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Volume entropy for minimal presentations of
surface groups

Llúıs Alsedà∗, David Juher, Jérôme Los and Francesc Mañosas

Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona,
08913 Cerdanyola del Vallès, Barcelona, Spain
alseda@mat.uab.cat

2010 Mathematics Subject Classification. Primary: 57M07, 57M05. Secondary:

37E10, 37B40, 37B10

We study the volume entropy of certain presentations of surface groups
(which include the classical ones) introduced by J. Los [2], called minimal
geometric. This study uses a dynamical system construction based on an
idea due to Bowen and Series [1] and extended to the case of geometric
presentations by J. Los.

We obtain a surprising explicit formula for the volume entropy of classi-
cal presentations in all genus, showing a polynomial dependence in g. More
precisely we prove that if Γg is a surface group of genus g ≥ 2 with a mini-
mal geometric presentation Pg, then the volume entropy of Γg with respect
to the presentation Pg is log(λ2g) where λ2g is the unique real root larger
than one of the polynomial

x2g − 2(2g − 1)

2g−1∑
j=1

xj + 1.

Moreover,

4g − 1− 1

(4g − 1)2(g−1)
< λ2g < 4g − 1.

[1] Rufus Bowen and Caroline Series, Markov maps associated with Fuchsian
groups, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 153–170.

[2] Jérôme Los, Volume entropy for surface groups via Bowen-Series-like maps,
J. Topology (2013); doi: 10.1112/jtopol/jtt032.
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Topological entropy and related notions

Francisco Balibrea

Departamento de Matemticas, Universidad de Murcia, Campus de Espinardo,
Murcia, Spain
balibrea@um.es

Let (X, f) be a topological dynamical system, where X is a non-empty
compact Hausdorff space and f : X → X a continuous map. Topological
entropy is a non-negative number which measures the complexity of the
system. Roughly, it measures the exponential growth rate of the number of
distinguishable orbits as time advances.

As a short history, the original definition was introduced in 1965 by
Adler, Konheim and McAndrew. Their idea of assigning a number to an
open cover to measure its size was inspired by a paper of 1961 of Kolmogorov
and Thomirov. Then to introduce the definition of topological entropy for
continuous maps, they strictly imitated the definition from Kolmogorov-
Sinai entropy of a measure preserving transformation in ergodic theory. In
metric spaces, a different definition was introduced by Bowen in 1971 and
independently by Dinaburg in 1970. It uses the notion of ε-separated points.

Equivalence between the above two notions was proved by Bowen in
1971. The most important characterization of topological entropy in terms
of Kolmogorov-Sinai entropy, called the Variational Principle was proved
arounf 1970 by Dinaburg, Goodman and Goodwyn.

In this talk we will concentrate in such Variational Principle and in the
relation between the topological entropy and the Kolmorov-Sinay entropy.
We also will give an interpretation of the topological entropy when it is gen-
erate by an important structure in Topological Dynamics called horseshoe.
Some formulae for the calculation of topological entropy will be applied to
some examples of piecewise monotone interval maps and we will introduced
the new notion of topological entropy for non-autonomous systems.
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Scale function and topological entropy

Federico Berlai

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1,
1090 Vienna, Austria
federico.berlai@univie.ac.at

For a long period, the structure theory of locally compact totally discon-
nected groups (lctd groups) has been considered intractable. Only recently,
in 1993, it was proved that for every topological automorphism of a lctd
group there exists a so-called tidy subgroup. This allows the definition of a
function on the topological automorphisms of a lctd group, the scale func-
tion.

We intend to discuss the relationship between the scale function and
the topological entropy of a topological automorphism of a lctd group. Fur-
thermore, a Bridge Theorem for the scale function will be presented.

Based on a joint work with Anna Giordano Bruno and Dikran Dikran-
jan.
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On entropy of fuzzy extensions of continuous maps

Jose S. Cánovas

Department of Applied Mathematics and Statistics, Technical University of
Cartagena, C/ Dr. Fleming sn, 30202 Cartagena, Spain
jose.canovas@upct.es

Let (X, d) be a compact metric space and consider a continuous map f :
X → X. It is well–know that topological entropy is a non–negative number
which is a measure of the dynamic complexity of f . In this talk we consider
the Zadeh extension of f to the set of fuzzy sets, denoted by Φf with the
aim of solving two questions. Have f and Φf similar dynamical behavior?
and more precisely, have they the same entropy? If not, how the fuzzy sets
which are essentially fuzzy contribute to increase the complexity of Φf?

This is a joint work with Jiri Kupka (University of Ostrava, Czech Re-
public).
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Bridge Theorems

Dikran Dikranjan

Dipartimento di Matematica e Informatica, University of Udine, via delle Scienze
206, 33100 Udine, Italy
dikran.dikranjan@uniud.it

A flow in a category X is a pair (X,φ), where X is an object and
φ : X → X is an endomorphism of X in X. A morphism between two flows
(X,φ) and (Y, ψ) in X is a morphism α : X → Y in X such that α◦φ = ψ◦α.
This defines the category FlowX of flows in X.

