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a b s t r a c t

In recent decades, and in order to develop applications covering several areas of knowledge, different
researchers have been performing hardware implementations around paradigms such as fuzzy systems,
neural networks or systems resulting from the hybridization of the previous two systems, known as
neuro–fuzzy systems. Applications have been performed on different types of devices and/or platforms.

The point of view of this paper is focused on a hardware taxonomy (devices where the applications
have been implemented) and highlights the characteristics of the different applications covering the
aforementioned paradigms done over the last two decades, and the beginning of the current decade.
Special mention is made up of reconfigurable devices.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the decade of the 1940s taking into account that in 1943,
McCulloch and Pitts (1943) introduced the model of a neuron,
to the present day, different paradigms have emerged: these are
fuzzy systems, neural networks, genetic algorithms and hybrid
systems, these last composed by a combination of the above. They
are all encompassed in a more generic concept called Soft
Computing.1 These paradigms have been consolidated in various
facets of human knowledge and in several applications in the

fields of education, industry, consumption and research.2 Fuzzy
systems or fuzzy inference systems (FISs), based on fuzzy sets and
fuzzy logic, work with imprecise reasoning and linguistic rules
obtained from the information provided by an expert, leading to
systems tolerant of imprecision. Artificial neural networks (ANNs)
are computational structures that model the physiological beha-
vior of neurons and connections. The neurons store the knowledge
by means of training (learning), obtaining adaptive systems for
their environment and tolerant of faults in some of their neurons.
Genetic algorithms, based on the theory of evolution, apply
genetic inheritance algorithms such as reproduction, crossover,
and mutation, to a specific problem.

The scope of the different topics is extensive. Fuzzy systems
have proved very useful in support of decision making in areas
such as economics (Aluja, 2004; Dompere, 2004; Aliev, 2008) and
medicine (Szmidt and Kacprzyk, 2001; Bates and Young, 2003;
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Chen et al., 2010). Moreover, the application has been remarkable
as an alternative control strategy to the classic control techniques
for complex systems, which are difficult to model or whose
dynamic is poorly understood (Wang and Langari, 1994;
Kiriakidis, 1998; Abou, 2011). Neural networks, given their learning
ability and adaptability, are applied in areas such as robotics (Bekey
and Goldberg, 1993; Rao, 1995; Zou et al., 2006), image processing
(Carpenter and Grossberg, 1992; Egmont-Petersen et al., 2002;
Hong et al., 2009), and speech recognition (Othman and Riadh,
2008; Lippman, 1988). Within the hybrid systems the neuro–fuzzy
systems combine both paradigms; on one hand the system of
linguistic rules generated by an expert, on the other hand the
learning ability of neural networks applied to this system. The
applications include pattern recognition (Ray and Ghoshal, 1997; Pal
and Mitra, 1999), robotics (Rusu et al., 2003; Wongsuwarn and
Laowattana, 2006), nonlinear system identification (Babuska and
Verbruggen, 2003; Panchariya et al., 2004), adaptive signal proces-
sing (Li and Tsai, 2006; Chabaa et al., 2009), etc.

Table 1 shows the summary of the aforementioned application
examples. The aforementioned references are a sample of a large
set of references.

It can briefly be mentioned that one of the main reasons that
influenced the success of fuzzy systems, neural networks and neuro–
fuzzy systems is their ability to approximate continuous nonlinear
functions. In this area within the fuzzy systems, the following works
can be cited: Wang (1992), Kosko (1994), Zeng and Singh (1996),
Rovatti (1998), Kreinovich et al. (2000), Cao et al. (2001), and Landajo
et al. (2001). With regard to neural networks, the following con-
tributions should be highlighted: Stinchcombe and White (1989),
Cotter (1990), Hornik (1991), Attali and Pagès (1997), and Castro et al.
(2000). On neuro–fuzzy networks, the following references are
highlighted: Buckley (1993), Castro (1995), Jang et al. (1997), Nauck
and Kruse (1999), Wang and Wei (2000), and Wu et al. (2010).
Table 2 shows these contributions.

The different applications of soft computing algorithms have been
materialized on different supports over time, depending on the
technologies of the moment. The following have been used:
general-purpose processors, dedicated processors, dedicated copro-
cessors, specific designs with Very Large Scale Integration (VLSI)
integration scales, either analog or digital or mixed,3 up to the
current reconfigurable hardware (HW) devices. Use has also been
made up of multi-processor platforms for systems that require high
speed computation and supporting parallel processing, as in the case
of neural networks. The use of one or other support has been
conditioned by different requirements, among others, power con-
sumption, processing speed, size, portability and cost.

It is in this evolution where reconfigurable device consolidation
of type Field Programmable Gate Array (FPGA)4 (Altera; Xilinx;
Lattice; Actel, www.actel.com; Atmel; Cypress; Quicklogic;
Achronix) and its high integration, has allowed the implementa-
tion of solutions in the environment of soft computing versus
focused solutions on specific HW of type Application Specific
Integrated Circuit (ASIC)5 (Atmel; Avago; Elmos; Lsi). Also, it is
possible to implement embedded processors (hard-core) (Xilinx,
2007; ARM, 2001; Actel-ARM) and instantiated (soft-core)
(Xilinx, 2008; Altera, 2004; Actel, www.actel.com/products/mpu/
coremp7/) with other HW functional blocks on these devices. This
leads to the so-called System-on-a-Programmable Chip (SoPC)
being able to integrate complete systems on one device. All these
make the search for efficient implementations in the area of fuzzy
inference systems in neural networks and neuro–fuzzy networks
on these devices particularly attractive. This paper aims to provide
a historical overview of this search for the aforementioned
systems.

The paper is structured as follows: Section 2 reviews the first
HW implementations of fuzzy systems and neural networks.
Section 3 shows a generic classification of HW implementations
of the fuzzy, neural and neuro–fuzzy systems. Sections 4–6 review
the implementations of fuzzy, neural and neuro–fuzzy systems
respectively on different types of devices. Finally, Section 7
summarizes the conclusions of the work. The bibliography shows
the books and articles consulted throughout this work.

2. First implementations of fuzzy, neural and neuro–fuzzy
systems

The last two decades have been marked by a great evolution in
the field of computer hardware for fuzzy, neural and neuro–fuzzy
systems. The solutions have been provided on analog HW, digital
HW and mixed digital/analog HW. The digital hardware is what
has presented the most important development due to the
consolidation of programmable or reconfigurable devices, mainly
in the FPGAs. The high integration density and the power intro-
duced by the parallel structures achieved by this technology have
enabled implementations of fuzzy inference systems with a high
number of fuzzy rules, neural networks with a large number of
layers and neurons, including learning algorithms, and finally,
neuro–fuzzy systems based on fuzzy rules and endowed with
learning mechanisms of the same type as those used in neural
networks.

Table 1
Summary which shows the application examples of different paradigms.

Paradigms Articles Applications

Total Partial

Fuzzy systems 24 9 Economy (Aluja, 2004; Dompere, 2004; Aliev, 2008)
Medicine (Szmidt and Kacprzyk, 2001; Bates and Young, 2003; Chen et al., 2010)
Control (Wang and Langari, 1994; Kiriakidis, 1998; Abou, 2011)

Neural networks 8 Robotics (Bekey and Goldberg, 1993; Rao, 1995; Zou et al., 2006)
Image (Carpenter and Grossberg, 1992; Egmont-Petersen et al., 2002; Hong et al., 2009
Speech recognition (Othman and Riadh, 2008; Lippman, 1988)

Neuro–fuzzy 7 Pattern recognition (Ray and Ghoshal, 1997; Pal and Mitra, 1999)
Robotics (Rusu et al., 2003; Wongsuwarn and Laowattana, 2006)
Nonlinear system identification (Babuska and Verbruggen, 2003; Panchariya et al., 2004)
Adaptive signal processing (Li and Tsai, 2006; Chabaa et al., 2009)

3 This paper employs the term “mixed” instead of “hybrid” to avoid confusion
with the term applied to “hybrid system”.

4 Invented by Xilinx in 1984.
5 The company Ferranti, around 1980, produced the first gate array known as

ULA (Uncommitted Logic Array – Matrix Logic not Fixed) and can be regarded as
the pioneer in this technology.
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The first digital fuzzy processing device was implemented by
Togai and Watanabe (1986a) in 19856 at Bell Labs AT&T.7 It was a
VLSI device with two inputs and one output capable of running
80,000 FLIPS (Fuzzy Logical Inference Per Second). Prior to the
appearance of the previous device, Yamakawa (1988) had built the
first analog device for fuzzy control, based on bipolar transistors but
this was not presented until 1988. The driver was able to evaluate
1 MFIPS (Mega Fuzzy Inference per Second) including defuzzification
or 10 MFIPS without it. These two projects represent the beginning of
a race for higher processing speeds, smaller devices and lower
consumption in the field of digital and analog hardware. A broader
view can be found in Basterretxea and del Campo (2009). In Section 4
the fuzzy implementations are presented.

The introduction of the neuron model of McCulloch and Pitts
(1943) 8 and subsequent application of the learning method
proposed by Hebb (1949) are two milestones, based on which,
Minsky and Dean in 1951 developed the first learning machine
named SNARC (Stochastic Neuro-Analog Reinforcement Compu-
ter) (Minsky).9 It is an analog computer on which is implemented
a neural network with learning capacity, composed of 40 proces-
sing elements (neurons) and wherein each processing element
requires 6 vacuum tubes (Tsoukalas and Uhrig, 1997).

One of the first digital architectures that perform a neural
computation occurs in 1987 and is known as NetSim. It is presented
in the work ”A chipset for high speed simulation of neural network
systems” (Garth, 1987). Within this architecture there are two
devices, “solution engine” and “communication handler”. The first
performs the neuronal computing and the second performs the
routing of neural activations. It also requires an external memory for
storing weights, achieving a performance of 4 MCPS (Millions of
Connections Per Second). The two devices mentioned, the memory
and a local processor, constitute the complete architecture of NETSIM
card. A neuro-computer system consists of connecting multiple
NETSIMs to a general purpose computer (Burr, 1995).

The two architectures mentioned open two paths of artificial
neural network implementations, the first in an analog context
and the second in a digital context. In Section 5 a classification of
ANNs implementations is considered.

As a final comment about ANNs, it is interesting to note the
efforts made by the company Intel Corporation to introduce, in
1989, the analog neuronal processor ETANN (Electrically Trainable
Artificial Neural Network) (Holler et al., 1989), presenting the
processor in the work named “An Electrically Trainable Artificial
Neural Network (ETANN) with 10 240 ‘Floating Gate’ Synapses” at
the conference IJCNN'89. In this article some key aspects are
highlighted of the architecture such as emphasis on speed via
parallelism, both feed forward and feedback connections on chip,

analog voltage input and output, a large pin count package, and
the option to operate in a fast static mode or in a useful clocked
mode with multiplexed external buses. The weights are stored on
a EEPROM (Electrically Erasable Programmable Read Only Mem-
ory). The learning process, the company point out, is off-chip for
flexibility and cost reduction.

The fusion of fuzzy systems with neural networks, as discussed
above, leads to the neuro–fuzzy hybrid systems. Section 6 presents
a taxonomy of implementations of neuro–fuzzy systems.

Among the proposed taxonomies for fuzzy, neural and neuro–
fuzzy implementations, a greater emphasis is given to fuzzy imple-
mentations because it is an area that has undergone great experi-
mentation in technologies by researchers, leading to a variety of
solutions.

3. Generic classification of HW implementations

Taking into account the difficulty of performing a taxonomy of
the different HW implementations, implementations are consid-
ered to be of the type: (a) analog, (b) digital, and (c) mixed and
within each of them the hardware where the application resides,
may have different characteristics:

� Dedicated Integrated Circuits: Devices designed specifically to
implement a system. These are usually full-custom devices
(analog, digital or mixed), and often ASICs.10

� Programmable Integrated Circuits: In this proposed structure,
it is considered that a programmable integrated circuit is a
commercial hardware that can be reconfigured by a user by
means of any specific technique. These are commercial devices
such as FPGAs, where the applications, as in the dedicated ones,
are completely HW. One aspect that makes these devices
particularly attractive is their ability to reprogramme and the
existence of EDA tools that facilitate their design. A recent type
of programmable device called FPAA (Field Programmable
Analog Array)11 can be also mentioned, which emerged as a
commercial option in the 2000s, but in a very low integration
density and with few applications made in the area at hand.

� Commercial processors: These processors deploy an application
SW that characterizes the system.12 The devices are μ Ps, μ Cs,
DSPs, etc. and around these are performed different architectures
for the development of the aforementioned systems. In
the industrial control environment, PLCs(Programmable Logic

Table 2
Summary of works on approximation of nonlinear functions.

Articles Application: Approximation of nonlinear functions

Total Partial

Fuzzy systems 18 7 Wang (1992), Kosko (1994), Zeng and Singh (1996), Rovatti (1998), Kreinovich et al. (2000), Cao et al. (2001), Landajo et al. (2001)
Neural networks 5 Stinchcombe and White (1989), Cotter (1990), Hornik (1991), Attali and Pagès (1997), Castro et al. (2000)
Neuro–fuzzy 6 Buckley (1993), Castro (1995), Jang et al. (1997), Nauck and Kruse (1999), Wang and Wei (2000), Wu et al. (2010)

6 Was published in April of 1986.
7 After this work, in September, the article (Togai and Watanabe, 1986b) was

published. It is taken from an article of AT&T Bell Laboratories.
8 The program showed that a Turing machine could be implemented in a finite

network of conventional neurons and the neuron was the basic logic unit of
the brain.

9 Although in the construction Dean takes part, the publication is carried out
only by Minsky.

10 Understanding that any VLSI circuit is itself an ASIC that is used when the
term refers to a VLSI integration technology but keep the nomenclature that has
historically been used in a large number of publications. This is due to personal
mode of approaching VLSI designs but attempts to develop CAE and CAD tools for
the design of VLSIs and is opposed to the systematic structure in the design of ASIC
circuit devices designed in VLSI technology. Analog and digital implementations
performed on full-custom circuits have sought to increase efficiency in terms of
speed and the use of silicon.

11 The main companies that manufacture such devices are Lattice and
Anadigm.

12 Let us bear in mind that this article wants to highlight the devices where the
applications have been implemented.
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Controllers) are also incorporating utilities in some applications.
The programming flexibility offered by these devices and/or
architectures as well as their cost has favored the implementation
of systems on them.

Table 3 shows the classification.

4. HW implementations for fuzzy systems

Referring to Section 3, the taxonomy of the different fuzzy
implementations will be of the type: (a) analog, (b) digital, and
(c) mixed and within each of them consider that the hardware
where the application resides may have the characteristics such as
Table 3 shows. Let us consider the following concerning the HW:

� Dedicated Integrated Circuits: Special attention has focused on
increasing the processing speed of the fuzzy HW.

� Programmable Integrated Circuits: Referring to the FPAAs,
although the commercial appearance mentioned in the
2000s, there are also some works in the 1990s.

� Commercial processors: Several manufacturers have introduced
fuzzy instructions in their products. This allows flexibility in
the programming of these devices and increases the speed,
favoring the implementation of fuzzy systems on them.

4.1. Analog fuzzy implementations

The high speed, low silicon area occupation, low consumption
and high parallelism are decisive reasons for implementing FISs on
an analog hardware. In such implementations, solutions are
focused on how the circuits work, distinguishing between circuits
working in current mode, voltage mode or hybrid mode (trans-
conductance). A fourth category is presented in such implementa-
tions; it works with circuit-switched, both in tension and current.

One of the benefits of such implementations is that they have a
natural connection with different sensors and/or actuators as
almost all of them have voltage mode (e.g., range 710 V) or
current mode (eg., 4 ‥ 20mA), that is, converters A/D (Analog/
Digital) or D/A (Digital/Analog) are not required.

4.1.1. Dedicated Integrated Circuits
Current-mode circuits: This architecture is shown to be most

suitable for basic fuzzy operations because it requires few transis-
tors. Addition and subtraction are performed by simple wire
connections and max–min operators are performed with simple
circuits (Baturone et al., 1994; Lemaitre et al., 1994). Another
advantage is that they can work with very low voltage. The main
disadvantage is that they work in current mirror mode to replicate
the outputs, being his fan-out of 1, i.e., they can only connect to a
single output circuit. Table 4 shown these references.13

As an example, the following can be cited (*):

� Lemaitre et al. (1994) in the article “Analysis and design of
CMOS fuzzy logic controller in current mode” present a CMOS
architecture consisting of current mirrors of 2 input variables
and one output with 9 rules. This architecture reaches 10 MFIPS
on a standard CMOS technology of 1:2 μm, consuming 2 mA at
5 V. In addition, this work presents a compiler on silicon
SCOFIC destined for the automatic synthesis of the above-
mentioned circuit.

Voltage-mode circuits: These have the advantage of connecting
more than one input or output without resorting to adaptive signal
circuitry. The first device is the aforementioned of Yamakawa
(1988); subsequently Yamakawa (1993) also presented another
device in bipolar technology. On CMOS technology, fuzzy control-
lers with higher speeds and lower power consumption (Peters
et al., 1995), achieving speeds of 2 MFIPS, were subsequently
proposed. Other researchers have addressed the design of MOS
technology operating in subthreshold mode of floating gate
transistor, yielding a very low consumption of the blocks.14 They
also have the ability to store information in the MOSFET gates
(Marshall and Collins, 1997). Other references are Miki and
Yamakawa (1995) and Guo et al. (1996). Table 5 shows these
references.

The following contributions can be commented from the
references (*):

� Yamakawa (1993) in the article “A fuzzy inference engine in
nonlinear analog mode and its applications to fuzzy control”
presented a bipolar device technology with the feature to work
every transistor coupled by an emitter, in a configuration called
by Yamakawa ECFL (Emitter Coupled Fuzzy Logic), variant of
the ECL (Emitter Coupled Logic) and working in the active
region. This gave high stability to the design in aspects such as
temperature (2% of full scale in the range of �55 1C to
þ125 1C) and voltage (less than 0.1% at 5 V supply). The low
output impedance achieved with this configuration allowed a
high fan-out. The velocity attained by the inference engine is
1 μs, i.e., of 1 MFIPS and defuzzification is performed in 5 μs. To
check the suitability of the design it is applied to a particular
case of double inverted pendulum.

� Peters et al. (1995) in the article “A novel analog fuzzy
controller for intelligent sensors” proposed an architecture
where the generation of the membership functions, the
inference system and the defuzzification required a lower
surface than the controllers of the moment. The example was
implemented with 13 rules but admits several hundreds.
The tests performed show a speed in the process of inference

Table 3
Classification of HW implementations for soft computing systems.

Types of

implementations

analog

dedicated

integrated circuits : VLSI=ASICs
programmable

integrated circuits : FPAAs

commercial
processor : ���

8>>>>>>>>><
>>>>>>>>>:

digital

dedicated
integrated circuits : VLSI=ASICs

programmable

integrated circuits : FPGAs
commercial

processor : μPs–μCs–DSPs

8>>>>>>>>><
>>>>>>>>>:

mixed

dedicated

integrated circuits : VLSI=ASICs

programmable
integrated circuits : ���
commercial

processor : ���

8>>>>>>>>><
>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

13 Where some details are not explicit in the works referenced, these are
expressed as ‘–’.

14 Several orders of magnitude with respect to the designs operating in strong
inversion.
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of 0:5 μs, i.e., of 2 MFIPS. They presented an application to the
comfort in a vehicle, taking variables such as the irregularity
and unevenness of the land. The chip is designed in CMOS
process of 2:4 μm.

� Marshall and Collins (1997) in the article “Fuzzy logic archi-
tecture using floating gate subthreshold analogue devices”
obtained a system with 75 rules and the parameters stored in
programmable floating gate transistors. The circuit consumes
500 μW occupying an area less than 5 mm2. It is considered
suitable for integration into intelligent sensors. A potential
disadvantage compared to other architectures that do not work
in subthreshold mode is the lowest speed achieved (the order
of tens of kHz compared with the MHz of these latter). The chip
is designed in CMOS process of 2 μm.

Circuits operating in transconductance: Inputs in voltage and out-
puts in current. Many circuits in voltage mode operate in trans-
conductance for the treatment of the membership functions. They
are based on differential pairs of transistors operating in weak
inversion (Landlot, 1996), or strong inversion (Baturone et al.,
1994), to obtain membership functions of nonlinear softer profile.
Other designs use amplifiers OTA (Operational Transconductance
Amplifier) and capacitors as basic blocks (Indue et al., 1991;
Tsukano and Inoue, 1995). The latter are more structured but
occupy more silicon area than those based on differential transis-
tor pairs. Table 6 shows these references.

In the cited references, the following can be pointed out (*):

� Tsukano and Inoue (1995) in the work “Synthesis of operational
transconductance amplifier-based analog fuzzy functional
blocks and its applications” presented the synthesis of different
blocks of a FIS operating with OTAs. The circuit design of the
membership functions is performed in a complementary man-
ner – the max circuit operation is performed in a complemen-
tary manner max, and the defuzzification is performed by the

method COA with OTAs in multiplication and aggregation
configuration. All the functional blocks are simulated in SPICE
and the performed circuit has 2 inputs/1 output (singleton) and
3�3 rules on a standard CMOS process. Acquired inference
speed is around 15 MFRPS (Mega Fuzzy Rules per Second), but
the comparison with a typical fuzzy controller has been
performed at 1.6 MFLIPS, and the power dissipation of this
controller is 28.2 mW.

� Landlot (1996) in the article “Low-power analog fuzzy rule
based on a linear implementation MOS transistor network”
presented an architecture based on CMOS transistors operating
in weak inversion. This allows them to define the pseudo-
voltage and pseudo-conductance of a CMOS transistor such
that the pseudo-conductance of each transistor is controlled
linearly (following Ohm's law) by the pseudo-voltage activation
of transistor. Following this behavior, the value of a member-
ship function is the pseudo-conductance proportional to the
voltage applied to the transistor. Moreover by powering
the circuit to 1.8 V, consumption achieved is 850 nW and the
response time is less than 400 μs. The performed circuit has
2 inputs, 80 rules and 5 outputs. The device is designed in 2 μm
CMOS technology.

Circuits switched or circuits discretized: The purpose of these
circuits is to increase the accuracy and programmability with
respect to conventional analog designs but maintain a high
processing speed with lower occupation areas. The switching
circuit is controlled by a clock. The major disadvantage of these
circuits is that the basic operations are not performed with
transistors but with operational amplifiers or comparators that
occupy more silicon area. Some publications of this type of circuits
appeared in the 1990s. Table 7 shows these publications. Two
basic design techniques are presented, (a) switched capacitor
(SC: switched capacitors) working in voltage mode and (b) switched
current (SI: switched intensity) working in current mode.

Table 4
HW implementations of fuzzy systems – Analogics Dedicated Integrated Circuits – current-mode.

Year Applications Ref. Type of
FS

In No. of in
MFs

Type of out
MFs

Out No. of out
MFs

Type of out
MFs

No. of
rules

Defuzz. Speed Technology

1994 Max. operator Baturone et al.
(1994)

IF–
THENnn

2/
3

– – 1 – – – – 100 ns CMOS
1:6 μm

1994 Electromagnetic
fields

Lemaitre et al.
(1994)n

IF–THEN 2 – – 1 – – 9 – 10
MFLIPS

CMOS
1:2 μm

n Articles that will be comment.
nn When the articles do not mention a specific system.

Table 5
HW implementations of fuzzy systems – Analogics Dedicated Integrated Circuits – voltage-mode.

Year Applications Ref. Type of
FS

In No. of in
MFs

Type of in
MFs

Out No. of out
MFs

Type of out
MFs

No. of
rules

Defuzz. Speed Technology

1993 Generic Yamakawa (1993)n IF–THEN 3 – Triang.,
trapez.

1 – Triang. n COGa 1 MFLIPS ECL–ECFL

1995 Automotion
sensors

Peters et al. (1995)n Mamdani 2 7–7 Bell and
others

1 – – 13
(100↑)

COAb

(div. free)
2 MFLIPS CMOS

2:4 μm
1995 Generic Miki and Yamakawa

(1995)
IF–THEN 3↑ n–n–n Triang.,

trapez.
1↑ 7 – 4�m COG 0.6

MFLIPS
BiCMOS
2:0 μm

1996 Mobile robot Guo et al. (1996) Mamdani 3 3–3–3 Triang.,
trapez.

1 5 Singleton 13 COG
(div. free)

6 MFLIPS CMOS
2:4 μm

1997 Sensors Marshall and Collins
(1997)n

IF–THEN 3↑ 3–5–5 Triang. 1↑ 7 Triang. 75 COG 10
KFLIPS ↑

CMOS
2:0 μm

a Center of gravity.
b Center of area.
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Of the references, will comment on the following (*):

� Huertas et al. (1993) presented the work “A fuzzy controller
using switched-capacitor techniques”, where a sequential
microcontroller is implemented based on a switched capacitor.
The process is driven by a clock that controls the so-called
operating cycle (consisting of N clock cycles). This cycle
involves three processes performed in three blocks: a block
generator of the membership function, a block generator of the
rules (includes a ROM analog) and a defuzzification block.
The internal data processing is serial which results, along with
the introduction of switched capacitors, in a smaller area of
silicon.

� Çilingiroglu et al. (1997) in the article “Sampled-analog imple-
mentation of application-specific fuzzy controllers” presented a
fuzzy controller with 4 inputs, 16 rules and 2 outputs. The input
acquisition is performed by means of amplifiers S/H. The
membership functions are ramp (positive and negative), trian-
gular and trapezoidal. The inference module is done with as
many identical cells as there are rules. The cells are connected
to a node, called “competition node”, such that all cells have
mutually inhibitory connections between them so that only a
single node is activated. The defuzzification is performed by the
method of weighted average of the singletons of the rules. The
process speed is limited to 85 ks/s due to the absence of buffers
at the outputs of the design presented.

