atom. Both Coulomb holes showed an intriguing shoulder (or a minimum) ca.

0.1 Å, in the short-range region of the hole. Only Bunge intended to attribute

it some meaning, suggesting it was due to the K-shell electrons. In order to

confirm this observation, we obtained FCI wavefunctions for some basis sets of

Pople, Dunning and Petersson (when a FCI calculation was computationally

affordable). Then, we noticed that Pople’s basis 6-311G and cc-pCVTZ basis

were able to reproduce the shoulder. We knew from Bunge’s work that most

of correlation effects could be retrieved by including only singles and doubles

excitations. Thus, we performed CISD calculations and confirmed that only

little differences between the hole computed with the exact FCI and the hole

computed with CISD approximate wavefunctions were observed. The advantage

of using a CISD approximation is that larger basis can be used due to the

reduction of the number of determinants involved in the construction of the

wavefunction. In an attempt to confirm that the shoulder was not merely an

artifact of Pople’s basis, we optimized our own set of even-tempered [209] basis at

the CISD level. Even-tempered basis contain groups of basis functions classified

with respect to the exponents χkL,N , that are even-tempered according to the

expression

χkL,N = αL,N [βL,N ]
k−1

, 1 ≤ k ≤ N, (110)
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the exponent assigned to each group is given by k, while αL,N and βL,N are

determined by minimization of the CISD energy and are unique for each ba-

sis set. From Eq. 110, we observe that even-tempered basis are defined using

two numbers: the angular momentum, L, and the number of basis functions

of each type, N . For instance, if we set N = 6 and L = 1 then, this basis is

labeled as 6SP and it contains 6s and 6p uncontracted basis functions (notice

that each p function includes three Cartesian functions: px, py and pz). We

covered the ranges of 1 ≤ L ≤ 4 and 6 ≤ N ≤ 16 meaning that the largest basis

optimized was 16SPDFG (which contains a total of 400 basis functions). Our

CISD and HF energies extrapolated to infinite basis were -128.9254609 a.u. and

-128.547100 a.u., respectively. Being both results in good agreement with all

previous studies found in the literature [207,210,211]. Our best CISD estimate

of the correlation energy is -0.378361 a.u., which represents 97% of the correla-

tion energy of Ne. Our best variational result obtained with the 16SPDFG basis

recovers up to 93% of the correlation energy. For the whole set of wavefunctions,

we checked the convergence of some properties with respect to L and N , and the

9SP basis set seemed to provide a reasonable description of the system. There-

fore, the 9SP basis set was an excellent candidate to understand the nature of

this shoulder. Let us point out that for all CISD wavefunctions computed with

our optimized even-tempered basis, the shoulder was always observed, as we

can see in Fig. 16 (in fact, a minimum instead of a shoulder is observed for all

L = 1 basis set).

Nevertheless, when a frozen-core approach was used and the 1s2 electrons of Ne

were not correlated, the shoulder (minimum) vanished as we can see in Fig. 17.

Also, we noticed that for any basis set for which the shoulder was present, like

6-311G, the frozen-core approximation of the Coulomb hole does not show any

shoulder. Thus, we were able to conclude that the shoulder appears due to

correlation effects of the core electrons.
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Figure 16 – The CISD Coulomb hole of Ne for some even-tempered basis.
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Figure 17 – The frozen-core CISD Coulomb hole of Ne for some even-tempered basis.

Our analysis of the shoulder was done with the CISD wavefunction built us-

ing the 9SP basis but removing some excitation. In Fig. 18 we have plotted

the Coulomb holes for the fc-CISD and CISD wavefunctions but also: A) the

Coulomb hole obtained with the CISD wavefunction but where all the excita-

tions of the core electrons except the singles ones were removed (CISD(nc)+A),

B) including all singles excitations of the core electrons but also the double ex-
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citations where only one of the 1s2 electrons is involved (CISD(nc)+B), C) the

wavefunction including all previous excitations plus the most important simul-

taneous double excitations of the 1s2 core electrons, which from Fig. 18 seem

to be the most important for producing the shoulder (CISD(nc)+C), and D)

Finally, a detailed analysis allowed us to conclude that the most important ex-

citations that contribute to the shoulder are the doubles excitations from the

1s2 to the 4s, 5s, 5p and 6p orbitals (CISD(nc)+D). These results were also con-

firmed qualitatively with the wavefunction obtained using the 16SPDFG basis.

