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This work proposes a controlled accuracy approximation scheme of the 
sigmoid function for artificial neuron implementation based on Taylor’s 
Theorem and the Lagrange form of the error. The main advantages of 
the proposed solution are two: it provides a systematic way to guarantee 
the required accuracy and it reuses the circuitry of the linear part of the 
neuron to compute the sigmoid function. The sigmoid derivative is also 
available for artificial neural networks with online learning capabilities. 

 
Introduction: The number and variety of engineering applications of 
artificial neural networks (ANNs) have been increasing, ranging from 
consumer products to industrial process control. Efficient hardware 
implementations have been developed for numerous applications 
demanding high performance real-time processing [1]. Hardware 
implementations of many ANNs involve the computation of a nonlinear 
activation function. The sigmoid function is one of the most widely 
used, mainly due to its differentiable nature which makes it suitable for 
online training. However, this function is costly to implement in digital 
hardware because it requires the calculation of an exponentiation and a 
division. To avoid this problem, a number of approximation techniques 
have been proposed over the years. The most commonly used are look-
up tables (LUTs), bit-level mapping, piecewise linear methods, Taylor 
series expansion, and hybrid methods [2]. 

The selection of the approximation method and its hardware 
implementation are key aspects that constrain the accuracy of the 
activation function, and consequently, the learning and generalization 
capabilities of the whole ANN [3]. Moreover, too low accuracy leads to 
poor performance, while an excess of it unnecessarily increases 
hardware resources and reduces the processing speed. Despite the 
importance of proper specification of the accuracy of the activation 
function, very few works incorporate it as a design parameter [4]. To 
tackle this problem, a novel approximation scheme of the sigmoid 
function is proposed. The scheme is based on Taylor’s Theorem and the 
Lagrange form of the remainder. A systematic design methodology 
which guarantees the accuracy of the approximation is provided. 

Concerning digital hardware implementation of the approximation 
scheme, an original solution is proposed that reuses the circuitry of the 
linear part of the neuron. The circuit architecture is specially suited for 
FPGA-based implementations because it makes use of primitives and 
embedded resources that can be found in typical field programmable 
gate array (FPGA) families such as LUTs, and high performance low-
power DSP (Digital Signal Processing) blocks. The main computation 
module of our solution is a single embedded DSP core. Firstly the core 
is dedicated to perform the computation of the linear part of the neuron, 
and then the same core is reused, with minor additional resources, to 
compute the sigmoid and obtain the output of the neuron. 
 
Approximation Scheme: The approximation scheme divides the input 
range into two kinds of regions, the so called saturation regions and 
Taylor regions (see Fig. 1). The Taylor regions, in turn, are split into a 
number of intervals where a local approximation of the function is 
computed. The sigmoid function is given by 
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Where the approximation error (i.e. remainder) in I can be bounded 
using the Lagrange form of the remainder or error 
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Equation (3) is very useful in practice because it provides a means of 
dealing with the maximum allowable approximation error ε as a design 
parameter. It is worth to mentioning that the output of the sigmoid 
function lies in the range (0,1), and verifies that( ) 1 ( )f x f x− = − , thus 

in the following only the positive semi-axis will be considered. 
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Fig. 1 Sigmoid and extreme values of its first three derivatives. 
 

The saturation region is that region where the first derivative of the 
sigmoid function is close to zero (see Fig. 1). The starting point of the 
saturation region depends on the required precision. To determine 
where it starts, we have to find the value of x where the gap between ‘1’ 
and the sigmoid function equals the maximum allowable error 
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Solving (4) results in ( )ln 1/ 1x t ε= = − , being 0t ≥  the boundary 

between the Taylor region and the saturation region. 
The positive Taylor region [0,t] is split into ni intervals of width 2r, 

then / 2r t ni= . Replacing in (3) and taking into account that 

x a r− ≤  x I∀ ∈ , the minimum number of intervals for a given error 

results 
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Table 1 provides the boundary of the Taylor region and the minimum 
number of intervals for different errors using a first order and a second 
order Taylor approximation scheme, according to (5). As can be seen, 
the larger the order of the polynomial the lower the required number of 
intervals in the Taylor region. In other words, the accuracy of the 
approximation scheme can be enhanced by using more terms in (2) or 
by refining the Taylor region segmentation. 
 
