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This paper presents a scalable architecture suitable for the implementation of high-speed fuzzy 
inference systems on reconfigurable hardware. The main features of the proposed architecture, based 
on the Takagi-Sugeno inference model, are scalability, high performance, and flexibility. A scalable 
Fuzzy Inference System (FIS) must be efficient and practical when applied to complex situations, 
such as multidimensional problems with a large number of membership functions and a large rule 
base. Several current application areas of fuzzy computation require such enhanced capabilities to 
deal with real-time problems (e.g. robotics, automotive control, etc.). Scalability and high 
performance of the proposed solution have been achieved by exploiting the inherent parallelism of 
the inference model, while flexibility has been obtained by applying Hardware/Software co-design 
techniques to reconfigurable hardware. Last generation reconfigurable technologies, particularly 
Field Programmable Gate Arrays (FPGAs), make it possible to implement the whole embedded FIS 
(e.g., processor core, memory blocks, peripherals, and specific hardware for fuzzy inference) on a 
single chip with the consequent savings in size, cost and power consumption. As a prototyping 
example, we implemented a complex fuzzy controller for a vehicle semi-active suspension system 
composed of four three-input FIS on a single FPGA of the Xilinx’s Virtex 5 device family. 

Keywords: Fuzzy hardware; Scalability; FPGA; Fuzzy control; Semi-active suspension system. 

1.   Introduction 

Great efforts in research were made in the decade of the 1980s and early 1990s to the 
development of electronic hardware for fuzzy inference-based computing systems (i.e. 
fuzzy hardware).1 Many of these were developed by means of Application Specific 
Integrated Circuit (ASIC) technology with the aim of achieving high processing speed for 
real-time applications. The main drawbacks of this technology were poor flexibility, long 
development cycles, and a complex design methodology – unsuitable for non-ASIC 
specialists. Those pioneering works resulted in expensive solutions that rapidly became 
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obsolete. However, they laid the foundation for the design of efficient architectures for 
fuzzy hardware, providing many ideas and efficient solutions that can be exploited with 
current technologies. The present scenario of fuzzy hardware design is very different than 
it was ten to fifteen years ago, as is the design of any other complex digital system. 
Nowadays, the arrival of high capacity reconfigurable devices – mainly Field 
Programmable Gate Arrays (FPGAs) – and the availability of user-friendly Computer 
Aided Design (CAD) tools associated with this technology have resulted in new 
challenges for fuzzy computation. 

Present FPGAs are powerful enough to accommodate all the resources of a typical 
embedded electronic system – processor, dedicated circuits, memory, and other 
peripherals – on a single chip (System on a Programmable Chip or SoPC). In addition, 
hardware/software (HW/SW) co-design techniques, applied to SoPCs, provide efficient 
solutions for heterogeneous functionality, as is the case of most fuzzy systems. The 
present challenges of fuzzy computation demand embedded systems able to deal online 
with a large number of signals, and also to adapt to changing requirements. These 
specifications can be met with reconfigurable technologies which allow the functionality 
of hardware to be easily adapted to different situations. The main focus of our approach is 
to exploit these capabilities of present reconfigurable hardware in order to develop 
efficient embedded systems for fuzzy computation. 

Moreover, as the scope of application of fuzzy logic has been expanding into more 
complex problems that demand intensive data processing at high speed, hardware 
scalability has gained widespread relevance. An electronic system is said to be scalable if 
the performance of the system improves after adding hardware proportionally to the 
resources added; although the basic notion of scalability is intuitive, it has no generally-
accepted definition.2 In the sense given above, a scalable fuzzy system should be efficient 
even when applied to complex situations such as multidimensional problems with a large 
number of membership functions and a large rule base. Several present application areas 
of fuzzy computation require such enhanced capabilities (e.g. robotics, automotive 
control, etc.). Both properties, performance and scalability, are closely related to the 
fraction of parallelism allowed by fuzzy algorithms and the availability of resources in 
the target platform. Amdahl’s Law,3 a widely used law in computer architecture analysis 
and design, has been applied to evaluate the potential speedup (performance 
improvement) that can be achieved in the implementation of fuzzy algorithms by 
exploiting parallel processing (adding new resources). As will be seen, the results 
obtained have proven very useful in the design of efficient fuzzy hardware.  