Our analysis of the one electron potential of Kohout [212], allowed us to define

the radius of the K-shell (rK = 0.138 Å) which remains invariant under inclu-

sion of correlation effects. We also proved that there was a little difference in

the K-shell number which only increases by 3·10−3 electrons due to correlation.

Therefore, we concluded that there is only a reorganization of the electron den-

sity which is pushed to the boundary of the K-shell with the L-shell. Finally,

our analysis of the type of correlation demonstrated that this effect is purely

produced by short-range dynamic correlation.
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Figure 18 – The CISD/9SP Coulomb hole in terms of several expansions. fc-CISD cal-

culations were obtained from a CISD calculation in which no excitations from core orbitals

were allowed, whereas CISD(nc) is a regular CISD calculation in which the configurations

involving excitations from the core orbital have been removed a posteriori. A-C are groups

of configurations including various excitations from the core orbital: (A) single excitations,

(B) double excitations involving only one electron in the core orbital, (C) double excitations

involving the two electrons in the core orbital excited to one single orbital, and (D) double

excitations involving the two electrons in the core orbital excited to orbitals 4s, 5s, 5p and

6p. After removal and addition of these configurations, the expansion coefficients have been

rescaled to attain the normalization of the wavefunction.

9.5) The Harpoon Mechanism: An Approach from Bonding

Descriptors

In chapter VIII, we studied the harpoon mechanism using bonding descriptors.

This mechanism was proposed by Polanyi as an attempt to justify the large

cross-sections in the formation of alkali halides. In these systems, the Coulomb

attraction needed to favor the electron-transfer process is usually small due to

the similar ionization potential of the alkali and the electron affinity of the halo-

gen, which favors the electron transfer at large separations. On the other hand,

for alkali hydrides the process takes place at shorter distance separations than

for alkali halides because of the electron affinity of H is smaller than the ion-
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ization potential of alkali. The goal of this chapter is visualizing the electron

transfer using bonding descriptors (like the ELF, the Laplacian of the electronic

density) and highly accurate wavefunctions. Ponec and coworkers [213] had

shown before that the DI for LiF and BeH shows a peak in the vicinity of an

avoided crossing of two adiabatic states. The DI should be able to recognize the

electron transfer due to the changes in the bond order that the electron transfer

produces, because, the bond order is zero at the dissociation limit, then, it in-

creases up to the avoided crossing (due to the formation of the covalent bond)

and, finally, after the avoided crossing the bond order should decrease due to

the change of character of the bond (i.e. the change from mostly covalent to

nearly ionic, which reduces the bond order). Interestingly, the DI computed us-

ing QTAIM definition of atoms produces the peak in the vicinity of the avoided

crossing whereas Mulliken atomic partition does not produce it. In this study

we also analyzed which atomic partitions are able to produce the peak near the

avoided crossing.

The systems that we selected for this work were LiH, LiF and BeH dimers,

which are expected to follow the harpoon mechanism because their adiabatic

potential energy curves pass through an avoided crossing in the ground state,

BH whose potential energy curve does not show any avoided crossing but its

bond is very similar to the previous ones and, finally, some counter examples

that should not follow the harpoon mechanism: H2, He2, CO, F2, N2 and O2.

Notice that the last group contains different types of bonds (i.e. single, double,

triple but also covalent and weak bonds). FCI wavefunctions were computed

for H2, He2, LiH, BH and BeH. For the rest of systems, appropriate CASSCF

wavefunctions were used. In all cases, we worked with the aug-cc-pVDZ basis

set.

