
1

����������
����
�

�������
���� �� ���

������� �������� ��� ��������� ������
���

���������
���� ��
�������
� �������

I. del Campo, R. Finker, J. Echanobe and K. Basterretxea

This work proposes a controlled accuracy approximation scheme of the
sigmoid function for artificial neuron implementation based on Taylor’s
Theorem and the Lagrange form of the error. The main advantages of
the proposed solution are two: it provides a systematic way to guarantee
the required accuracy and it reuses the circuitry of the linear part of the
neuron to compute the sigmoid function. The sigmoid derivative is also
available for artificial neural networks with online learning capabilities.

Introduction: The number and variety of engineering applications of
artificial neural networks (ANNs) have been increasing, ranging from
consumer products to industrial process control. Efficient hardware
implementations have been developed for numerous applications
demanding high performance real-time processing [1]. Hardware
implementations of many ANNs involve the computation of a nonlinear
activation function. The sigmoid function is one of the most widely
used, mainly due to its differentiable nature which makes it suitable for
online training. However, this function is costly to implement in digital
hardware because it requires the calculation of an exponentiation and a
division. To avoid this problem, a number of approximation techniques
have been proposed over the years. The most commonly used are look-
up tables (LUTs), bit-level mapping, piecewise linear methods, Taylor
series expansion, and hybrid methods [2].

The selection of the approximation method and its hardware
implementation are key aspects that constrain the accuracy of the
activation function, and consequently, the learning and generalization
capabilities of the whole ANN [3]. Moreover, too low accuracy leads to
poor performance, while an excess of it unnecessarily increases
hardware resources and reduces the processing speed. Despite the
importance of proper specification of the accuracy of the activation
function, very few works incorporate it as a design parameter [4]. To
tackle this problem, a novel approximation scheme of the sigmoid
function is proposed. The scheme is based on Taylor’s Theorem and the
Lagrange form of the remainder. A systematic design methodology
which guarantees the accuracy of the approximation is provided.

Concerning digital hardware implementation of the approximation
scheme, an original solution is proposed that reuses the circuitry of the
linear part of the neuron. The circuit architecture is specially suited for
FPGA-based implementations because it makes use of primitives and
embedded resources that can be found in typical field programmable
gate array (FPGA) families such as LUTs, and high performance low-
power DSP (Digital Signal Processing) blocks. The main computation
module of our solution is a single embedded DSP core. Firstly the core
is dedicated to perform the computation of the linear part of the neuron,
and then the same core is reused, with minor additional resources, to
compute the sigmoid and obtain the output of the neuron.

Approximation Scheme: The approximation scheme divides the input
range into two kinds of regions, the so called saturation regions and
Taylor regions (see Fig. 1). The Taylor regions, in turn, are split into a
number of intervals where a local approximation of the function is
computed. The sigmoid function is given by

1
()

1 x
f x

e−=
+

 (1)

It can be approximated in any interval I containing a, (),I a r a r= − + ,

with an nth degree Taylor polynomial

() ()
()

()2''() ()
() () '()

2! !

n
nf a f a

f x f a f a x a x a x a
n

≈ + − + − + + −⋯ (2)

Where the approximation error (i.e. remainder) in I can be bounded
using the Lagrange form of the remainder or error

()

1

()
1 !

n

n n

x a
R x M

n

+−
≤

+
, where ()1 ()n

nf x M+ ≤ (3)

Equation (3) is very useful in practice because it provides a means of
dealing with the maximum allowable approximation error ε as a design
parameter. It is worth to mentioning that the output of the sigmoid
function lies in the range (0,1), and verifies that() 1 ()f x f x− = − , thus

in the following only the positive semi-axis will be considered.

f'(x)=0.25

f''(x)=-0.096

f'''(x)=-0.125

Unit saturation
 region

Zero saturation
 region

Taylor (+)
 region

Taylor (-)

 region

-10 -5 5 10

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

f HxL

Fig. 1 Sigmoid and extreme values of its first three derivatives.

The saturation region is that region where the first derivative of the
sigmoid function is close to zero (see Fig. 1). The starting point of the
saturation region depends on the required precision. To determine
where it starts, we have to find the value of x where the gap between ‘1’
and the sigmoid function equals the maximum allowable error

1
1 () ,

1 x
f x

e
ε− = =

+
with 0.5 () 1f x≤ < (4)

Solving (4) results in ()ln 1/ 1x t ε= = − , being 0t ≥ the boundary

between the Taylor region and the saturation region.
The positive Taylor region [0,t] is split into ni intervals of width 2r,

then / 2r t ni= . Replacing in (3) and taking into account that

x a r− ≤ x I∀ ∈ , the minimum number of intervals for a given error

results

()

1

11

2 1 !

n
nM

ni t
nε

+ 
≥   + 

, with
1

ln 1t
ε
 = − 
 

 and ()nR x ε= (5)

Table 1 provides the boundary of the Taylor region and the minimum
number of intervals for different errors using a first order and a second
order Taylor approximation scheme, according to (5). As can be seen,
the larger the order of the polynomial the lower the required number of
intervals in the Taylor region. In other words, the accuracy of the
approximation scheme can be enhanced by using more terms in (2) or
by refining the Taylor region segmentation.

