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Abstract. In this work we investigate several issues related to the use of Dy-
namic Frequency Warping in the context of text-independent voice conversion. 
For this type of systems, given an average spectral representation of each 
acoustic/phonetic class, dynamic programming is applied to compute the best 
alignment path between the frequency axis of the source and target speakers. In 
order to increase the robustness of the system, we suggest estimating such av-
erage spectral information using the Multi-Frame Analysis framework, while 
we compare several different local slope constraints for the dynamic program-
ming procedure. Objective measurements show that the suggested approach 
provides better results than a state-of-the-art histogram-based solution in trans-
forming the source spectral envelope towards the target one for all the dynamic 
programming constraints we considered. 
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1 Introduction 

In a society more and more interested in the latest technological breakthroughs, 
speech technologies are fast evolving to keep up with the trends. Telephony, music, 
film and computer games industries are insatiable when it comes to new speech tech-
nologies applications. In this context, voice conversion (VC) has emerged as a po-
werful technology that allows to modify the voice produced by one speaker (the 
source speaker) in such manner that it is perceived as that of another speaker (the 
target speaker), thus providing artificially generated speech with a high degree of 
flexibility. To achieve this goal, the speech individuality of the target speaker has to 
be modeled and transferred to the source speaker. The speech individuality involves 
both segmental and supra-segmental speech features, but there is a general agreement 
that the spectral envelope plays the determinant role among them [1-7]. In this paper 
the spectral envelope conversion will be referred to as ‘voice conversion’. 

In a typical VC system, mapping functions between source and target spectral en-
velopes are trained using speech utterances recorded from the source and target 
speakers. In the case of parallel training corpora, the speakers record the same collec-
tion of utterances, thus facilitating the search for a correspondence between source 
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and target features. In practice, it is not always possible to obtain parallel corpora 
from the involved speakers (in cross-lingual VC, for instance). As result, nonparallel 
training methods have been proposed to make VC systems text-independent [3]. 

Although probabilistic mapping methods based on Gaussian mixture models 
(GMMs) have prevailed over other VC methods [1-4], they have some important 
limitations, the most remarkable one being known as over-smoothing [4]. This phe-
nomenon is produced by the restricted capability of a statistical VC function to cap-
ture the source-target correspondence accurately. Instead, the converted features 
yielded by the system tend to be too close to the mean values of the corresponding 
acoustic class. Consequently, the generated speech lacks naturalness and variability. 
Another source of quality loss which is inherent to GMM-based VC systems is the 
use of low dimensional spectral envelope parameterizations provided by vocoders. 

Dynamic Frequency Warping-based VC method (DFW) [5, 8] is a non-parametric 
approach that maps significant points of the frequency axis of the source speaker into 
that of the target speaker, thus offering the premises of a higher perceptual quality 
due to the fact that spectral details are preserved during the transformation stage. In 
exchange, the individuality of the target speaker is not well transferred by pure 
DFW-based conversion approaches because the relative amplitude of the different 
spectral bands is not modified. In recently suggested DFW-based VC systems a suit-
able amplitude correction step is introduced after DFW to cope with this problem [6-
7]. Furthermore, the solution proposed in [7] allows text-independent VC by training 
frequency warping functions from single representatives of the content of the phonet-
ic classes. The training procedure of such a DFW-based system consists of three 
steps: (i) the training data are segmented into a number of acoustic/phonetic classes; 
(ii) for each class, using only the data therein, representative spectral information 
(RSI) is calculated for both the source and the target speaker; (iii) the frequency 
warping path that produces minimum-distortion between the two RSI is determined. 
The main disadvantage of this system is that, even when phonetic labels are available 
(as it is assumed in this work), the accuracy of the DFW-based VC system is strongly 
conditioned by the way steps (ii) and (iii) are implemented. 

A high quality VC system implies estimating robust class-dependent RSI, which is 
related to robust spectral envelope estimation. In this work, we assume that a spectral 
envelope represents the magnitude of the frequency response of the filter which 
models speaker's vocal tract. In this context, for the voiced speech, a good/robust 
class-dependent RSI should be fundamental frequency independent. This leads to the 
main problem to be solved, namely how to combine the contribution of multiple 
training frames into a single RSI. One possible solution is to average data sets [5], 
but this approach will lead to flat spectrum, so spectral details will be lost during 
transformation. Godoy et al. [7] suggested a better way to solve the problem by cal-
culating class-dependent frequency histograms from meaningful (formant related) 
peaks of the magnitude spectra. These histograms are used as class-dependent RSI, 
where the k-th element is the probability that a formant peak is found in the k-th 
frequency bin. However, the main disadvantage of this approach is its sensitivity to 
the analysis method used to construct the histograms. The solution proposed by Go-
doy et al. will be denoted as Hist-VC from now on. In this paper we suggest a more 
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robust way of estimating the RSI of each class, i.e. Multi-Frame Analysis (MFA) [9]. 
Throughout the paper this method is denoted MFA-VC. 