Table 1: Design parameters (minimum values) as a function of the 
allowed error 
 

Allowed 
error 
( ε ) 

Taylor 
region 

width (t) 

Intervals 
1th order 
series 

Intervals  
2nd order 
series 

 
Ni 

 
Nf 

 
No 

0.1 2.19 2 1 2 2 4 
0.01 4.59 6 3 3 5 7 
0.001 6.91 24 10 3 8 10 
10-4 9.21 102 28 4 12 14 

 
Selection of the word-length: The proposed scheme has been 
implemented using a fixed-point fractional data format. The integer part 
of the input is represented by means of Ni bits while the fractional part 

requires Nf bits ( 1 0 1.
i fN Nx x x x− − −… … ). The integer part depends on the 

width of the Taylor region: 2 iN t≥ , which can be written as 
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The fractional part of the input should be enough to represent changes 
in the inputs x∆ that produce changes in the sigmoid function f∆ equal 

to the maximum allowable error 
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Taking into account that the first derivative reaches its maximum value 
at x=0, where f’ (0)=0.25 (see Fig. 1) 
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Concerning the output format, let No be the number of fractional bits 

used to represent the output ( 10.
oNy y− −… ). Assuming that signal 

quantization is performed by truncation, the maximum quantization 

error is 2 oN
tε −= . Therefore 
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Figure 2 depicts the approximation of the sigmoid function generated 
through the proposed scheme (5) to (9), for 0.01ε =  using a second 
order approximation scheme. 
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Fig. 2 Reference sigmoid (___), second order approximation of the 
sigmoid (---), and error curve magnified by ten for 0.01ε = . 
 
Hardware implementation: The digital circuit depicted in Fig. 3 
implements the sigmoid function using the second order approximation 
scheme. The input to the sigmoid circuit is the output of linear part of 
the neuron, but truncated to Ni+Nf bits. In this way, the sigmoid 
function outside the positive Taylor range is easily saturated to its 
maximum value. The main computation unit is a typical DSP core, 
configured to implement four different instructions [5]. Instructions 1 
and 4 are firstly used to compute the linear stage of the neuron. Then, 
instructions 2 to 4 evaluate the sigmoid function. 
 

 
Fig. 3 Sigmoid circuit (positive semi-axis). Resources in grey are used 
only in the computation of the linear part of the neuron. 
 

Two ROM memories are used, the same as in the linear stage of the 
neuron, ROM1 stores the sigmoid derivatives (f’(a),f’’(a )), while 
ROM2 is used to store the pairs of values (a,f(a)) -as many values as 
Taylor intervals. The memory words are addressed by means of the 
most significant bits of the input data. The second order scheme was 
implemented using a device of Xilinx’s Virtex 6 family. The sigmoid 
circuit requires only 1 embedded DSP block, and 7 slices (11 LUTs), 
for a maximum allowable error 0.01ε = . Slice resources depend on the 
required word-length, which in turn depends on the allowable error. The 
circuit performs the computation of the sigmoid in only 7 clock cycles 
and is able to operate at 373.5 MHz.  
 
Conclusion: A novel approximation scheme of the sigmoid function for 
efficient implementation of artificial neurons is proposed. The scheme 

provides a systematic way to guarantee the required accuracy as well as 
a very efficient solution for implementing the circuit using native 
resources of FPGAs. On the one hand, it reuses the circuitry of the 
linear stage of the neuron to compute the sigmoid function with minor 
additional resources. On the other hand, the use of embedded cores 
provides maximum processing speed with low power consumption. 
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