This work presents a scalable architecture for fuzzy computation based on 
reconfigurable devices. The proposed architecture is an algorithm-based approach 
suitable for the implementation of multi-input single-output (MISO) fuzzy inference 
systems (FIS). In a generic sense, it is scalable in several dimensions such as the number 
of inputs and fuzzy rules, the number of membership functions, and even the number of 
FISs; of course the availability of hardware resources is also to be taken into account. 
Note that digital FISs allows both algorithm-based solutions and look-up table (LUT) 
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based solutions. However, the latter are not suitable for the development of large FISs, 
with high precision requirements, because the demand of memory resources grow 
exponentially with the resolution. In consequence, since our work deals with scalable 
architectures for multidimensional fuzzy systems, the algorithmic approach has been 
selected. As an application example, we developed a complex fuzzy controller for a 
vehicle semi-active suspension system composed of four three-input FISs for ride 
comfort enhancement. The controller has been developed on a Xilinx’s Virtex 5 device. 

The paper is organized as follows: Section 2 briefly overviews the inference model 
used in this work and discusses key features of the model such as computational 
complexity, scalability, and performance; special attention has been paid to the 
discussion of results derived from the application of Amdahl’s Low. Section 3 presents 
the system level architecture and addresses important design topics such as the partition 
of the system into HW and SW blocks, and the HW/SW communication. Section 4 
describes the development of a multidimensional fuzzy controller for a vehicle semi-
active suspension and gives details of its FPGA-based implementation. Finally, Section 5 
presents some concluding remarks. 

2.   Fuzzy Inference Model 

The fuzzy inference model used in this work is a particular type of the zero-order Sugeno 
inference model, see Refs. 4 and 5. Let us briefly introduce the main aspects of the model 
with a view to highlighting the fragments of computation which can be performed in 
parallel; scalability and performance are closely related to parallelism. Consider an n-
input single-output FIS with m antecedents per input dimension. Assuming that the fuzzy 
rule base is complete (i.e. all possible combinations of antecedents are considered), then, 
the number of rules is mn and the j-th rule can be expressed as: 
Rj: IF x1 is A1j(x1) and x2 is A2j(x2) and . . . xn is Anj(xn) THEN y is 1 2( , , )f x x … , 
where Rj is the jth rule (1≤j≤mn), xi (1≤i≤n) are input variables, y is the 
output, 1 2( , , )f x x … is a crisp function in the consequent, and Aij(xi) are linguistic labels, 
each one being associated with a membership function ( )ij ixµ . 

In a zero-order Sugeno fuzzy model, the function in the consequent is a constant value 

1 2( , , ) jf x x c=… , and the inference procedure used to derive the conclusion for a specific 
input ' ' '

1 2( , , , )nx x x=x … is as follows: 
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In order to show up the parallelization capability of the inference algorithm, Eq. (1) 
can be viewed as a four level computation scheme, such as the one depicted in Fig. 1: 
Level 1: membership function evaluation. Level 1 is composed of mn groups of n 
membership function units in each one. Every unit (i,j) in this level produces output ijµ  
by evaluating the corresponding membership function 

 ' '
1 2( ) ( ; , , )

ij ijij i ix f x a aµ = … , 1≤i≤n, 1≤j≤ mn, (2) 
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where 1 2, ,
ij ij

a a …  are the parameters associated with each antecedent membership 
function (e.g. centre, and width of a Gaussian membership function). Note that since the 
partition of each input dimension is the same for the whole set of fuzzy rules, there are 
only m different membership functions per input dimension. Therefore, in practice, only 
mn membership function units are required. 

Fig. 1.  A block scheme of the zero-order Sugeno inference model for a n-input single-output system; triangular 
membership functions have been selected for the antecedents. In the particular case of a PWM zero-order 
Sugeno inference model, the number of rules – active rules – is 2n instead of mn, and Level 4 is a sum instead of 
an averaged sum. 

Level 2: rule activation. This level contains mn processing units with outputs jw . Unit j in 
this level generates the firing strength of the j-th rule by computing the algebraic product 
of all its inputs, 
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= ∏ , with 1≤j≤ mn, (3) 

Level 3: weighted activation. It is an mn-unit level that performs the computation of the 
weighted activation of the rules; the output of the j-th processing unit, jP , is the product 
of the j-th rule’s activation and the corresponding consequent, 

 j j jP w c= . (4) 
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Level 4: output level. This contains only one processing unit. The unit output,y , is the 
averaged sum of the consequents, 

 
1 1

/
n nm m

j j
j j

y P w
= =

=∑ ∑  (5) 

As can be seen in Fig. 1, the above inference model is suitable for parallel rule 
processing by providing a data path for each rule and membership function circuits for 
each antecedent. This configuration allows fast operation but is very resource-consuming, 
in this sense, the scalability of a pure parallel architecture is limited. To overcome this 
drawback, without loss in performance, several designers have proposed simplification 
strategies based on a reduction of the computational cost of the inference algorithm. In 
the following the computation cost involved in the zero-order Sugeno inference model 
will be analyzed, and ad hoc design simplifications will be introduced. Since the storage 
requirements are closely linked to the computation strategies, some design considerations 
concerning memory resources will also be introduced.  