Given the source and target RSI that corresponds to a specific class, frequency 
alignment is carried out by means of an automatic dynamic programming technique. 
Due to vocal tract length and shape differences, aligning the speakers’ RSI is not a 
trivial task (even manually!). Therefore, in this work several local slope constraints 
in the implementation of the DFW are investigated. 

The paper is organized as follows. Section 2 provides a brief description for the 
methods used throughout the paper. Section 3 describes the experimental setup and 
presents the results. Finally, section 4 summarizes the conclusions and future work. 

2 Methods Towards DFW-based VC 

Figure 1 presents the training stage block diagram for the suggested MFA-VC sys-
tem (solid line). A baseline approach for a DFW-based VC, Hist-VC (similar to the 
one described in [7]), is also shown (dashed line) for comparison purposes. 

Segments of speech signals from the same phonetic/acoustic class (for both speak-
ers) are divided into frames of length twice the pitch period and then the magnitude 
spectrum of these frames is computed using DFT. Next, a first Peak Picking is ap-
plied on the DFT magnitude spectra. The spectral peaks are pairs of magnitude and 
frequency bins, which correspond to the harmonics in voiced frames. These peaks are 
used as input for both MFA-VC and Hist-VC systems. The MFA technique is briefly 
presented in the following sub-section. 

The block called “Spline + Peak Picking + Hist” is the module that generates the 
RSI for the Hist-VC system. It uses the peaks provided by the Peak Picking block 
and it computes spectral envelope by spline interpolating between these peaks (in 
voiced frames, this eliminates the pitch dependencies). Then, a second peak-picking 
is used to extract the local maxima from the estimated spectral envelope, thus the 
frequencies of these new peaks are an estimation of the formants’ location. After 
analyzing all the training frames, for each phonetic class, histograms are built to 
model the distribution of the formants in frequency. 

The DFW block aligns the RSI for both systems and generates an optimal fre-
quency warping path per phonetic/acoustic class. The Amplitude Correction (AC) 
compensates for the remaining differences between the frequency-warped source and 
target spectral envelopes [7]. 

Using histograms as RSI is advantageous with respect to an average magnitude 
spectra solution because it removes the effect of spectral tilt and avoids spectral flat-
tening. However, it is sensitive to the analysis parameters, such as: the analysis win-
dow type and length, the masking functions for selecting the representative peaks 
from the spectrum or the smoothing approach used to obtain the histograms. 

As alternative, the suggested MFA-based VC uses the powerful Multi-frame 
Analysis core to extract robust RSI and offers in the same time the ability to generate 
robust AC functions (see Fig. 1). The dual gain from using MFA (in both estimation 
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robustness and system complexity reduction) can be boosted by the usage of a proper 
(physically motivated) DFW technique. 

 
Fig. 1. Training stage block diagram for the suggested MFA-VC (solid line) and a Hist-VC 

systems (dashed line) 

The following sections present the MFA spectral envelope estimation, the DFW 
and the AC internals. 

2.1 Multi-frame Analysis Spectral Envelope Estimation 

Due to quasi-periodic nature of voiced speech and due to changes of the fundamental 
frequency during speaking, the simple averaging of the magnitude spectrum from 
each acoustical class does not offer a robust estimator for the RSI of an acous-
tic/phonetic class. Assuming that such information exist (or it is valid) for a class, we 
may consider that a specific frame provides simply a sample of that information. 
However, the usage of a single frame will not provide a good estimation of the aver-
age spectral representation of an acoustic class. This is actually similar to the prob-
lem of computing the mean of a (multidimensional, in this case) stochastic variable 
using only one realization. Multi Frame Analysis offers a mechanism to estimate in a 
robust way this average spectral information (avoiding however any smoothing and 
whitening that a simple average operator will produce) [9]. 

MFA has been presented before in the context of speech synthesis but not in the 
context of voice conversion. 

