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This work proposes a controlled accuracy approxonatcheme of the
sigmoid function for artificial neuron implementati based on Taylor’s
Theorem and the Lagrange form of the error. Thenradivantages of
the proposed solution are two: it provides a syatenway to guarantee
the required accuracy and it reuses the circuitthe linear part of the
neuron to compute the sigmoid functidrhe sigmoid derivative is also
available for artificial neural networks with ordiearning capabilities.

Introduction: The number and variety of engineering applicatiohs
artificial neural networks (ANNs) have been inciags ranging from
consumer products to industrial process controficieht hardware
implementations have been developed for numeroyslicafions
demanding high performance real-time processing Hardware
implementations of many ANNs involve the computatid a nonlinear
activation function. The sigmoid function is one tbe most widely
used, mainly due to its differentiable nature whichkes it suitable for
online training. However, this function is costtyitnplement in digital
hardware because it requires the calculation afxgonentiation and a
division. To avoid this problem, a number of appmeation techniques
have been proposed over the years. The most coproset! are look-
up tables (LUTSs), bit-level mapping, piecewise énenethods, Taylor
series expansion, and hybrid methods [2].

The selection of the approximation method and irdWare
implementation are key aspects that constrain #wuracy of the
activation function, and consequently, the learramgl generalization
capabilities of the whole ANN [3]. Moreover, tooN@ccuracy leads to
poor performance, while an excess of it unnecdgsancreases
hardware resources and reduces the processing .spespite the
importance of proper specification of the accurafythe activation
function, very few works incorporate it as a desparameter [4]. To
tackle this problem, a novel approximation scheriethe sigmoid
function is proposed. The scheme is based on Tayltreorem and the
Lagrange form of the remainder. A systematic desiggthodology
which guarantees the accuracy of the approximasipnovided.

Concerning digital hardware implementation of thgpraximation
scheme, an original solution is proposed that etise circuitry of the
linear part of the neuron. The circuit architectigrspecially suited for
FPGA-based implementations because it makes ugeiroftives and
embedded resources that can be found in typicll fieogrammable
gate array (FPGA) families such as LUTs, and higtffggmance low-
power DSP (Digital Signal Processing) blocks. Th&nrcomputation
module of our solution is a single embedded DSR.deirstly the core
is dedicated to perform the computation of thedimgart of the neuron,
and then the same core is reused, with minor aaditiresources, to
compute the sigmoid and obtain the output of theare

Approximation Schemethe approximation scheme divides the input
range into two kinds of regions, the so called isditon regions and
Taylor regions (see Fig. 1). The Taylor regionstum, are split into a
number of intervals where a local approximationtiwé function is
computed. The sigmoid function is given by
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It can be approximated in any intervatontaininga, | = (a—r,a+r) ,

f(x)= 1)

with ann™ degree Taylor polynomial
n (n)
f(x)= f(a)+ f'(a)(x- a)+%( *= a)2+...+%( IR S )

Where the approximation error (i.e. remainder)l inan be bounded
using the Lagrange form of the remainder or error
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Equation (3) is very useful in practice becausprivides a means of
dealing with the maximum allowable approximation egas a design
parameter. It is worth to mentioning that the outptitthe sigmoid
function lies in the range (0,1), and verifies thatx) =1- f(x), thus
in the following only the positive semi-axis will lsensidered.
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Fig. 1 Sigmoid and extreme values of its first three déies.