2.1.   Computational Cost of the Inference Model 

The computational cost of the inference procedure is concerned, among others, with the 
storage and evaluation of the membership functions. There are several classes of 
parameterized functions commonly used to define membership functions in a FIS (e.g. 
Gaussian, sigmoid, sinusoid, and triangle, among others). Two main approaches have 
been proposed to compute these membership values in digital fuzzy hardware.6 The first 
approach – pure memory approach – consists in using look-up tables (LUTs) for storing 
the membership function values. In a pure memory approach any membership function 
shape can be stored, but occupied memory grows exponentially with the resolution, and 
hence LUTs are only used with low resolution. This solution is very flexible, but it is 
very memory resource-demanding too. The second approach – a circuit based approach – 
consists in storing only those parameters that define the shape of the membership 
function. This alternative saves memory resources but requires additional membership 
function circuitry to compute the membership degrees. In practice, antecedent 
membership functions are sometimes selected piecewise linear (PWL), like triangles or 
trapezes. The operations required to calculate a PWL membership function are usually a 
search of the domain segment the input value belongs to, and the computation of the 
linear function defined for each domain segment.7 This kind of function is popular in 
digital implementations of FIS because its evaluation involves quite simple circuits and a 
few memory words for parameter storage (i.e. breakpoints and/or slopes). In what follows 
we will assume that the membership degrees are obtained using a circuit-based approach, 
in particular, triangular-shaped antecedents will be used. As will be seen later, the use of 
triangular antecedents with a few additional constraints has a great impact on hardware 
simplicity without detriment to the approximation capability of the inference model.  
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Let us analyze the computational cost involved in the computation of the zero-order 
Sugeno inference model (Eqs. (2) to (5)) with triangular membership functions. Level 1 
implies the evaluation of mn membership functions. Since antecedents are triangles 
(segments of linear functions), their evaluation involves mn sums and mn products. Level 
2 requires mn products of n operands. In terms of single two-input operations this means 
mn(n-1) products. Level 3 involves only mn products, and finally, Level 4 requires one 
division and two sums of mn operands (i.e. 2(mn -1) single sums). These results are 
summarized in Table I under the column labeled “Generic model”. As can be seen, an 
increase in the dimensionality of the input space, n, causes an exponential growth in the 
complexity of the algorithm; the larger the number of antecedents per input (m) is, the 
faster the growth. To tackle this problem, some designers have searched for additional 
restrictions, mainly on the membership function definition, that allow more efficient 
reformulations of the inference algorithm. 

2.2.   Inference Model with Piecewise Multilinear Behaviour 

As has been introduced above, the selection of a particular type of membership function 
can be used to simplify the inference algorithm. A set of restrictions specially suited for 
digital hardware implementations is based on selecting a membership function partition 
like that depicted in Fig. 2. As can be seen, the partition consists in triangular 
membership functions, normalized in each input dimension, and with single overlapping. 
 

Fig. 2.  Partition of the universe into m triangular membership functions overlapped by pairs and normalized in 
the i-th dimension; an m-triangle partition determines m-1 regions, R, in the universe of discourse.  

On one hand, normalized membership functions verify 1j jw =∑ ; this avoids the time-
consuming division operation in Eq. (5) where the average operator is replaced with a 
sum operator. On the other hand, by limiting the overlapping of the antecedents to two, 
only two antecedents per input provide non-zero membership values (see Fig. 2). 

Table 1.  Computational cost of the zero-order Sugeno inference model. 

Operation Generic model PWM model 

Sums 2 2nm nm+ −  2 1n n+ −  
Products nnm nm+  2nn n+  
Divisions 1 0 
Total ( 2) 2 1nm n nm+ + −  2 ( 1) 2 1n n n+ + −  

 

µij (xi’) = aij(xi’-b ij) 
 

µij 

Xi bij xi’ 

… … 

1 − µij (xi’) 
 

aij 

… 
R1        R2         Rm-1 
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Moreover, the pair of active antecedents provides complementary membership values 
(i.e. the sum of both membership values gives one). The above constraints ensure that 
given an input vector, ' ' '

1 2( , , , )nx x x=x … , the pairs of active antecedents define an “active 
cell” in the input domain. Once this active cell is identified and its corresponding 
parameters are loaded (i.e. offset, bij, and slope, aij, of the triangle), a single inference 
kernel processes the active rules. Since the input vector activates only two antecedents 
per input, the number of active rules at each time is reduced to 2n, and the inference 
algorithm can be rewritten as follows: 
Level 1: membership function evaluation. 

