
Technology, Foresight and Management

Research Group

Departamento de Organización de Empresas de la UPV/EHU https://sites.google.com/site/tfmresearch/

RIO-BELVER, Rosa Maria / GARECHANA, Gaizka T.F.M. Technology Foresight and Management Research Group

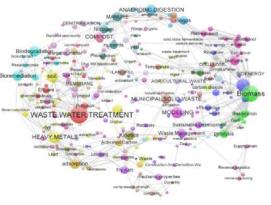
> Departamento de Organización de Empresas University of the Basque Country UPV/EHU author email: <u>rosamaria.rio@ehu.eus</u>

COMPETITIVE INTELLIGENCE INPUTS FOR ORGANIZATIONS:

Applying Tech-Mining to •Chapter 1. Tekno-MAP the Analysis of **Technological Evolution**

- Chapter 2. Tekno-Barometer
- Chapter 3. Tekno-Roadmaps
- Chapter 4. Web-indicators Future work

Ę.)


T.F.M. RESEARCH group from UPV/EHU is

specialized in the processing and analysis of scientific and technological data, applied to the detection, assessment and incorporation of new technologies in the industry.

Technology Management; Tech-mining; Technology maps; Foresight; Roadmaps; Knowledge management; Innovation; Competitive Intelligence

Our research lines are the following:

Technology. – We use tech-mining tools in order to analyze scientifictechnological information data sources. Our skills range from statistical analysis techniques to the utilization of machine-learning solutions that allow us to characterize the behavior of science/technology fields. We are specialized in the automated analysis of textual data and the building of advanced visualizations to feed decision-making processes.

T.F.M. Research Group

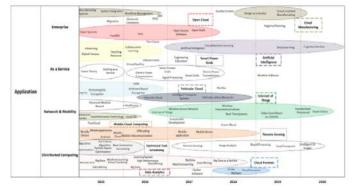


Fig 9. Zoom of the TRM which represents the period 2015-2020 for the application layer.

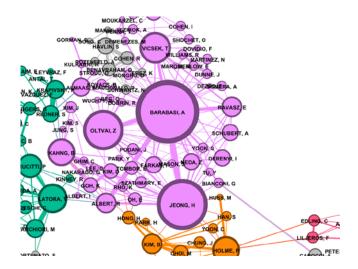
Foresight. – We are excel at developing data-based Technology Roadmaps in order to identify the most promising technological and scientific fields. The technology roadmaps are further complemented by tools aimed at identifying the position of a technology in the technology life cycle (Gompertz curves ,TRL levels)

Technology Management. – We develop advanced Competitive Intelligence systems based on the tools described above combined with our own expertise on the field.

Evolution of technologies and scientific areas can be **characterized** by automating the analysis of textual information where scientific and technology advances are being described (scientific journal articles, patents...). Similar principles can be used to build conduct analyses about:

Networks of organizations dealing with a

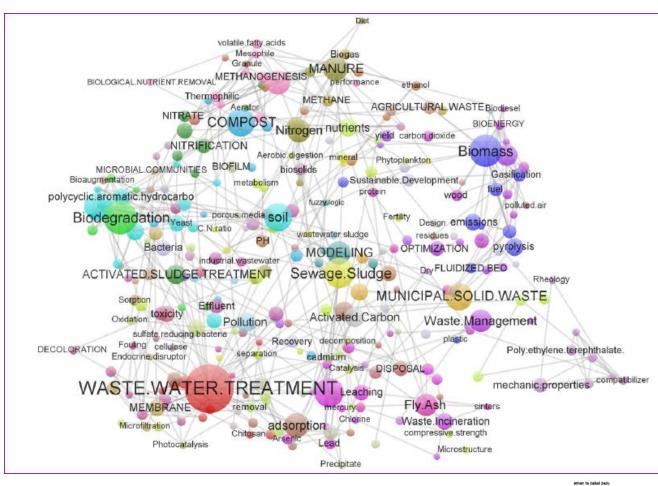
research/technology area


- Collaboration **networks** between **researchers**
- Evaluation of the interdisciplinarity of a certain sci-

tech area.