Table 1: Design parameters (minimum values) as a function of the
allowed error

Allowed
error
(ε)

Taylor
region

width (t)

Intervals
1th order
series

Intervals
2nd order
series

Ni

Nf

No

0.1 2.19 2 1 2 2 4
0.01 4.59 6 3 3 5 7
0.001 6.91 24 10 3 8 10
10-4 9.21 102 28 4 12 14

Selection of the word-length: The proposed scheme has been
implemented using a fixed-point fractional data format. The integer part
of the input is represented by means of Ni bits while the fractional part

requires Nf bits (1 0 1.
i fN Nx x x x− − −… …). The integer part depends on the

width of the Taylor region: 2 iN t≥ , which can be written as

ln

ln 2i

t
N ≥ , iN ∈ℤ (6)

The fractional part of the input should be enough to represent changes
in the inputs x∆ that produce changes in the sigmoid function f∆ equal

to the maximum allowable error

2

2 fN

f

x

ε
−

∆ =
∆

, for small increments '()
f

f x
x

∆ ≅
∆

 (7)

Taking into account that the first derivative reaches its maximum value
at x=0, where f’ (0)=0.25 (see Fig. 1)

2 4
0.25

fN ε ε− ≤ = , then
ln

2
ln 2fN

ε
≥ − + , fN ∈ℤ (8)

Concerning the output format, let No be the number of fractional bits

used to represent the output (10.
oNy y− −…). Assuming that signal

quantization is performed by truncation, the maximum quantization

error is 2 oN
tε −= . Therefore

ln

ln 2oN
ε

≥ , oN ∈ℤ (9)

Figure 2 depicts the approximation of the sigmoid function generated
through the proposed scheme (5) to (9), for 0.01ε = using a second
order approximation scheme.

-8 -6 -4 -2 0 2 4 6 8
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2 Reference sigmoid (___), second order approximation of the
sigmoid (---), and error curve magnified by ten for 0.01ε = .

Hardware implementation: The digital circuit depicted in Fig. 3
implements the sigmoid function using the second order approximation
scheme. The input to the sigmoid circuit is the output of linear part of
the neuron, but truncated to Ni+Nf bits. In this way, the sigmoid
function outside the positive Taylor range is easily saturated to its
maximum value. The main computation unit is a typical DSP core,
configured to implement four different instructions [5]. Instructions 1
and 4 are firstly used to compute the linear stage of the neuron. Then,
instructions 2 to 4 evaluate the sigmoid function.

Fig. 3 Sigmoid circuit (positive semi-axis). Resources in grey are used
only in the computation of the linear part of the neuron.

Two ROM memories are used, the same as in the linear stage of the
neuron, ROM1 stores the sigmoid derivatives (f’(a),f’’(a)), while
ROM2 is used to store the pairs of values (a,f(a)) -as many values as
Taylor intervals. The memory words are addressed by means of the
most significant bits of the input data. The second order scheme was
implemented using a device of Xilinx’s Virtex 6 family. The sigmoid
circuit requires only 1 embedded DSP block, and 7 slices (11 LUTs),
for a maximum allowable error 0.01ε = . Slice resources depend on the
required word-length, which in turn depends on the allowable error. The
circuit performs the computation of the sigmoid in only 7 clock cycles
and is able to operate at 373.5 MHz.

Conclusion: A novel approximation scheme of the sigmoid function for
efficient implementation of artificial neurons is proposed. The scheme

provides a systematic way to guarantee the required accuracy as well as
a very efficient solution for implementing the circuit using native
resources of FPGAs. On the one hand, it reuses the circuitry of the
linear stage of the neuron to compute the sigmoid function with minor
additional resources. On the other hand, the use of embedded cores
provides maximum processing speed with low power consumption.

Acknowledgments: This work was supported by the Spanish MINECO,
and European FEDER funds (grant TEC2010-15388), and by the
Basque Government (grants IT733-13, and S-PC12UN016).

I. del Campo, R. Finker, and J. Echanobe (Department of Electricity
and Electronics, Faculty of Sciences and Technology, University of the
Basque Country, Leioa, Vizcaya, 48940 Spain)
E-mail: ines@we.lc.ehu.es
K. Basterretxea (Department of Electronic Technology, Technical
Industrial Engineering School of Bilbao, University of the Basque
Country, Bilbao, Vizcaya, 48013 Spain)

References

1 Misra, J., and Saha, I.: ‘Artificial neural networks in hardware: A
survey of two decades of progress’, Neurocomputing, 2010, 74, pp.
239–255.
2 Armato, A., Fanucci, L., Scilingo, E.P., and De Rossi, D.: ‘Low-error
digital hardware implementation of artificial neuron activation functions
and their derivative’, Microprocessors and Microsystems, 2011, 35, pp.
557–567.
3 Basterretxea, K., Tarela, J.M., del Campo, I., and Bosque, G.: ‘An
experimental study on nonlinear function computation for neural/fuzzy
hardware design, IEEE Trans. Neural Networks, 2007, 18, pp. 266–283.
4 Zamanlooy, B., and Mirhassani, M. ‘Efficient VLSI implementation
of neural networks with hyperbolic tangent activation function’, IEEE
Trans. Very Large Scale Integration Systems, accepted November 2012.
5. ‘LogiCORE IP DSP48 Macro v2.1’, DS754, http://www.xilinx.com/,
accessed 12nd September 2013.

±
×

1: P+D*B
2: (D-A)*B
3: P+(D-A)*B
4: P+C

±

SEL

DSP Core

C

B

A

Configured instructions

D

 ROM 1

- weights
-f´(a)
- 1/2*f´´(a)

P

 ROM 2

- bias
- a
- f(a)

MSB(X)
X

Allowable error: 0.01ε =
 Ni=3, Nf=5, and No=7

10× error

i1 i2 i3 i4