We call entropy of X a function h : FlowX → R+ = R≥0 ∪ {∞} taking
the same values on isomorphic flows.

Let ε : X1 → X2 be a functor between two categories X1 and X2, and
let h1 : FlowX1 → R+ and h2 : FlowX2 → R+ be entropies of X1 and X2

respectively, such that h1 = h2 ◦ ε:

FlowX1

ε

��

h1

,, R+

FlowX2

h2

22

We say that the pair (h1, h2) satisfies the Bridge Theorem with respect to ε
if there exists a positive constant Cε, such that for every (X,φ) in FlowX1

h2(ε(φ)) = Cεh1(φ).

We discuss in this general scheme many known so-called Bridge Theo-
rems, that is, specific entropies and functors on pairs of suitable categories
satisfying the condition given above. Our inspiring example is the case of
the topological and the algebraic entropy, satisfying the Bridge Theorem
with respect to the Pontryagin duality functor, on suitable categories. Fur-
thermore, we consider in this scheme the pair composed by the algebraic
entropy and the adjoint algebraic entropy, and we describe the relation of
the topological entropy with the measure entropy, but also with the frame
entropy and the set-theoretic entropy.
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Algebraic entropy vs Topological entropy

Dikran Dikranjan, Anna Giordano Bruno*

Dipartimento di Matematica e Informatica, University of Udine, via delle Scienze
206, 33100 Udine, Italy
anna.giordanobruno@uniud.it

We consider both the algebraic entropy and the topological entropy for
continuous endomorphisms of locally compact abelian groups, and in this
setting we discuss the connection between these two entropies using Pon-
tryagin duality.

Indeed, Weiss proved that the topological entropy of a continuous endo-
morphism of a totally disconnected compact abelian group coincides with
the algebraic entropy of the dual endomorphism of the Pontryagin dual
group, that is a discrete torsion abelian group. We see how to extend this
result in two directions, first to all compact abelian groups and then to all
totally disconnected locally compact abelian groups.
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Can negative Schwarzian derivative be used to
extract order from chaos?

Vı́ctor Jiménez López∗ and Enrique Parreño

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo,
30100 Murcia, Spain
vjimenez@um.es

2010 Mathematics Subject Classification. 39A11

In 1992, Pyragas made a remarkable discovering: it is possible to trans-
form a chaotic system into a non-chaotic one using delayed feedback. A
very natural and simple way to do this, introduced by Buchner and Ze-
browski in 2000, is to modify a one-dimensional discrete dynamical system
xn+1 = h(xn) via an “echo type” feedback loop,

xn+1 = (1− α)h(xn) + αxn−k,

with 0 < α < 1 being the feedback amplitude and k being the delay time.
The point is that (when the delay time k is even) a repelling fixed point
of the original system may become attracting for the delayed one. This
may happen even if the map h has positive entropy and exhibits observable
chaos.

In this regard, maps belonging to the so-called class S are of special
interest because, as it is well known, they have a unique metric attractor
(that is, a compact set attracting the orbit of almost all points —in the
sense of Lebesgue measure) and, in the particular case when its fixed point
u is locally attracting (which is equivalent to |h′(u)| ≤ 1), u is this metric
attractor and, indeed, it attracts the orbits of all points. (We say that a
map C3 map h : I → I, with I being a subinterval of R, belongs to the class
S if, roughly speaking, it is unimodal, has a unique fixed point u and the
Schwarzian derivative of h, Sh(x) = h′′′(x)/h′(x) − (3/2)(h′′(x)/h′(x))2, is
negative.)

Thus this natural question arises: if the map h belongs to the class S, is
local attraction for the delayed system always global? In this work we answer
this question in the negative: a counterexample is provided (for k = 2) by
the Ricker function h(x) = pxe−qx. Yet we give some arguments supporting
the validity of the statement when k is large enough.
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The hierarchy of algebraic entropies

Luigi Salce

Dipartimento di Matematica, Universitá di Padova, Via Trieste 63, 35121,
Padova, Italy
salce@math.unipd.it

The algebraic entropy originally defined in 1965 for Abelian groups by
Adler, Konheim and McAndrew (see [1] and [3]), its generalization due
to Peters in 1979 (see [2]), and the more recent intrinsic algebraic entropy
(see [4]), are illustrated and compared. Analogies and differences of the
three algebraic entropies are focused, with special emphasis on the Addition
Theorem and the Uniqueness Theorem, and their connections with length
functions are discussed (see [5]). Some directions for further developments
are outlined.

[1] R. L. Adler, A. G. Konheim, M. H. McAndrew, Topological entropy, Trans.
Amer. Math. Soc. 114 (1965), 309–319.