The saturation region is that region where the filestivative of the
sigmoid function is close to zero (see Fig. 1). Fleting point of the
saturation region depends on the required precisian determine
where it starts, we have to find the valuexaihere the gap between ‘1’
and the sigmoid function equals the maximum alloeastor

1-f(x) =$ =¢,with 0.5< f (x)<1 4)

Solving (4) results inx=t=1In(1/e~-1), being t=0 the boundary

between the Taylor region and the saturation region.
The positive Taylor region [f,is split into ni intervals of width 2,
then r=t/2ni . Replacing in (3) and taking into account that

|x-a <r OxOl, the minimum number of intervals for a given error
results

H 1 Mn = i = l_ =
mzz(g(n+1)!J t,wnht-ln(s lj and|R (¥|=¢ (5)

Table 1 provides the boundary of the Taylor regaowl the minimum
number of intervals for different errors using stfiorder and a second
order Taylor approximation scheme, according to &) can be seen,
the larger the order of the polynomial the lower tequired number of
intervals in the Taylor region. In other words, thecuracy of the
approximation scheme can be enhanced by using teore in (2) or
by refining the Taylor region segmentation.

Table 1: Design parameters (minimum values) as a functiorthef
allowed error

Allowed Taylor Intervals | Intervals
error region | 1"order | 2™order | Ni | Nr | No
(¢) width (t) series | series
0.1 2.19 2 1 2 2 4
0.01 4.59 6 3 3 5 7
0.001 6.91 24 10 3 8 1p
10* 9.21 102 28 4] 12 14

Selection of the word-lengthThe proposed scheme has been
implemented using a fixed-point fractional datarat. The integer part
of the input is represented by meand\pbits while the fractional part

requiresNr bits (X ;... %:X,... Xy, ). The integer part depends on the

width of the Taylor region2" >t , which can be written as
N, = Int yN,OZ (6)
In2

The fractional part of the input should be enoughepresent changes
in the inputsAx that produce changes in the sigmoid functisihequal

to the maximum allowable error
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Taking into account that the first derivative reeglits maximum value
atx=0, wheref’ (0)=0.25 (see Fig. 1)

for small incrementsﬁi Of'(x) )
X
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2“fsi=4e,theanz—2+u,NfDZ ®)
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Concerning the output format, 18, be the number of fractional bits
used to represent the outpuD.y,l...y,No). Assuming that signal

quantization is performed by truncation, the maximguantization
error isg, =27 . Therefore
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Figure 2 depicts the approximation of the sigmaidction generated
through the proposed scheme (5) to (9), for 0.01 using a second
order approximation scheme.
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Fig. 2 Reference sigmoid—), second order approximation of the
sigmoid ¢--), and error curve magnified by ten far=0.01.

Hardware implementation:The digital circuit depicted in Fig. 3
implements the sigmoid function using the secomtkioapproximation
scheme. The input to the sigmoid circuit is thepattof linear part of
the neuron, but truncated t§+N; bits. In this way, the sigmoid
function outside the positive Taylor range is gasturated to its
maximum value. The main computation unit is a tgpiDSP core,
configured to implement four different instructiof. Instructions 1
and 4 are firstly used to compute the linear stfgde neuron. Then,
instructions 2 to 4 evaluate the sigmoid function.
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Fig. 3 Sigmoid circuit (positive semi-axis). Resourcegri@y are used
only in the computation of the linear part of treuron.

Two ROM memories are used, the same as in therlstage of the
neuron, ROM1 stores the sigmoid derivativé¥a),f"(a)), while
ROM2 is used to store the pairs of valuad(d)) -as many values as
Taylor intervals. The memory words are addressednegns of the
most significant bits of the input data. The seconder scheme was
implemented using a device of Xilinx’s Virtex 6 fdy The sigmoid
circuit requires only 1 embedded DSP block, andicés (11 LUTS),
for a maximum allowable errar=0.01. Slice resources depend on the
required word-length, which in turn depends onahewable error. The
circuit performs the computation of the sigmoidoimly 7 clock cycles
and is able to operate at 373.5 MHz.

Conclusion:A novel approximation scheme of the sigmoid functior
efficient implementation of artificial neurons isoposed. The scheme

provides a systematic way to guarantee the reqaicedracy as well as
a very efficient solution for implementing the ciit using native
resources of FPGAs. On the one hand, it reuse<itheitry of the
linear stage of the neuron to compute the sigmaidttion with minor
additional resources. On the other hand, the usemidedded cores
provides maximum processing speed with low powesumption.
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