 ' '( ) ( )ij i ij i ijx a x bµ = − , 1≤i≤n, 1≤j≤ 2n. (6) 

Level 2: rule activation. 
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n

j ij
i

w µ
=

= ∏ , with 1≤j≤ 2n. (7) 

Level 3: weighted activation. 

 j j jP w c= , 1≤j≤ 2n. (8) 

Level 4: output level.  
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y P
=

=∑ . (9) 

As can be seen, the inference algorithm (6) to (9) provides a Piecewise Multilinear 
(PWM) output. In what follows we will refer to the above algorithm as the PWM-FIS. 
The computational cost of the PWM model is shown in Table 1; the logical complement 
has been assigned zero cost in the evaluation of membership function pairs. As can be 
seen, the main advantages of the proposed constraints are a reduction of the 
computational cost and a reduction of the arithmetic complexity. The approximation 
capability of the above PWM inference model has been analyzed in Ref. 8, where the 
author demonstrates that the model is able to approximate to any required degree of 
accuracy sufficiently regular functions and their derivatives. In Section 4, where a case 
application example is developed, the approximation capabilities of the model will be 
shown.  

2.3.   Parallelization and Scalability 

A useful law in designing for scalability is the well known Amdahl’s Law3 which gives a 
measure of the speedup that can be achieved by exploiting parallel processing. It states 
that the maximum speedup that can be achieved by adding new functional modules to the 
parallelizable fraction of an algorithm is limited by the fraction of the calculation that is 
sequential. It is often used in parallel computing to predict the theoretical maximum 
speedup of a program using multiple processors.9 This speedup is limited by the 
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sequential fraction of the program, regardless of how many processors are used. The 
inference algorithm in a FIS allows a certain degree of parallelism but it necessarily 
involves a fraction of serial computation (see sequential level organization in Fig. 1). In 
the following we will carefully analyze the performance and scalability issues of the 
proposed PWM-FIS (Eqs. (6) to (9)) prior to making decisions about the system 
architecture. 

A serial implementation of the algorithm involves as many clock cycles as operations 
whenever the processing units perform sums and products in a single cycle (see Table 2; 

n is the number of inputs to the FIS). Therefore, a serial implementation of the FIS 
involves 2 ( 1) 2 1n n n+ + −  clock cycles. Let us analyze the expected speedup of a 
parallelized implementation of the inference model relative to the serial one for a given 
size of FIS. Amdahl’s Law states that the overall speedup, S, achievable from the 
parallelization of the computation of an algorithm is as follows: 

 
1

(1 ) P

S
ββ

=
− +

, (10) 

where β is the proportion of a computation than can be parallelized, (1-β) is the 
proportion that cannot be parallelized, and P is the number of processing units. The value 
of β can be estimated by using the achieved speedup S0 at a given number of processing 
units P0, 

 � 0

0

1

1

1

1
S

P

β
−

=
−

, (11) 

the estimated parallelization, �β , can then be used in Eq. (10) to obtain the speedup for a 
different number of processors. 

For β estimation purposes, assume that the four levels involved in the inference 
algorithm are computed serially, while each one of the four levels performs computation 
with the maximum parallelism grade allowed by single cycle processing units. This 
particular case, normally referred to as “parallel rule processing”, requires as many 
processing units as the maximum number of operations of each type performed in a 
single cycle. The maximum number of parallel products per cycle appears in Level 2 (2n  

Table 2.  Estimation of the parallelization proportion of the PWM-FIS. 

 Clock cycles (parallel) Clock cycles (serial) Speedup 

Level 1 2 2n  n  
Level 2 2log n  2 ( 1)n n−  22 ( 1) / logn n n−  
Level 3 1 2n  2n  
Level 4 n 2 1n −  (2 1) /n n−  

Total 2log 3n n+ +  2 ( 1) 2 1n n n+ + −  

2

2 ( 1) 2 1
log 3

n n n
n n

+ + −
+ +  
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n-input products). Each n-input multiplier can be implemented by means of two-input 
single-cycle multipliers organized into a binary tree structure of 2log n  layers. The input 
layer of the binary tree is composed of n/2 two-input multipliers, the second layer is 
composed of n/4 two-input multipliers, the third layer involves n/8 multipliers, etc. It can 
be seen that the maximum number of single cycle products is required in the first layer of 
the binary tree for each one of the 2n  active rules, that is, 12 2nn products. On the other 
hand, the maximum number of sums per cycle is in Level 4 (2 1n −  two-input sums), 
therefore, the total number of processing units is 1