4.1.2. Programmable Integrated Circuits
There are few references in analog implementations in the area

of FPAA devices. Perhaps in the foreseeable future most works will
be carried out on FPAA devices. The references are shown in
Table 8.

In the cited references, the following three implementations
will be considered.

� Pierzchala et al. (1994) presented one of the earliest works in
this area, “A field programmable analog array for continuous,
fuzzy, and multi-valued logic applications”. The interest of the

article lies in showing that this technology can be used for
the implementation of a wide range of multi-valued logic, fuzzy
logic, and continuous logic circuits. In the case of a fuzzy
controller, the controller is implemented withm input variables
and n fuzzy inference rules. Fuzzy membership function is
implemented as a trapezoidal transfer function. The activation
values of the rules are multiplied by centroid values of the
fuzzy rules consequent. The defuzzified output variable is
produced by a two-quadrant divider. The device has been
developed under a bipolar transistor array technology and
operates from 73.3 V or 75 V with frequencies up to several
hundred MHz.

� do Amaral et al. (2002) in the work “Towards evolvable analog
fuzzy logic controllers” proposed the implementation of Fuzzy
Logic Controllers, based on building blocks, developed on an
FPAA. They also presented an intrinsic evolution example of a
building block addressed to a membership function, by means
of Genetic Algorithms which automatically reconfigure the
FPAA. The development relies on a platform named PAMA
(Programmable Analog Multiplexer Array) consisting of a FPAA
and a multifunction I/O board connected to a PC through a PCI
Bus. The PC sends to the multifunction I/O board the string of
chromosomes and each gene configures the select signals of
a particular analog multiplexer. With this code, the FPAA
generates the membership function.

� Ionita and Sofron (2004) in the work “Field-programmable
analog filters array with applications for fuzzy inference sys-
tems” proposed a flexible membership function synthesis
method based on the configurable filter blocks using the
frequency-response curves of the analog filters (the filter is
one of the basic configurable analog blocks (CABs) in the FPAA).
A membership function is defined in terms of frequency on the
x-axis and the response (gain) on the y-axis. The gains of
the filter are in the fuzzy domain ½0;1�. The remaining blocks
are implemented with programmable analog structures of the
FPAA. The FIS is a Mamdani system which implements max–
min operators with transistors. As in the previous work, this
article aims to implement evolutionary algorithms for tuning
the membership functions.

Table 6
HW implementations of fuzzy systems – Analogics Dedicated Integrated Circuits – transconductance.

Year Applications Ref. Type of FS In No. of
in MFs

Type of
in MFs

Out No. of
out MFs

Type of
out MFs

No. of
rules

Defuzz. Speed Technology

1991 Membership
generation

Indue et al.
(1991)

MAX/MIN
operation

3 – Triang.,
trapez.

1 – – – – 82 ns CMOS (SPICE
simul.)

1994 Max. input Baturone
et al. (1994)

IF–THEN 2/3 – – 1 – – – – 100 ns CMOS 1:6 μm

1995 Generic Tsukano and
Inoue (1995)n

IF–THEN 2 – Triang: ,
trapz:

1 9 Singleton 9 COA 15
MFRPS

CMOS –

1996 Sensors Landlot
(1996)n

Fuzzy rules 2 – Bell, S and
Z-shaped

5 – Singleton 80 COG – CMOS 2 μm

Table 7
HW implementations of fuzzy systems – Analogics Dedicated Integrated Circuits – switched.

Year Applications Ref. Type of
FS

In No. of in
MFs

Type of in MFs Out No. of out
MFs

Type of out
MFs

No. of
rules

Defuzz. Speed Technology

1993 Generic Huertas et al.
(1993)n

IF–
THEN

n – S and Z-shape – – – – COG – CMOS –

1994 Generic Fattaruso et al.
(1994)

IF–
THEN

8 56 Triang., trapez. 4 28 – 32 COG 16
MFLIPS

CMOS
0:8 μm

1997 Controllers Çilingiroglu et al.
(1997)n

IF–
THEN

4 64 S and Z-shape, triang.,
trapez.

2 7 Singleton 16 Weighted
average

85
KFLIPS

CMOS
1:2 μm
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4.2. Digital fuzzy implementations

Digital implementations have greater immunity against factors
such as noise, temperature or voltage variation, among others. In
contrast, the process speed tends to be lower than in analog
devices although evolution in integration technologies has chan-
ged this scenario.

4.2.1. Dedicated Integrated Circuits
In these implementations the focus is mainly on structuring the

rules of the FIS, if they are running parallel or sequentially.
Parallel architectures rules: Each rule has a data path. When

using memories any profile of the membership functions can be
stored but the memory increases exponentially with the resolu-
tion, and therefore, tends to lower resolutions. The direct conse-
quence of this decision is the reduction of the functional
performance of the system (del Campo and Tarela, 1999; del
Campo et al., 2001). The first digital fuzzy device was presented
by Togai and Watanabe (1986b), in the article, “Expert system on a
chip: an engine for real-time approximate reasoning”. The rules
are executed in parallel and each rule is executed in series. The set
of rules is stored in a ROM and the membership functions are
implemented on LUTs. This device requires a large silicon area. It
also imposes a certain number of inference rules of type max–min,
and their scalability is limited. Process speed is 80 KFLIPS.

Table 9 shows some relevant approaches.
Let us highlight the following works (*):

� Watanabe and Dettloff (1991) in the paper “VLSI fuzzy chip and
inference accelerator board systems” presented a fuzzy chip
working in a VMEbus environment. The maximum speed is
36 MHz. Included on the chip is a programmable rule set
memory, an optional input fuzzification operation by look-up
table, a max–min paradigm fuzzy inference processor, and an
optional output defuzzification operation using a centroid algo-
rithm. The design has a reconfigurable architecture implementing
either 51 rules with 4 inputs and 2 outputs, or 102 rules with
2 inputs and 1 output. Separately addressed status registers allow
programmed control of the fuzzy inference processing and chip
configuration. All the rules operate in parallel, generating new
outputs over 150,000 times per second. The implementation
is done with four components: a fuzzifier, a rule memory, an
inference mechanism, and a defuzzifier on a single chip. Each
input and output data item is 6 bits. In the simplest configuration,
sensors and 6 bit A/D converters drive fuzzy chip inputs, and
controllers (adjusters) receive the output of 6 bit D/A converters
directly connected to the fuzzy chip outputs. The chip is designed
in a CMOS process of 1 μm.

� Jacomet and Walti (1996) in the work “A VLSI fuzzy processor
with parallel rule execution” presented an architecture with the
following advantages: high speed, a fuzzy system optimization

with individual rule weights and a non-restricted membership
function shape. There is a restriction; the membership functions
are overlapped to 2. The processor presents 4 inputs and 1 output
and two defuzzification methods, maximum and COA. The
fuzzification process is carried out with a Look-up Table (LUT)
and the membership functions are codified on 6 bits. Working
with a 50 MHz of clock frequency, the processor executes 4 inputs
and 64 fuzzy rules with a COA defuzzification method within
1:16 μs (58 clock cycles). An internal pipeline architecture allows
an input sample rate of 740 ns (37clock cycles). This corresponds
to a performance of 86 MFRPS (Mega Fuzzy Rules per Second)
including the COA defuzzification calculation. The chip is designed
in a CMOS process of 0:7 μm.

� Ascia and Catania (1997) in the work “A dedicated parallel
processor for fuzzy computation” presented a fuzzy processor
that processes only the active rules and optimizes the member-
ship functions. These are approximated by segments and the
height is proportional to a fixed value H (multiple of 2), so, to
store the shape of the fuzzy set, it is sufficient to store the
abscissa of end points and the height. The clock is 60 MHz and
if the number of active rules is 16 then the performance
obtained is 2.5 MFLIPS. The chip is designed in a HCMOS
process of 0:1 μm.

� Falchieri et al. (2002) in the article “Very fast rate 2-input fuzzy
processor for high energy physics” presented a fuzzy processor
described using VHDL language. The processor has been devel-
oped, applying a parallel-pipeline architecture executing only
the active rules. The FIS is a Sugeno order zero with 2 inputs
(7 bits), 1 output (7 bits), 8 membership functions for each
input (4 bits – overlapped with the two adjacent), 64 fuzzy
rules (9 bits) and 128 crisp fuzzy sets (7 bits) for the output
value. Due to the fact that the membership functions are
overlapped, the number of active rules is 4. The membership
functions reside on a LUT which allow, firstly, an increase in the
fuzzification speed process and secondly, a high flexibility in
defining membership function shapes. Taking into account that
the processor works at a clock frequency of 133 MHz, the four
active rules are processed in 30 ns. The defuzzification process
corresponds to the Sugeno method. The total process requires
16 pipeline stages (16 clocks: 120 ns). The article performs two
applications: (a) area recognition problem in boundary regions
and (b) area recognition problem in physics experiments. In the
last application, the task is to recognize and measure a given
ellipsoidal area which is related to the charge of incident nuclei
(propagation of cosmic rays). The chip has been realized using
Alcatel Mietec 0:35 μm CMOS VLSI digital technology.

� Huang and Lai (2005) presented the article “A high-speed VLSI
fuzzy inference processor for trapezoid-shaped membership
functions”. The main achievement of this processor is that the
inference speed always remains constant, independently of the
number of active rules. The membership functions are codified

Table 8
HW implementations of fuzzy systems – Analogics Programmable Integrated Circuits.

Year Applications Ref. Type of
FS

In No. of
in MFs

Type of in MFs Out No. of
out MFs

Type of
out MFs

No. of
rules

Defuzz. Speed Device

1994 Generic Pierzchala et al. (1994)n IF–THEN n – Trapez. 1 – – NR COG – FPAAa

1998 Generic survey D-Mello and Gulak
(1998)

– – – – – – – – – – Analogix, IMP,
etc.

2002 Generation of
MFs

do Amaral et al. (2002)n IF–THEN n – Z-shape, triang.,
others

1 – – – – – FPAA

2004 Filter config. Ionita and Sofron
(2004)n

Mamdani n – Γ-function 1 – – NR – – FPAA

a When the work does not cite the reference of the FPAA.
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on 6 bits, the rules are parallel and each rule pipelined. The
maximum clock rate is 112 MHz and the fuzzy inference
processor works with 64 rules with fuzzified inputs at the
speed of 7 MFLIPS. The article performs a comparison between
different devices: DSP TSM320C6201, FPGA Altera Flex10K,
FPGA Xilinx XC2V1000 and a MIPS Processor with fuzzy
instructions; although the scenario varies slightly, the compar-
ison is favorable to the VLSI. The chip is designed in a CMOS
process of 0:35 μm.

� Hamzeh et al. (2009) in the paper “Computationally efficient
active rule detection method: algorithm and architecture”
presented a theoretical study and the simulation results of
ascalable architecture in terms of the number of inputs,
number of membership functions and their bit widths. Also,
this architecture is flexible in terms of membership function
shape. The success of this study lies in finding the active
membership functions at a low cost by very simple operations.
Therefore the active rules are found with a minimal computa-
tional cost. This methodology introduces two blocks which
are integrated in a conventional architecture, the blocks are the
active rule detector (ARD) and the active rule queue (ARQ). The
last block saves the active rules detected by the first block. This
method analyzes the maximum number of processing elements
(PEs) working in parallel to increase the speed, the delay
introduced and the area occupied by this structure. Hamzeh
et al. highlight that “one of the most important contributions of
our proposed algorithm is that the area and delay of its

corresponding architecture is independent of the number of over-
lapping membership functions”.

� Javadi et al. (2013) in the article “A hardware oriented fuzzifi-
cation algorithm and its VLSI implementation” introduced a
new HW method for fuzzification which maximizes the effec-
tive resolution with a slightly higher implementation cost
(slightly higher number of gates than a normal fuzzification
method). The article has performed the study with trapezoidal
membership functions but they highlight that the algorithm is
extensible to any piecewise linear membership function. The
DPF fuzzification algorithm method and a normal fuzzification
method have been compared, showing the superiority of the
DPF in the comparison; different word lengths for the input
variables (WL: 7 bits ‥ 12 bits), slopes (named Coefficient-
Length – CL: 7 bits) and a factor named Fraction-Length (FL:
0 bits ‥ 5 bits) are introduced. The last factor introduces a
fraction in the input variable (integerþfraction). The design has
been developed by means of VHDL language and synthesized
on 0:13 μm CMOS library using a Mentor Graphics Leonardo
Spectrum tool.

Architectures of sequential processing rules: The base of the rules
are stored in memories and the membership functions are
generated by a circuit shared by the rules. They are more flexible
than the previous point but their flexibility is detrimental to
the parallelism of fuzzy systems. The number of clock cycles is
proportional to the number of rules. In systems with a high

Table 9
HW implementations of fuzzy systems – Digital Dedicated Integrated Circuits – parallel rules.

Year Applications Ref. Type
of FS

In No. of
in MFs

Type of in MFs Out No. of
out MFs

Type of
out MFs

No. of
rules

Defuzz. Speed Technology

1989 Generic Dettloff et al.
(1989)

IF–
THEN

4 – Triang., trapez. 2 – – 51 COA 580
KFLIPS

CMOS
1 μm

2 1 102
4 bit 6 bit –

1991 Navigation Watanabe and
Dettloff (1991)n

IF–
THEN

4 64 Any shape
(LUT)a

2 – – 51 COG 150
KFLIPS

CMOS
1 μm

2 1 102
6 bit 4 bit 6 bit 4 bit

1996 Generic Patyra et al. (1996) Any 4 – Triang., trapez. 2 – Triang. – Any – CMOS
0:35 μm

4/6 bit 4/16
bit

– Trapez.

1996 Generic Jacomet and Walti
(1996)n

IF–
THEN

4 7–7–7–
7

Any shape (LUT) 1 8 – 64 COA,
maximum

86
MFRPS

CMOS
0:7 μm

8 bit 6 bit 8 bit 6 bit

1997 Generic Ascia and Catania
(1997)n

IF–
THEN

8 64 Segmented (α-
level sets)

1 – – 256 Yager 2.5
MFLIPS

HCMOS
1 μm

8 bit

2002 Area recognition,
cosmic rays

Falchieri et al.
(2002)n

Sugeno 2 8–8 Any shape (LUT) 1 128 - 64 Sugeno 33.3
MFLIPS

CMOS
0:35 μm

7 bit 4 bit 7 bit 7 bit

2005 Generic Huang and Lai
(2005)n

IF–
THEN

2 No limit Trapez. 1 64 Crisp 64 COG 7
MFLIPS

CMOS
0:35 μm

8 4 4.5
MFLIPS

6/8 bit 4/6 bit 6/8
bit

4/6 bit

2009 Active rule
detection

Hamzeh et al.
(2009)n

IF–
THEN

N n Any shape – – – ðnÞN – – –

2013 Fuzzification Javadi et al. (2013)n IF–
THEN

N n Any linear
piecewise shape

m – – – – – CMOS

– – 0:13 μm
7;…;12 bit 7 bit - -

a Look-up table.
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number of inputs the size of the memory increases exponentially
with the dimension of the entry. In this regard, and in order to
optimize memory usage, an alternative organization to this is
proposed. Table 10 shows some relevant approaches.

The following works deserve to be mentioned:

� Eichfeld et al. (1992) in the article “Architecture of a CMOS
fuzzy logic controller with optimized operator organization and
design” presented the architecture of a fuzzy controller inte-
grated into a multipurpose controller. The target is to imple-
ment the memory of rules in a minimal memory space.
The controller algorithm is of type Mamdani max–min and
the defuzzification is a Center of Gravity (COG) method. The
controller has 4 inputs, one output and can store up to 4096
rules. The membership functions overlapped by pairs, so there
are a total of 16 rules active for a given input vector. These are
executed in 16 clock periods. The simulation assumes a 0:6 μm
CMOS process but there is no information about the speed.

� Yubazaki et al. (1998) in the article “Fuzzy inference chip FZP-
0401A based on interpolation algorithm” performed a new
fuzzy inference chip and proposed a new high-speed linear
interpolation algorithm applied to the Product-Sum-Gravity
method (Mizumoto, 1991). The chip supports a fuzzy system with
4 inputs and 1 output of 16 bit. Each input allows up to 7 member-
ship functions (limitation of the memory capacity of Look-Up-
Table) and the shape must be a normalized trapezoid or a triangle,
and the sum of the memberships of an input must be 1.0. The
consequent part has up to 255 labels and the maximum number of
rules is 2401 (74). Due to the shape of the membership functions
and the consequents, a linear equation is performed that allows us
to interpolate the outputs. The chip allows us to load the fuzzy
parameters from parallel ROM or serial ROM into the internal RAM
whenever it is turned on, and works in a floating point for
improving computation precision (24 bits: 8 exponent and 16
mantissa). The inference speed of the chip is about 0.48 MFLIPS
(2100 ns), with a clock frequency of 14.2857MHz, independent of
the number of fuzzy rules and membership functions. The chip is
designed in a CMOS process of 0:6 μm.

� Evmorfopoulos and Avaritsiotis (2002) in the article “An
adaptive digital fuzzy architecture for application-specific

integrated circuits” presented a generic fuzzy logic system
implemented on an ASIC applied to window-type air condi-
tioners. There is one analog input (8 bit ADC) from a thermistor
sensor (ambient temperature) and two digital inputs from two
up/down buttons that define the temperature setting (resolu-
tion: 0.5 1C; range: 16–32 1C). The outputs are two PWM
(Pulse-width Modulation) to two DC motors (compressors)
and one digital on/off for a relay. The membership functions
are Gaussians but they do not specify the maximum number of
membership functions. In the application there are 5. The clock
frequency is 32 kHz. The chip is designed in a CMOS process of
0:7 μm.

4.2.2. Programmable Integrated Circuits
In this classification, FPGAs will be emphasized because they

can be programmed through circuit design using graphic or,
preferably, HW description languages like VHDL (Very High Speed
Hardware Design Language) or Verilog. Further development of
FIS has been focused on the FPGAs because of their ability
to reconfigure and the low “time to market”. For example,
consulting the “Web of Knowledge – Web of Science” the number
of works on FPGAs are around 340 between 1990 and 2012. Fig. 1
shows this production.

Some relevant approaches in this kind of implementations are
shown in Tables 11–13.

In the cited references, the following twelve implementations
can be point out (*):

� Manzoul and Jayabharathi (1992) presented in the work “Fuzzy
controller on FPGA chip” a fuzzy controller expressed as
Boolean equations on a FPGA. The device used is XC3020-50-
PC68 of Xilinxs Xilinx to 50 MHz. It is a MISO (Multiple Input
Single Output) system type; the system of IF–THEN rules is
processed externally to the FPGA and the Boolean equations
obtained are loaded into the device. The speed achieved is 50
MFLIPS.

� Hung and Zajak (1995) presented the implementation of a
fuzzy inference system on a FPGA in the article “Design and

Table 10
HW implementations of fuzzy systems - Digital Dedicated Integrated Circuits – sequential rules.

Year Applications Ref. Type of FS In No. of in
MFs

Type of in
MFs

Out No. of
out MFs

Type of
out MFs

No. of
rules

Defuzz. Speed Technology

1992 Generic Eichfeld et al. (1992)n Mamdani 4 7–⋯–7 Trapz.,
triang.

1 8 Trapz.,
triang.

4096 COG – CMOS
0:6 μm

5
bit

3 bit 5
bit

3 bit

1995 Generic Eichfeld et al. (1995) IF–THEN 256 7–‥–7 Any shape 64 8 Crisp 16,384 COG 10 MFRPS CMOS
1:0 μm

6
bit

3 bit 6
bit

3 bit

1998 Generic Yubazaki et al. (1998)n Prod–
sum-grav.

4 7–‥–7 Trapz.,
triang.

1 255 Any shape 2401 COG 0.48 MFLIPS CMOS
0:6 μm

16
bit

16
bit

1998 Generic,
radar

Cardarilli et al. (1998) 2 Max: 16/
In

Trapez. 1 Max: 7 Trapez. Max:
256

COG
(LUT)

100 KFLIPS (with
20 rules)

CMOS
1:0 μm

1 4 1 4 4 400 KFLIPS
8
bit

8
bit

2002 Generic, air
cond.

Evmorfopoulos and
Avaritsiotis (2002)n

Sugeno 3 5-4-5 Gaussian
(LUT)

2 9/5 Singletons 25/20 Sugeno – CMOS
0:7 μm

8
bit

8
bit
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implementation of a hardware fuzzy inference system”, based
on generalized modus ponens rules, max–min composition and
defuzzification COG method. The implementation has been
performed with two inputs (3 triangular membership functions
per input) and 1 output (9 singleton membership functions).
The speed achieved is 1.67 MFLIPS without pipelining and
9 MFLIPS fully pipelined. The defuzzification is supported by an
external EPROM (Cypress CY7C251). The FPGA is XC4008-6 of
Xilinxs.

� Hollstein et al. (1996) in the article “Computer-aided design of
fuzzy systems based on generic VHDL specifications” presented
a development tool for performing parallel processing archi-
tectures or sequential rules. Each FIS consists of three distinct
modules: fuzzification, rules of inference and composition/
defuzzification. Modules can be described in C or VHDL. The
defuzzification follows the MOA (Midpoint of Area) method.
An example of a fuzzy controller is implemented on a Xilinxs

FPGA, XC4006. It consists of 2 inputs with 5 membership
functions, 11 rules and 1 output and controls the direction of
a truck trailer. Each new output is estimated at 42 μs. The result
is compared with other devices on which the FIS is implemen-
ted with a TMS320 DSP that require 150 μs and with the ASIC
of Togai FC110, the calculation is performed in 32 μs.

� Blake et al. (1998) in the article “The implementation of fuzzy
systems, neural networks and fuzzy neural networks using
FPGAs” presented three approaches to the Soft Computing but
the article will focus on the FIS. The interest of the article is,
taking a non-linear function of three variables, to compare the
approximation capacity between the architecture on a FPGA
and the architecture on Matlab. The membership functions are
triangular and the operator is min. The results are poor due to
only choosing 2 membership functions, however the hardware
results offer a similar degree of accuracy as the results achieved
in Matlab. The FPGA is XC4008 of Xilinxs.

� D'Amore et al. (2001) in the article “A two-input, one-output
bit-scalable architecture for fuzzy processors” presented an
automatic synthesis of a fuzzy system with scalability, with
either the bits of the I/O variables or the bits of the membership
functions of the I/O. The synthesis process is performed using
the VHDL code. It implements the classic problem of parking a
truck, needing 35 rules, 2 inputs (5 and 7 membership func-
tions respectively – triangular and trapezoidal) and 1 output (7
singleton membership functions). The implementation is per-
formed on an Alteras (Altera) FPGA Flex10K and performs a
comparison with a different number of bits of I/O (8–10–12–
14–16) and different number of bits of membership functions
(5–7–9–11–13) to give updates of the output between 3:0 μs
and 6:3 μs, depending on the number of bits chosen.

� Raychev et al. (2005) in the work “VHDL modelling of a fuzzy
co-processor architecture” presented a hardware accelerator

for fuzzy calculations. The co-processor is connected to an
external μ P and to a RAM (fuzzy inference rules database). The
operations are realized by means of a 16-bit floating-point
format (sign: 1 bit; exponent: 5 bit; mantissa: 10 bit). All
functionality has been previously simulated. This architecture
has been implemented on a FPGA design platform XC4005.

� Hung (2007) in the article “Using FPGA technique for design
and implementation of a fuzzy inference system” made the
implementation of a fuzzy inference system with max–min
compositional rule with the COG being the defuzzification
method applied. To increase the speed at defuzzification a
Lookup-Table is used, thus eliminating the multiplication and
division. The knowledge base is stored in an external EPROM,
Cypress CY7C251 and the FPGA is the XC4008-6 of Xilinxs. The
proposed architecture applies it to two inputs and one output,
achieving speeds of 3.3 MOCS (Million Operations of Control
per Second) for a control clock of 10 MHz.

� Lizárraga et al. (2008) in the article “Modeling and simulation of
the defuzzification stage using Xilinx system generator and
Simulink” focused attention on the defuzzification stage, using
the Height method (Driankov et al., 1996) and performed a
comparison between two systems: Simulink with System Gen-
erator and Matlab/Simulink, using three platforms: Simulink from
Mathworks, Xilinx ISE and Xilinx System Generator. The fuzzy
controller has two inputs and one output. The inputs and the
output have five membership functions (two trapezoidal and
three triangular) and are represented by 8 bits. They proposed the
use of a modified high performance fixed point architecture for
positive numbers, and the final stage made the conversion to real
numbers. The target is a Spartan 3 with a System Generator.

� Thareja et al. (2009) in the work “Configurable fuzzy logic
coprocessor for small scale food preparation” showed a prac-
tical application for an oven control which cooks steaks. The
input membership functions are described using triangular and
trapezoid shapes and the output membership functions are
described using triangular shapes. There are two FIS: the first has
two inputs (thickness-doneness) and one output (seconds) with 25
inference rules, and the second has two inputs (current tempera-
ture and temperature change) and one output (heat needed) with
15 inference rules. There are five ranges of temperature between
246 1C and 274 1C. The inference engine is a Mamdani-type. The
clock rate achieved is 179.9 MHz. The Configurable Fuzzy Logic
Coprocessor (CFLC) designs were synthesized using Altera Quartus
II 9.0. The general purpose processor selected, to interconnect the
CFLC via a coprocessor interface, is the SPARC V8e based LEON3
processor. This processor is an IP core (Gaisler et al.). The article
established a comparison with two other platforms based on a
general purpose processor Tensilica Xtensa Baseline Processor
(TXP) (Tensilca), one with the CFLC and the other with a Fuzzy
Logic Tie (FLT). The results are favorable for the CFLC. The article
does not mention the FPGA used.