Dynamics of science and technology: Detection of

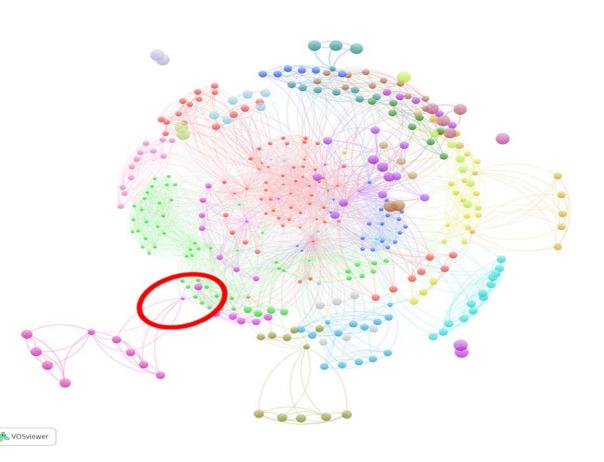
emergent areas and multidisciplinary interactions


between different sci-tech specialties.

Tekno-MAPS are visualizations that provide new knowledge about the behavior of the scientific, technological and/or market environment.

Development of concept maps and knowledge.

Example: Mapping the evolution of the main concepts dealing with waste recycling (WRS), built using science text mining tools on scientific articles dealing with WRS. The nodes reflect research fronts in this uncovered bv area. hierarchical clustering análisis and mapped according to their similarity, bv measured normalizing concept COoccurrence data. The color of noes indicates similar groupings of research fronts



Clusterization and mapping of waste recycling science. Evolution of research from 2002 to 2012. Garechana et al. Journal of the Association for the Information Science and Technology JASIST, 66(7): 1431-1446, (2015) **Projects Databases**

1. Tekno-MAP

The	e data		about		-	the
collaborations			an	d	top	ics
regarding			European			
Framework research					ch	
progra	ms	car	n	also)	be
sucesfully analyzed using				ing		
networ	k a	naly	sis	too	ols	in
order	to	ext	ract	re	elev	ant
technology intell				iger	nce	
informa	tion.					

Example: **structural hole** detected in the "Sea" organizational network

Efficiency in knowledge transmission in R&D project networks: European renewable energy sector. Journal of Renewable and Sustainable Energy 9, 065908 (2017);

Patents databases

1. Tekno-MAP

Patent overlay maps: A tool for the detection of technology transference opportunities and characterization of regional specialization strategies.

- The Patent Overlay Map is a visualization that shows the existing **connections** between different technological areas.

- These maps can be built using the cited-citing relationships between IPC categories: We can infer that a **technological relatedness** exists between IPC's that cite each other heavily.

- Once the similarity calculations have been normalized and the global map has been built, the **technological production of a**

firm/region/nation can be reflected in the global map, thus allowing the detection of gaps,

multidisciplinary niches and the **comparation** of technology production profiles.

Combustion Engines Heating 8 Turbines Coolin & Engine Food Constructio Info Transmission Tel Comm n=49.132 IPCs TV. Imaging & Comm Radio, Comm Recording Combustion Engines Heating & Turbines Cooling Food Copying & P Info Transmission Tel Comm n=13.575 IPCs Computing TV. Imaging & Comm Radio, Comm Recording

Patent overlay maps: Spain and the Basque Country

International Journal of Technology Management (IJTM). Vol 69, Nº ¾ (2015)

Tekno-Barometro is a quantitative tool that characterizes the state of technology development.

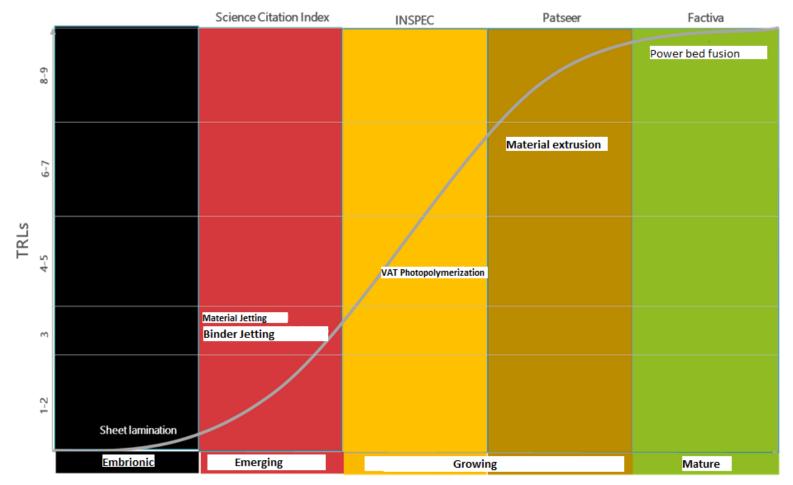
We developed a quantitative method for the characterization of the TRL stage of technologies.