20 2 (1 ) 1nP n= + − . In addition, Table 2 
presents the computation time and the achieved speedup, S0, for this case example. The 
above information, S0 and P0, has been used to obtain �( )nβ  by means of Eq. (10); it has 
been verified that the proportion of parallelizable computation tends to be one when n 
increases (e.g. �(2) 0.7β = ,  �(4) 0.916β = , �(8) 0.995β = , �(16) 0.999β = , etc). 

 

Fig. 3. Theoretical maximum speedup (S) using multiple processing units (P) to implement the PWM inference 
algorithm. Results have been obtained by means of Amdahl’s Law. 

Fig. 3 depicts the speedup of the inference algorithm, using parallel hardware, as a 
function of the number of processing units for different sizes of PWM-FIS (i.e. a different 
number of inputs, n). As Amdahl’s Law predicts, the speedup is limited because of the 
serial fraction of the inference algorithm. Nevertheless, as has been seen above, �( )nβ  
tends to be one when n increases, this means that the speedup, S, tends to P in Eq. (10) 
when n increases. It can thus be said that the performance of the system improves 
(speedup) after adding hardware, proportionally to the resources added (processors) when 
FISs with more than two inputs are considered. In other words, the PWM inference 
algorithm is suitable for scalable architectures for multidimensional FISs. 

The curves depicted in Fig. 3 provide also important information concerning the 
trade-off hardware resources/speed. Note that a unit value of the speedup, S=1, means a 
fully serial solution based on a single processor, P=1. This is the slowest solution but it is 
also the less resource demanding. Different grades of parallelism are allowed between 
this serial approach and the fully parallel implementation. The latter provides the 
maximum speedup, that is to say, the faster solution. However hardware resources grow 
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up in the same way as the achieved speedup. Serial architectures are usually more 
effective in terms of area (hardware resources) and power consumption while parallel 
ones provide the faster solutions. 

Finally, note that Eq. (10) assumes homogeneity and boundlessness; these 
assumptions are not realistic in the case of single SoPC because of the heterogeneity of 
HW/SW architectures and the limitation in chip resources. In a broad sense, Amdahl’s 
Law can fail when applied to multiprocessor architectures or micro-architectures where a 
performance improvement in one of the partitions of the system can have a negative 
impact on the overall system performance.10 

3.   System Architecture 

Although resource boundlessness is a limitation in designing for scalability, the capacity 
of FPGAs has increased according to Moore’s Law since the first families appeared on 
the market, so, even large fuzzy systems can be implemented on a single FPGA, provided 
that the architecture is scalable enough. Let us highlight the main advantages of present 
FPGA technology for developing fuzzy hardware. 

3.1.   Suitability of reconfigurable hardware for FIS development 

In the last decade new design methodologies and tools have emerged to deal with the 
challenges of new electronic platforms. In this sense, the combination of reconfigurable 
hardware with the use of standardized hardware description languages (HDL) has 
entailed the transference of the task of achieving desirable features such as flexibility, 
scalability, reusability, etc, from the hardware itself to the description or modeling of this 
hardware. Nowadays flexible solutions for high-performance fuzzy computation can be 
easily developed and updated by means of user-friendly CAD (Computer Aided Design) 
tools.  

On the other hand, there are several specific advantages of reconfigurable technology 
that make it specially suited to implementing real-time scalable fuzzy algorithms. Some 
FPGA families (e.g. Xilinx’s Virtex families) incorporate internal Random Access 
Memory (RAM) blocks. These memory blocks are very useful for implementing FISs 
because of the large amount of information involved in the definition of membership 
functions and rules. On the other hand, the availability of a dense and flexible 
interconnection architecture (i.e. configurable routing) fits the requirements of high 
performance FISs. As has been seen, the Sugeno inference model can be viewed as a 
layered structure (see Fig. 1), where each layer consists of several parallel processing 
units densely connected with the neighboring layers. The interconnection scheme of such 
systems requires high flexibility in the segmentation of the routing paths to avoid 
additional propagation delays. In addition, modern FPGA families include higher level 
functionalities, such as multipliers or generic DSP (Digital Signal Processing) blocks, 
embedded into the silicon. These resources are very useful for implementing the 
inference engine because they are faster and occupy less area compared to if they are 
built from primitives. 