� Fung et al. (2009) in the article “FPGA-based adaptive fuzzy
backstepping control for a micro-positioning Scott–Russell
mechanism” presented a fuzzy controller with an error feed-
back mechanism applied to a micro-positioning Scott–Russell
type. The actuator was piezoelectric. The displacement sensor
range is 100 μm, and the accuracy is 10 nm. The controller is
developed in VHDL and implemented on Stratix II device from
Alteras. On this FPGA the NIOS processor is also instantiated.

� Hsu et al. (2010) in the article “Chip-implementation of a self-
tuning nonlinear function control for DC–DC converters” pro-
posed a model-free STNFC design method suitable for real-time
practical applications. The system is applied to a DC–DC converter
based on a FPGA controlling the duty-ratio of PWM modulator in
the DC–DC converter. The article highlights the following points:
STNFC is a system without heavy computational loading, the

Fig. 1. Fuzzy implementations on FPGAs.
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parameter-learning algorithm is designed based on the Lyapunov
stability theorem to guarantee the system stability, there are
successful applications of the STNFC system to control the
forward DC–DC converter, and finally, the proposed STNFC
methodology can be easily extended to other DC–DC converters.
The FIS has one input (three membership functions – two
trapezoidal and one triangular) and one output (three singleton),
and uses three fuzzy rules. The device is Altera Cyclone II
EP2C20F484 at 50 MHzwith a μ P NIOS embedded. The algorithm
is realized in the NIOS with on-line learning. Comparing the
performance with other controls such as PI, FC, NFC and STNFC
(without learning), the results are favorable to the STNFC with
learning.

� Kung et al. (2011) in the work “Simulink/Modelsim co-
simulation and FPGA realization of speed control IC for PMSM
drive” implemented a fuzzy-control based speed control IC for
a Permanent Magnetic Synchronous Motor (PMSM). Firstly the
HW Co-Simulation attending to the development environment

Matlab–Simulink (from Mathworks) is performed, and second,
the algorithm code control, written in VHDL, is simulated on
ModelSim. The code validated is downloaded on the FPGA. There
are two input variables (error of angular speed and error change)
and one output variable (speed voltage control). The fuzzy
controller uses a singleton fuzzifier, a triangular membership
function (7 for each variable: 2 trapezoidal and 5 triangular),
product inference rule and a central average defuzzifier method.
The chip adopted is Altera CycloneII EP2C35 with a Nios II
embedded processor. The difference between the simulation
and the experimental results are very similar. It presents a good
speed following response without overshooting.

4.2.3. Commercial processors
In this paragraph general purpose processors will be consid-

ered with the classical repertoire instructions as well as general

Table 11
HW implementations of fuzzy systems – Digital Programmable Integrated Circuits (1).

Year Applications Ref. Type of in
MFs

In No. of
in MFs

Type of
out MFs

Out No. of
out MFs

Type of
out MFs

No. of
rules

Defuzz. Speed Device

1992 Controller Manzoul and
Jayabharathi
(1992)n

IF–THEN 2 4–4 Any 1 4 Any 6 – 50 MFLIPS XC3020-50

1994 Plants
classification

Halgamuge and
Glesner (1994)

IF–THEN Max:
128

Cluster Sigmoid
(PWL)a

Max:
4

Tuned Trapez. Max:
256

CBADDb 1.25 MFRPS XC4006

3 3–3–3 1 3 7

1995 Controller Hung and Zajak
(1995)n

GMPc 2 3–3 Triang. 1 9 Singleton 9 COG 1.67 MFLIPS/ XC4008-6

6 bit 4 bit 8 bit (LUT) 9 MFLIPS

1996 CAD truck
control, etc.

Hollstein et al.
(1996)n

IF–THEN 2 5–5 Triang. 1 – Triang. 11 MOAd 42 μs XC4006

4 4–‥–4 3 16 1.25 MFRPS XC4005
128 128–‥–

128
4 256 XC4006

8 bit 4 bit 8 bit 4 bit

1998 General Blake et al. (1998)n T–S 3 2–2–2 Triang. 1 – Singleton 8 T–S – XC4008

2000 Truck control Kim (2000) 2 5–7
(LUT)

Triang.,
trapez.

1 7 Triang. 27 COG – XC4013

8 bit 8 bit

2001 Automatic
synthesis: park
truck

D'Amore et al.
(2001)n

IF–THEN 2 5–7 Trapez.,
triang.

1 7 Singleton 35 Weighted
average

3/3.6/4.5 Flex 10K

8/10/
12

/14/16
bit

Idem
In

5:4=6:3; μs
(ref. no. of
bits)

2003 Car parking Li et al. (2003) IF–THEN 2 5–5 Triang. 1 5 Singleton 25 Weighted
average

– EPF6024ACT144

3–3 1 3 9
8 bit 5 bit 4 bit

2004 Controller Cabrera et al.
(2004)

IF–THEN 2 3–3 Any 1 5 Singleton 9 Fuzzy
mean

– XC4005XL

3 5–5–5 7 125 XC2S200E
6/8
bit

5/8 bit 6/8
bit

5/8 bit

2005 Evolutionary Mermoud et al.
(2005)

IF–THEN 4 3–‥–3 Trapez.,
triang.

1 4 Rectang. 20 COA – Xilinx-Virtex
(simulated)

FS 8 bit 4 bit 8 bit

2005 Co-processor Stefano and
Giaconia (2005)

IF–THEN
(pipeline)

2 Max:
16–16

Triang. 1 Not
fixed

Singleton Not
fixed

COG – Spartan3-200
(SoPC)

3–3 9 9 0:4 μs
8 bit 8 bit

a Piecewise linear.
b Customizable basic defuzzification distributions.
c Generalized modus ponens.
d Midpoint of area.
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purpose processors which have introduced fuzzy processing
instructions or incorporate a fuzzy coprocessor. The DSP (Digital
Signal Processor) devices will also be examined.

General purpose processors: These are based on simple and
widespread architectures, of low-cost but present low running
speeds. The implementation of a fuzzy system is performed fully
SW, allowing a very high generalization. It should be emphasized
that this solution is still valid today in all environments where
speed is not critical for implementation. Table 14 shows some
relevant approaches.

The following works will be highlighted (*):

� Jackson (1994) in the article “Fuzzy logic vs. traditional
approaches to the design of microcontroller-based systems”
made the comparison of a fuzzy controller in a closed loop with
a PID controller and with a pole/zero compensation controller.
The implementations are made on the μ Cs of Motorolas

MC68HC16 and MC68332 16-bit and 32-bit respectively. The
system to be controlled is a motor positioning by pulses width
modulated (PWM). The article only provides the results of a
previous simulation of the three drivers. The settling times
obtained for a step function is 85 ns, 80 ns and 60 ns, respec-
tively, with sampling times of 0.5 ms. The first two controllers
perform a smooth approximation, while the third shows an
overflow (overshoot) at 30 ms. The article highlights the point
that the fuzzy controller requires less engine power perfor-
mance than the other two. In addition, it is not necessary to
have theoretical knowledge of closed loop control.

� Binfet and Wilamowski (2001) in the work “Microprocessor
implementation of fuzzy systems and neural networks” pre-
sented two classes of control: fuzzy and neural. The work will
focus on the first. The fuzzy system is implemented on the
8-bit μ C 68HC711E9, from Motorola, with an internal clock
frequency of 2 MHz. The control can use three different

Table 12
HW implementations of fuzzy systems – Digital Programmable Integrated Circuits (2).

Year Applications Ref. Type of FS In No. of
in MFs

Type of in
MFs

Out No. of
out MFs

Type of
out MFs

No. of
rules

Defuzz. Speed Device

2005 Co-processor
(Generic)

Raychev et al.
(2005)n

IF–THEN – – – – – – – COG, max-
average

– XC4005

16
bit

FPa 16 bit FP

2006 General Barriga et al.
(2006)

IF–THEN 2 3–3 Triang. 1 5 Singleton 9 – 35 ns XC2S200E

7–7 49 108 ns
6 bit 6 bit

2006 Climate
control

Castaneda-
Miranda et al.
(2006)

IF–THEN 4 7–‥–7 Triang. 2 7 Triang. 16
(actives)

Centers
average

77 KFLIPS A54SX32A
(SoC – Actel)

12 bit 12 bit

2006 Context
switching

Cao et al. (2006) FIMb 2 v�w Triang. 1 – Singleton v�w Aggregation 17
MFLIPS

XC2V2000

5–5 5 25
6
bit

4 bit – 3 bit

2007 Controller Hung (2007)n GMP 2 3–3 Simetric
(LUT)

1 9 Singleton 9 COG (div.
free)

3.3
MOCSc

XC4008-6

6
bit

4 bit 8 bit 4 bit

2007 Robotic (car
park)

Sánchez-Solano
et al. (2007)

IF–THEN 5 – Triang
(unrestricted)

2 – – 6 FMd, etc. Spartan-3 (SoPC)

– – – –

2007 Simplicial
PWL

Echevarria et al.
(2007)

PWL fuzzy 2 – – 1 – – – COG
(subcell)

70 MHz/
140 MHz

Virtex II Pro

8
bit

– – –

2008 Incremental
controller

Millán et al.
(2008)

IF–THEN 1 5 Trapez.,
triang.

1 5 Trapez.,
triang.

5 – – Simulink/Xilinx
System Generator

– – – –

2008 Bit-serial
arithmetic

Dick et al. (2008) Bit-serial
min/max

2 3–3 LUT 1 9 Singleton 9 Centroid 5.26
MFLIPS

EP1S80B956C6

6
bit

3 bit – –

2008 Elevator
systems

Muñoz et al.
(2008)

IF–THEN 5 3–3–7–
3–3

Trapez.,
triang.

2 – – 9 – – Spartan 3

– – – –

2008 Clinical
diagnostic

Chowdhury et al.
(2008)

IF–THEN 6 3–‥–3 Trapez.,
triang.

1-
mux4

– Crisp 4 – 0:292 μs EP1K6Q240C8

– – 7þ4
bit

–

a Floating point.
b Fuzzy inference mapping.
c Million operations of control per second.
d Fuzzy mean.
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membership functions: trapezoidal, triangular, and Gaussian.
It presents two different defuzzification processes: Zadeh and
Takagi–Sugeno (T–S). The aim of this work is to emulate a
control surface employing trapezoidal and triangular member-
ship functions. In fact the work performs a comparison
between different fuzzy systems (Zadeh and T–S) and different
neural networks. The fuzzy and neural implementations show
that the control surfaces obtained from neural controllers do
not exhibit the roughness of fuzzy controllers. Table 15 shows
the comparison between four fuzzy systems (input: 2;
membership function: 7 per input; output: 1; membership
function: 7).

� Nhivekar et al. (2011) in the article “Implementation of fuzzy
logic control algorithm in embedded microcomputers for dedi-
cated application” implemented a fuzzy inference unit and
algorithms for fuzzification, rule evaluation and defuzzification
of a fuzzy closed-loop control system on a μ C Atmega8 from
Atmel. The fuzzy logic controller is applied to a temperature
control system, with unknown dynamics, in real time and has an
internal set-point temperature. One input (temperature) and
one output (temperature control) are presented. The number of
membership functions for the input is 5 (trapezoidal: 2; trian-
gular: 3) and the number of membership functions for the

output is 5 (triangular). The defuzzification is obtained by a
weighted average technique and is a numeric (crisp) value that
determines the firing angle of the Triac used to drive the heater.

Processors that include some fuzzy instructions in the instruction set:
The fuzzy operations are performed at high speed and the total
speed of the process is a compromise between general-purpose
processors and those which incorporate a fuzzy coprocessor.
The mode of operation is similar to the above but obtains fuzzy
systems faster. This type of processor enables high generalization
and medium cost. Table 16 shows these kinds of implementations.
For example, let us comment the first reference in which Wata-
nabe and Chen, in 1993, showed that the speed of a fuzzy control
program increased by 2.57 times by adding two instructions, max
and min, in the instruction set of a RISC processor. In 1996
Motorolas introduced the family μ Cs 68HC1215 of 16-bit and
incorporated an instruction set characteristic of fuzzy algorithms.
Among the companies that are currently still manufacturing these

Table 13
HW implementations of fuzzy systems – Digital Programmable Integrated Circuits (3).

Year Applications Ref. Type of
FS

In No. of in
MFs

Type of
in MFs

Out No. of out
MFs

Type of
out MFs

No. of
rules

Defuzz. Speed Device

2008 Defuzz. Lizárraga et al.
(2008)n

IF–THEN 2 5–5 Trapez.,
triang.

1 5 Trapez.,
triang.

– Height method – Spartan 3

8
bit

8
bit

2009 Oven control Thareja et al.
(2009)n

Mamdani 2 5–3 Triang.,
trapez.

1 20 Triang. 25 COG – RC10 (Celoxica)

2 5–5 1 5 15

2009 Micro-positioning Fung et al.
(2009)n

IF–THEN 2 5 Triang. 1 5 Singleton 25 COA – EP2S60F1020
(Stratix II-SoPC)

12
bit

12
bit

2010 DC–DC converters Hsu et al.
(2010)n

IF–THEN 1 3 Trapez.,
triang.

1 3 Singleton 3 COG Lyapunov
(on-line)

EP2C20F484
(SoPC)

10
bit

10
bit

2010 Mobile robots Tzafestas et al.
(2010)

T–S 2 9–9 Trapez.,
triang.

1 5t Singleton 81 Weight average 126.76 ns Spartan 3 (SoC)

12
bit

8 bits 12
bit

8 bit

2010 Crack detection Arati et al.
(2010)

IF–THEN 3 3–3–3 Triang. 1 3 Triang. 6 – – FPGA (generic)

2
bit

– 2
bit

–

2011 Compensator (dc-
servomot.)

Hsu et al.
(2011)

IF–THEN 3 3 Triang. 1 3 Singleton 3 COG – 3C16 (Cyclone III)

10
bit

10
bit

2011 Solar energy Chekired et al.
(2011)

IF–THEN 2 5–5 Trapez.,
triang.

1 5 Trapez.,
triang.

25 COA – V2MB1000
Virtex-II

– – – –

2011 Solar energy Messai et al.
(2011)

IF–THEN 2 5–5 Trapez.,
triang.

1 5 Triang. 25 COG XC2V1000

12
bit

12
bit

2011 Speed control Kung et al.
(2011)n

IF–THEN 2 5–5 Trapez.,
triang.

1 – Singleton – Central average – EP2C35 (SoPC)

16
bit

16
bit

15 This microcontroller family has been withdrawn by Motorola in 2007 and no
further references of current Motorola μ Cs or μ Ps containing a subset of fuzzy
instruction.
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devices, ST can be cited, which makes the μ C ST52513G of 8-bit16

and the ST FIVE 508 of 8 bits. At this point, it is important to note
that large manufacturing companies of μ Ps or μ Cs still show no
interest in the architecture of this type or, those who did, are no
longer interested, with the exceptions mentioned.

The following works will be highlighted (*):

� Ungering et al. (1994) in the article “Architecture of a fuzzy-
processor based on an 8-bit microprocessor” presented an
architecture based on μ P 6502 of MOS Technology, Inc.17 and
performs an expansion of the ALU (Arithmetic Logic Unit) used
only for the defuzzification, introducing fuzzy firmware that
performs basic operations. This change represents an increase
of hardware size by 20% but achieves speeds 6 times higher
than the implementation on the μ P 6502 standard. The
inferences are calculated by implementing a microcode on a
EPROM and the defuzzification is performed with the COG
method. The system supports 15 inputs (8 membership func-
tions for every input) and 8 outputs (8 singletons for each
output). The article does not mention the type of membership
functions but the figures are triangular and trapezoidal. The
prototype has been implemented on two FPGAs (XILINX 3090).

� Watanabe et al. (1996) presented the work “Evaluation of min/max
for fuzzy information processing instructions,” which is a slight
revision of the previously referenced work (Watanabe and Chen,

1993). They keep the speed increased 2.57 times by introducing the
two statements, max and min, to the instruction set of the MIPSs

R3000A RISC processor. The proposed modification is verified on
image processing. The paper presents a simulation of these two
operators on the MIPS processor and a comparison of an ASIC full-
custom fuzzy controller operating at 10 MHz (Dettloff et al., 1989).
The results are 48 FLIPS for R3000A, 122 FLIPS for R3000A (with
min/max) and 158 KFLIPS for the ASIC.18

� Salapura (2000) presents a RISC processor in the article, “A fuzzy
RISC processor” as an extension of RISC processors of the MIPSs

company Computer Systems Inc.19 A basic instruction set adds four
fuzzy instructions (fuzzification, rule evaluation, min and max),
with the new design being called MIPS-F. The FIS implemented are
of Mamdani type and the defuzzification is performed by the Yager
method (COG modified). The membership functions are triangular
and trapezoidal but the article does not mention any restriction on
other membership functions. The article points out that the
membership degrees are packed in multiple fuzzy sets in a single
processor word using the subword parallelism technique (Lee,
1996) and using 8-bit for encoding membership degrees and 4-bit
for set identification. This technique allows a word to contain
membership information for two overlapping fuzzy sets (on 32-bit
processors). The development is carried out based on the descrip-
tion on VHDL of the core and realized a prototype on FPGA, with
the final development of an ASIC. A comparison of three applica-
tions between MIPS and MIPS-F is performed. In the first applica-
tion (gas heater) there were 151 cycles and 110 cycles respectively
(approximately 1.37 faster), in the second application (Asynchro-
nous Transfer Mode (ATM) communications network) there were
249 cycles and 168 respectively (approximately 1.48 faster) and in
the third application (video encoding) 557 cycles and 301 cycles
are obtained (approximately 1.85 faster) respectively.

Fuzzy coprocessors: The incorporation of fuzzy coprocessors leads
to high speed fuzzy operations, being limited mainly by the

Table 14
HW implementations of fuzzy systems – Digital Commercial Processors.

Year Applications Ref. Type of
FS

In No. of in
MFs

Type of in MFs Out No. of
out MFs

Type of
out MFs

No. of
rules

Defuzz. Speed Device

1994 Motor
control

Jackson (1994)n IF–THEN 2 7–7 Triang., trapez. 1 3 Singleton 49 Mamdani – μ C MC68HC16, μ
C MC68332

– – – –

1997 Cache
management

Hammami (1997) Mamdani 3 – – 1 – – 18 Weighted
average (LUT)

– μ P R4000

2 – 1 34 –

4 – 2 81 –

64
bit

64
bit

2001 Control Binfet and
Wilamowski
(2001)n

Zadeh,
T–S

2 7–7 Trapez., triang.,
Gaussian

1 7 – – Zadeh, T–S See
Table 15

μ C MC68HC711

8
bit

8
bit

2010 Mobile robot Feng et al. (2010) IF–THEN 3 – Hyper-ellipsoid 2 – Singleton 5 Weighted
average

– Simulated

– – – –

2011 Temp.
control

Nhivekar et al.
(2011)n

IF–THEN 1 5 Trapez., triang. 1 5 Triang. 5 Weighted
average

– μ C Atmega8

8
bit

8
bit

Table 15
Error comparison between four fuzzy systems.

Type of fuzzy system Type of in MFs Processing time (ms) Error (SSE)

Zadeh Trapez. 1.95 908.4
Zadeh Triang. 1.95 644.4
T–S Trapez 28.5 296.5
T–S Triang 28.5 210.8

16 At present no longer recommended for new developments.
17 A commercial level Rockwell was the second most important source of this

processor.

18 We think that there are some mistakes in the Table V of the paper referred.
19 Later known as MIPS Technologies. Models have been the R2000, R3000,

R4000, etc.
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communication of data between the processor and the coproces-
sor. This architecture allows for high generalization. The cost of
this type of architecture is not very high. The company Omrons

introduces, among others, the coprocessor FP5000 (Shimizu et al.,
1992), and for the family of PLC C200 the module FZ001 (Omron).
With regard to coprocessors, the same considerations must be
applied as those in the previous section, for the low commercial
value of these devices for large manufacturing companies μ Ps or μ
Cs. Table 17 shows these kinds of implementations.

The following works will be highlighted (*):

� Eichfeld et al. (1993) presented the work “An 8 b fuzzy
coprocessor for fuzzy control”, which proposed a design to be
integrated into a μ C. The features are, 256 inputs max, 64
outputs max, 16,384 number of rules max and a peak perfor-
mance of 7.9 MFRPS with a clock of 20 MHz. The work presents
an example with 4 inputs, 1 output and 1000 rules, obtaining
a calculation time of 126:5 μs with a clock of 10 MHz.
The prototype is connected to a μ C and the knowledge base
memory (KBM) is located outside the coprocessor. The design
method was VHDL logic synthesis and the integration technol-
ogy was 1:0 μm CMOS.

� Eichfeld et al. (1998) presented the work “Applications of SAE
81C99x fuzzy coprocessors”, based on Siemens coprocessors
SAE 81C99A of 8-bit and SAE 81C991 of 12-bit. The 8-bit
coprocessor provides a standard interface to connect to μ Cs
or μ Ps. It has an on-chip memory KBM (Knowledge Base
Memory), enabling storage of a total of 16,384 rules. The
membership functions of inputs and outputs can be pro-
grammed freely on an area of 8 bits�6 bits. There are three
defuzzification methods such as COG, FM (First Maximum) and
FL (Last Maximum). With regard to benefits in speed, with a
clock frequency of 20 MHz, a system with 4 inputs, 1 output
and 80 rules is resolved in 21 μs (3.8 MFRPS). In this work, the
first coprocessor is applied to the brake system of motor
vehicles (Brake by Wire systems (BBW)) and also involves a
testbench, comparing the architecture “processor–coprocessor”
with a general purpose microcontroller (16-bit Siemens μ C
C167) which implements the SW of a high dimensionality fuzzy
system. The three fuzzy systems, based on 81C99A, are shown
in Table 18. The result is clearly superior in the architecture that
incorporates the coprocessor. The 12-bit coprocessor presents
4096 inputs (programmed freely on an area of 12 bits�12 bits),
1024 outputs (programmed freely on an area of 16 bits�12

bits), 131,072 rules. The defuzzification methods are the same
as those used on the 8-bit coprocessor. A system with 4 inputs,
1 output and 80 rules is resolved in 16 μs (5 MFRPS). Finally,
with this coprocessor an image processing application (image
segmentation) was performed and a comparison was made
with a SUN Sparc20 workstation. Processing 40,000 pixels, the
processing time is less than 1 min, while with a HW system
with four coprocessors, the processing time is less than 0.2 s at
25 MHz.

� Garcia and Pedro (1996) presented an update of the Coproces-
sor ORBEX, at work “First applications of the Orbex coproces-
sor: control of unmanned vehicles” (Garcia and Pedro, 2000). In
this application, the coprocessor works with a Ciryx processor
and performs the control of movement of an electric vehicle
that travels a circuit of 1 km in length.

Commercial DSPs: Few works have focused on the fuzzy logic on
these devices. Table 19 shows the different implementations.

The following work will be considered (*):

� Bal et al. (2004) in the article “Fuzzy logic based DSP controlled
servo position control for ultrasonic motor” highlighted that
the ultrasonic motor (USM) is highly nonlinear, the control
characteristics are complicated and the motor parameters are
time-varying due to increases in temperature and changes in
motor drive operating conditions, such as driving frequency,
source voltage and load torque. It is for these reasons that a
fuzzy logic control integrated into the position control loop is
implemented. The number of inputs is two (position error and
speed) and one output (frequency). The output control is a
PWM signal. The number of membership functions is 7
(trapezoidal: 2 and triangular: 5) for both inputs and for the
output 7 (singleton). The article shows the robustness and the
performance (step speed – ramp responses – periodical step
position responses) of the proposed drive and control system.
The device chosen is a digital signal processor (DSP). The DSP is
TMS320F243 from Texas Instrumentss company.

4.3. Mixed fuzzy implementations

Mixed fuzzy implementations present an alternative to inte-
grally analog circuits, combining the capabilities of digital and
analog solutions. The fuzzy inference engine is implemented on

Table 16
HW implementations of fuzzy systems – Digital Commercial Processors with fuzzy instructions.

Year Applications Ref. Type of
FS

In No. of
in MFs

Type of
in MFs

Out No. of
out
MFs

Type of
out MFs

No. of
rules

Defuzz. Speed Device

1993 Generic Watanabe and Chen (1993)
(see Watanabe et al., 1996)

IF–THEN – – – – – – 51 – 48/122
FLIPS

μ P
R3000A

1994 Control Ungering et al. (1994)n IF–THEN Max:
15

Max: 8 Trapez.,
triang.

Max:
8

Max:
8�8

Singleton (NR) COG – μ P
M6502

4 7–‥–7 1 7 40
7 bit 8 bit

1996 Generic, image processing Watanabe et al. (1996)n IF–THEN – – – – – – 51 – 48/122
FLIPS

μ P
R3000A

6 bit 4 bit 6 bit 4 bit

2000 Gas heating, image
processing,
communications, etc.

Salapura (2000)n Mamdani 2 3–3 Triang. 1 5 Triang. 9 COA MIPS-F
vs. MIPS

μ P
MIPS

3 3–3–3 Trapez.,
triang.

1 7 Trapez.,
triang.

18

3 4–3–4 1 5 Trapez. 48 37–85%↑
8 bit 8 bit
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the analog part, giving the system a high parallelization of
inferences with low silicon area, high speed and low power
consumption. The digital part allows the programming and storage
system parameters. These systems are described in Table 20.

From these referenced works, should be mentioned the follow-
ing (*):

� Miki and Yamakawa (1995) presented in the article “Fuzzy
inference on an analog fuzzy chip” (this article is based on Miki

et al., 1993), a fuzzy controller consisting of two devices. The
first focused on the rules and the second on the defuzzification.
The device of rules contains 4 rules may be connected in
parallel to increase their number without affecting the process
speed. The rules are processed in parallel and the inference
mechanism is max–min. The membership functions are eval-
uated analogically. The basic controller has 3 input variables
and one output variable but their architecture allows parallel
devices to have 3n inputs and n outputs. The rules are stored

Table 17
HW implementations of fuzzy systems - Digital Fuzzy Coprocessors.