Bibliometric Model for Assessing Technological Maturity

- Several **databases** were selected, considering the **scope** of each database on basic/applied **research**, **development** or **commercialization**.
- We fit the scientific publication/patent/news & business record data to **"S" curve models** or **Hype type** evolution models, depending on the TRL stage we are trying to characterize.
- We determine the TRL stage depending on the **goodness of fit** between the real publication/patenting/news data and the "S" and Hype type curves.

	TLC stages	Bibliometri c sources	Databases	TRL
		N/A	N/A	1
				2
	Emerging	Scientific papers	Science Citation Index (Clarivate Analytics, 2017)	3
		Engineering papers	EiCompendex (Elsevier, 2017)/INSPEC	4
Bibliometric			(Clarivate Analytics, 2017)/MEDLINE* (Clarivate Analytics, 2017)	5
records TLC TRL			PATENTSCOPE (WIPO, 2017c)/USPTO	6
	Growing	Patents	(USPTO, 2017)/Espacenet (EPO, 2017)/Patseer (Gridlogics Technologies, 2017)	7
		News and		8
	Mature	business records	Factiva (Dow Jones, 2017)	9

2. Tekno-Barometer


	LO	HYPE-TYPE EVOLUTION FIT		
DATABASES	Science Citation Index (TRL 3)	INSPEC (TRL 4-5)	Patseer (TRL 6-7)	Factiva (TRL 8-9)
TECHNOLOGIES	AR ²			
Cloud computing	0.87	0.96	0.98	0.61
Datamining	0.93	0.93	0.72	0.98
Location-Aware Technology	0.58	0.90	0.73	0.73
Microelectromechanical systems (MEMS)	0.93	0.96	0.86	0.80
Organic light emitting diode	0.97	0.98	0.87	0.98
Radio Frequency Identification (RFID)	0.74	0.74	0.75	0.70
Smartphone	0.98	0.97	0.83	0.50
Speech recognition	0.94	0.92	0.85	0.90
Text to speech	0.67	0.70	0.75	0.78
Wireless Local Area Network (WiFi)	0.93	0.92	0.68	0.84
AR ² Average	0.85	0.90	0.80	0.78
ATAR ²	0.75	0.82	0.74	0.67

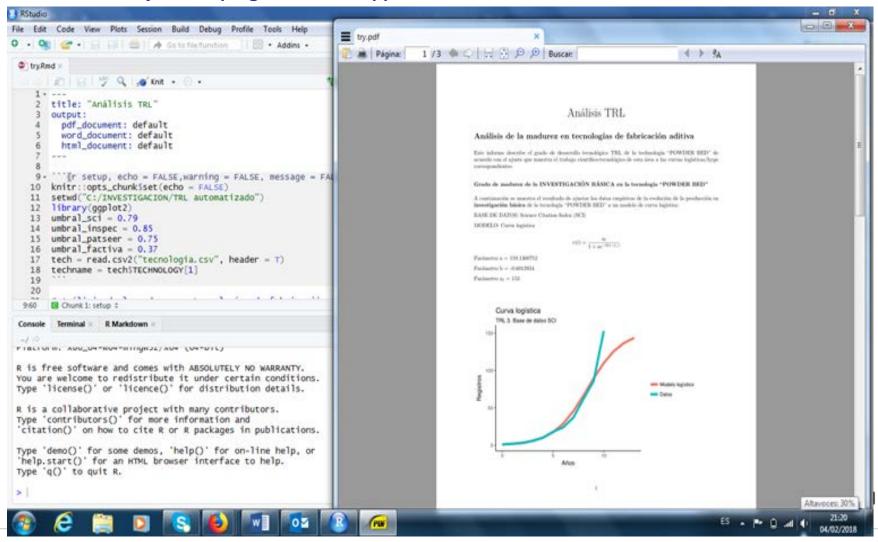
10 mature technologies adapted by (Fenn, 2014) and defined by Gartner Inc. (2017)