MFA uses cepstrum and Least Squares Estimation for all the frames from a pho-
netic category. Denoting [ ]c n  as the cepstrum for a discrete sequence [ ]x n , then the 
log magnitude spectral envelope can be approximated as 

 ln ( ) [ ]cos(2 )
p

n p

X f c n fnS
 �

 ¦  (1) 

where p  is the cepstrum’s order. 
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Supposing M frames from a specific acoustic/phonetic class, these will be prior 
analyzed in terms of their log-amplitudes l

ka  and frequencies l
kf  (in this paper we 

consider the spectral peaks extracted by the Peak Picking block – see Fig.1), where 
the upper index denotes the l -th spectral peak and the lower index denotes the k -th 
speech frame. The cepstrum coefficients are estimated using least squares, consider-
ing the error H  to be minimized as: 

 
1 1

( )
[ ]cos(2 / )

kN pM l
l lk
k k k s

kk l n p

w f
a d c n nf F

N
H S

   �

ª º
« » � �
« »¬ ¼

¦¦ ¦  (2) 

where ( )w f  represents a weighting function used to put more emphasis on the lower 
part of spectrum, kN  is the number of harmonics in each frame, kd  is an offset fac-
tor used to correct the total power of each frame such that H  gets minimized and sF  
is the sampling frequency. 

In (2), the minimization of H  is a non-linear procedure since the error depends on 
[ ]c n  and kd . Assuming an initial value for kd , an iterative approach is adopted [9]. 

The iterations stop when the error is lower than a predefined threshold, providing the 
MFA-based p  order cepstrum (1). 

2.2 Dynamic Frequency Warping 

To automate the process of finding the correspondence between RSI, dynamic pro-
gramming technique is used [5, 7-8, 10-11]. The correspondence between RSI is a 
core component of a DFW-based VC system, as result we are considering different 
ways of implementing the dynamic programming in order to achieve the best physi-
cally meaningful warping paths. As result, in this paper three variations for the dy-
namic programming are considered, with different complexity and flexibility. 

The first DFW technique accounted (denoted as 1DFW ) has the maximum degree 
of freedom in searching for the optimal warping paths. Its local slope constraint is 
given by: 

 
1

1 1

1

[ 1, 1]
[ , ] min [ 1, ] [ , ]

[ , 1]

C i j
C i j C i j S i j

C i j

� � ½
° ° � �® ¾
° °�¯ ¿

 (3) 

where 1C  is the cost matrix associated with the dynamic programming and S  is the 
similarity matrix between the two RSI. For the similarity matrix the following dis-
tance is used (for all the methods): 

 1 2 1 2[ , ] [ ] [ ] , 1, , 1,S i j RSI i RSI j i N j N �    (4) 
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where 1N  and 2N  are the lengths for 1RSI  and 2RSI , respectively. In this context, 
the goal of DFW is to find the minimum cost warping path 

^ `1 1 2 2( , ), ( , ), , ( , )K KP i j i j i j !  [8, 10-11]. 
The 1DFW  freedom for the warping path search is not always an advantage be-

cause it could lead to physically unsustainable warping functions. Therefore, quite 
complex global slope constraint policies are considered very often [10], with impact 
on the overall performance of the system. An intermediate step towards such a com-
plex approach is by using a “built-in” global slope constraint (by the way the local 
slope is defined), with limited impact on the system’s performance. Our extended 
experiments using different well known speech recognition local slope constraints 
scenarios [10-11] recommend the following form (referred to as 2DFW ): 

 
2

2 2

2

[ 1, 1]
[ , ] min [ 2, 1] [ , ]

[ , 1]

C i j
C i j C i j S i j

C i j

� � ½
° ° � � �® ¾
° °�¯ ¿

 (5) 

The third tested technique (denoted as 3DFW ) is based on 1DFW , but introduces 
a higher degree of control to select the minimum cost frequency warping paths, fol-
lowing the work of Matsumoto and Wakita for non-uniform talker normalization [8]. 
By imposing a complex set of restrictions (boundary, continuity and nonlinearity 
conditions) the frequency warping functions are searched within a physically signifi-
cant area. As result, with a higher computational price, physical meaningful warping 
paths can be obtained between RSI. The boundary conditions used in our implemen-
tation are 0.6 and respectively 1.4 for the slopes defining the search area. The values 
are chosen to cover a large dynamic for the ratios between speakers’ min and max 
vocal tract lengths [8]. The advantage of this method is that speaker adaptive esti-
mates for the vocal tract lengths could be easily integrated into the framework, there-
fore enhancing the DFW and promising higher VC quality. 