Year Applications Ref. Type
of FS

In No. of in
MFs

Type of in
MFs

Out No. of
out MFs

Type of
out MFs

No. of
rules

Defuzz. Speed Technology

1993 Automotive Eichfeld et al.
(1993)n

IF–
THEN

Max:
256

– Arbitrary
(LUT)

Max:
64

– – Max:
16,384

COG,
MOMa

7.9 MFRPS (peak
perform.)

CMOS
1:0 μm

4 1 1000
8 bit 8 bit

1996 Machine tool,
sensors, etc.

Eichfeld et al.
(1996)

IF–
THEN

4096 15,360/
in

Arbitrary
(LUT)

1024 16,384/
out

Arbitrary 131,072 COG,
FM, LMb

– CMOS
0:8 μm

4 – 1 – – 80 5 MFRPS
12/22
bit

12 bit 16 bit 12 bit

1998 Automotive, image,
sensors, etc.

Eichfeld et al.
(1998)n

IF–
THEN

Max:
256

Max: 64 Max:
64

Max:
16,384

– CMOS

4 – Arbitrary
(LUT)

1 – – 80 COG,
FM, LM

3.8 MFRPS 1:0 μm

Max:
4096

Max:
1024

Max:
1024

Max:
131,072

– CMOS
0:8 μm

4 – 1 – – 80 5 MFRPS

2000 Unmanned vehicles Garcia and
Pedro (2000)n

IF–
THEN

3 – Trapez. 2 – – – – – –

– – – –

a Mean of maximum.
b First/last max.

Table 18
System with the 81C99A for the testbench.

System Inputs Outputs Rules Processing time (μs) Speed factor: μ C / (Copr. þ μ C)

Copr. þ μ C μ C

1 2 1 9 33.8 96.8 3
2 4 1 72 43.8 768.0 18
3 5 1 288 113.0 3350.0 30

Table 19
HW implementations of fuzzy systems – Digital DSPs.

Year Applications Ref. Type of
FS

In In MFs Type of in
MFs

Out Out
MFs

Type of out
MFs

No. of
rules

Defuzz. Speed Device

2004 Real-time Frías-Martínez and
Fernández-Hernández
(2004)

T–S 2 7–7 Trapez.,
triang.

1 7 Trapez.,
triang.

49 COG 8.6
MFLIPS

TMS320C6201

5 MFLIPS TMS320C6701
3 7–7–7 4.4

MFLIPS
TMS320C6201

3.5
MFLIPS

TMS320C6701

4 7–‥–7 1.5
MFLIPS

TMS320C6201

8
bit

8
bit

2.2
MFLIPS

TMS320C6701

2004 Servo
control

Bal et al. (2004)n IF–THEN 2 7–7 Trapez.,
triang.

1 7 Singleton 49 COG – TMS320F243

– – – –
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digitally on a memory that can be accessed externally and
internally updated, allowing to perform drivers dynamically
adaptive to be adjustable the parameters. The defuzzification
method is Center of Gravity (COG). Process speed is 1 MFLIPS
regardless of the defuzzification and above 0.6 MFLIPS
with defuzzification. The chip is designed in 2 μm BiCMOS
technology.

� Bouras et al. (1998) presented the work “Mixed analog–digital
fuzzy logic controller with continuous-amplitude fuzzy infer-
ences and defuzzification”, in VLSI CMOS technology of 0:7 μm,
where the inputs and outputs are analog and the programming
of the controller is performed digitally. The analog values of I/O
are evaluated without A/D and D/A devices. It has 3 inputs, one
output and 25 programmable rules. The inference mechanism
is the max–min and the specific value of the output is obtained
through the COG method, with the integrals being evaluated
continuously. The membership functions are triangular and
trapezoidal and the memory that stores their parameters are
capacitors. The controller was performed by designing two
devices, a drive inference mechanism and the defuzzification.
The inputs are acquired sequentially and the min value of the
currents associated with the corresponding membership func-
tion is also calculated sequentially, obtaining the current value
associated with each rule which is introduced to block defuz-
zification. This block contains an integrator, a divider, a multi-
plier and a converter I/V. The total process time is 48 μs.

� Amirkhanzadeh et al. (2005) presented the work “A mixed-
signal current-mode fuzzy logic controller”, in which the
analog part is dedicated to network computing and the digital
part to programming the device. The membership functions
implemented, triangles and trapezoids, are digitally pro-
grammed and the calculation of the functions is performed

by MOS transistors on current-mode. The output is performed
on voltage mode. The implemented device has 2 inputs, one
output, 3 membership functions for input and 5 consequents.
The number of rules is 9. The delay between input/output is
63 ns, i.e., the process speed is 15.87 MFLIPS. The chip is
designed in 0:35 μm CMOS standard technology.

� Yosefi et al. (2007) in the work “Design of a new CMOS
controllable mixed-signal current mode fuzzy logic controller
(FLC) chip” presented an integrated circuit which implements a
fuzzy controller chip with mixed-signal input (two) and digital
output (one), while the internal blocks (fuzzifier, inference and
defuzzifier) are realized by current mode analog circuits. The
fuzzifier circuit is capable of generating three types of member-
ship function shapes: Gaussian, trapezoidal and triangular,
using a simple MOS transistor model for strong inversion. The
defuzzifier block generates one crisp output (control) variable,
1 of the 16 (number of rules) truth-values transmitted from the
inference block. The defuzzification strategy method is COA and
it is also called “weighted average of singleton”. The output
implements an improved circuit based on a successive approx-
imation technique that provides a current mode A/D converter
with 7-bit resolution accuracy. The speed achieved is 16.6
MFLIPS. The chip is designed in 0:35 μm CMOS standard
technology.

4.4. Conclusions and complementary readings of HW
implementations for fuzzy systems

The development of fuzzy systems on a dedicated analog HW
has been the focus, mainly in the 1990s, of a large number of
researchers. These devices were implemented to work in either

Table 20
HW implementations of fuzzy systems – mixed.

Year Applications Ref. Type
of FS

In No. of
in MFs

Type of in MFs Out No. of
out
MFs

Type of
out MFs

No. of rules Defuzz. Speed Technology

1993 Generic (rules
and defuzz.
chips)

Miki et al. (1993) (see
Miki and Yamakawa,
1995)

IF–
THEN

3 11–
11–11

S and Z-shaped,
triang., trapez.

1 7 Singleton 4� nRuleChip

(parallel)
COG 0.63 MFLIPS ‥

‥ 1.4 MFLIPS
BiCMOS
2 μm (rule
chip)

5
bit

3 bit 5
bit

3 bit Bipolar 3 μm
(defuzz.
chip)

1995 Generic Miki and Yamakawa
(1995)n

IF–
THEN

3n (4–4–
4)n

Triang., trapez. 1n 7 – NR

(parallel)
COG 0.6–1 MFLIPS BiCMOS

2 μm
– 8 bit – 3 bit Bipolar 3 μm

1995 Generic Ramirez-Angulo et al.
(1995)

IF–
THEN

5 5–‥–5 Triang., trapez. 3 – Singleton 3 (parallel,
serial)

COG – CMOS 2 μm

1997 Generic Baturone et al. (1997) T–S 2 3–3 Triang,. trapez. 1 3 Singleton 9 (parallel) T–S – CMOS
2:4 μm

1998 Generic Bouras et al. (1998)n IF–
THEN

3 5–5–5 Triang., trapez. 1 5 Triang.,
trapez.

25
(parallel)

COG 0,52 MFRPS CMOS
0:7 μm

– – – –

2002 Real-time Evmorfopoulos and
Avaritsiotis (2002)

Sugeno 4 5–5 Gaussian 1 9 Singleton 25 T–S – CMOS
0:7 μm

4–5 1 5 20
8
bit

8
bit

(parallel)

2005 Generic Amirkhanzadeh et al.
(2005)n

T–S 2 3–3 Triang., trapez. 1 5 Singleton 9 (parallel) T–S 15.87 MFLIPS CMOS
0:35 μm

– – – –

2007 Generic Yosefi et al. (2007)n IF–
THEN

2 4–4 Gaussian,
triang., trapez.

1 7 Singleton 16 (parallel) COA 16.6 MFLIPS CMOS
0:35 μm

– – – 7 bit
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current, voltage, transconductance or switched mode. The differ-
ences between these implementations lie in speed, required
power, size, integration, stability, accuracy or conformation of
the membership functions, among others. All works consulted
provide benefits in some of the parts that compose a fuzzy system
compared to devices operating in a different mode. It should be
noted that the commercial appearance of the FPAAs in the 2000s
has opened a new scenario in the analog implementation of fuzzy
systems, although this is yet to be consolidated.

Digital implementations on a dedicated HW have brought
greater immunity to external factors (e.g. noise or fluctuation of
the power supply) than analog implementations. The speed has
been achieved by implementing parallel rules and optimizing the
sequential rules. In systems with parallel rules, the membership
functions are stored in memory. This grows when the accuracy
increases so it tends to give low accuracy systems. In sequential
implementations, both the membership functions and the rules
are stored in memory. By increasing the number of inputs, the
memory grows exponentially, and therefore techniques have been
proposed to minimize this effect.

Mixed systems present their inferences on the analog area and
programming, and parameters on the digital area. Architectures
have been performed mainly with parallel rules.

Considering the speed and the technology, Table 21 shows the
data extracted from the works consulted regarding analog, digital
and mixed-dedicated circuits.

Table 22 shows the rest of the main features of dedicated
circuits. At this point, let us emphasize that it is very difficult to
extract data on current or power consumption of the devices
consulted. Few articles clearly express this information. In this
respect, only may be mentioned a few sparse data (the works are
cited) as Table 22 shows.

The consolidation of FPGAs in recent years has been mainly due
to their reconfiguration capability, the increase of their density and
the existence of a wide commercial offer. This has made either
analog, digital or mixed-dedicated designs to have been almost
discontinued. The advent of programmable circuits, such as FPGAs,

has opened up a wide range of options for implementing the rules,
membership functions or reduction in defuzzification HW (eg.
elimination of multiplication and division).

The use of processors in systems that do not require high speed
is the most economical alternative regarding dedicated or config-
urable devices (FPGAs). The introduction of fuzzy instructions in
commercial processors or coprocessors fuzzy design increases the
processing speed significantly. In commercial processors with
fuzzy instructions the speed increase is approximately between
1.4 and 6 compared to commercial processors without fuzzy
instructions: MIPS-F vs. MIPS and μ P 6502-F vs. μ P 6502
respectively (in the works consulted). However, it is noted that
commercial firms have mostly halted the manufacture of proces-
sors with fuzzy instructions. With respect to coprocessors, there is
high speed processing of fuzzy rules although only one compar-
ison with commercial processors is given in the works consulted:
μ C C167 þ 81C99A vs. μ C C167 and the speed factor is 3, 18 and
30 depending on the dimensionality of three fuzzy systems.
Finally, some PLC manufacturers have adopted the use of fuzzy
coprocessors in systems oriented to industrial control. Table 23
shows the main features of fuzzy systems on Analog and Digital
programmable devices.

With regard to complementary readings, the following works
deserve to be mentioned: regarding the implementations of fuzzy
systems on FPGAs, Sulaiman et al. (2009) presented the review
“FPGA-based fuzzy logic: design and applications—a review” up to
2008. Of the works focused on realizing a vision of the evolution of
fuzzy systems, three works are highlighted: “Electronic hardware
for fuzzy computation” (Basterretxea and del Campo, 2009),
“Fuzzy hardware: architecture and applications” (Kandel and
Langholz, 1998) and “VLSI architecture of fuzzy logic hardware
implementation: a review” (Murshid et al., 2011). The first
conducts a review of the evolution of fuzzy HW since its begin-
nings up to 2008, the second shows the evolution of fuzzy
implementations on different platforms HW, and the third gives
an overview, up to 2010, of the processors and controllers
implemented on a VLSI device. The scope is interesting because

Table 21
Speed and technology of fuzzy systems on analog, digital and mixed-dedicated circuits.

Analog Rules Digital Mixed

MFLIPS Tech. μm CMOS MFLIPS Tech. μm CMOS MFLIPS Tech. μm

BiCMOS Bipolar CMOS

Current 10 1:2‥1:6 Parallel 0:086‥33:3 0:13‥1:0 0:63‥16:6 2 3 0:35‥2:4
Voltage 0:01‥6 2:0‥2:4 Sequential 0:1‥10 0:6‥1:0 – – – –

Transcond. 15 1:6‥2:0
Switched 0:085‥16 0:8‥1:2

Table 22
Summary (rest) of the main features of fuzzy systems on analog, digital and mixed-dedicated circuits.

Type of MFsa Defuz.a Current Power

In Out

Analog Triang., trapez., S,
Z-shaped, bell

Triang.,
singleton

COG, COA, (div. freeb),
weighted average

E nA (Baturone et al., 1994), 20 μA
(Lemaitre et al., 1994)

550 μW (Marshall and Collins, 1997), 8.8 mW
(Indue et al., 1991), 550 mW (Guo et al., 1996)

Digital Triang., trapez., LUT (any
shape), Gaussian

Triang., trapez.,
singleton

COG, COA, Sugeno, Yager – 200 mW (Falchieri et al., 2002), 800 mW
(Dettloff et al., 1989)

Mixed Triang., trapez., S,
Z-shaped, Gaussian

Singleton,
triang., trapez.

COG, T–S, COA – 10.49 mW (Amirkhanzadeh et al., 2005),
13.4 mW (Yosefi et al., 2007)

a In order to the preferences of the articles consulted.
b Sometimes the methods COG and COA are based on division free.
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different architectures of the blocks involved in a processor or
controller fuzzy are presented. Finally, and more recently, the
article “Fuzzy hardware: a retrospective and analysis” shows an
overview up to 201220 (Hernandez-Zavala and Camacho-Nieto,
2012). The review refers to the period between 1985 and 2011.

5. HW implementations for neuronal networks

In the following section several implementations of ANNs will
be presented on different technologies made in the last two
decades. The focus will be on implementations, as can be seen in
Section 3, in (a) analog, (b) digital, and (c) mixed, leaving out of this
approach the so-called optical implementations, chains of pulses,
etc. The classification is the same as shown in Table 3.

5.1. Analog neural implementations

Until the mid 1990s, there were a number of reasons that
favored analog circuit solutions against the digital solutions. One
reason was determining the high speed analog circuits compared
to digital circuits. Another reason was the simple implementation
of adders and multipliers with a small number of transistors.
A further reason was the inherent parallelism and high connectiv-
ity of this circuit. In recent years, due to advances in integration
technologies for digital circuits, the difference in speed has
diminished dramatically. However, analog implementations of
HW remain of interest but there is less production of works in
this field.

5.1.1. Dedicated Integrated Circuits
Within these implementations it is worth mentioning the

references shown in Table 24.
Six papers are highlighted to show this kind of implementation (*):

� In 1991, Mitsubishi introduced a device with unsupervised
learning in CMOS technology of 1:0 μm, “A 336 – neuron
28 k-synapse self-learning neural network chip with branch-
neuron-unit-architecture” (Arima et al., 1991b). This was a
network of fully connected layers with feedback. It has 336
neurons and 28,224 synapses. The speed of operations is 10
GCPS (Giga Connections Per Second). This device can be
expanded with several hundred interfacing devices. If it

disposes of 200 devices, it can support up to 3300 neurons and
5.6 Msynapses.

� Satyanarayana et al. (1992) present, in the article “A reconfi-
gurable VLSI neural network”, an implementation of a general
purpose ANN capable of reconfiguring the number of layers.
This circuit has 1024 neurons and 1024 synapses organized in
one, two or three layers. The circuit uses dynamically reconfi-
gurable capacitors that can be refreshed in 74 ms CMOS
technology is 0:9 μm.

� Morie and Amemiya (1994) presented, in the article “An all-
analog expandable neural network LSI with on-chip backpro-
pagation learning”, a prototype device with on-chip learning
implementing a backpropagation algorithm called “Contrastive
backpropagation learning”, working in real time. The device
has 9 neurons and 81 synapses. Due to the feedback connec-
tions, the article considers it appropriate to implement recur-
rent ANNs. The circuit is fabricated using a 1:3 μm double-
polysilicon CMOS process.

� Sun et al. (2002) in the work “Analogue implementation of a
neural network controller for UPS21 inverter applications”
presented a hardware inverter (PWM) with an analog neural
network mainly constructed with operational amplifiers and
resistors. An EPROM is added for weight storage (6 bits for
the weight and 1 bit for the sign). The ANN performs a
multifeedback-loop with the inputs being the currents and
voltages. The ANN is trained off-line to ensure a fast transient
response and low cost. Finally it performs a comparison with a
PI controller and the results show lower distortion, better
control of the output voltage and smaller overshoot in the
output voltage. The implementation is on several integrated
circuits.

� Yamasaki and Shibata (2003) presented the article “Analog
soft-pattern-matching classifier using floating-gate MOS tech-
nology”, focused on image recognition of geometric forms and
digits made by hand, and being able to separate overlapping
shapes. Unlike other implementations, it can “tune” externally
determined parameters that affect the recognition of shapes.
Also, it implements a robust algorithm for image representa-
tion. The circuit is fabricated in CMOS technology of 0:6 μm. It
is interesting to highlight that this work was performed on
analog technology in 2003, in order to obtain a high-speed
image processing in real time. Consider that the signal com-
pression algorithms are computationally expensive and beyond
the state of the art for computational applications in real-time.

Table 23
Summary of the main features of fuzzy systems on analog, digital and mixed programmable circuits.

Device Type Type of MFs1 Defuz.1 Speed

In Out FLIPS Time

FPAA Triang, trapez., Z-shaped,
Γ-function

– COG – –

FPGA Triang, trapez., sigmoid Singleton, triang,
trapez.

COG, COA, weighted average,
MOA, T–S, etc.

77k, 1:25M‥9M,
17M‥50M

42 μs, 0:29 μs‥6:3 μs,
35 ns‥127 ns

Commercial
processor

General
purpose

Triang, trapez., Gaussian,
Hyper ellipsoid

Singleton, triang. Weighted average, Mamdani,
T–S

– 1.95 ms, 28.5 ms

Fuzzy
instructions

Triang., trapez. Triang., trapez.,
singleton

COG, COA 48, 122 –

Coprocessor Arbitrary (LUT), trapez. Arbitrary COG, FM, LM, MOM 3:8M‥7:9M –

DSP Triang., trapez. Triang., trapez.,
singleton

COG 1:5M‥8:6M –

1 In order to the preferences of the articles consulted.

20 In this article, there are several dates of publication, December 2011 and
August 2012 and there is only one reference from 2012 but this article is originally
from 1987. 21 Uninterruptible Power Supply.
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� Gatet et al. (2008) in the paper “Analog neural network
implementation for a real-time surface classification applica-
tion” presented a real-time surface recognition, with a laser
beam, using a phase-shift rangefinder which drives an ANN
performed by multilayer perceptron (2–3–1). The rangefinder
provides two signals to the ANN, the filtered photoelectric
signal amplitude and the signal proportional to the distance.
The ANN discriminates four types of surfaces. The implementa-
tion of each neuron (3) of the hidden layer is on an ASIC of
44-pins in CMOS technology of 0:35 μm. The neuron of the
output layer is performed on A.Os.

� Khodabandehloo et al. (2012) in the article “Analog implemen-
tation of a novel resistive-type sigmoidal neuron” presented a
resistive-type neuron with low sensitivity to circuit variations
to generate a sigmoid-like function for analog implementations
of neural networks. The neuron is based on the transistor
characteristics in both triode and saturation regions working in
transconductance mode. Taylor series are used to approximate
the sigmoid function and the obtained error is less than 1.3%.
The design includes a study of the behavior taking into account
the temperature changes between �55 1C and 125 1C.
The voltage variations from the voltage value at 27 1C are

Table 24
HW implementations of neural systems – analogics dedicated.

Year Applications Ref. Type of ANN In Out Hidden Activat.
function

No. of
neurons

No. of
synapses

No. of
layers

Learning On/off
chip

Speed Technology

1991 Learning,
classification

Jabri and Flower
(1991)

Feedforward,
recurrent

2 1 2 – – – 3 Weight
perturbation

On – Discrete

Perceptron 21 5 10 3

1991 General Arima et al.
(1991b)n

Self-
organization

– – – – 336 28,224 Boltzmann On 10
GCPS

CMOS
1:0 μm

1992 General Arima et al.
(1992)

Feedback – – – – 400 40,000 – Boltzmann On 2 TCPS CMOS

– – – – 10 1068 400–
6–4

80
GCUPS

0:8 μm

1992 Voice
recognition

Shima et al.
(1992)

Multi-layer – – – Sigmoid 24 24�24 – Backprop,
Hebbian

On 36
GCUPS

CMOS
0:8 μm

1992 General Satyanarayana
et al. (1992)n

General 4 4 – Sigmoid 1024 1024 1, 2 o 3 Weight
perturbation

On – CMOS
0:9 μm

1993 Image, signal
processing

Varrientos et al.
(1993)

Cellular NN – – – – – – – – – – CMOS -

1994 General Morie and
Amemiya (1994)n

Recurrent 2 1 – Sigmoid 9 81 1 Contrastive
backprop

On 0.1–1
MCUPS

CMOS
1:3 μm

2002 Inverter PWM Sun et al. (2002)n Multifeedback 5 1 3 Sigmoid,
linear (out)

9 – 3 Backprop. (Off-
line)

Off – A.Os

2003 Signal
compression

Yamasaki and
Shibata (2003)n

– 1 1 3 Bell,
Gaussian

– – 3 Tunable – CMOS
0:6 μm

2008 Surface
recognition

Gatet et al.
(2008)n

MLPa 2 1 3 Sigmoid – – 3 Backprop,
Levenb.-
Marqua.

Off – CMOS
0:35 μm

2012 Sigmoid
function

Khodabandehloo
et al. (2012)n

Resistive-type 1 1 – Sigmoid 1 – – – – – CMOS
90nm

a Multilayer perceptron.

Table 25
HW implementations of neural systems – Programmable Integrated Circuits.

Year Applications Ref. Type of ANN In Out Hidden Activat.
function

No. of
neurons

No. of
synapses

No. of
layers

Learning On/off
chip

Speed Device

1998 Survey D-Mello and Gulak
(1998)

CNNa – – – – – – – – – – Analogix,
Zetex, etc.

2004 Survey Sekerli and Butera
(2004)n

Morris–
Lekar

– – – – – – – – – – AN221E04

2005 Creation a
neuron circuit

Rocke et al. (2005) McCulloch–
Pitts

– – – Comparator – – – – – – AN221E04

MLP – – – Sigmoid – – – – – –

Spicking – – – Comparator – – – – –

2006 Classific. Dong et al. (2006) Feedforward 2 1 5 Piecewise
linear

3 Backprop.
(Matlab)

Off 6
MCPS

AN221E04

2008 Classific. Grzechca et al.
(2008)n

RBF 5 1 27 – – – 3 – – – AN221E04

2012 Motor control Kamala-Kannan
et al. (2012)n

– 2 1 2 – – – 3 – – FPAA

a Cellular Neural Network.
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0.7% and 1.4% for �55 1C and 125 1C, respectively and for the
saturated neuron, the values are changing to 0.5% and 0.2% for
�55 1C and 125 1C, respectively. The layout of the neuron has
been performed in 90-nm CMOS technology, with a power
supply voltage of 1.2 V.

5.1.2. Programmable Integrated Circuits
Within these implementations the following references will be

mentioned in Table 25, which will also include references to FPAA
implementations.

The following references will be mentioned (*):

� Sekerli and Butera (2004) in the work “An implementation of a
simple neuron model in field programmable analog arrays”
presented the implementation of a minimal neuron model, the
Morris–Lecar model (Morris and Lecar, 1981), on a FPAA. The
differential equations of the model are solved using inverters,
adders, multipliers and integrators that are available via the
FPAA design software. The article highlights that such a model
can be run accurately in real-time or many orders of magnitude

faster than real-time. The neuron is implemented on three
AN221E04 of Anadigm Incs.

� Grzechca et al. (2008) presented the work “Diagnosis of
specification parametric faults in the FPAA—the RBF neural
network approach”. The aim of the work is to diagnose a
parametric fault in the Configurable Analog Blocks (CABs) of
the FPAA, based on the output time domain response. A neural
network with radial basis functions (RBFs) has been used for
feature classification. The RBF-NN has one input layer, one
hidden layer, and one output layer (5–27–1). The design under
test is a low-pass filter and the output layer of the RBF-NN
includes a linear function that indicates if the specifications
meet the requirements. The device under test is the AN221E04
of Anadigm Incs.

� Kamala-Kannan et al. (2012) in the paper “Sensorless control
of SR drive using ANN and FPAA for automotive applications”
presented a control of Switched Reluctance Motor (SRM)
estimating the rotor position using the phase current and
voltage. The ANN consists of three layers. The input layer has
two inputs which are scaled current and flux linkage. The rotor
position (θ) is the single output available in the output layer.
The article performs a comparison between a conventional

Table 26
HW implementations of neural systems – digital dedicated.