[2] J. Peters, Entropy on discrete Abelian groups, Adv. Math. 33 (1979), 113.
[3] D. Dikranjan, B. Goldsmith, L. Salce, P. Zanardo, Algebraic entropy of endo-

morphisms of Abelian groups, Trans. Amer. Math. Soc. 361 (2009), 3401–3434.
[4] D. Dikranjan, A. Giordano Bruno, L. Salce, S. Virili, Intrinsic algebraic entropy,

preprint.
[5] L. Salce, P. Vámos, S. Virili, Length functions, multiplicities and algebraic

entropy, Forum Math. 25(2) (2013), 255–282.
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A Notion of Entropy in the Realm of Fuzzy
Metric Spaces

Manuel Sanchis

Institut de Matemàtiques i Aplicacions de Castelló (IMAC), Universitat Jaume I
de Castelló
sanchis@mat.uji.es

We introduce an entropy function hF for continuous self-maps on fuzzy
metric spaces (in the sense of Kramosil and Michalek). We prove that this
function enjoys the usual properties of the topological entropy. In addition,
given a metric space (X, d) and a continuous map f : X → X, we study the
relationship between the Bowen entropy of f and hF (f) when we consider
f as a self-map on the fuzzy metric space (X,Md, ?) where Md stands for
the standard fuzzy metric induced by d and ? is any continuous t-norm on
X. We also analyze the completion theorem (in the sense of Kimura) for
this new function.
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Polyentropy, Poincaré Series and Multiplicity

Peter Vámos

Department of Mathematics,University of Exeter, England
P.Vamos@exeter.ac.uk

For a ring R,Mod R will denote the category of left R-modules. A function
L : Mod R→ R≥0 ∪ {∞} is a length function if it satisfies

(i) additive: if L(A) = L(A′) +L(A′′) for every exact sequence 0→ A′ →
A→ A′′ → 0;

(ii) upper continuous: if for every M ∈ Mod R, L(M) = supF∈F(M) L(F ),
where F(M) denotes the set of the finitely generated submodules of
M .

(iii) discrete if for all M the set {L(F ) | F ⊆ M, L(F ) < ∞} is order-
isomorphic to a subset of N.

Let L : Mod R→ R≥0∪{∞} be a length function, M ∈ Mod R, and let Φ =
{φ1, . . . , φd} be a set of d pairwise commuting endomorphisms of M . We will
define the the L-(poly)entropy of Φ on M , entL(Φ,M). This generalizes the
case of the entropy of a single endomorphism (d = 1) as defined in [1]. Then,
analogously to the single endomorphism case, the polyentropy entL(Φ,M)
will now be interpreted as a function on the modules over the polynomial
ring R[X] = R[x1, . . . , xd].

We then introduce the Hilbert function and Poincaré-Hilbert series
PM,F (t) associated to the entropy entL(Φ,M). Our main result is that
(under suitable conditions on M) the Poincaré-Hilbert series PM,F (t) is
a rational function of t of the form f(t)/(1− t)d where f(t) is a polynomial.
Moreover, PM,F (t) is additive over short exact sequences of (Noetherian)
graded R[X]-modules. This will allow us to conclude that entL(Φ,M) is
again a length function on Mod R[X] and is equal to the multiplicity of X
on M whenever MΦ is a finitely generated R[X]-module. Also, polyentropy
is then an operator from length functions on Mod R to length functions on
Mod R[X]

[1] D. Dikranjan, B. Goldsmith, L. Salce, P. Zanardo, Algebraic entropy for abelian
groups, Trans. Amer. Math. Soc. 361 (2009), 3401–3434.
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Algebraic entropy of Amenable group actions

Simone Virili

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C -
08193 Bellaterra (Barcelona), Spain
simone@mat.uab.cat

Consider a set X and a self-map T : X → X. Denote by (X,T ) the
discrete-time dynamical system whose evolution law N × X → X is given
by (n, x) 7→ Tn(x). Depending on the possible structures on (X,T ), one
can introduce different real-valued invariants to measure the “disorder” or
“mixing” produced by the action of T on X.

In recent years, many papers were published studying a specific invari-
ant, called algebraic entropy, of dynamical systems consisting of an Abelian
group X and an endomorphism T . In turn, such dynamical systems can be
naturally considered as Z[X]-modules.

Let now R be an arbitrary ring, M a left R-module and Γ a group. In
the present talk we will be concerned with dynamical systems of the form
(M,λ), where λ : Γ → AutR(M) is a left action. After recalling that such
systems can be identified with left R[Γ]-modules, we explain how to gener-
alize the techniques of algebraic entropy to these group actions, and more
generally to modules over crossed group rings, provided Γ is an amenable
group.

In the final part of the talk we present applications of the general theory
of algebraic entropy to classical problems in (crossed) group algebras such
as (strong versions of) the stable finiteness and the zero-divisor conjectures.
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