The smallest system formed by the harpoon mechanism is LiH. The electron

transfer in this case occurs at a short distance comparing to alkali halides. The

ground state, X1Σ+, and the first excited state, A1Σ+, produce an avoided

213



crossing at around RHH =3.7 Å(see Fig. 19). In the ground state, on the

l.h.s. of the avoided crossing, the nature of the wavefunction is ionic but on

the r.h.s its nature is covalent. Thus, at the equilibrium distance the ionic

bond is formed between Li+H−, while at the dissociated limit neutral atoms are

formed (H(2S)+Li(2S)). The A1Σ+ state shows a second avoided crossing with

the B1Σ+ state at about 5.9 Å. The A1Σ+ bond is covalent at the equilibrium

then becomes ionic after the avoided crossing at 3.7 Åand, finally, it becomes

covalent again when atoms are dissociated (H(2S)+Li(2P)).
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Figure 19 – Potential energy curve of LiH for the ground state (X1Σ+) and the two lowest

lying 1Σ+ states. Energy in a.u. The vertical dashed lines mark the corresponding avoided

crossings.

Our first analysis was of the changes of the atomic QTAIM populations due to

the electronic density transfer. In Fig. 20 we have plotted the changes in the

atomic QTAIM population of the most electropositive atom for all systems here
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studied. Firstly, we notice that for LiH in the ground state there is a transfer of

about 0.9 electrons from H to Li near the avoided crossing, which changes the

bond character from ionic to covalent. In the case of the A1Σ+ excited state,

with respect to the equilibrium distance there is a transfer of about 0.5 electrons

from Li to H, which changes the character of the bond from mostly covalent

to nearly ionic. Nevertheless, near the second avoided crossing the electronic

density transfer is from H to Li, which ends up gaining ca. 0.2 electrons in

the end (when the fully covalent picture is recovered). Notwithstanding, it is

evident from Fig. 20 that some molecules not formed through the harpoon

mechanism, like CO, also experience important changes in their atomic QTAIM

populations when their bond is stretched, thus, large changes of the atomic

QTAIM populations do not ensure that a system is formed through the harpoon

mechanism.
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Figure 20 – Change in the atomic QTAIM population of the most electropositive atom along

the bond stretching in the series of studied molecules that present electron reorganization.

Population units are in electrons.
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It is much more convenient to use the DI to follow the electron density trans-

ferred as some authors previously demonstrated [213]. In Fig. 21 we have

plotted the DI for LiH X1Σ+ state. The plot of the DI shows that near the

equilibrium region the DI starts at a very low value (i.e. ca. 0.19 that is in

good agreement with the ionic character system near the equilibrium geometry)

and slightly decays when the bond is stretched. But the DI then increases up

to a maximum at 3.3 Åin the vicinity where the avoided crossing is located.

The increase of the DI is produced due to the rise of the covalent character of

the wavefunction, the peak being produced at the geometry where the largest

variation of the electron population takes place; we know that at this point 0.5

electrons were already transferred from Li to H. From the analysis of the DI we

have identified the position where the electron remains in no one′s land which is

easily identified with the avoided crossing. For the A1Σ+, the covalent character

is larger in this state and the DI is larger than the DI of the ground state. The

DI for the excited state increases towards a maximum that is localized near the

first avoided crossing but then remains almost constant, only slightly decaying

and growing again, until it reaches a second maximum in the region where the

second avoided crossing lies (between the A1Σ+ and B1Σ+ states). Finally, the

DI decays to 0 for large interatomic distances. These two maxima obtained for

the DI correspond to the points where a maximal transfer variations takes place

between the Li and the H atoms.
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Figure 21 – Delocalization index from QTAIM partition. Solid lines are used for ground state

and dotted lines for the excited states. The solid point indicates the equilibrium distance and

vertical lines in the inset mark the geometries at which the maximal electron-transfer variation

points (see text) is observed. DI units are electron pairs.

In an attempt to visualize this electron transfer we also used the ELF and the

Laplacian of the electronic density in this work. As we said in the Methodology

section, the ELF allows us to characterize localized electrons. Our analysis of

the ELF does not reveal the presence of a separate basin that corresponds to

the electron transferred. Only a progressive elongation of H’s valence basin

that splits and is finally absorbed by Li’s basin was observed. 3D plots of the

ELF do not allow an easy visualization of the electron transferred but 2D plots

along the interatomic axis do. Fig. 22 includes several profiles of the ELF along

the interatomic axis of LiH’s ground state. The vertical dashed line marks the

QTAIM bond critical point between Li and H. From this plot, we observe that

about the avoided crossing the Li basin emerges at one end of the molecule,

while the H basin splits into two that still belong to H. At 3.3 Å, the H peak
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splits and part of H basin is transferred to Li QTAIM atomic basin. At 5 Å, the

process is almost complete and Li valence basin is fully formed. Similarly, for

the A1Σ+, only the formation of a peak in H basin appears and is completely

transferred to Li only after the second avoided crossing.
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Figure 22 – The ELF profile for X1Σ+ state of LiH along the interatomic axis for several

RLiH distances. The zero is always located at the center of mass and the vertical dashed lines

represents the bond critical point.