Year Applications Ref. Type of
ANN

In Out Hidden Activat.
function

No. of
neurons

No. of
synapses

No. of
layers

Learning On/
off
chip

Speed Technology

1990 General Hammerstrom
(1990)n

Any 203 21 64 Sigmoid – – 3 Backpropag On 1.6
TCPS

CMOS –

8/16 bit

1993 Pattern
recognition

Marchesi et al.
(1993)n

MLP 64 8 64 Any
(LUT)

– – 3 Backpropag. Off – VLSI –

6 bit 8 bit

2000 Survey:
Matrix-vector
multiplier

Szabo et al.
(2000)

MLP CNNa N M –

5,10,20,40 5,10,20,40 – – – – – Pre-trained Off – ASIC –

FPGA
(generic)

–

8/12/16
bit

– –

2001 Image
acquisition

Gregoretti et al.
(2001)n

MLP
(internal
weights)

n – – – 32� n – – Adaptive On 130
MCPS

CMOS

60
MCUPS

0:8 μm

Kohonen
(internal
weights)

8 – – – 1�30 – – Neighborhood 110
MCPS

60
MCUPS

8 bit

2003 Automotive
control/
diagnosis

Hendry et al.
(2003)n

Self-
organizing

16 – – – 256 – – LVQ Off 1.3
GCPS

CMOS

16 – – – 256 – – 11
GCPS

0:68 μm

1024 44
GCPS

0:18 μm

8 bit 4096 176
GCPS

2013 Optical
template

Zamanlooy and
Mirhassani
(2014)n

3-layers 4 2 3 – – – 3 – – – CMOS
0:18 μm

8 bit 5 bit

a Cellular neural network.
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machine with and without a sensor, and an SMC sensorless
machine, measuring the speed response and applying different
loads (20 N m and 10 N m). The speed error during load
disturbance is much less in the conventional machine sensor-
less operation as compared to the SMC sensorless machine
operation.

5.2. Digital neural implementations

Digital implementations have aroused great interest during the
last two decades because of the high integration achieved and the
increase of the execution speed, resulting in a large production of
articles. These implementations have been done on full-custom
VLSI circuits, ASICs and FPGAs. As in Section 4.2.2, further devel-
opment has been focused on the FPGAs because of their ability to
reconfigure and the low “time to market”. With regard to research
in general purpose neural processors on dedicated devices, it
appears that it is a line of work that is being discontinued.

5.2.1. Dedicated Integrated Circuits
Here are some relevant approaches in this kind of implementa-

tion shown in Table 26.
Of all these references, the following will be mentioned (*):

� Hammerstrom (1990) presents a new chip oriented to neuro-
computing in the work “A VLSI architecture for high-perfor-
mance, low-cost, on-chip learning”. Hammerstrom (1990)
considers that this chip is a general purpose, “microprocessor”
of neurocomputing. For this reason this work will be discussed
in Section 5.2.3.

� Marchesi et al. (1993) in the article “Fast neural networks
without multipliers” referred to an implementation of a multi-
layer perceptron network in which the weights are a power of
2 and therefore does not require multipliers but shift registers.
They develop a backpropagation learning algorithm for the
proposed network which is performed off-line. The advantage
of this method is that it requires a smaller area of silicon and
computing times are reduced. Design is applied to pattern
recognition. Marchesi et al. (1993) note that this algorithm is
suitable to be implemented on a generic VLSI digital device.

� From the past decade, in 2001, let us cite the work “A high
speed VLSI architecture for handwriting recognition”, where
Gregoretti et al. (2001) presented a complex system for
simultaneous image acquisition, processing, neural network
emulation, and a straightforward interface with a hosting PC.
The device is named HACRE and is a massively parallel VLSI
image processor with the instruction set dedicated to execute
both traditional image processing (such as filtering and image
enhancement) and mathematical morphology (such as open-
ing, closing, skeletonization) and several types of neuro–fuzzy

networks (such as perceptrons, self-organizing maps, cellular
networks, fuzzy systems). The device needs 1 external RAM,
plus some glue logic for microprocessor interfacing. Larger-size
configurations are obtained by cascading chips, as many exter-
nal RAMs, some additional global interconnection logic and a
host interface (PCI). This work develops a board with 4 HACRE-
devices and all the aforementioned logic. The neural subsystem
carries out a pre-recognition of the individual characters, based
on an integrated segmentation and recognition technique. The
maximum frequency of the device is 50 MHz and is obtained
from a PCI Bus by means of a PLL. The chip has been
implemented in a 0:8 μm CMOS technology.

� Zamanlooy and Mirhassani (2014) “Efficient VLSI implementa-
tion of neural networks with hyperbolic tangent activation
function” proposes a new hybrid scheme to implement the
activation function, which is based on a linear approximation in
combination with bit-level mapping. They demonstrated that
the proposed structure requires less output bits for the same
maximum allowable error compared to the previously devel-
oped schemes. The approximation scheme was used for imple-
menting a 4–3–2 network for an optical template matching
application. The hardware implementation was coded using
Verilog hardware description language and synthesized by
Synopsis Design Compiler using 0.18 μm CMOS technology.

Some applications that require a smaller silicon area, lower
power and higher clock speeds are implemented on ASICs. An
example of this type of realizations is as follows:

� The work of Hendry et al. (2003), “IP core implementation of a
self-organizing neural network”, oriented to self-organizing
neural networks, implements an array of 256 neurons. The IP
soft-core designed is part of a SoC, which also implements a
RISC processor. One area of interest mentioned in this work is
in the automotive market, applying to the nonlinear control
(camless engines) and diagnostic (virtual sensor technology) of
the car. The target clock frequency is 200 MHz and for 16
element reference vectors (each element consisting of eight
bits) this gives a classification time of 370 ns (2.7 Million
classifications/s). The speed of operations is 11 GCPS. This
design has been implemented in a 0:18 μm CMOS technology.

5.2.2. Programmable Integrated Circuits
Applying the same reasoning as in Section 4.2.2 and consulting

the “Web of Knowledge – Web of Science”, the number of works
on FPGAs is around 830 between 1990 and 2012. Fig. 2 shows this
production.

Here are some relevant approaches in this kind of implementa-
tion shown in Tables 27–31.

Of all these references, the following will be mentioned (*):

� Hikawa (1995) in the article “Implementation of simplified
multilayer neural networks with on-chip learning” proposes a
new architecture of a multilayer ANN without multiplication
and learning on the device. The implementation is done on a
FPGA but the article does not cite the reference. The multi-
plications are performed by shift registers, as in the previous
work, and ANDs. In the calculation process of the network
(forward-path) the neuron activation functions are performed
with three states (0, 1/2, 1) operating over the displacement
and the logical operator AND. The sum of the weighted inputs
of the neuron is performed by a serial adder. As for the learning
algorithm, it is based on the backpropagation algorithm oper-
ating in pulse mode to remove the multiplication; the number

Fig. 2. Neural implementations on FPGAs.
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of pulses is proportional to the error obtained and acts on up–
down counters containing the weights. When the device
operates at 25 MHz, the performance achieved is of 14.6 MCPS
and 10.9 MCUPS.

� Abramson et al. (1998) in the paper “FPGA based implementa-
tion of a Hopfield neural network for solving constraint
satisfaction problems” described and solved the N-Queen
problem using a Hopfield neural network (used to solve
difficult optimization problems) to demonstrate and solve the
potential of a custom computer based on FPGA technology. The
paper highlights that in this architecture, first, the weights
are small and can be represented using small integers. They
also reduce the carry propagation delays. This means that the
hardware responsible for the accumulation can be optimized
for small integer values. Second, the vector product becomes a
set of conditional additions without the need to perform any
multiplication operations. Third, the interconnection between
neurons is fixed and dictated by the nature of the constraints in

the problem. The hardware platform is an Aptix AP4 that
contains up to 16 Xilinx XC4010 devices. The synthesis is
performed with Galileo Exemplar Logic's and V-System tools
and the algorithm has been described in VHDL. The paper
establishes a comparison with a Sun UltraSparc workstation
running at 140 MHz and yielding 2–3 orders of magnitude
speedup. Finally, the HW was optimized and the 8-Queen
problem was tested on a XC4020 device.

� Omondi and Rajapakse (2002) published the work, “Neural
networks in FPGAs” in which an approach is made to paralle-
lism and arithmetic, the HW or SW implementation, and which
finally examines a case of Independent Component Analysis
(ICA) (Comon, 1994), implementing an independent compo-
nent neural network (ICNN) over the Xilinxs XCV812C. The
paper proposes three different nonlinear functions but the
implementations are focused on two. There are two types of
HW implementations, the first on Lookup-table (LUT) – synap-
tic inputs – and the second on combinational logic (CL). In the

Table 27
HW implementations of neural systems – Digital Programmable Integrated Circuits (1).

Year Applications Ref. Type of
ANN

In Out Hidden Activat.
function

No. of
neurons

No. of
synapses

No. of
layers

Learning On/
off
chip

Speed Device

1994 Run-time
reconfiguration

Eldredge and
Hutchings
(1994)

Feed-
forward

n m h – – – l Backprop. On 568
KCUPS

XC3090

8 bit – –

1995 Pattern recognition Hikawa (1995)n Multilayer 2 2 3 Sigmoid 7 17 3 Backprop.
(pulse
mode)

On 14.6
MCPS

FPGAs
(generic)

7�5 7 20‥70 62‥112 840‥2940 10.9
MCUPS

1 bit – 12 bit

1996 Digital signal-image
processing

Isshiki and Dai
(1996)

3-layer 12 4 14 – – 30 3 – – – XC3164A

8 4 8 20
8
bit

1998 N-Queen problem Abramson et al.
(1998)n

Hopfield – – – – – – – – – – XC4010

– – – XC4020

1998 Non-linear funct.
approx.

Blake et al.
(1998)

3-layer
(feed-
forward)

3 8 1 Sigmoid 12 25 3 – – – XC4020

9 bit FP 9 bit FP

1998 Classifying points
inside/outside region

Hikawa and Sato
(1998)

Multilayer 2 1 2 Threshold 5 6 3 Backprop.
(simplified)

On 0.857
MCUPS

XC4010

– 8
bit

16 bit FxP

1998 Air pollution Taright and
Hubin (1998)

MLP – – – Sigmoid – – 3 Backprop. – – FPGA
Xilinx
(generic)

– – – –

1999 ECGa classifier Izeboudjen et al.
(1999)

3-layer 5 2 3 Sigmoid 10 21 3 Backprop. Off – XC4020E

8
bit

8 bit

1999 Generic Sato and Hikawa
(1999)

Multilayer 2 2 3 Threshold 7 10 3 Backprop.
(PWM)

On – XC4010P

8
bit

16 bit
FxPb

1999 Reconfigurable
computing

Zhu et al. (1999) Multilayer – – – – Max. 8 – – – On – XC6216

8
bit

Max. 32 8 bit (on-line) XC6264

a Electrocardiogram.
b Fixed point.
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first case, the values of the nonlinear functions proposed in the
study are stored on RAM and, in the second case, the weights
are stored on RAM and the functions are performed with
functional blocks.

� Kim et al. (2003) “FPGA implementation of ICA algorithm for
blind signal separation and adaptive noise canceling” applied to
speech recognition in noise environments and echo. Algorithms
of signal separation (blind signal separation) and algorithms of
adaptive noise cancellation (adaptive noise canceling) were
implemented. The device used was Alteras EP20K600EBC652-1.

� Ide and Saito (2006) presented the article “FPGA implementa-
tions of neocognitrons” applied to character recognition and
biometric measures. It describes the implementation of a
reconfigurable ANN on a parallel computer architecture based
on FPGAs, called REOMP (Reconfigurable Orthogonal Multi-
processor Memory). On this architecture Neocognitrons are
implemented. A Neocognitron ANN model is a feed-forward
topology proposed by Fukushima (1982), based on the model of
Hubel and Wiesel (1968) concerning the research of the vision
from a biological point of view. The parallel architecture is
based on a host processor that works as a Control Unit (CU) and
1–64 nodes consisting of Reconfigurable Processors (RPs) con-
nected to an orthogonal structure of memory modules. The
development was performed with the Alteras Quartus II tool.
There is no mention of the device.

� Bastos et al. (2006) presented the work “FPGA implementation
of neural network-based controllers for power electronics

applications”, where an ANN was implemented to control a
buck converter (step-down DC/DC) based on the behavior of a
SACT controller (synergetic approach to control theory). The
ANN chosen had the structure 4–4–1 and was trained to have
the high-performance characteristics of the SACT controller.
The phase of simulation was performed using the System
Generator of Xilinxs and the design of the ANN was performed
using the Neural Network tool of Matlabs. The device used was
a Virtex-II Pro of Xilinxs.

� Ferreira et al. (2007) presented the paper “A high bit resolution
FPGA implementation of a FNN with a new algorithm for the
activation function”, which mainly presents the calculus in the
floating point and where the activation function is performed
with piece-wise linear approximation. The training of the
Feedforward Neural Network is off-line and is carried out in
Matlab on a PC and the weights are sent from the PC to FPGA.
The device used is the FPGA Cyclone EP1C20F324C7 from
Alteras.

� Hu et al. (2008) in the work “Key issues of FPGA implementa-
tion of neural networks” give an overview of the different parts
and methods involved in the design of the ANNs such as data
representation, inner-products computation, implementation
of activation function, storage and update of weights, nature of
learning algorithm and design constraints.

� Orlowska-Kowalska and Kaminski (2009) in the article “Appli-
cation of MLP and RBF neural networks in the control structure
of the drive system with elastic joint” presented a neural

Table 28
HW implementations of neural systems – Digital Programmable Integrated Circuits (2).

Year Applications Ref. Type of
ANN

In Out Hidden Activat.
function

No. of
neurons

No. of
synapses

No. of
layers

Learning On/
off
chip

Speed Device

2000 Systolic array Gadea et al.
(2000)

MLP 2 2 6–3 – – – 4 Backprop.
(on-line)

On 81 MCPS XCV400

8 bit 16 bit 81 MCUPS

2000 Neuron
probabilistic
deactivation

Restrepo et al.
(2000)

FASTa 2 – 2/6/10/
14

– 4/8/12/
16

– 2 Unsupervised
(correlation)

On 0.65 ms/
‥=3:04 ms

XC4013E

8 bit 8 bit

2001 Generic (XOR,
classification)

Hikawa (2001) Multilayer
(pulse-
mode)

– 1 2 Nonlinear
adder (voting
circuit)

3 9 2 Backprop.
(frequency
modulation)

On 211 KCPS FPGAs
(generic)

1 4 5 14 843 KCUPS
8 bit 9 bit

2001 Glass problem Girau (2001) FPNAb 16 6 8 Sigmoid 30 – – Backprop. On 5 MCUPS ‥ XC40250
16
bit

FxP 16 bit
FxP

‥1 GCUPS

2001 Word
recognition

Kim and Lee
(2001)

RBF 1024 1024 1024 Gaussian 1024 – 1 Means and
variances

Off 15 ms
(recognition)

Flex 10K

8/16
bit

–

2002 ICAc Omondi and
Rajapakse
(2002)n

ICNNd n n – Sigmoid – – – Gradient
(probability
density)

On – XCV812C

– – – –

2002 Alphabet
recognition

Yun et al.
(2002)

MLP 256 5 32 – 293 512 3 Backprop. Off – Virtex2
6000

1 bit 5 bit 24 bit
FxP

24 bit
FxP

2002 Detecting
human hands

Krips et al.
(2002)

Multilayer 3 1 3 Hyperbolic
tangent (LUT)

4 12 3 Resilient
propagation

Off 10 ms XCV100

8 bit 1 bit – –

a Flexible adaptable-size topology.
b Field programmable neural array.
c Independent component analysis.
d Independent component neural networks.
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estimator of the torsional torque and the load-machine speed
of the drive system with an elastic joint, using multi-layer
perceptron (MLP) and radial basis function (RBF) NN in the
open-loop and closed-loop control structure. The paper
demonstrates that RBF-based neural estimators can give better
accuracy of the load speed and torsional torque estimation and
better results in the successive vibration damping. The simula-
tion results with the Neural Network Toolbox of Matlab/
Simulink software were obtained with MLP estimators, while
the RBF NN were implemented in a Netlab package. The article
proposes the implementation on a FPGA and indicate that the
RBF estimator requires many more hardware resources than a
simple MLP network.

� Shoushan et al. (2010) in the work “A single layer architecture
to FPGA implementation of BP artificial neural network”

presented the design of a back propagation ANN and con-
structed an application for classifying the defects of the carbon
fiber reinforced plastic. A one dimensional systolic array of the
finite impulse response (FIR) filter for the backpropagation
algorithm is introduced. All calculated parameters are stored on
a RAM and the implementation of excitation function (sigmoid)
is performed on Look-up tables. The design is implemented on
two FPGAs and a comparison between the resources used is
performed. The FPGAs are Cyclone and Cyclone II of Alteras

using the Quartus II tool.
� Mekki et al. (2010) in the article “FPGA-based implementation
of a real time photovoltaic module simulator” proposed a
multilayer perceptron (MLP) for simulation and implementa-
tion of a real time PV-module on FPGA. The evaluation of the
performance of a PV-module is based only on meteorological

Table 29
HW implementations of neural systems – Digital Programmable Integrated Circuits (3).

Year Applications Ref. Type of ANN In Out Hidden Activat.
function

No. of
neurons

No. of
synapses

No. of
layers

Learning On/
off
chip

Speed Device

2003 BSS and
ANCa (ICA-
based)

Kim
et al.
(2003)n

RBF 2þ4 2 – – – – – Stochastic On – EPK20K600

12 bit –

2003 Weight
clustering
optimization

Noory
and
Groza
(2003)

Any 9 1 – Distributed
arithmetic

– – – DASP On – Flex 10K

8 bit – Serial/parallel 8 bit

2003 One-
dimensional
systolic array

Hung
and
Wang
(2003)

Systolic
architecture

– – – Ramp – – – Iterations On – Virtex
2000E

– – –

2003 Speech
recognition

Ortigosa
et al.
(2003)

MLP
extended

220 10 24 Sigmoid 254 – 3 Backprop. On 12:5 μs Virtex
2000E

8 bit 8 bit

2005 Internal data
formats

Prieto
et al.
(2005)

3-layers 3 12 6 Logarithmic or
tangential
sigmoid, linear
(out)

– – 3 Backprop. On – FPGAs
(generic)

16 bit S/Mb – 16 bit S/
M

2006 Charact.
recognit.,
biometric
measures

Ide and
Saito
(2006)n

Neocognitron Complex
matrix

distribution
cells

in – – – – Algorithm
(own)

On – REOMPc

(1‥64
reconf.
processors)

– – – –

2006 Buck
converter
(SACTd)

Bastos
et al.
(2006)n

3-layers 4 1 4 Sigmoid 9 – 3 Backprop. On – Virtex II
Pro

16 bit 16 bit

2006 Floating
point
arithmetic

Sahin
et al.
(2006)

3-layers 2 1 3 Sigmoid 6 9 3 – – – Spartan II

32 bits FP 32 bits
FP

2S200

2006 Neuron
model

Huitzil
(2006)

Neuron Each
neuron
have
8 input
max.

Sigmoid max:150 – – – – 87
MCPS

XC2V2000-
5

– – – 9 bit FxP

a Blind signal separator and adaptive noise canceling.
b Sign-magnitude.
c Reconfigurable orthogonal memory multiprocessor.
d Synergetic approach to control theory.
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Table 30
HW implementations of neural systems – Digital Programmable Integrated Circuits (4).

Year Applications Ref. Type of ANN In Out Hidden Activat. function No. of
neurons

No. of
synapses

No. of
layers

Learning On/off
chip

Speed Device

2007 Mobile robotic
vehicles

Pearson et al. (2007) Speaking NN (LIF
neurons (a))
(α, β-
neuroprocessor: 10
NPE)

α:
384

384 – – 112/NPE 912/NPE – – – – XC2V1000F

β:
2256

2256 64/NPE 1024/NPE

16 bit 16 bit

2007 Classification Patel et al. (2007) MLP (bit-stream) 2 1 2 Stochastic side effect 3 6 2 Backprop. (bit-
stream)

On/Off – APEX200

4 3 4 7 28 2
8 bit – – –

2007 PWL (activation
function)

Ferreira et al. (2007)n Feedforward NN 1–16 1–16 1–16 Hyperbolic tangent (PWL),
linear (Out)

– – 3–17 – Off – EP1C20F324C7

32 bit
FP

– (Matlab)

2007 Space vector
modulator

Muthuramalingam
et al. (2007)

Multilayer 1 3 6–6–6 Log & tan sigmoid 21 96 5 Backprop. Off – XCV50HQ

8/10/ 12/
16/32

bit 8‥32 bit

2007 Classification, image
processing

Torres-Huitzil et al.
(2007)

3-layer 2 3 15 Sigmoid 20 75 3 – Off 130 MHz XCV2000E

10 bit FxP – (Matlab) ‥
Diabolo 16 16 5 Linear 37 160 3 90 MHz

9/11/12
bit FxP

–

2008 General issues Hu et al. (2008)n ANNs – – – Sigmoid, ramp, etc. – – – – – – FPGAs
(generic)

– – – 8 bit 16 bit

2008 Lossy compression
digit. images

Kurdthongmee
(2008)

Kohonen-SOM 3 1 – – – 256 Competitive
unsupervised

On 24.2 MHz XC2VP1000

8þ1
bit

–

a Leaky integrate and fire.
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data such as air temperature and total solar radiation, and can
be used for prediction of the PV electrical energy output under
actual climatic conditions. The model has been developed and
simulated under Matlab/Simulink and the optimal configura-
tion has been written in VHDL on ModelSim and then imple-
mented on a FPGA. The device is Virtex II (XC2V1000) from
Xilinx.

� Hasanien (2011) in the article “FPGA implementation of
adaptive ANN controller for speed regulation of permanent
magnet stepper motor drives” studied the dynamic response of
a PMSM under full load torque and under load disturbance.
The study was performed simulated and experimentally. As
other papers reviewed, the environment Matlab/Simulink is
used for simulation. The ANN adaptation is the Widrow–Hoff
algorithm. The input vector of the ANN controller consists of
the reference ωref, the actual motor speed ωðtÞ, and the
previous output signal of the ANN controller uðt�1Þ. The
previous output of the ANN is added to the inputs as a
stabilizing signal. The ANN structure is 3�4�1. The effective-
ness of the proposed ANN controller in comparison with a PI
controller; the speed response is very smooth and the ripple is
reduced to a very small value in compared with the conven-
tional PI controller. The device chosen is a FPGA XC3S500E
Spartan-3E from Xilinx on the platform Spartan-3E Starter
Kit board.

� Cárdenas et al. (2012) in the article “Development of a FPGA
based real-time power analysis and control for distributed
generation interface” presented the development and the
experimental evaluation of a power control system for a
single-phase grid-connected which has several energy sources
connected. An ADALINE network is used for control and
synchronization of the power of the electric network. Harmo-
nics are calculated from current and voltage signals in real time
and the number of the harmonics may vary (4/8/16/32/50). The
number of inputs is 2 (voltage and current) and the number of
outputs is 1. The learning is preformed by means of Widrow–

Hoff algorithm. The article performs a comparison between the
Adaline network and the FFT implemented off-line on Matlab.
The results are similar. The analysis and control are implemen-
ted on a FPGA XC2VP30 from Xilinx.

� Soleimani et al. (2012) in the article “Biologically inspired
spiking neurons: piecewise linear models and digital imple-
mentation” proposed PWL models with a fewer number of
multipliers for implementations of spiking neural networks
on FPGAs. The models replaced the operation “square” by
a comparison or “absolute value”; this means that in digital
implementations the multipliers are replaced by comparators
which implies that they can implement a large number of
neurons. The network is trained with a supervised and unsu-
pervised learning algorithm. The results show 91.7% accuracy in

Table 31
HW implementations of neural systems – Digital Programmable Integrated Circuits (5).

Year Applications Ref. Type of
ANN

In Out Hidden Activat.
function

No. of
neurons

No. of
synapses

No. of
layers

Learning On/
off
chip

Speed Device

2008 Prediction,
identification

Lin and Tsai (2008) Wavelet 2 1 4–4 Gaussian first
derivative
(LUT)

11 28 4 Particle
swarm
optimization

On – XC2V8000

1 1 4–4 10 24 4

2009 Two-mass drive
system (torque-
speed)

Orlowska-Kowalska
and Kaminski
(2009)n

MLP 2 2 5–6 Sigmoid
Gauss linear
(Out)

15 – 4 Levenb.-
Marquar.

– – FPGAs
(generic)

RBF 2 2 40/70 44/74 – 3
– – – –

2011 Speed regulation Hasanien (2011)n Adaptive 3 1 4 Tansigmoid 8 – 3 Widrow–

Hoff (on-
line)

On – XC3S500E

– – – –

2012 Electric network Cárdenas et al.
(2012)n

ADALINE 2 1 – – – – – Widrow–

Hoff (on-
line)

On – XC2VP30

12 bit – – –

2012 Pattern
classification

Papadonikolakis
and Bouganis
(2012)

Max:
300

– – – – – – – – EP3SE260
Stratix III

– – – –

2012 Handwritten
alpha-digits
recognition

Soleimani et al.
(2012)

Spiking
ANN

20�16 A‥Z – – – – – STDP – – XC2VP30
Virtex-II
Pro

20
bit

FxP 20 bit
FxP

2013 Image deblurring Saadi and Bettayeb
(2013)n

MLP 3 3 2 – – – – ABCa On – Virtex5-
LXT

18
bit

FxP 18 bit
FxP

2013 Training RBFNN Fan and Hwang
(2013)n

RBF 4�4 1 8 Gaussian – – – LMSb On – Cyclone III

8�8 1 8
– – – –

a Artificial bees colony.
b Least mean square.
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the recognitions and the implemented PWL models are sig-
nificantly faster than the Izhikevich (2003) model (approxi-
mately 9.2 times on a Virtex II Pro) with a simple combinational
multiplier. The device chosen is a FPGA Virtex-II Pro XC2VP30
from Xilinx.

� Saadi and Bettayeb (2013) in the article “ABC optimized neural
network model for image deblurring with its FPGA implemen-
tation” try to improve radiological images degraded during
acquisition and processing. An autoregressive moving average
(ARMA) model is identified using an ANN. The network training
is improved using a novel swarm optimization algorithm called
Artificial Bees Colony (ABC), inspired from the foraging intelli-
gence of honey bees. They developed a 3-input 3-output
multilayer perceptron (MLP) with two hidden layers. The
optimized ARMA–ANN model was simulated under ModelSim
software, and the best configuration was implemented on a
Virtex5-LXT FPGA chip of Xilinx using VHDL. The timing results
of image deblurring executed on FPGA (fixed frequency about
62.5 MHz) and on Desktop PC indicate that execution time is
largely better on FPGA.