2.3 Amplitude Correction 

Amplitude correction is implemented as a corrective filter (CF) [12]. For the MFA-
VC system the AC is implemented as a 12 order CF, computed from the difference 
between the frequency-warped source and target average spectral envelopes. The 
average spectral envelopes are generated from the MFA estimates. In the case of 
Hist-VC, an approach closer to the implementation mentioned in [7] is employed. 
The same 12 order CF is used, but in this case the average spectral envelopes (fre-
quency warped for the source) are computed by means of discrete cepstrum [7, 13]. 
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3 Evaluation and Results 

In this experiment we are using CMU_ARCTIC speech database [14], consisting of 
phonetically balanced US English single speaker recordings at 16 kHz sampling fre-
quency. For the purpose of spectral envelope conversion we have selected four 
speakers: two female speakers (slt and clb) and two male speakers (bdl and rms). All 
the voice conversion directions are considered: male to female (bdl to slt, denoted 
bdl2slt), female to male (clb to rms, denoted clb2rms), male to male (rms to bdl, 
denoted rms2bdl) and female to female (slt to clb, denoted slt2clb). A number of 100 
parallel training sentences per speaker are selected, while a different set of 20 ran-
domly selected sentences are considered for testing purposes. 

During the training stage, the speech frames are extracted from segments defined 
by the labels provided by the ARCTIC’s phonetic segmentation. The segmentation 
consists of 44 American English phonetic classes. The voiced speech segments are 
analyzed using a Hanning window with length twice the average pitch period, while 
for unvoiced segments a fixed 100 Hz pitch frequency is imposed. The training is 
done using only frames from the middle section of the segments to avoid boundary 
artifacts. 

 

 
Fig. 2. The MCD scores per voiced frames for the “If I ever needed a fighter in my life I need 
one now” sentence, using DFW2 approach and the following methods for the bdl2slt VC di-
rection: no conversion applied (the green with stars curve), Hist-VC (the blue with x-s curve) 

and MFA-VC (the red with dots curve) 
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The MFA-VC system is objectively compared against the Hist-VC for different 
speaker pairs and for different dynamic programming methods. The objective meas-
ure used is the average Mel-cepstral distortion (MCD) between the converted and the 
target spectral envelopes [4]: 

 � �2
1

10[ ] 2
ln10

K
tgt src tgt
k k

k

MCD dB mc mc o

 

 �¦  (6) 

The average MCD is computed only for voiced frames. 
In Fig.2 is presented an example of spectral envelope conversion between a male 

and a female speaker in terms of MCD over time, using MFA-VC and Hist-VC sys-
tems. For comparison purposes the “no conversion” MCD is also depicted. It is ob-
vious that the voice conversion is effective because the MCD drops. The general 
trend shows that MFA-VC offers lower distortions than Hist-VC. Another observa-
tion is that the distortion contours present an oscillatory behavior, with minimum 
corresponding in general to the center of the phonetic segments. This is normal be-
cause in this implementation the transformation applied per acoustic class is the same 
for all the frames inside a segment, thus the error is higher during segment transi-
tions. Inter-segment interpolation between warping paths and CFs will be considered 
in our future work. 

 
Fig. 3. Average MCD scores with 95% confidence intervals for all the VC directions and for 
different DFW approaches, in the case of MFA and histogram based VC systems, as follows: 

1– no conversion, 2 - MFA-DFW1, 3 – Hist-DFW1, 4 – MFA-DFW2, 5 – Hist-DFW2,             
6 – MFA-DFW3, 7 – Hist-DFW3 
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Table 1. Objective comparison between the MFA-VC and Hist-VC systems for the considered 
DFW techniques. The MCD values are averaged for all the VC directions 

 No 
cnv. 

MFA-
DFW1 

Hist-
DFW1 

MFA-
DFW2 

Hist-
DFW2 

MFA-
DFW3 

Hist-
DFW3 

Average 
MCD 
(dB) 

4.54± 
0.03 

3.66 ± 
0.03 

3.88 ± 
0.03 

3.60 ± 
0.03 

3.76 ± 
0.03 

3.60 ± 
0.03 

3.73 ± 
0.03 

 
In Fig.3 the average MCD scores for all the VC directions are shown, with 95% 

confidence intervals values around ±0.03 dB. The lowest MCD for all the directions 
is obtained for the MFA-VC system. Furthermore, the superiority of MFA is main-
tained for all the considered DFW methods. As it is easy to see from Table 1, DFW2 
and DFW3 offer the best performances. Taking into account the higher arithmetical 
complexity given by DFW3, the optimal solution remains DFW2. Even so, we believe 
that the power (in terms of robust and meaningful warping paths) given by DFW3 is 
not completely unleashed. In our future work we will consider speaker adaptive pa-
rameters for the warping functions search area to increase the VC robustness and 
quality. 

4 Conclusions and future work 

Objective measures indicate that the suggested MFA-VC framework outperforms the 
Hist-VC opponent, both in terms of adopted warping strategy and conversion direc-
tion. By integrating prosody modifications as well, extended subjective tests between 
our framework and other state of the art VC systems are scheduled as a future work. 
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