Likewise, the scan of the Laplacian of the electron density, −∇2ρ(r), at different

interatomic distances reveals the harpoon mechanism. In Fig. 23, we present in

logarithmic scale the scan of the negative values of the Laplacian and we used

dashed vertical lines to indicate the bond critical points. For the X1Σ+ state,

at 2 Åthe peak corresponding to H expands and later splits into two peaks at

RLiH = 2.5 Åthat still belong to H basin. Later, the small peak crosses the bond

critical point border and becomes the valence basin of Li at about 3.7 Å. In this

work, we also proved that the electron transfer in the A1Σ+ state (according to
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the Laplacian of the electron density) occurs between the two avoided crossings.
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state of LiH along the interatomic axis for several RLiH distances. The Li atom is located at

the origin. Vertical dashed lines indicate the bond critical point.

Our study using the DI, the ELF and the Laplacian demonstrated that the

formation of BeH and LiF is also through the harpoon mechanism. In the case

of BeH, the ionization potential of Be is larger than the Li one and, hence, the

electron transfer takes place at short distances. On the contrary, in LiF the

difference between the ionization potential and the electron affinity makes the

transfer to take place at large interatomic distances. Among the counterexam-

ples used in this work, for CO we observed large changes of the populations

of the species (see Fig. 20), nonetheless, there was no maximum of the DI,

suggesting that this molecule was not formed through the harpoon mechanism.

Also, the analysis of the ELF and the Laplacian in the CO molecule revealed
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that there is only a bond dissociation process, where the electron density that

was forming the bond is splitted among the two atoms (see Fig. 24 for exam-

ple). Only for BH there is a maximum at very short interatomic distances (ca.

1.5 Å) for the DI but there is no avoided crossing. Therefore, there must be

an important electron reorganization when BH bond is formed. The ground

state DI is rather large (δ(B,H) = 0.6) for ionic species and the valence bond

description assigns a covalent bond for this system. The profile of the ELF and

the Laplacian coincides with the results obtained for molecules that follow the

harpoon mechanism, but the absence of an avoided crossing suggests that BH

is formed through the harpoon mechanism without the existence of the avoided

crossing.
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Figure 24 – The ELF profile for X1Σ+ state of CO along the interatomic axis for several

RCO distances. The zero is always located at the center of mass.

Information theory indicators (Shannon entropies and Fisher integrals) were

also used in this study in an attempt to follow the electron transfer process.
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To do so, we took the values at infinity minus its value at different interatomic

distances (∆X = X∞−X). Among these properties, Shannon entropy (Sρ and

Sπ) profiles do not allow to distinguish the type of bond because all systems

produce similar plots. On the contrary, Fisher integrals presented distinctive

profiles for molecules following the harpoon mechanism (see Figs. 25a and 25b).

∆Fπ presents large values around the equilibrium region for molecules following

the harpoon mechanism (only H2 provides unexpected large ∆Fπ values near

the equilibrium distance). Using ∆Fρ it was easy to distinguish molecules fol-

lowing the harpoon mechanism (see Fig. 25b) because a maximum near the

avoided crossing was observed for those molecules. Again, only H2 presents an

unexpected maximum, making ∆Fρ not a sufficient condition for the harpoon

mechanism.
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Figure 25 – ∆Fπ,ρ plots against the interatomic distance.