� Fan and Hwang (2013) in the work “Efficient VLSI architecture
for training radial basis function networks” presented a novel
architecture for the training of radial basis function (RBF)
networks. The architecture includes the circuits for fuzzy
C-means that perform the training of centers in the hidden
layer, and the circuit for the recursive Least Mean Square
algorithm which trains the connecting weights in the output
layer. The architecture is used as a hardware accelerator in a
system on programmable chip (SOPC) for real-time training
and classification. The RBF network was implemented using
low cost FPGA devices of the Altera's Cyclone III family.
Experimental results show that the proposed architecture is
an effective alternative for on-chip learning applications requir-
ing low area costs, high classification success rate, and high
speed computation.

5.2.3. Commercial processors
In this section, the general purpose processors with the

classical repertoire instructions as well as general purpose pro-
cessors which have introduced fuzzy processing instructions or
which incorporate a fuzzy coprocessor and platforms that incor-
porate general purpose processors will be considered. Also, the
DSP (Digital Signal Processor) devices will be examined.

General purpose processors: Here are some relevant approaches
in this kind of implementations shown in Table 32.

Of all these references, the following will be mentioned (*):

� Hammerstrom (1990) proposed a multiprocessor architecture
SIMD (Single Instruction Multiple Data) to develop applications
of artificial neural networks called “Adaptive solutions X1 chip”
in the work “A VLSI architecture for high-performance, low-
cost, on-chip learning”, later known as “CNAPS”. One of the
design ideas of this architecture is that it is a general purpose
application for the development of ANNs. As the article
emphasizes “The goal is an architecture that could be considered
a general-purpose microprocessor for neurocomputing”. The
device contains 64 processors, with an instruction bus of 32
bits, a global bus of 8-bit outputs, a global bus of 8-bit input
and an inter-processor bus of 4-bit. It also contains a 4 kbyte
SRAM memory for weights, 32 registers of 16 bits, a 8�16-bit
multiplier, an adder of 32 bits, etc., for each processor. It can
implement a wide variety of learning algorithms and signal
processing algorithms. At 25 MHz, the performance data are
(a) 1.6 GCPS in internal multiplications (in non-learning mode),

(b) 12.8 GCPS for 1-bit weights and (c) 260 MCUPS (connec-
tions considering up-date learning) with back-propagation
learning mode. It requires an external instructions sequencer
that can work with multiple devices simultaneously.

� Leonhard et al. (1995) in the paper “ArMenX: a flexible plat-
form for signal and image processing” presented a flexible
platform for parallel processing composed of replicated nodes.
Each node consists of a Transputer (Inmos T805), a FPGA (Xilinx
XC4010), and a DSP (Motorola 56002). This structure allows for
a high level neural network programming environment. The
design has been implemented in three layers: (a) upper layer –
message passing MIMD computer (T805) þ RAM, (b) middle
layer – a network of FPGAs (XC4010), and (c) bottom layer –

DSP (M56002) þ SRAM chips tightly coupled to the FPGAs. The
paper describes several examples. One of these is an ANN with
multilayer perceptron for handwritten digit recognition. The
structure for the multilayer perceptron is 256 input neurons, 40
hidden neurons, and 10 output neurons. In this example, the
transputer loads the input vector onto the RAM of the DSP, then
the transputer interrupts its DSP and the DSP computes the
first layer of the ANN. When this computation is finished, each
DSP interrupts its transputer. The input vector for the next layer
is the output vector computed during this step. Afterwards,
each FPGA initiates a DMA (Direct Memory Access) session,
taking the partial output from its DSP RAM, and sends it to the
other nodes. The learning process consists of minimizing an
energy function by updating the synaptic weight values. The
error vector (difference between the overall output vector and
a target vector) is retropropagated through layers, from output
to input.

Commercial DSPs: The implementations on DSPs are also inter-
esting. Some relevant approaches of this kind are shown in
Table 33.

In this regard the following works should be mentioned (*):

� Card et al. (1998) in the article “Competitive learning algo-
rithms and neurocomputer architecture” presented a reconfi-
gurable parallel neurocomputer architecture applied to digital
implementations of a competitive learning and self-organizing
feature maps (SOFMs). The reconfigurable machine described
employs DSP computations in a bus-based architecture with
FPGAs primarily for reconfigurability. The architecture is based
on nodes named Processing Elements (PEs) which consist of
one DSP (primary processing unit) and three FPGAs (message
decoder, preprocessor, and postprocessor). The estimation of
the upper limit of the PEs is in the range of 16–64. Table 34
shows the performance of the DSP–FPGA machine compared
with other representative workstations. The DSP device is a
Motorola 96002 and the FPGA is a Xilinx 3090.

� Boquete et al. (2002) in the article “Hardware implementation
of a new neurocontrol wheelchair-guidance system” presented
a neurocontroller based on a newmodel of radial basis function
(RBF) recurrent neural network, where the radial basis function
is fed back by means of finite impulse response (FIR) filters.
A Kalman filter identifies the wheelchair on-line and is used to
propagate the control error towards the neurocontroller coeffi-
cients. The wheelchair is a two-input and a two-output system.
Inputs: angle speed of the right-hand and left-hand wheel;
outputs: linear and angle speeds. The control is divided into
two levels: low level control (PID: drivers of the wheelchair's
motors) and high level control (neural controller). The neuro-
controller generates the signals for controlling the plant output
and the PID controller ensures that the speed of each wheel
corresponds as closely as possible to that sent by the neural
controller. The low level control is performed on a FPGA from
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Xilinx (XC4000) and the high level control is performed
on a DSP. The DSP is TMS320C31 from the company Texas
Instruments. Finally the article mentions that the user has
various wheelchair-guidance options, joystick, breath-expul-
sion, voice, etc.

� Venayagamoorthy et al. (2003) presented the work “Imple-
mentation of adaptive critic-based neurocontrollers multi-
machine for turbogenerators in a power system” applied to
turbines for power generation control, replacing the conventional
automatic voltage regulators (AVRs) and turbine governors. The
work shows the design of a hardware implementation of non-
linear excitation and turbine neurocontrollers based on dual
heuristic programming (DHP) theory (a member of the adaptive
critic designs (ADC) family) for turbogenerators in a multimachine
power system. Werbos (1992) proposed ACDs as a new optimiza-
tion technique of neural-network combining concepts of reinfor-
cement learning and approximate dynamic programming. An
experiment is performed on a microturbine (driven by a DC
motor) which drives a microalternador. The DHP neurocontrollers
are tested for dynamic and transient operation for the following
three disturbances: (a) an inductive load addition along the
transmission line, (b) an increase in the transmission line

Table 32
HW implementations of neural systems – digital general purpose processors.

Year Applications Ref. Type of ANN In Out Hidden Activat. function No. of
neurons

No. of
synapses

No. of
layers

Learning On/off
chip

Speed Device type

1990 General Hammerstrom
(1990)n

Several 203 21 64 Sigmoid – – 3 No – 1.6
GCPS

μ P X1

12.8
GCPS

8/16
bit

8
bit

1/8/16
bit S/M

Backprop.,
etc.

On 260
MCUPS

1995 Image Leonhard et al.
(1995)n

MLP, Hopfield 256 10 40 – – – 3 Backprop. On – Transputer–
FPGA–DSP

– – – –

1997 Cache
management

Hammami (1997) Backprop, – – – – – – – Backprop.,
LVQ

On – R4000

64
bit

FP 64 bit FP Recurrent

2001 General Binfet and
Wilamowski
(2001)

Cascade (fully
connected),

2 1 – Sigmoid, elliot,
tang. hyp., etc.

4 – 2 Backprop. On – μ C
68HC711E9

6 – 2
MLP 6 7 – 2

8
bit

8 bit

Table 33
HW implementations of neural systems – Digital Signal Processor.

Year Applications Ref. Type of ANN In Out Hidden Activat.
function

No. of
neurons

No. of
synapses

No. of
layers

Learning On/
off
chip

Speed Device

1995 Birdsong
recognition

McIlraith and Card
(1995)

Back-prop. 10/
19

6 12 – 28/37 – 3 Backprop. Off – DSP –

8
bit

8 bit

1998 General Card et al. (1998)n SOFM
competitive
learning

– – – Sigmoid – – – Comp. learning On 2
MCUPS

M96002(DSP)

– – – – X3090(FPGA)

2002 Wheelchair Boquete et al.
(2002)n

RBF 2 2 – FIR filter – – – Gradient descent On – TMS320C31

– – – –

2003 Energy
generation

DHPa 12 2 14 Sigmoid – Reinforcement
(critic and action)

Venayagamoorthy
et al. (2003)n

6 2 10 – 3 On – TMS320C6701

32
bit

FP 32 bit FP

a Dual heuristic programming.

Table 34
Performance comparison with several workstations.

Implementation MCUPS

Current M96002 DSP–FPGA (20 MHz) 2
Projected DSP–FPGA machine (16 PEs) 29
Intel Pentium II (300 MHz) 13
Sun Ultra 1/170 UltraSparc (167 MHz) 17
Sun Ultra 30 Ultrasparc (296 MHz) 32
DEC AlphaStation 21164 (500 MHz) 36
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impedance and (c) a temporary three-phase short circuit. The
tests were carried out with different controller combinations and
compared to the conventional controllers, the neurocontrollers
performance never degraded during these tests and the DHP
neurocontrollers consistently had better damping. Depending on
the type of test carried out, the DHP neurocontrollers have
settling times faster than those obtained with the other con-
trollers by 2–10 s. The device used is the TMS320C6701 from
Texas Instrumentss operating at 160 MHz.

5.3. Mixed neural implementations

The most common mixed implementations are based on analog
circuits that incorporate some type of digital memory to store the
weights and which need a D/A converter for treatment. These
avoid the use of capacitors because of limited accuracy. Another
type of mixed implementations, typical of past years, is presented
in the FPGAs containing converters A/D and D/A for the treatment
of external signal input and output.22

5.3.1. Dedicated Integrated Circuits
Within these implementations, the following references could

be mentioned in Table 35.
Among the various proposals shown in Table 35, the following

will be cited:

� Lee and Sheu (1990) implemented a general purpose neural
device at work, “A compact and general-purpose neural chip
with electrically programmable synapses” containing 64 neu-
rons and 4096 synapses programmable on DRAM with refresh
cycles of 0.2 s and accuracy of 8 bits. The synapse weighting
data are stored in the buffer memory and are used to periodi-
cally refresh the on-chip synapse voltage through a D/A
converter. Since the neural computation and synapse weighting
refresh can be conducted concurrently, no dead time for
refreshing the synapse voltage is required. The work does not
mention the speed of the device. The device was developed
with scalable CMOS technology of 2:0 μm.

� Boser et al. (1991) in the paper “An analog neural network
processor with programmable network topology” present an
analog–digital mixed device, named ANNA (Analog Neural
Network Arithmetic unit), that performs over 2000 multiplica-
tions and additions simultaneously. Computations are per-
formed with 6-bit accuracy for the weights and 3 bits for the
neuron states after A/D conversion. The number of inputs per
neuron varies between 16 and 256. The weights are 4096 and
are stored on capacitors which must be refreshed every 110 μs.
The peak performance of the chip is 5 GCPS with a clock rate of
20 MHz. It has been implemented a neural network for optical
character recognition (handwritten digits). This network
contains over 133,000 connections, is evaluated in 1 ms and
recognizes 1000 characters per second which corresponds to
130 MCPS. The paper highlights that this rate constitutes a
speedup of two orders of magnitude over a DSP based imple-
mentation (20 characters per second with a DSP32C from
AT&T). The chip was fabricated in a single-poly, double-metal
0:9 μm CMOS technology with 5 V power supply.

� Shima et al. (1992) proposed an architecture formed by two
high speed VLSI devices, performed with CMOS technology
0:8 μm, “Neuro chips with on-chip back-propagation and/or
Hebbian learning”. The first device contains the matrix of
synapses and the second the neuronal matrix. The matrix

contains the weights of synapses incorporating local control
mechanism of the weights. The neuronal matrix contains
neurons with backpropagation learning algorithms and/or
Hebbian learning. The network is formed by two devices
containing 24 neurons and 576 synapses (24�24) with 8 bits
of precision.

� Lu et al. (2001) in the work “A programmable on-chip BP
learning neural network with enhanced neuron characteristics”
presented a novel neuron circuit with programmable para-
meters, generating the sigmoidal function and their derivatives.
The neuron is analogic and its analogic weights are digitally
stored on a RAM by means of an ADC and recovered by means
of a DAC. The weights are digitally updated by means of a 7-bit
ADC and added to the current value of 12 bits. The new value is
digitally stored on a RAM. The neuron operates in transcon-
ductance, built with strong-inversion biased transistors. The
computation rate is 12 MCPS. The work performs two experi-
ments in order to determine the behavior of the neuron: (a) a
non-linear partition problem and (b) a sin(x) function approx-
imation. The results show, in the first experiment, a conver-
gence in 1 ms and a good approximation (unquantified but
shown graphically) in the second experiment. The NN has been
implemented with a standard 1:2 μm CMOS process and the
simulation has been performed with the SPICE tool.

� Minkovich et al. (2012) in the article “Programming time-
multiplexed reconfigurable hardware using scalable neuro-
morphic compiler” presented a programmable front-end com-
posed of a neuromorphic compiler and a digital memory, based
on the concept of synaptic time multiplexing (STM). The neuro-
morphic compiler automatically translates any given neural
architecture to hardware (neuromorphic system). The neurons
and synapses are stored on an analog core. The device also
contains a digital memory and an analog memory (capacitors).
The implementation has 106 neurons and 1010 synapses. The
article provides a neural simulator feedback loop that allows
improvement of the network partition and parallelization of the
simulation. Also, among other advantages, it allows for synapses
with larger synaptic conductances to have shorter path lengths
and, thus, ensures more reliable transmission. The simulator can
also provide firing rate information for each neuron. The archi-
tecture has been performed on 90 nm CMOS technology.

� Erkmen et al. (2013) published the work “A mixed mode neural
network circuitry for object recognition application”. They
developed a general purpose Conic Section Function Neural
Network (CSFNN) using full custom 0:5 μm CMOS technology.
The feedforward computation units are all analog current mode
circuits while the control unit and storage of the network
parameters are digital. The digital part was composed of
memories (EEPROM cells), decoders, and the control unit. The
architecture of the CSFNN allows a maximum size of 16 inputs,
a hidden layer with 16 neurons, and 8 outputs and was trained
using hardware-in-the-loop techniques. The work demon-
strates that the performance for typical object recognition
problems is similar to that obtained using a software approach.
Moreover, the forward propagation time was significantly
reduced; it takes 0:24 μs for the CSFNN chip and about 1 ms
on a Pentium4 with 2 GB RAM.

5.3.2. Programmable Integrated Circuits
The following proposal, reflected in Table 36, is a combination

of dedicated (VLSI) and programmable (FPGA) circuits but their
functionality is fully programmable.

Among the two proposals shown in Table 36, the following will
be cited:

22 In this case, it could be accepted that the incorporation of converters A/D
and D/A does not substantially change the digital nature of the device.
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Table 35
HW implementations of neural systems – digital mixed.

Year Applications Ref. Type of ANN In Out Hidden Activat.
function

No. of
neurons

No. of synapses No. of
layers

Learning On/off
chip

Speed Technology

1990 General Lee and Sheu (1990)n 2-layer 64
(mux8to1)

64
(mux8to1)

– – 64 4096 – – Off – CMOS
2:0 μm

64 64 – 12 144
Analog 8 bit

1991 General, character
recognition

Boser et al. (1991)n Multilayer, Hopfield,
LRFa, etc.

16‥256 Multiplexed
Z8

– – Multiplexed
Z8

Multiplexed
Z4096

– – Off 5 GCPS CMOS
0:9 μm

64 32 32–32 160 4096 4 0.8
GCPS

(ANNA
chip)

64�1 – – 64 – 2.1
GCPS

16�16 – – – – 4.7
GCPS

Analog - 3 bit 6 bit

1991 General Arima et al. (1991a) Fully feedback
connection

25 100 – – 125 – 10k Boltzmann On 1� 2 μs CMOS
1:0 μm

Analog –

1992 General Satyanarayana et al.
(1992)

Program. 2 1 4 Sigmoidal 7 1024 2 Weight
perturbation

On – CMOS –

8 4 24 36 3
Analog 8 bit

1992 Voice recognition Shima et al. (1992)n Multilayer 24 1 – Sigmoidal 24 576 1 Backprop.,
Hebbian

On – CMOS

24 24 24 72 3 0:8 μm
Analog 8 bit

2003 General Lu et al. (2001)n MLP, – 2 1 – Sigmoidal – 24 2 Backprop On 12
MCPS

CMOS

1 1 5 – 3 1:2 μm
Analog 12 bit

2012 Biological neuron Minkovich et al.
(2012)n

Neuromorphic system – – – – 106 1010 – STDPb On – CMOS

– – – – – 90 nm

2013 Object recognition Erkmen et al. (2013)n CSFNNc 16 8 16 – – – 3 HW-in-the-
loopd

off 0:24 μs CMOS

Analog 8 bit 0:5 μm

a Local receptive fields.
b Spike timing-dependent plasticity.
c Conic section function neural network.
d Hardware-in-the-loop techniques.
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� Sackinger and Graf (1996) (AT&T Bell Labs) presented in the
article “A board system for high-speed image analysis and
neural networks”, a system based on the ANNA device (Boser
et al., 1991). It is applied to optical character recognition, noise
removal, etc. It consists of a card containing two fully program-
mable analog VLSI devices (ANNA neural-network) and four
Xilinxs FPGAs, 4005-55PG156, memory and interfaces. The
card industry is presented as a “double Europe” (6U) and under
VME Bus. ANNA devices are performed by CMOS technology of
0:9 μm. Each ANNA device evaluates 8 neurons with up to 256
synapses per neuron in 4 clock cycles (4�50 ns). The card
features vary from hundreds of MCPS and 2 GCPS depending on
the topology of the network and the card has a recognition
speed of 1000 characters per second. The computational peak
performance is 10 GCPS.

5.4. Conclusions and complementary readings of HW
implementations for neuronal networks

The development of neural networks on an analog dedicated HW
has been given as a result of various factors. These are speed (a trend
mainly reflected in the 90 s) of adders and multipliers for the low
number of transistors required and a final important reason that
these architectures can keep the parallelism inherent in neural
networks. As regards the learning algorithms, there are two trends
in the implementation: learning on-circuit or off-circuit (in the latter
case, in order to increase the speed of the network). The most widely
used algorithms are backpropagation and weight perturbation. As in
the case of fuzzy systems, the emergence of the FPAA in the 2000s, to
which researchers are beginning to pay attention, must also be noted,
but there are few contributions. Digital designs have introduced
more stability against factors such as noise, temperature or voltage
variation and, finally, easily achievable cascadability.

Regarding mixed devices, generic devices have been developed
where the weights are stored on a digital memory, requiring D/A
converters for processing. There are also implementations on
FPGAs incorporating A/D and D/A. Single-chip or multi-chip
developments are tending towards high performance computing
structures.

Considering the main features on dedicated devices, Table 37
shows the summary of the data extracted from the works
consulted: analog, digital and mixed-dedicated circuits.

The increase in the integration density, in the last decade, has
modified the design trend targeting digital devices. Dedicated
processors have been discontinued, tending to techniques which
are more structured, as employed in the development of the ASICs.
Here a small area for integration is required, as well as a greater
tendency to use the FPGA, due to the high parallelism and their
ability for reconfiguration. Regarding learning algorithms, as in
dedicated devices, there are two trends: learning on-line and off-
line. Some implementations perform on-chip learning. The most
widely used algorithm is pure or modified (e.g. pulse mode
eliminates multipliers) backpropagation. The off-line learning is
performed off-chip and weights are loaded into the FPGA.

There are some contribution on DSPs but it is the FPGAs that
show the tendency to continue in implementing neural networks.
In addition, the FPGAs present low “time to market”. Table 38 shows
the main features of neural networks on analog and digital pro-
grammable devices.

With regard to complementary readings, the following works
should be mentioned. On analog hardware, the article by Draghici
(2000) “Neural networks in analog hardware—design and
implementation issues” should be consulted. It gives an interesting
view of analog hardware and the pros and cons regarding
digital solutions until 2000. Also, it is interesting to cite the
article of Misra and Saha (2010) “Artificial neural networks in
hardware: a survey of two decades of progress” which examines

Table 36
HW implementations of neural systems – Digital Programmable Integrated Circuits.

Year Applications Ref. Type of ANN In Out Hidden Activat.
function

No. of
neurons

No. of
synapses

No. of
layers

Learning On/
off
chip

Speed Technology/
device

1991 Image analysis Sackinger
et al.
(1991)

Multilayer 16‥256 – – – – 4096↑ – – On
(DSP)

30
MCPS
‥

CMOS
0:9 μm
(ANNA)
DSP32C

‥ 400
MCPS

12 bit Analog 6þ4 bit
1996 Text location,

Opt. character
recognition, etc.

Sackinger
and Graf
(1996)n

Convolutional,
LRF, multilayer,
CNN, etc.

512�512 Z8� 2 – Sigmoid,
others

Z8� 2 Z256� 8� 2 – – – 10/20
GCPS
(peak)

CMOS
0:9 μm
(ANNA�2)
X4005�4

– – – 6 bit

Table 37
Summary of the main features of neuronal networks on analog, digital and mixed-dedicated circuits.

Circuit Activat. functiona Learna Speed Tech. μm CMOS Current Power

CPS CUPS mW W

Analog Sigmoid, bell,
Gaussian

Weight perturbation, backprop., Boltzmann 10M ‥ 1T 10M ‥ 80T (90 nm), 0.35 ‥
1.3

35 μA‥15 mA 6, 53.3 ‥
320

3,
4.5

Digital Sigmoid, any (LUT) Backprop., adaptive, LVQ 110M, 130M, 1.3G,
1.6G

60M,
0.66G

0.18 ‥ 0.8 – 11.2 1, 3

Mixed Sigmoid Backprop., weight perturbation, Boltzmann,
etc.

12M, 5G 36G (90 nm), 0.5 ‥ 2 – 200, 250 1.5

a In order to the preferences of the articles consulted.
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the implementations of ANNs on different HW, and also some
papers with analog designs, until 2010. The book “FPGA imple-
mentations of neural networks” (Omondi and Rajapakse, 2006) is
also interesting.

In a specific area such as image processing, the revision made
by Egmont-Petersen et al. (2002) “Image processing with neural
networks—a review” is also of interest. It analyzes a period of 15-
years until 2000.

6. HW implementations for neuro–fuzzy systems

The hybrid systems, composed by neural networks and fuzzy
systems, are divided into two system types: on one hand the type
FNN (Fuzzy–Neural Network) (Buckley and Hayashi, 1994; Chen
and Teng, 1995; Zengqi and Zhidong, 1996) that can be formed by
an ANN capable of handling fuzzy information, and on the other
hand, the type NFS (Neural–Fuzzy System) (Takagi and Hayashi,
1991) formed by a fuzzy systemwith neural structure and learning
ability. This last case still presents a set of interpretable rules after
learning because it remains as an FIS. It is on these latter that the
largest number of hardware implementations has been performed
in different application areas. As in Section 5, the implementations
are (a) analog, (b) digital, and (c) mixed. The classification of these
systems is the same as that adopted in Table 3.

6.1. Analog neuro–fuzzy implementations

6.1.1. Dedicated Integrated Circuits
In such implementations there are hardly any relevant papers,

given the complexity in the design of a dedicated analog device.
Table 39 shows these papers.

Of all of these, the following are highlighted (*):

� Rodriguez-Vazquez and Vidal-Verdù (1996) presented an analog
hardware to implement neuro–fuzzy systems, “Hardware imple-
mentation of neuro/fuzzy systems as mixed-signal chips”. It is
based on CMOS transistor technology and the membership func-
tions are performed on blocks operating in transconductance
mode. The inputs are voltage and the outputs are current. This
hardware includes a learning method based on a variation of
gradient descent, instead of computing derivatives using the
method known as perturbation of the weights (Jabri and Flower,
1992).

� Conti et al. (1998) in the work “A current-mode neuro–fuzzy
network” proposed a new current-mode circuit for the imple-
mentation of the membership functions. The circuit is a current

driven double differential pair biased in strong inversion, and
furthermore incorporates a multiplier for inferences and one
divider for normalization. As an application example of the
architecture proposed, it implements a controller of an air
conditioning system. The number of rules is three and the
number of membership functions is three (two trapezoidal and
one triangular), one input (temperature) and one output (heater);
the output has three membership functions of rule consequents.
The device was developed with CMOS technology of 0:8 μm.

� Sultan and El-Sayed (2000) presented the work “Analog VLSI
implementation of adaptive neuro–fuzzy inference systems”,
where they discuss the implementation of an ANFIS with on-
chip learning. The system is trained with the perturbative
stochastic learning method applied to predict a chaotic time
series (Mackey Glass). The stochastic algorithm specifies incre-
mental updates in the weights using a stochastic approxima-
tion to true gradient. The weights are stored on capacitors. Two
membership functions are assigned to each input, there are
4 inputs (four past samples), and thus there are sixteen rules.
Trapezoidal membership functions are employed and imple-
mented using CMOS current-mode techniques. The project has
been simulated on SPICE with CMOS technology of 1:2 μm.

� Wang and Jin (2006) in the article “Neuro–fuzzy system with
high-speed low-power analog blocks” presented several
voltage-mode analog CMOS circuit blocks for the fuzzy system.
The neuro–fuzzy system is based on a Mamdani model. This has a
Gaussian-like membership function circuit, a minimization circuit,
and the defuzzification circuit not using division. The system
has two-input/one-output and with a complexity of 25 rules.
The number of membership functions is 5 for each input. The
defuzzification is the COA method. The values of weight ωi are
generated by Matlab. Due to the compact architecture and the
low supply voltage the circuit consumes only 1 mW. The opera-
tion speed of inference in the designed neuro–fuzzy system is
5 MFLIPS with the power-consumption of only 1 mW. All the
blocks have been fabricated in SMIC 0:18�μm mixed-signal
CMOS technology. This work presents a comparison between this
implementation and four previous works.