Ę,J

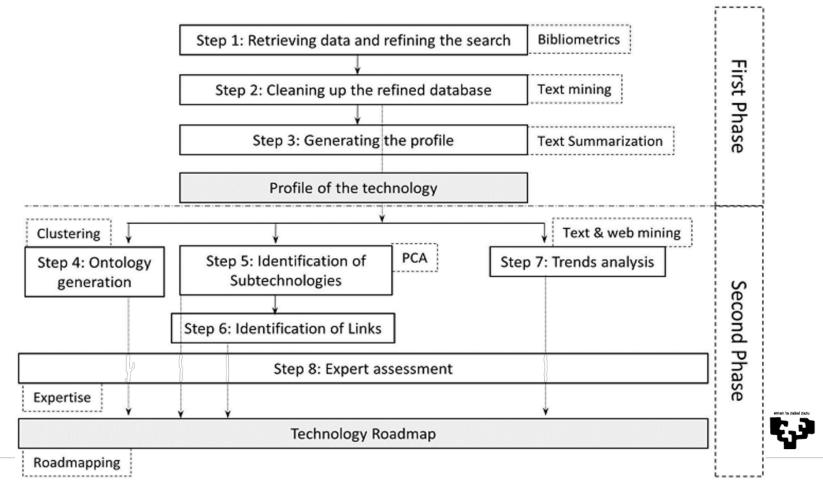
Example: Additive Manufacturing Results

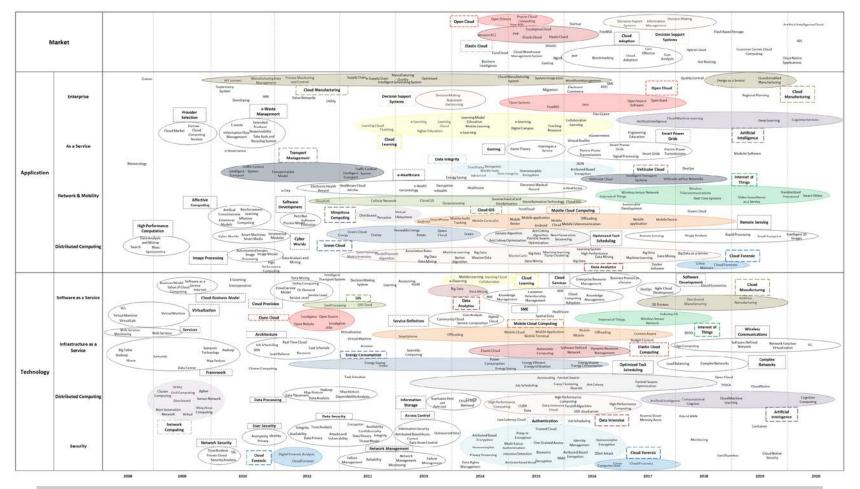
2. TeknoBarometer

Additive Manufacturing technologies classified on a TRL scale


A bibliometric method for assessing technological maturity: the case of additive manufacturing Scientometrics 2018 . R. Lezama, M. Rodriguez, R. Rio, I. Bildosola

2. TeknoBarometer

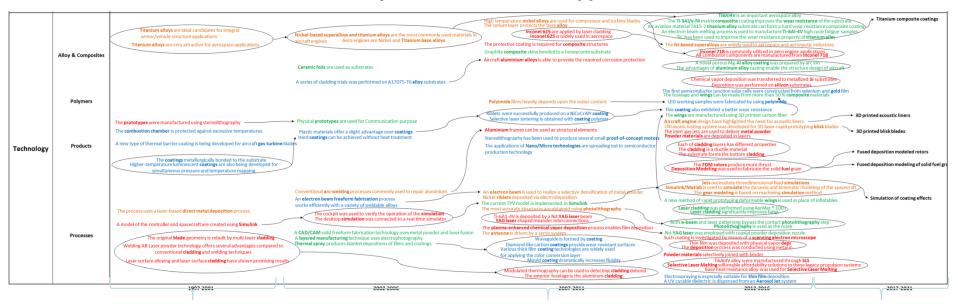

This process was partially automated in R programming language by PhD Gaizka Garechana T.F.M. Research Group.

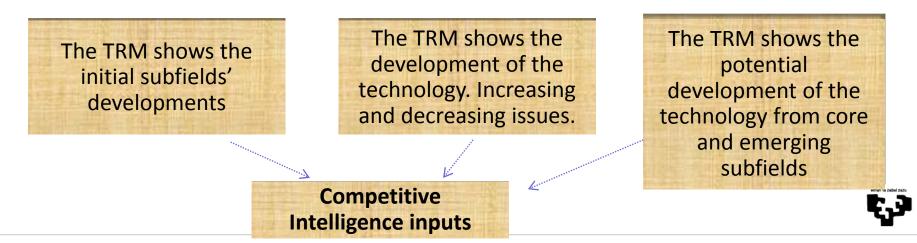

We are currently developing a sectorial application that will work via web.