Finally, in this work we also analyzed some other partitions in order to compare

them with QTAIM. In Fig. 26 we have plotted the DI computed using TFVC

partition. TFVC partition provides a maximum of the DI despite the DI fails

to identify the LiH’s A1Σ+ as more covalent than the X1Σ+ bond. But it is

worth to remark that many other partitions failed to identify the DI maximum

characteristic of the harpoon mechanism.
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and dotted lines for the excited states. The solid point indicates the equilibrium distance. DI

units are electron pairs.
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X) Conclusions

In this thesis we have seen that the approximations to the 3-RDM perform rea-

sonably well for the computation of the 3c-ESI (specially Valdemoro’s approx-

imation), despite they present important deviations for the diagonal elements

(which are known to be fundamental for the computation of the 3c-ESI). We

have also seen that these approximations fail to satisfy the N -representability

conditions. Fermi correlation is the most important contribution to the total

electron correlation in the quartet state, while in the doublet state Coulomb

correlation, which is also present, is more challenging for the 3-RDM approx-

imations than Fermi correlation. Surprisingly, Mazziotti’s approximation per-

formed worse for the doublet state than Nakatsuji’s approximation (recall that

both approximations are similar by construction, differing only on the phase

factor σp). Since Mazziotti’s approximation gave large deviations to the G N -

representability condition, one is prompted to attribute the erratic behavior of

this 3-RDM approximation to the violation of this condition. We expect that

the construction of new 3-RDM approximations will benefit from the deficien-

cies shown by the present benchmark.

In our second benchmark we focused on the computation of the 3c-ESI in

molecules using the 3-RDM approximations. We have seen that for single-

determinant wavefunctions, it is possible to distinguish between 3c-2e and 3c-4e

bonds, unfortunately, for correlated wavefunctions it is not possible to classify

the bond types attending to the number of electrons. If one wants a clear-cut

classification of three-center bonds into 3c-2e and 3c-4e, we recommend the cal-

culation of the 3c-ESI using the Hartree-Fock-like approximation. As we also

obtained in the previous benchmark, Valdemoro approximation provides

the most reliable results for the computation of the 3c-ESI and the

average numbers of three electrons when compared to the exact val-

ues (i.e. the reference values obtained from the exact wavefunction). On the
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other hand, Matito and coworkers’ approximation was the second best for the

computation of the 3c-ESI and it is much cheaper than Valdemoro’s approx-

imation, thus we suggest the usage of the latter for the computation of the

3c-ESI. From the analysis of the atomic partitioning we have seen that TFVC

produces values comparable to QTAIM ones. Finally, we have proven that the

3c-ESI computed using the occupancies obtained from MP2 and CCSD (and

using the 3-RDM approximations) are comparable to the reference ones in the

weak-correlation regime, which opens the avenue for computing approximated

3c-ESI from MP2 and CCSD calculations (in the strong-correlation regime it is

better to use CASSCF occupancies for the computation of the 3c-ESI).

The last benchmark of this thesis is devoted to 2-RDM approximations. In

this study, we have shown that the two-electron harmonium atom is an excel-

lent model for benchmarking this kind of approximations. The JK-functionals

only differ on the K terms and, among them, only the Hartree-Fock-like ap-

proximation can satisfy the antisymmetry requirements of the 2-RDM. The

Hartree-Fock-like approximation performs better than (or equal to) any other

JK-functional in the calculation of the trace and the assessment of the cumu-

lative absolute error for the diagonal elements. These results evidence that the

construction of an approximation needs to consider, at least, both J

and K terms.

The test based on the DI for 2-RDM approximations warns against the use of

the Hartree-Fock-like approximation in strongly correlated systems. Although

the widely used MBB approximation remains a good approximation in any cor-

relation regime, from the results obtained in this work we suggest the

usage of PNOF6h.

From the 2-RDM approximations benchmark we have seen that the FP ap-

proximation results are significantly better than those obtained with any other

approximation, only failing in the strong-correlation regime due to the phase
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dilemma.

Our analysis of the radial intracule probability density revealed the presence of

negative probabilities at short interelectronic distances, in clear con-

nection with the violation of the P condition. It is worth to mention

that many functionals performed reasonably well in the calculation of the exact

electronic energy (Vee) but produced errors in the calculation of other proper-

ties, supporting the claim that functional development should consider other

properties besides the electronic energy. Finally, we can draw the conclusion

that any approximate 2-RDM should attain as many N -representable proper-

ties as possible because the best-performing functionals are those that satisfy

most of these conditions. Some of these N-representable conditions can

be imposed in the construction of the functional.