6.1.2. Programmable Integrated Circuits
Undetected.

6.1.3. Commercial processors
Undetected.

Table 38
Summary of the main features of neural networks on analog and digital programmable circuits.

Device Type Activat. functiona Learna Speed

CPS CUPS Freq. Hz

FPAA Comparator, sigmoid PWL Backprop. (Matlab) 6M – –

FPGA Sigmoid, threshold, Gaussian,
hyperbolic tangent, ramp,
tansigmoid

Backprop., gradient,
unsupervised,
resilent prop., stochastic,
comparative
unsupervised, Widrow–Hoff, etc.

211k, 14.6M ‥
87M

568k ‥ 857k, 5M ‥ 81M,
1G

24.2M ‥
90M

Commercial
processor

General
purpose

Sigmoid, hyperbolic tang. Backprop. 1.6G, 12.8G 260M –

DSP Sigmoid, FIR filter Backprop., gradient, comp.
learning, reinforcement

– 2M –

a In order to the preferences of the articles consulted.
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6.2. Digital neuro–fuzzy implementations

In this subsection the same comments can be made as those
made in Section 5.2.

6.2.1. Dedicated Integrated Circuits
Undetected.

6.2.2. Programmable Integrated Circuits
Here are some relevant approaches of this kind of implementa-

tions presented in Tables 40 and 41.
The following will be cited (*):

� Baturone et al. (2001) in the article “VLSI design of universal
approximator neuro–fuzzy systems” presented two strategies
for generating code for a type NFS Takagi–Sugeno zero-order.
One strategy is based on memory for storage of parameters and
the other is based on the fuzzification and calculation of the
activation of the rules. The first strategy, through synthesis
tools both Sinopsis as Xilinxs, generates code for Xilinxs

FPGAs and the second also generates VHDL code and code for
Xilinxs FPGAs. They also allow both on-line and off-line
learning.

� Sameh and Samir (2005) in the article “Generic floating point
library for neuro–fuzzy controllers based on FPGA technology”
implemented FSOM networks (Fuzzy Self Organizing Map)
and ANFIS (Adaptive Neuro Fuzzy Inference System) on a FPGA

through the FPGA-Advantage tool from Mentor Graphics.
Calculations are performed using floating point FPU (Floating
Point Unit) as a library module. Learning is off-line and off-chip
due to the difficulty of implementation. The training is per-
formed on Matlab and values are dumped on the device.

� Bosque et al. (2006) in the work “Efficient hardware/software
implementation of a neuro–fuzzy system on a SoPC” presented
the implementation of a neuro–fuzzy ANFIS type on a FPGA.
The implementation is done by creating a partition HW/SW on
the FPGA. SW partitioning algorithms implement a hybrid
learning network for a system of two inputs and one output.
On the HW partition feed-forward network is implemented.
After the completion of the learning process, the feed-forward
network is executed in 4 clock cycles. Operating at 67 MHz
gives a time of 60 ns per inference. The chosen device belongs
to the family of Alteras Excalibur and the processor is a hard-
core of ARM family.

� Fujimoto et al. (2007) (there are two works, one presented in
2006 and the other in 2007) in the work “An implementation
of the neuro–fuzzy inference circuit” implemented a back-
propagation learning algorithm on the FPGA hardware, achiev-
ing a high speed through parallel processing. The membership
functions are triangular, normalized and overlapping pairs. The
neuro–fuzzy inference circuit is described with a hardware
description language Verilog-HDL. The work does not mention
which FPGA they use.

� Echanobe et al. (2008) in the work “An adaptive neuro–fuzzy
system for efficient implementations” described an ANFIS

Table 39
HW implementations of neuro–fuzzy systems – analogics dedicated.

Year Applications Ref. Type of
NFS

In No. of in
MFs

Type of
in MFs

Out No.
of
out
MFs

Type of
out MFs

No.
of
rules

Defuzzification Learning On/
off
chip

Speed Technology

1995 General Rodriguez-
Vazquez
and Vidal-
Verdu
(1995)n

T–S 3 – Bell 1 – Singleton 4 T–S Weights
perturbation

On 5
MFLIPS

CMOS
1:5 μm

1997 General Moreno
et al. (1997)

T–S 3 2 – 1 – – 8 T–S – – 1–
5 MHz

CMOS
0:8 μm

1997 Low-cost
embedded

Conti et al.
(1997)

AINN1 1 3 Triang. 1 3 Triang. 3 COG – – – CMOS
(Simulat.
SPICE)

1998 Air
conditioned

Conti et al.
(1998)n

AINN 1 3 Trapz.,
triang.

1 3 Triang. 3 – – – – CMOS
0:8 μm
(Simul.
spectra)

1999 General Vidal-Verdu
et al. (1999)

T–S 3 Clustering Trapz.,
triang.,
bell

1 4 Singleton 4 T–S Weights
perturbation

Off 5
MFLIPS

CMOS
1:6 μm

2000 Chaotic
prediction

Sultan and
El-Sayed
(2000)n

ANFIS 4 2 Trapez. 1 16 Singleton 16 ANFIS Stochastic
gradient

On – CMOS
1:2 μm

2000 Fuzzy
partition
MFs

Conti et al.
(2000)

3-layer n-
dimensional

m Trapez – – – – – – – – CMOS
(Simulat.
cadence)

2004 Current-
mode
circuits

Wang and
Jin (2004)

5-layer – – Gaussian – – Gauss – COG – – – CMOS
0:35 μm
(Simulat.
HSPICE)

2006 General Wang and
Jin (2006)n

Mamdani 2 5 Gaussian 1 – – 25 COA (div. free) Matlab Off 5
MFLIPS

CMOS
0:18 μm

1 Approximative identity neural network.
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Table 40
HW implementations of neuro–fuzzy systems – digital (1).

Year Applications Ref. Type of NFS In No. of in MFs Type of in
MFs

Out No. of out
MFs

Type of out
MFs

No. of rules Defuzz. Learning On/off chip Speed Device

2001 Generic Baturone
et al. (2001)n

T–S 2 3–5 Triang. 1 15 Singleton 15 T–S Weight
perturb.,
gradient-
descent

On/off, chip-
in-the-loop

FPGA
Xilinx
(generic)

– – – – 8 bit

2004 Generic Bosque et al.
(2004)

ANFIS 2 4–4 Triang. 1 16 Singleton 16 ANFIS Hybrid (off-
line)

On 69.5 MFRPS
(57.5 ns)

EPXA4-
F672C1 μP
ARM922T
(SoPC)

5–5 25 25
16 bit FxP

2005 Generic Sameh and
Samir
(2005)n

FSOM 2 - Triang., bell 1 - Singleton – Sum of fire
rules

Hybrid Off (Matlab) – FPGA
(generic)

ANFIS 3 – 1 –

32/14 bit FP

2006 Generic Bosque et al.
(2006)

PWM–ANFIS 2 5–5 Triang. 1 25 Singleton 25 ANFIS Hybrid (off-
line)

On 67 MFRPS
(59,7 ns)

EPXA1 μP
ARM922T
(SoPC)

2 bit FxP

2006 Real-time
learning

Fujimoto
et al.
(2006,
2007)n

IF–THEN 2 5–5 Triang. 1 – – – Sum average Self-tuning
(conse-
quents)

On 13.2 ms FPGA
(generic)

9–9 28.9 ms
12 bit FxP 9 bit FxP –

Year Applications Ref. Type of
NFS

In Out Hidden
(neurons)

Activat.
function

No. of
neurons

No. of
synapses

No. of layers – Learning On/off Speed Device

2006 Pattern
recog.,
system
identif.,
image
process.

Pedram et al.
(2006a,
2006b)

LOLIMOTa

(T–S–K
type)

n 1 m Gaussian,
weighted
sum (out)

mþ1 ðnþ1Þ �m 2 – Divide and
conquer

On 8-b:
92.5 MHz 16-
b: 76.4 MHz

EP1S10F

32-b:
63.3 MHz

EP1S40F

8–16–32 bit

a Local Linear Model Tree.
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network implemented on an FPGA introducing certain restric-
tions on the membership functions to simplify the network
HW. Functions are triangular, remaining normalized and with
overlapping pairs. The parameters of the network reside in the
memory of the FPGA. The implementation was done on a
Stratix II device via Alteras Quartus II tool. The rate achieved
for an inference is 34 ns or, in other words, 29 MFIPS for a clock
frequency of 116.54 MHz.

� Nagamine et al. (2008) in the article “Fuzzy inference models
appropriate for digital circuit” proposed two models of learning
a fuzzy inference system and the implementation of one of
them on an FPGA. The two models are based on the model
division-free: division-free strict and division-free with learning
ensemble. Both models allow more effective implementation in
terms of size and processing speed. The main disadvantage is
that they are less accurate than the conventional division,
although the second surpasses the first in accuracy. The
membership functions are triangular and the restriction is
imposed to give normalized and overlapping pairs. The model
implemented is the division-free strict and implementation is
done on a Spartan2E Xilinxs device by means of ISE tool. The
article performs a comparison of speeds and obtained a clock
speed of 37.34 MHz in the case of division-free and of 9.18 MHz
for classical calculation, which shows a rate 4 times higher for
the proposed model.

� Sundarambal et al. (2009) in the article “VHDL implementation
of neuro–fuzzy based adaptive bandwidth controller for ATM

networks” aim to maintain a quality of service (QoS) in ATM
(Asynchronous Transfer Mode). They proposed a neuro–fuzzy
adaptive bandwidth controller developed in VHDL. The archi-
tecture comprises the following subsystems: estimation of
Cell Loss Ratio (CLR) (2 inputs: trapez., 1 output: trapez.), an
Adaptive Congestion Controller (ACC) (3 inputs: trapez., 1 out-
put: trapez., triang.), an Adaptive Bandwidth Estimator (ABE) (3
inputs: trapez., 2 output: singleton.), and finally, an Adaptive
Admission Controller (AAC) (3 inputs: trapez., triang., 1 output:
trapez., triang.). It is interesting to note that the MFs are
generated by a Kohonen learning algorithm. It is implemented
on an Alteras Cyclone FPGA EP1C6Q240C8 using the Quartus
II tool.

� Aldair and Wang (2010) in the article “FPGA based adaptive
neuro fuzzy inference controller for full vehicle nonlinear active
suspension systems” introduced a Fraction Order PIλDμ (FOPID)
controller, an Evolutionary Algorithm which trains the para-
meters of the FOPID and an ANFIS for controlling the nonlinear
active suspension system. The inputs are the position error and
error rate, the output is the control of a hydraulic cylinder and
the membership functions are bell shaped. The data obtained
from the FOPID are the reference for the ANFIS design (is a sub-
controller of the ANFIS). The tool for Simulation has been
Matlab/Simulink and the tool for the simulation results has
been ModelSim XE. In this last case, the implementation
has been written in VHDL. The article presents a comparison
between the responses of Matlab and the FPGA, which are

Table 41
HW implementations of neuro–fuzzy systems – digital (2).

Year Applications Ref. Type of NFS In No. of
in MFs

Type of in
MFs

Out No. of
out
MFs

Type of
out MFs

No. of
rules

Defuzz. Learning On/
off
chip

Speed Device

2007 Generic
architecture

Kala and
Srinivas
(2006)

IF–THEN 4 – Any 2 – Any 1024 – – – – CoolRunner
(PLD)

8
bit

4 bit 8
bit

–

2007 Car-driving
system

Kao et al.
(2007)

IF–THEN
(adaptive)

2 – Triang. 1 – – – – Backprop. On – FPGA
(generic)

14 bit

2007 Asynchronous
pipeline

Lin et al.
(2007)

Feedforward 2 – Triang. 1 – – – Weighted
average

Backprop. On 192.31 kHz FPGA
(generic)

– – – –

2008 Generic Bosque
et al. (2008)

PWM–

ANFIS
n m Triang. 1 p Singleton mn

(activ:
2n)

ANFIS
(div.-free)

Hybrid
(On/off-
line)

On – FPGA
(generic)

2 7–5 1 35 Activ:
4

3 5–5–5 1 125 Activ:
8

8/16/32 bit

2008 Generic Echanobe
et al.
(2008)n

ANFIS 2 10–10 Triang. 1 100 Singleton Activ:
4

ANFIS Hybrid Off 29 MFIPS EP2S15

3 7–7–7 343
4 6–‥–6 1296

8 bit FxP

2008 General Nagamine
et al.
(2008)n

IF–THEN 2 5–5 Triang. 1 – – 16 Average Gradient
(div.-free)

On 37.34 MHz XCS300E

16 bit FxP 34

2008 Generation of
MFs

Fujimoto
et al. (2008)

IF–THEN 2 3↑�3↑ Triang. 1 – – 16↑ - Backprop. – – FPGA
(generic)

2008 Digital
predistorter

Zhai et al.
(2008)

ANFIS 1 – Bell
generalized

1 3 Linear 3 Sum Hybrid
(off-line)

Off – Altera –

12 bit
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similar. The work has been performed on the FPGA Spartan
XC3S700AN from Xilinx and the platform has been the Spartan
3E starter Kit board.

� Lin and Lee (2011) in the article “Implementation of a neuro–
fuzzy network with on-chip learning and its applications”
utilized the simultaneous perturbation method as a learning
algorithm. The advantage of this optimization method is its
simplicity. The method can estimate the gradient using only
values of the error function. The membership functions are
Gaussian but approximated with digital techniques using a
second order function without an upper saturation region
(Blake et al., 1998). The article analyzes the XOR problem and
a prediction of a chaotic signal problem, performing a compar-
ison between a software implementation and the hardware
implementation (FPGA). The results are similar. The device is a
FPGA Xilinx Virtex-II XC2V6000-4FF1152C.

� Chou et al. (2013) in the article “Optimized FPGA design,
verification and implementation of a neuro–fuzzy controller
for PMSM drives” presented a neural fuzzy controller (NFC) for
speed loop of permanent synchronous motor (PMSM) whose
parameters are adjusted by a RBF NN. The NFC is implemented
on a FPGA, describing the system by means of VHDL language.

The number of inputs is two (error of the rotor speed and error
change), the number of outputs is one (speed rotor) and the
membership functions are 7 (triangular overlapped by 2) for
each input. The RBF NN is applied in order to identify in real-
time the plant dynamic for providing exact plant information to
the learning algorithm of NFC. To simplify the computation of
the RBF, the Gaussian function (exponential) of the hidden
layer is approximated by means of Taylor series (12th order).
The system is co-simulated by Matlab/Simulink and the imple-
mentation is on a FPGA Cyclone EP2C70 of Altera. The execu-
tion time of the NFC on this device is 7:36 μs.

6.2.3. Commercial processors
The same considerations apply as those in Section 4.2.3.
General purpose processors: Here are some relevant approaches

of this kind of implementations presented in Table 43.
The following will be cited (*):

� Porto et al. (2002) in the work “A neuro–fuzzy approach
for hardware modeling of nuclear fusion reactors plasma”

Table 42
HW implementations of neuro–fuzzy systems – digital (3).

Year Applications Ref. Type of NFS In No. of
in MFs

Type of
in MFs

Out No.
of
out
MFs

Type of
out MFs

No. of
rules

Defuzz. Learning On/
off
chip

Speed Device

2008 Identify a
nonlinear syst.,
truck backing

Juang and
Tsao (2008)

Type-2
SONFS

2 – Interval
sets

1 – Mamdani 6 Sum
average

Kalman filter Off 54 MHz XC4V1X60

3 – 1 – 5
8 bit 13

bit

2009 Communications Sundarambal
et al. (2009)n

5-layer 2 2-3 Trapez. 1 3 Trapez.,
triang.

6 Weighted
average

Kohonen On – EP1C6

3 2–2–3 5 Cyclone
3 3–2–3 2 6–6 Singleton 9
3 3–5–3 Trapez.,

triang.
1 4 Trapez.,

triang.
23

8 bit

2009 Identification
and prediction

Lin and Lee
(2009)

Recurrent 2 – Gaussian 2 – – 12 Sum Simultaneous
perturbation

On – XC2V6000

NFN 3 1 15
16 bit FxP

2009 Obstacle
avoidance

Mahyuddin
et al. (2009)

Cooperative
NFS

3 4–4–4 Trapez.,
triang.

2 – – 40 LOMa Backprop.
(on-line)

On – Cyclone II
(SoPC)

2010 Suspension
systems

Aldair and
Wang (2010)n

ANFIS 2 – Bell 1 – Singleton – ANFIS Hybrid On – XC3S700AN

2010 Nonlinear funct.
generator

Saldaña and
Cardenash
(2010)

ANFIS 2 5–5 Triang. 1 25 Singleton 9 ANFIS Hybrid Off 10 μs XC3S200

8/16 bit FxP

2011 Classification,
prediction
(chaotic signal)

Lin and Lee
(2011)n

4-layer 2 – Gaussian
(LUT)

1 – – – Sum Simultaneous
perturbation

On 12.6 MHz XC2V6000

1 1
10 bit FxP

2012 Ambient
intelligence

del Campo
et al. (2012)

PWM–FIS 4 3–‥–3 Triang. 1 16 Singleton Sum Hybrid On/
off

100 MHz XC5VSX50T
(SoPC)

5–‥–5
8 bit 32

bit
8 bit

2013 Motor control Chou et al.
(2013)n

IF–THEN
and RBF NN

2 7–7 Triang. 1 – Singleton 49 (4
activ.)

Central
average

Gradient
descent

On 7:36 μs Cyclone

16 bit EP2C70

a Largest of Maximum.
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designed a behavior predictor of a nuclear fusion plasma. The
work performs a modelization of the nonlinear relation exist-
ing among the six forcing magnetic fields and the geometric
displacement of the high-temperature plasma. The member-
ship function shape is triangular and there are two for each
input, leading to a fuzzy model with 64 rules. The output is a
crisp value resulting from the minimum inference method.
The system has been implemented on a μ P ST52x420
with fuzzy instructions and the FUZZYSTUDIO 4.1 tool has
been used for importing the fuzzy algorithms previously
developed on the AFM (Adaptive Fuzzy Modeler) software tool
of STMicroelectronics.

� Kim et al. (2007) in the work “An intelligent wireless electronic
nose node for monitoring gas mixtures using neuro–fuzzy
networks implemented on a microcontroller” designed a
neuro–fuzzy system which classifies and quantifies binary gas
mixtures (NH3 and H2S). The classification is performed using a
pattern recognition algorithm using the fuzzy ART and ARTMAP
neural networks. The measures are transmitted to a Laptop
Computer. The software has been developed and simulated on
Matlab and the gas monitoring on LabVIEW. The device used is
the μ C MSP430F1611 from Texas Instrumentss.

� Dongale et al. (2012) in the article “AC induction motor control
—a neuro–fuzzy approach” presented a simulated (Matlab/
Simulink) and an experimental implementation (μ C) of a
neuro–fuzzy controller of an AC induction motor. The system
model is Mamdani type and has two inputs (error and error
change) and one output (speed). The inputs and output have
7 membership functions (triangular and trapezoidal) and the
number of rules is 49. The model is implemented on Simulink
(Matlab) using the neuro–fuzzy controller NARMA-L2; this
model performs the network training. The controller generates
the PWM sequence for a half bridge inverter. The hardware
implementation includes a three phase half bridge inverter and
a 0.5 HP, 1A motor. The device used is the μ C PIC 16F877A
of 8-bit from Microchip.

Commercial DSPs: Some relevant approaches are shown in
Table 44.

The following will be cited (*):

� Grabowski and Blaabjerg (1998) in the work “Direct torque
neuro–fuzzy control of induction motor drive. DSP implemen-
tation” established that the control strategies guarantee very
good dynamic and steady state characteristics with low sam-
pling time and constant switching frequency. The NFS has two
inputs (εψ – flux error, εm – torque error) and two outputs (∣Vc∣
– reference voltage amplitude, φVc

– reference voltage angle).
These outputs are the inputs of the vector modulation block by
means of a dual port RAM. Each input has three membership

functions (trapezoidal: 2, triangular: 1). The devices are Analog
Devices SHARC ADSP-21062 (floating-point) and SIEMENS SAB
80C167 μ C which provides the modulation. The induction
machine is a four-pole 4 kW ABB MBT 112M.

� Grabowski et al. (2000) in the paper “A simple direct-torque
neuro–fuzzy control of PWM-inverter-fed induction motor
drive” presented a Direct-Torque Neuro–Fuzzy Control (DTNFC)
similar to an ANFIS net. The controller was tuned automatically
by a gradient algorithm and the tuning is off-line. The con-
troller has two input (three membership functions: 2 trapezoi-
dal and 1 triangular) and two outputs. The system is controlled
by two DSPs: TMS320C31 and TMS320P14. The first (main)
processor implements the DTNFC control algorithm and the
second provides the vector modulation. The board is equipped
with four A/D converters (two 16-bit and two 12-bit), four
digital-to-analog converters, and the input for an encoder. The
induction motor is a 3 kW four-pole.

� Akcayol (2004) in the article “Application of adaptive neuro–fuzzy
controller for SRM” presented an adaptive neuro–fuzzy inference
system (ANFIS) to speed control of a switched reluctance motor
(SRM). The ANFIS controller generates change in the inference
current (Δi), based on speed error (ωe) and change in the speed
error (ωce). The membership functions are generalized bell and
there are 5 per input. The ANFIS net must train 3 consequents per
rule (pi, qi and ri). The phase currents are sampled at every 100 μs
regulating the phase current outputs. Two experiments are
performed: (a) the motor is running at 500 rpm in steady state,
applying a 10 Nm load torque for 12 s and removed and (b) the
motor is running at 1500 rpm in steady state, applying a 10 Nm
load torque for 12.4 s and removed. In both cases the overshoot
and oscillations are negligible. The algorithm has been imple-
mented on a DSP TMS320F240 of Texas Instruments. It is a 16-bit
fixed point and has a 50 ns instruction cycle. The motor is a 8/6
(Stator pole/Rotor pole) of 5.5 HP.

� Elmas et al. (2008) in the paper “A neuro–fuzzy controller for
speed control of a permanent magnet synchronous motor drive”
performed an ANN to adjust input and output parameters of
membership functions in a FLC. The NFC has two inputs and one
output, inputs: speed error (eω) and the derivative of the speed
error (_eω), output: the change of the control current (ΔIn). The
membership functions are Gaussian but the paper does not
mention how many were used. The output layer performs the
defuzzification using the COA method. The neuro–fuzzy network
is trained using an off-line backpropagation learning algorithm.
One experiment is performed comparing the results between the
NFC controller and a Proportional–Integral (PI) controller. The
speed is 1500 rpm under a nominal load of 1 Nm. Both con-
trollers closely follow the reference speed, but the PI controller
presents overshoot and oscillation in the speed curves. The motor
is a three phase PMSM of 400W. The DSP is the TMS320F240.

Table 43
HW implementations of neuro–fuzzy systems – commercial processor.

Year Applications Ref. Type of
NFS

In No. of in
MFs

Type of
in MFs

Out No. of
out MFs

Type of
out MFs

No. of
Rules

Defuzz. Learning On/off
chip

Speed Device type

2002 Nuclear
fusion
plasma

Porto et al.
(2002)n

IF–THEN 6 2–‥–2 Triang. 1 – Singleton 64 Minimum
inference

Mean
quadratic
(on-line)

On – μ P ST52x420

2007 Gas detection Kim et al.
(2007)n

ARTMAP, 1 – – 3 – – – – ARTMAP, On – μ C
MSP430F1611

ART 1
bit

– – – ART

2012 Motor
control

Dongale et al.
(2012)n

Mamdani 2 7–7 Trapez.,
triang.

1 7 Trapez.,
triang.

49 – Matlab
(Narma-L2)

Off – μ C 16F877A

– – – – –

G. Bosque et al. / Engineering Applications of Artificial Intelligence ∎ (∎∎∎∎) ∎∎∎–∎∎∎38

Please cite this article as: Bosque, G., et al., Fuzzy systems, neural networks and neuro-fuzzy systems: A vision on their hardware
implementation and platforms over two decades. Eng. Appl. Artif. Intel. (2014), http://dx.doi.org/10.1016/j.engappai.2014.02.008i

http://dx.doi.org/10.1016/j.engappai.2014.02.008
http://dx.doi.org/10.1016/j.engappai.2014.02.008
http://dx.doi.org/10.1016/j.engappai.2014.02.008


� Choi and Jung (2011) in the article “Takagi–Sugeno fuzzy speed
controller design for a permanent magnet synchronous motor”
conclude that in terms of linear matrix inequalities (LMIs),
sufficient conditions are given for the existence of a Takagi–
Sugeno Controller. Choi and Jung highlight that this method
provides a systematic approach to stability analysis and NFC
design. The inputs are the rotor angular speed (ω – obtained by
means of the rotor position (θ)) and the acceleration ( _ω)
obtained by the technique named fuzzy acceleration observer
(in terms of linear matrix inequalities (LMIs)). One experiment
is performed comparing the results between the NFC and a
Proportional–Integral (PI) plus nonlinear compensation con-
troller. The load torque is 1 N m and the speed increases from
125.7 rad/s to 251.3 rad/s and then decreases from 251.3 rad/s
to 125.7 rad/s. The results show that the NFC presents a
minimal overshoot in the speed response as a zero steady-
state error, and the speed error may vary up to about 8%. The PI
presents a big overshoot and a long settling time and the speed
error changes by more than 15% during the transient. Simula-
tions were performed using Matlab/Simulink and the experi-
ments were carried out using a TMS320F28335 floating point
DSP controlling a motor with 12 poles and 1 HP.