Finally, a milestone in the evolution of reconfigurable hardware has been to combine 
the logic blocks and interconnections of traditional FPGAs with embedded 
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microprocessors and related peripherals to form a SoPC. Some examples are the Virtex-II 
Pro, Virtex-4, and Virtex-5 families manufactured by Xilinx, which include one or more 
PowerPCs embedded within the logic blocks.11 A similar approach consists in using soft-
processor cores instead of hard-cores that are implemented within the FPGA logic; two 
widely used soft-cores are the Xilinx’s MicroBlaze12 and Altera’s NIOS processors.13 
These new features of reconfigurable hardware, together with HW/SW co-design 
techniques, have been exploited to develop a new enhanced generation of fuzzy systems, 
see Refs. 14-19. 

In Ref. 15 the authors describe the development of an embedded fuzzy control system 
for planning the motion of autonomous mobile robots. The authors propose a complex 
hierarchical fuzzy inference module (FIM) composed by six knowledge bases, five 
inputs, and four outputs. The whole system was implemented on a Xilinx’s Spartan IIE 
device with a MicroBlaze core at 50 MHz. The controller (with the FIM clock at 12.5 
MHz) employs only 2.88 µs to process a complete inference. The design of a general 
purpose fuzzy logic coprocessor and its implementation on a SoPC is reported in Ref. 16. 
The proposed architecture has the ability of supporting the dynamic reconfiguration of its 
parameters. It was implemented on a Spartan device and features a MicroBlaze processor 
core. The fuzzy coprocessor is capable of running at a clock frequency of 73 MHz while 
the processor core operates at 66 MHz. The number of clock cycles required to compute 
the whole inference is 338 in a standard case (i.e. without parameter adaptation). This 
performance provides an inference time of approximately 4.63 µs. In Ref. 18 a complete 
design methodology and tool chain is presented. The proposed design flow combines 
standard FPGA implementation tools with a specific environment (Xfuzzy) for the 
development of fuzzy controllers as IP (Intellectual Property) modules. The design flow 
was applied to develop a fuzzy controller, on a Spartan device, for solving the navigation 
tasks of an autonomous vehicle. The implementation includes a MicroBlaze processor 
core. Both the processor and the fuzzy core operate at a 50 MHz clock rate. The fuzzy 
core completes one inference in 16 clock cycles (320 ns). Another approach to SoPC-
based fuzzy computation can be found in Ref. 19 where the implementation of a fuzzy 
inference system with learning capabilities is presented. The Excalibur device family, 
which embeds an ARM processor core, was used to develop the prototype. The hardware 
partition operates as a slave of the ARM processor and performs a single inference in 
only five clock cycles. As a simple case example the authors developed a two-input 
system that allowed a maximum clock frequency of 67 MHz (i.e. 74 ns per inference). 

The analysis of the above mentioned works shows several main conclusions that will 
be taken into account in the following. Firstly, HW/SW solutions with an adequate 
partition can often outperform classical solutions, based either on HW or SW, for 
designing high-speed and low-consumption fuzzy control systems. Secondly, to obtain 
efficient HW/SW architectures the regular and recurrent computations have to be 
implemented in the hardware partition and the irregular or less frequent computations are 
better suited to a software development. Another interesting conclusion can be found in 
Refs. 19 and 20, where the authors conclude that HW/SW implementations of 
neuro/fuzzy systems, where the neuro/fuzzy computation is performed in hardware with a 
high degree of parallelism, are efficient only if the system parameters are also stored in 
the hardware partition. 
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3.2.   System Level Architecture 

Next, we will describe the system level HW/SW architecture for the PWM-FIS 
developed in this work.  It is a MicroBlaze soft processor-based system (see Fig. 4). The 
whole embedded system consists of the processor core itself, the fuzzy inference core, the 
FSL (Fast Simplex Link) bus system, a PLB (Peripheral Local Bus) on-chip bus, two 
PLB peripherals (UART and PCIe), and the on-chip block RAM (BRAM). The 
application program is fully stored in on-chip BRAM, but external SDRAM is also 
available for further software revisions. 

Fig. 4. System level architecture for multiple parallel inference cores, and partition of the system into hardware 
and software blocks. 