In the study of the radial IPD of 3Πu state of H2, we have demonstrated (at

FCI level) that the non-monotonic behavior of the electron repulsion

energy with respect to the interatomic separation is real. There, we

proved that the electron repulsion energy increases and the mean interelectronic

distance decreases as the interatomic separation increases for the 3Πu state. The

1,3Πu states are both generated by the 1σ1
gπ

1
u configuration, thus according to

Hund’s rule the triplet state must be lower in energy than the singlet state. We

have seen that Hund’s rule can be explained for these two states due to the

shielding effects produced by the corresponding wavefunctions.

We have also worked with the radial IPD in the analysis of the relaxation holes,

∆h(s), resulting from the difference between the actual radial intracule density

and the nonrelaxed one constructed from atomic radial intracule densities and

the pair density obtained from the overlap of the atomic densities. Our results

established that the electron-pair formation can be followed from the

analysis of ∆h(s). The electron reorganization that leads to the bond forma-

tion can also be followed using ∆h(s). The magnitude of ∆h(s), the shape of
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∆h(s)∀s < Req, and the distance between the minimum and the maximum pro-

vide information about the nature of the chemical bond formed. We have also

suggested an affordable approach to calculate the radial IPD from ap-

proximate pair densities and using CCSD or CASSCF occupancies and orbitals

in MBB approximation to the 2-RDM. Our approximate approach produces re-

laxation holes almost indistinguishable from the reference ones.

In the last study devoted to the radial IPD, we have analyzed the Coulomb hole

of Ne from highly-accurate CISD wavefunctions. The even-tempered basis sets

developed recover 97% of the correlation energy of Ne, thus we have used highly

accurate wavefunctions for the computation of the Coulomb hole. We have

confirmed the existence of a shoulder for small r12 distances in the

Coulomb hole of the Ne atom, which is due to the correlation of the core

electrons in the K shell. The double excitations of the CISD wavefunction are

responsible for the shoulder, where the latter occurs due to internal reorgani-

zation of the K shell (the electrons are pushed towards the K-shell boundary).

Some basis sets, such as the correlated-consistent basis set of Dunning, do not

display the shoulder, which showed the poor quality of the description of the

core electrons when using these basis sets.

Finally, our last work focused on the harpoon mechanism and its characteriza-

tion using chemical descriptors based on reduced quantities. We have shown

that the lowest lying states of LiH can be use to develop and calibrate: a)

chemical bonding descriptors, and b) to evaluate the goodness of new atomic

partitions. The chemical descriptors must be able to recognize the electron-

transfer processes (as it happens in the harpoon mechanism), while the atomic

partitions should be able to reproduce the maximum in the DI observed for

systems formed by this mechanism. From this study, we concluded that the

atomic population can be used to monitor the electron density exchange be-

tween atoms, but it cannot be used to discriminate the reaction mechanism (i.e.

it is not sufficient to guarantee that a system is formed by the harpoon mecha-

228



nism). In the majority of cases, the maximal transfer variation point along the

bond formation occured when about half electron has been transferred from one

atom to another. If the process takes places through a harpoon mechanism, the

maximal transfer variation point of the reaction path coincides with the avoided

crossing. Only the DI is able to identify this mechanism, but it does

not ensure the existence of an avoided crossing as we have seen for

BH. The DI computed using QTAIM partition was taken as reference in this

work, but we showed that TFVC was also able to reproduce the maximum of the

DI near the avoided crossing. Unfortunately, TFCV was not able to recognize

the A1Σ+ state as more covalent than the X1Σ+ state. The ELF and Laplacian

plotted along the interatomic axis at different interatomic distances permitted

to monitor the bond formation process better than its three-dimensional coun-

terparts. The transferred electron was seen as a one-dimensional peak in the

direction of bond stretching that moved from one atom to another (i.e. crossing

the QTAIM atomic boundary). The information theory indicators did not pro-

vide a convincing description that allowed a clear-cut separation between the

different chemical bond formation mechanisms.
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d’une fonction arbitraire par des intégrales définies. Rendiconti del Circolo
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