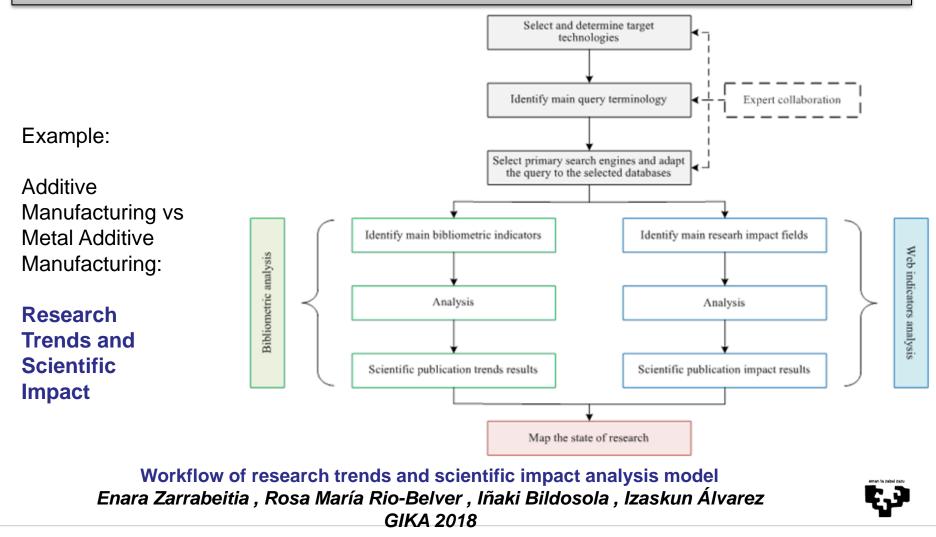
Tekno-Roadmap is a prediction tool to trace technological itineraries. It is a fundamental tool in the definition of the technological strategy of the organization.

Step by step, breakdown of the process, which combines bibliometrics and technology forecasting methods to depict emerging technologies.

Tekno-Roadmap, an approach for depicting emerging technologies


Technological Forecasting and Social Change 117(2017) 25-37


Ę., P


3.Tekno- Roadmap

Example: Technology Roadmapping of Emerging Technologies: Bibliometrics, **Time Series Analysis and SAO-based Approach**

The objective of the web impact study is the early detection of future impact for the prediction of technological success.

BIBLIOMETRIC ANALYSIS Research performance		WEB INDICATOR ANALYSIS Research impact			
Variables	Bibliometric indicators	Impact type	Web data obtained from		
– Publication year	 Number of publications 	 Academic impact 	 Citation count indicators Mendeley readers Wikipedia citations 		
 Institution Journal Author 	 Publication outcome: Number of citation counts 	 Industrial and commercial impact 	 Google Patents citations 		
	(quality)	 Attention/interest or public engagement impact 	 Blog citations 		
Type of documents and tin to 2017	nespan: Articles from 1900	Type of documents and tin	nespan: Articles of 2012		
Software to gather and analyse articles data		Software to gather and analyse web data			
VantagePoint		Webometrics Analyst 2.0			
A powerful text-mining		Software designed to			
knowledge in search r	*	• • • • • •	for social science research		
literature databases (VantagePoint, n.d.)		purposes (Thelwall, 2009a, 2009b)			

Ę,

Technology, Foresight and Management

Research Group

Departamento de Organización de Empresas de la UPV/EHU https://sites.google.com/site/tfmresearch/

Training

Technology Management Skills

Competitive Intelligence Systems

R&D&i Management systems

Tekno-MAPS

Tekno-BAROMETER

Tools

Tekno-Roadmaps

Sci-Tech analysis

RIO-BELVER, Rosa Maria / GARECHANA, Gaizka T.F.M. Technology Foresight and Management Research Group

> Departamento de Organización de Empresas University of the Basque Country UPV/EHU author email: <u>rosamaria.rio@ehu.eus</u>

CAMPUS OF INTERNATIONAL EXCELLENCE