The software partition comprises I/O processing, signal pre-processing, and system 
monitoring, while the hardware partition implements multiple fuzzy inference cores (FIS 
cores) in parallel. Each FIS core is a multiple-input single-output FIS, with a rule parallel 
architecture, that performs Eqs. (6) to (9). The FIS cores are interfaced with the SW 
partition by means of FSL buses. A FSL bus is a unidirectional FIFO-based 
communication channel bus used to perform fast communication between the processor 
and the hardware cores running on the FPGA (HW partition). In the above architecture, 
FSL interfaces are used to transfer data to and from the register file on the processor to 
the FIS cores; there is one pair of FSL buses per core. Both sides of the FSL, the master 
and slave side, have been configured to operate in synchronous mode with the same clock 
rate. The main advantages of the proposed architecture are scalability and high 
performance to implement multiple fuzzy inference cores on a single reconfigurable 
device. Next, a detailed description of the internal architecture of the PWM-FIS cores is 
provided. 
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3.3.   Fuzzy Inference Cores 

The Fuzzy inference cores have been designed with a high degree of parallelism, in 
line with previous discussions about scalability, performance, and maximum achievable 
speedup (see Amdahl’s Law, Eq. (10)). In addition, to avoid communication overloads 
between the microprocessor (SW partition) and the FIS cores (HW block), the system 
parameters – membership function parameters and consequents – have been stored in the 
HW partition as a part of the FIS core. The proposed architecture has been depicted in 
Fig. 5. It consists of four main blocks: the ROM parameter memory, the antecedent 
multiplexer, the consequent multiplexer, and the Fuzzy Processing Unit (FPU). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Fig. 5. Internal architecture of fuzzy inference cores, and HW/SW interface (FSL buses). The FIS cores are 
implemented in the hardware partition of the SoPC. The Fuzzy Processing Unit (FPU) implements the four 
levels of the PWM inference algorithm (L1, L2, L3, and L4). 

The ROM parameter memory stores the set of parameters required to generate the 
antecedent membership functions and the singleton consequents. It consists of 
2 ( 1)i ii i

m m− +∑ ∏  memory words, where mi is the number of antecedents for the i-th 
input, 1≤i≤n, and n is the number of system inputs. The computation of the triangular 
antecedents involves two parameters per region (the region offset and the positive slope), 
that is, 2 ( 1)ii

m −∑ parameters. The partition of an input universe into triangular 
membership functions (see Fig. 2) determines as many regions in the universe as the 
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number of antecedents minus one; the term “region” stands for each one of the segments 
that delimit the vertexes of the triangles over the input universe. Concerning the 
consequents, there is a crisp consequent per rule, therefore, the number of consequents is 
equal to ii

m∏ . It is important to note that given an input vector, the number of active 
rules is 2n, however, the total number of consequents that have to be stored in memory is 
the one given above. The parameter memory is equipped with a flexible interconnection 
scheme that allows full parallel access to the memory contents.  

The multiplexer (MUX) modules select for transmission the parameters of the active 
region (the region where the input falls). The selection signals of the antecedent MUX are 
the system inputs, while the outputs of the module are the antecedent parameters and a 
new selection signal that drives the consequent MUX. The consequent MUX selects the 
2n active consequents from the parameter memory. Both the antecedent MUX and the 
consequent MUX, are single cycle components. 
 
 
 
 
 
 
 
 

 
 

Fig. 6. a) Membership function circuit used to compute the pair of complementary membership values involved 
in the first level of the FPU. b) Scheme of an 8-input multiplier implemented by means of two-input single-
cycle multipliers. The multiplier is structured into a binary tree of three layers. In the general case, an n-input 
multiplier consists of log2n layers. 

The FPU implements the four levels of the PWM-FIS algorithm (Eqs. (6) to (9)). It is 
a rule parallel architecture that evaluates the active rules by means of a single inference 
kernel. Level 1 features one two-input subtracter and one two-input multiplier per input 
(see Fig. 6 a)). The modules used in this level provide, in two clock cycles, active-high 
output and active-low output to compute the pair of complementary membership function 
values. 

The second level of the FPU is composed of one n-input multiplier per rule, that is, 2n 
n-input multipliers. As has been explained in section 2, the product of n signals can be 
performed by means of two-input single-cycle multipliers organized into a typical binary 
tree. The number of clock cycles required to compute the product of n signals is log2n. If 
n is not a power of two, then, the next power of two is to be used. For example, the time 
required to evaluate a binary tree is one clock cycle if n=2, two clock cycles if n=4 (or 
n=3), three clock cycles if n=8 (or n=5,6,7), and so on (see Fig. 6 b)). Level 3 is 
composed of 2n two-input single-cycle multipliers.  
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Level 4 of the FPU consists of a 2n-input adder implemented as a binary tree of two-
input adders (similar to the module depicted in Fig. 6 b) but with adders instead of 
multipliers). Therefore, the computation of Level 4 requires log22

n=n clock cycles. The 
latency of FIS cores, as a function of the number of inputs, can be consulted in Table 2 
under the label “Clock cycles (parallel)”. 