� Ekhtiyar et al. (2012) in the paper “Model based neuro–fuzzy
ASR on Texas processor” presented an algorithm for speech
recognition, performing two kinds of classifiers, MLP and
ANFIS. The algorithm is based on the algorithm MFCC (Mel-
Frequency Cepstral Coefficients) which employs the Discrete
Fourier Transform (DFT). The DSP is the DM6437-EVM of Texas
Instrument.

Programmable Logic Controllers: Table 45 shows the detected
reference.

� In 1994, Siemens provided neuro–fuzzy control to their Pro-
grammable Logic Controllers (PLCs), “Fuzzy control and neural
networks industrial applications in the world of PLCs”
(Wegmann, 1994), for a wide variety of applications. An initial
interest was focused in environmental applications.

6.3. Mixed neuro–fuzzy implementations

In this subsection the same observations made previously
apply.

Table 44
HW implementations of neuro–fuzzy systems – Digital Signal Processor.

Year Applications Ref. Type
of NFS

In No. of
in MFs

Type of
in MFs

Out No. of
out MFs

Type of
out MFs

No. of
rules

Defuzz. Learning On/
off
chip

Speed Device

1997 General Bona et al. (1997) Any – – Any – – – – – Any On – TMS320C31
AMINAH

– – – –

1998 Motor drive Grabowski and
Blaabjerg (1998)n

5-
layer

2 3-3 Trapez.,
triang.

2 – – 9 Normaliz.þ
vector adder

– – – ADSP21062

μ C SAB80C167
12
bit

– – –

1998 Control,
educational

Bona et al. (1998) Any – – Any – – – – – Any On – TMS320C31

12
bit

– 12
bit

– AMINAH

2000 Motor drive Grabowski et al.
(2000)n

DTNFC 2 3-3 Trapez.,
triang.

2 – – 9 Normaliz.þ
vector adder

Gradient Off – ADSP320C31

TMS320P14
12/
16
bit

– – –

2002 Speed
tracking

Chau and Chung
(2002)

5-
layer

1 – Bell 2 – Bell 21 COA Backprop. On – TMS320F240

2003 Chau et al. (2003) – – – –

2004 Motor drive Akcayol (2004)n ANFIS 2 5–5 Bell 1 – – 25 ANFIS Gradient
þ least
square

On – TMS320F240

16 bit FxP

2007 Motor drive Uddin and Wen
(2007)

5-
layer

2 3–3 Gaussian 1 No – – – Backprop.
(on-line)

On TMS320F240

64 bit FP –

2008 Motor drive Elmas et al.
(2008)n

4-
layer

2 – Gaussian 1 – – – COA Gradient
(off-line)

On – TMS320F240

– – – –

2011 Motor drive Choi and Jung
(2011)n

T–S 2 – Gaussian 1 – – – Weighted
average

LMI On – TMS320F28335

12
bit

– 12
bit

–

2012 Speech
recognition

Ekhtiyar et al.
(2012)n

MLP,
ANFIS

13 – Gaussian 1 – – 48 – Hybrid On – DM6437-EVM

16 bit FxP
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6.3.1. Dedicated Integrated Circuits
There are some interesting approaches such as those shown in

Tables 46 and 47.
Thee following will be highlighted (*):

� The company Matsusita, in 1993, performed neuro–fuzzy
developments in home-oriented electrical applications in the
article “Recent applications of fuzzy logic to home appliances”
(Wakami et al., 1993), for example, refrigerators, air condition-
ing, etc. In air conditioning, control neural networks and fuzzy
rules provided by experts are used. There are heat sensors
which attend a fuzzy segmentation algorithm for a thermal
image compression. This allows the identification of the num-
ber of persons and situation in a room to create a more
comfortable environment. The article does not mention the
technology and the integration scale of the sensor that per-
forms the application.

� Chiaberge et al. (1995) presented the article “A pulse stream
system for low-power neuro–fuzzy computation” where a VLSI
neuro–fuzzy processor (known as AMINAH) working with the
Coherent Pulse Width Modulation (CPWM) technique (Reyneri
et al., 1993) is introduced. There is a conversion from analog
inputs to CPWM signals (A/CPWM), and back to analog outputs

(CPW/A). This system can operate with three different cases of
the Weighted Radial Basis Functions (WRBFs) algorithm. The
structure of the neural network chip is based on a synaptic
array of 1056 synapses (32�32, plus 32 thresholds) with 32
common inputs, and 32 neurons. Neurons are programmable,
therefore the user can vary network topology, as well as the
shape and steepness of the transfer function. The new synapses
have an unlimited weight retention time (due to self-refresh).
The article highlights that this mixed HW approach simplifies
the design of synapses and neurons and provides advantages
over fully analog and fully digital implementations (high
noise immunity, higher accuracy, low power dissipation, etc.).
The comparison with other techniques (the same CMOS
technology and the same channel size) is carried out in
Reyneri (1995), these are PWM, PRM, SPM, analog and digital.
Among the different factors (synapses size, MCPS, computa-
tion energy, response time and power dissipation), the article
highlights the “response time” which is 5–10 μs compared
with 50–200 μs, 4100 μs, 20–100 μs, 2–50 μs respectively
(the digital implementation does not present this factor). The
chip computes about 140 MCPS with an average power
dissipation of about 10 mW, at a frequency f o � 139 kHz (clock
frequency). The chip is manufactured using a 1:5 μm CMOS
digital technology.

Table 45
HW implementations of neuro–fuzzy systems – Programmable Logic Controller.

Year Applic. Ref. Type of
NFS

In No. of in
MFs

Type of in
MFs

Out No. of out
MFs

Type of out
MFs

No. of
rules

Defuzz. Learning On/off
chip

Speed Device

1994 Industrial
control

Wegmann
(1994)n

– – – – – – – – – Backprop. SIMATIC

Table 46
HW implementations of neuro–fuzzy systems – mixed (1)

Year Applications Ref. Type of
NFS

In No. of
In MFs

Type of
In MFs

Out No. of
Out MFs

Type of
Out MFs

No. of
Rules

Defuzz. Learning On/Off
Chip

Speed Technology

1993 Home Wakami et al.
(1993)n

IF-THEN 3 3-3-3 Triang. 1 - - 27 COG Gradient On - -

8 Variable Variable 1 9 descent
8 bit - - -

1994 Robotic Reyneri et al.
(1994)

CPWM(a) n - - m - - - - Several On/Off 140
MCPS

CMOS
1.5 μm

8 bit methods (CINTIA)
1994 Speech Han (1994) - 64 8-‥-8 Several 32 - - Synapses - - 10 μs CMOS

1.2 μm
recognition 6 bit Analog 6

bit
135,424 (URAN-I)

1995 General Chiaberge et al.
(1995)n

MLP, 32 - any 32 1056 - - - 140
MCPS

CMOS
1.5 μm

RBF, Analog
or

Analog - - -

WRBF(b) CPWM
1997 General Han (1997)n - 64 - Arbitrary 32 - - - - - - 4100

GCPS
CMOS
0.8 μm

1998 Buck Gomariz et al.
(1998)

ANFIS 3 2-2-2 Triang. 1 - - 8 COG Hybrid Off 500 ns CMOS
0.8 μm

converter 2 2-2 1 - - 4
6 bit

1999 General Wilamowski
et al. (1999)n

T-S 2 - Trapez., 1 - - 64 Weighted - - - MOSIS
2 μm

(modified) Gaussian sum
Analog 6 bit

1999 General Sadati and
Mohseni
(1999)

IF-THEN 4 - Trapez. 1 - - 30‥102 COG - Off 300 ns CMOS
1.2 μm

Analog 102‥103 (ANN:
MLP)

(a) Coherent Pulse Width Modulation / (b) Weighted Radial Basis Function.
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Table 47
HW implementations of neuro–fuzzy systems – mixed (2).

Year Applications Ref. Type of
NFS

In No. of in
MFs

Type of in MFs Out No. of
out MFs

Type of
out MFs

No. of
rules

Defuzz. Learning On/off
chip

Speed Technology

1999 Switching
power conv.

Alarcon et al.
(1999)

T–S 3 2–2–2 Bell-shaped 1 8 Singleton 8 COG Hybrid On – CMOS

Analog 6 bit Analog 6 bit 0:8 μm

2003 DC–DC (PWM) Navas-Gonzalez
et al. (2033)n

T–S 2 2–2 S- and Z-shaped 1 4 Singleton 4 Interpolated – Off 500 ns CMOS

8–8 1 64 64 0:7 μm
Analog Select:

bit

2009 Object
detection

Kim et al. (2009) – 8 – Gaussian: one-, two-
dimensional

1 – – – Comparator Run-time
optimization

On 22.9 GOPS (objects
detected)

CMOS 0:13 μm

Analog (Digital weights)

2010 Object
recognition

Oh et al. (2010)n VANFISa 3 3–3–3 Trapez., triang.
Gaussian, etc.

1 – – 27 – Adap. Pertur.
Algorith. (on-line)

On 1 MFLIPS CMOS

54 MCUPS 0:13 μm
Analog (Digital: 16 bit)

2011 General Daneshwar et al.
(2011)n

ANFIS 2 4–4 Trapez., triang.
Gaussian

1 16 Singleton 16 COA Hybrid (on-line) On 18.18 MFLIPS CMOS 0:35 μm
(Simul. Hspice)

Analog 4 bit Analog

2011 Object
detection

Oh et al. (2011) MLP,
RBFN,
RNN

– – – – – – – – Global/local learning
accelerator

– 49.14 GOPS CMOS 0:13 μm
(IRIS)

Analog (Digital: 32 bit)

2013 Object
recognition

Oh and Yoo
(2013)n

VANFIS 3 2–2–2 Bell 1 8 Singleton 8 T–S Parameter
perturbation

ANFIS 1 MFLIPS CMOS

3 3–3–3 27 27 0:13 μm
Analog (Digital: 12 bit FxP)

a Versatile adaptive neuro–fuzzy inference system.
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� Han (1997) presented the work “Hardware implementation of
neuro–fuzzy system with the analogue–digital hybrid neural
chip”, where he proposed circuits based on mixed analog and
digital operations, including a linear voltage-controlled MOS-
FET resistance working either linearly or by pulse operation.
The membership functions are obtained by means of a pulse
processing and analog operation. Any numbers of membership
functions can be evaluated in parallel during a single cycle. The
VLSI is fully programmable and achieves hundreds of GCPS
(Giga Connections per Second). The name adopted for the
circuit is URAN-I and has been built in 0:8 μm CMOS
technology.

� Wilamowski et al. (1999) in the article “neuro–fuzzy architec-
ture for CMOS implementation” implemented an inference
system of modified Takagi–Sugeno. He incorporates the phases
of fuzzification-normalization over the 2 inputs and output
normalization. The membership functions can be trapezoids or
Gaussians, and admit 8 membership functions per variable.
These functions are arranged so that only 4 rules are active for
each input variable. The total number of rules is 64 and their
activation level is set digitally by means of 6 bits acting on an
array of transistors operating in current-mirror mode. The
circuit has been built in VLSI technology 2 μm MOSIS.

� Navas-Gonzalez et al. (2003) in the article “neuro–fuzzy chip to
handle complex tasks with analog performance” showed and
implemented a strategy that exploits the local feature of ANNs
to preserve the advantages of analog implementations such as
short delay, power consumption and area. Since ANNs provide
the output from just a few sets of nodes, these nodes have been
implemented in an analog core and make it dynamically
programmable to compute the output for any input vector.
The circuit identifies the inputs and performs an input space
partition with a set of A/D converters. These converters per-
form a coarse clustering to get the set of basic functions that
determine the output. This means that only simple A/D con-
verters (as low as 3-bit) are needed for every input dimension.
The output of the converters is used to address a data
base which stores the programming data for the analog core.
The proposed controller is based on a zero-order Takagi–
Sugeno fuzzy system with two inputs and one output with
the advantage of providing two rules per input. The controller
is named MFCON. The chip was simulated with HSPICE and
designed with Design Framework II. The MFCON controller
prototype has been integrated in a single-poly, double-metal
CMOS 0:7 μm technology implementing 64 rules and the in/out
delay is 500 ns.

� Oh et al. (2010) presented in the work “A 1.2 mW on-line
learning mixed mode intelligent inference engine for robust
object recognition”, with 94% average classification accuracy
within 1 μs operation. This circuit provides 5 distinctive shapes
of function (such as Gaussian, trapezoidal, triangular, s-shape
and z-shape) by combining three parameters. With an infer-
ence accelerator running at 200 MHz, the analog VANFIS
(Versatile Adaptive Neuro–Fuzzy Inference System) core is
measured to have a � 1 μs operation speed, which achieves
1 MFLIPS and maximum 54 MCUPS as a neuro–fuzzy system. It
is implemented in 0:13 μm CMOS process and achieves 1.2 mW
power consumption.

� Daneshwar et al. (2011) in the article “Hardware implementa-
tion of an adaptive mixed signal neuro fuzzy system using high
speed and low power analog CMOS circuits” highlighted, as in
other studies, the advantages of analog implementations (high
speed, simplicity, etc.) and proposed a new programmable
fuzzifier circuit. This was based on mixed-signal input, a min
circuit for inference and a multiplier/divider circuit for a
defuzzifier block and a current-mode high speed flash analog

to digital (A/D) converter with 4 bit resolution. The fuzzifier
circuit can obtain Gaussian, trapezoidal and triangular mem-
bership functions and the neuro–fuzzy system is an ANFIS. The
defuzzification strategy is COA applied to the singletons
(weighted average of singleton). The chip has been designed
and implemented using HSPICE. The inference speed of the
system is about 18.18 MFLIPS. The controller simulated in
0.35 μm CMOS standard technology.

� Oh and Yoo (2013) “1.2 mW online learning mixed-mode
intelligent inference engine for low-power real-time object
recognition processor” presented a mixed-mode hardware
implementation of the Versatile Adaptive Neuro–Fuzzy Infer-
ence System (VANFIS). The system is mainly composed of a
current-mode analog VANFIS core, the digital learning con-
troller, and analog-to-digital converter (ADC) and digital-to-
analog converter (DAC) arrays. The circuit is implemented in
0:13 μm CMOS process. It achieves 94% classification accuracy
for the test database with a performance of 1 million fuzzy
inferences per second (MFLIPS), and consumes only 1.2 mW for
average power and 5.3 mW for peak power.

6.3.2. Programmable Integrated Circuits
Undetected.

6.4. Conclusions and complementary readings of HW
implementations for neuro–fuzzy systems

In general, both analog and mixed line present a small number
of contributions. Digital line is where there is the largest number
of contributions and shows the trend in the evolution of future
developments.

Regarding the specific designs, in analog devices, the inputs are
in voltage and the outputs in current, implementing the member-
ship functions with blocks working in transconductance. The
learning algorithms are based on different lines from those which
are oriented to the derivative (e.g. hybrid or perturbation of the
weights). In mixed designs, some industrial approaches applied
to both the home and industry can be observed. Mixed designs
provide, among other benefits, reduced consumption and
increased speed. Where the comparisons are shown, the results
match or improve in one or more orders of magnitude to the other
techniques. The treatment of the weights and the rules are made
both analog and digital. In the first case, the weights are stored
on arrays of transistors working in current mirrors, digitally pro-
grammed and in the second, on condensers sequentially refreshed.

Both in analog and mixed design, where it is explicit, the
chosen input membership functions are, mainly, triangular or
trapezoidal. Others are Gaussian or bell. The output membership
functions are, mainly, singleton.

Regarding dedicated devices, Table 48 shows a summary of the
main data extracted from the works consulted: analog and mixed
circuits (digital works are not detected).

Regarding the programmable devices, in the digital line, there
is a wide use of FPGAs. From the point of view of learning, some
implementations performed the learning off-chip, loading the
parameters to the HW of the FPGA, and others performed the
learning on-chip, either on their own hardware or on a μ P (hard-
core or soft-core) block. In this case, the learning can be either off-
line or on-line, with the hybrid and the backpropagation being the
most common methods. However other learning methods such as
“division-free” are also introduced. Regarding the input member-
ship functions, there is a trend to use of the triangular for the
simplicity introduced into the calculus, but Gaussian or trapezoid
membership functions are not discarded. The output membership
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functions are, mainly, singleton. Curiously, there is a development
system that implements a VHDL code generation and code (bit-
stream) for FPGAs. Table 49 shows the main data extracted from
the works consulted: digital programmable devices.

Finally, to conclude this review of papers on neuro–fuzzy
implementations, it can be said that the FPGAs offer better
performance for their versatility, integration level and speed. The
inclusion of a processor on the FPGA gives it greater flexibility to
implement solutions that incorporate some type of SW treatment
on neuro–fuzzy networks. The areas of analog design and mixed
design seem to be discontinued in favor of the consolidation of the
reconfigurable digital technology.

With regard to complementary readings, several papers and
books have addressed the remarkable evolution that has taken
place in the neuro–fuzzy world. Within the literature produced,
can be highlighted the work of Tsoukalas and Uhrig (1997), “Fuzzy
and neural approaches in engineering”, where, in addition to
developing theoretical aspects, there is also a review of method
implementations in ANNs fuzzy (fuzzy neurons) and neuronal
methods in fuzzy systems. From a general point of view, Liao
(2005) in the article “Expert system methodologies and applica-
tions” gives an overview of expert systems applications from
1995 to 2004 based on 166 articles that include ANN and FIS
applications.

7. Conclusions

This section is an overview of the different summaries pre-
viously viewed in Sections 4.4, 5.4 and 6.4. The highlights of the

different topics of soft computing are presented and, in order to
facilitate reading, have omitted the tables.

Fuzzy systems: Fuzzy inference systems have been implemen-
ted on several platforms, differing between analog, digital or
mixed-on commercial or dedicated circuit implementations.
Let us highlight the conclusions reflected in Section 4.4.

The development of fuzzy systems on a dedicated analog
HW have been implemented to work in either current, voltage,
transconductance or switched mode. The differences lie in speed,
required power, size, integration, stability, accuracy or conforma-
tion of the membership functions, among others. It should be
noted that the commercial appearance of the FPAAs in the 2000s,
opened a new scenario in the analog implementation of fuzzy
systems although this is yet to be consolidated.

Digital implementations on a dedicated HW have brought greater
immunity to external factors than analog implementations. The
speed has been achieved by implementing parallel rules and
optimizing sequential rules. In systems with parallel rules,
the membership functions are stored in memory. This grows when
the accuracy increases so it tends to give low accuracy systems. In
sequential implementations, both the membership functions and the
rules are stored in memory. By increasing the number of inputs, the
memory grows exponentially, and therefore techniques have been
proposed to minimize this effect. The advent of programmable
circuits, such as FPGAs, have opened up a wide range of options for
implementing the rules, membership functions or reduction in
defuzzification HW.

Mixed systems present their inferences on the analog area, and
programming and parameters on the digital area. Architectures
have been performed mainly with parallel rules.

Table 48
Summary of the main features of neuro–fuzzy systems on analog and mixed-dedicated circuits.

Circuit Type of MFsa Defuz.a Learna Speed Power Tech.
μm

In Out FLIPS CPS Time mW CMOS

Analog Triang, trapez.,
Gaussian, bell

Singleton T–S, COG, ANFIS Weights perturbation, stochastic
gradient

5M – 0:2 μs‥1 μs 1, 613 0.18,
0.35 ‥
1.6

Mixed Triang, trapez., S,
Z-shaped Gaussian,
bell

Singleton
triang.,
Gaussian

COG, COA, weighted sum,
interpol. comp., T–S

Hybrid, gradient descent, adapt.
perturbation, param. perturbation, etc.

1M 140M,
100G

300 ns,
500 ns,
10 μs

1.2, 2.8,
13:5‥20

0.13,
0.35,
0:7‥2

a In order to the preferences of the articles consulted.

Table 49
Summary of the main features of neuro–fuzzy systems on Digital Programmable Circuits.

Device Type Type of
MFsa

Defuz.a Learna Speed

In Out FLIPS Time Freq. (Hz)

FPGA Triang,
trapez.,
Gaussian,
bell

Singleton
linear,
Mamdani

ANFIS, T–S, weights
or sum or central
average, sum of fire
rules

Hybrid, backprop., gradient descent,
weights or simultaneous perturbat.,
division-free, Kalman filter, divide and
conquer

2.9M,
67M,
69.5M

0:2 μs‥1 μs –

Commercial processor General
purpose

Triang,
trapez.

Singleton,
triang.,
trapez.

Minimum inference Mean quadratic, ART, ARTMAP, Matlab – – –

DSP Triang.,
trapez.,
Gaussian,
bell

Bell COA, ANFIS, weights
average normaliz.þ
vector adder

Hybrid, backprop., gradient descent, LMI – 7:36 μs‥10 μs 192.31k,
12.6M

13:2 ms‥28:9 ms
37:34M‥100M

PLC – – – Backpropagation – – –

a In order to the preferences of the articles consulted.
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As a final comment on dedicated fuzzy system implementa-
tions, the consolidation of FPGAs in recent years has been mainly
due to their reconfiguration capability and increasing their density.
These factors have caused both analog or digital dedicated designs
to have been almost discontinued. The few implementations that
are still done on dedicated devices present an interest which is
mainly academic.

The use of processors in systems that do not require high speed
is the most economical alternative regarding dedicated or config-
urable devices (FPGAs). The introduction of fuzzy instructions in
commercial processors or fuzzy design coprocessors significantly
increases the processing speed. However, it is noted that commer-
cial firms have mostly stopped the manufacture of processors with
fuzzy instructions. With respect to coprocessors, there is high
speed processing of fuzzy rules. Some PLC manufacturers have
adopted the use of fuzzy coprocessors in systems oriented to
industrial control.

With respect to the membership functions in all of these
systems, the triangular is mainly the trend for the inputs, and
for the outputs, mainly triangular and singleton.

Neural networks: Neural networks present a similar analysis.
The conclusions presented in Section 5.4 show the same trends as
fuzzy inference systems. The development of neural networks on
an analog HW has happened as a result of various factors, these
are speed of adders and multipliers for the low number of
transistors required and a final important reason that these
architectures can keep the parallelism inherent in neural net-
works. As regards the learning algorithms, two trends are shown:
learning on-circuit and off-circuit. In the latter case, this is in order
to increase the speed of the network. It must be noted, as in the
case of fuzzy systems, the emergence of the FPAA in the 2000s to
which researchers begin to pay attention.

In the last decade, the increase in the integration density, has
modified the design trend targeting digital devices. Dedicated
processors have been discontinued, tending to techniques
which are more structured, such as those employed in the
development of the ASICs. Here a small area for integration is
required, as well as a greater tendency to use the FPGA, due
to the high parallelism and their ability to reconfigure. Regarding
learning algorithms, there are two trends: learning on-line
and off-line. Some implementations perform on-chip learning.
The algorithm used is pure or modified backpropagation. The off-
line learning is performed off-chip and weights are loaded into
the FPGA.

Some contribution on DSPs has been observed but is the FPGAs
that show the tendency to continue in implementing neural
networks.

Regarding mixed devices, generic devices have been developed
where the weights are stored on a digital memory, requiring D/A
converters for processing. There are also implementations on FPGAs
incorporating A/D and D/A. Single-chip or multi-chip developments
are tending towards high performance computing structures.

Ii is worth highlighting the implementation on ASIC devices
when the size of the circuit needs to be minimal. This is aimed at
industrial applications.

With respect to the activation functions in all of these systems,
the trend is mainly the sigmoid.

Neuro–fuzzy systems: With regard to the neuro–fuzzy systems,
the conclusions reflected in Section 6.4 show that these systems
require the same treatment as the two previous systems.

In analog devices, the inputs are in voltage and the outputs in
current, implementing the membership functions with blocks
working in transconductance. The learning algorithms are based
on different lines of those oriented to the derivative.

In the digital line, there is a wide use of FPGAs. From the point
of view of learning, some implementations performed the learning

off-chip, loading the parameters to the HWof the FPGA, and others
performed the learning on-chip, either on own hardware or on a μ
P (hard-core or soft-core) block. In this case the learning can be
off-line or on-line, with the hybrid and the backpropagation being
the most common methods, but other learning methods such as
“division-free” have also been introduced. Regarding the member-
ship functions, there is a trend to the use of the triangular due
to the simplicity introduced into the calculus but Gaussian or
trapezoid membership functions have not been discarded. In these
works, as a singularity, there is a development system that
implements a VHDL code generation and code for FPGAs.

Regarding mixed designs, some industrial approaches can
be observed, applied to both the home and industry. Mixed
designs provide, among other benefits, reduced consumption
and increased speed. Where comparisons are shown, the mixed
design matches or improves the other techniques in one or more
orders of magnitude. The treatment of the weights and the rules
are made both by analogue and digital form. In the first case the
weights are stored on arrays of transistors working in current
mirror, digitally programmed and in the second on condensers
sequentially refreshed. Where it is explicit, the chosen member-
ship functions are trapezoidal or Gaussian.

As in the previous systems, FPGAs are what make the trend in
the evolution of neuro–fuzzy systems implementations.

With respect to the membership functions in all of these
systems, as in the fuzzy systems, the triangular is mainly the
trend for the inputs, and for the outputs, mainly triangular and
singleton.

General: The implementation on FPGAs of the previous para-
digms of soft computing systems, presents a common design style
which is the use of hardware description languages (HDL), with
the most used being the VHDL, followed by Verilog HDL. One of
the generalized interests is the low “ time to market“ presented by
FPGAs. Similar considerations also apply to the FPAAs when its
presence in new implementations has been consolidated.

As a final comment, the emergence and consolidation of FPAA
devices in the previous decade opens a scenario for future
implementations on analog devices. An added advantage to this
technology is that it makes the A/D and D/A unnecessary. Cur-
rently, the low density of FPAAs and/or the non-inclusion of
processors does not allow implementations such as some of those
reviewed in this paper. At this point it is interesting to highlight
the appearance of a new analog processor based on FPAAs
(Fu et al., 2010) presented at the 10th IEEE International Con-
ference on Solid-State and Integrated Circuit Technology (ICSICT)
in November 2010.
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