Finally, note that the scalability property, applied to electronic systems, is sometimes 
used to quantify specific requirements for a particular dimension such as load, precision, 
etc. In this sense, the architecture is scalable in several dimensions such as the number of 
inputs and fuzzy rules, the number of membership functions, and even the number of 
PWM-FISs. In the next section, resource usage and system performance will be provided 
for a case application example. 

4.   Application example: a MIMO controller for a vehicle semi-active suspension 
system 

To illustrate the capabilities of the PWM-FIS as a suitable platform to implement fast 
response MIMO controllers, we have selected a full-car semi-active (SA) suspension 
control system. Although a proper controller design for a full-car suspension system 
should be based on a full-car vehicle dynamics model with reflection of accelerating, 
braking and steering influences, in what follows it is assumed that the four quarter-car 
models for each independent SA suspension systems have already been decoupled. In this 
manner we can focus on the controller implementation of a single SA suspension system 
to isolate the car body from wheel vibrations produced by road irregularities. This means 
that we can make use of any of the many published SA single suspension controller 
designs to analyze the performance of our hardware platform. Once the design process is 
completed, the four SA suspension controllers will be implemented in a single FPGA as 
four parallel PWM-FIS processors, so the four of them will show identical processing 
performance figures. 

SA suspension systems can only change the viscous damping coefficient of the shock 
absorber and, unlike active suspensions, do not add energy to the suspension system. 
Most widely-studied, continuously-varying, semi-active dumpers rely on 
Magnetorheological (MR) and Electrorheological (ER) fluids which respond to an 
applied magnetic/electrical field with a change in the rheological behavior.21 Though 
limited in their intervention, semi-active suspensions are less expensive to design and 
consume far less energy than their active counterparts.22 A two degree of freedom quarter 
car model for the SA suspension system is depicted in Fig. 7. 
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Fig. 7. Simplified quarter car model of a two degree of freedom semi-active suspension system. 

A simplified SA suspension model can be defined by the Eq. (12), where, mus and ms 

are the unsprung mass and the sprung mass respectively, kt is tire deflection stiffness, ks 

and cs are suspension stiffness and damping coefficients respectively, and ce is the semi-
active damping coefficient which can generate a damping force of fd as defined in Eq. 
(13). zus, zs and r are the displacements for unsprung mass, sprung mass and road 
disturbance respectively, and g is the acceleration of gravity. 
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ɺɺ ɺ ɺ
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 ( )= −ɺ ɺe us sfd c z z  (13) 

As a reference controller to be approximated by the PWM-FIS system, we have used 
the sliding mode controller with Skyhook surface (Skyhook SMC) design described in 
Ref. 23. For controller design and testing, the SA suspension model was described by 
state-space equations using the four state-space variable vector 

[ , , , ]us s us us sx z r z z z z= − − ɺ ɺ , and the three element output vector [ , , ]= − −ɺɺs s us usy z z z z r T , 
while the input (u) is the dumping force (fd) applied by the controlled dumper (see Ref. 
23 for more details). The main design steps followed in Ref. 23 are reproduced in Section 
4.1 for further clarity. 

4.1.   Skyhook sliding surface controller 

The design objective is to consider the nonlinear suspension system as the controlled 
plant defined by the general state-space Eq. (14), where x∈Rn

 is the state vector, n is the 
order of the nonlinear system, and u∈Rm

 is the input vector, being m the number of 
inputs.  

 ( ), ,=ɺx f x u t  (14) 
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s(e,t) is the sliding surface of the hyper-plane, which is given in Eq. (15), where λ is a 
positive constant that defines the slope of the sliding surface. 

 ( )
1

, λ
−

 = + 
 

n
d

s e t e
dt

 (15) 

In the two degree of freedom SA suspension system n = 2, since it is a second-order 
system in which s defines the error in the controlled variable and the error in its 
derivative: 

 λ= +ɺs e e (16) 

From Eqs. (15) and (16), the second-order tracking problem is replaced by a first-
order stabilization problem in which the scalar s is to be kept at zero by the controller. 
This is obtained from use of the Lyapunov stability theorem, given in Eq. (17), and it 
states that the origin is a globally asymptotically stable equilibrium point for the control 
system. Eq. (17) is positive definite and its time derivative should satisfy the inequality in 
Eq. (18). 

 21
( )

2
=V s s  (17) 

 ( ) 0= <ɺ ɺV s ss  (18) 

The Skyhook control is used in SA suspensions to improve ride quality, as it can 
reduce the resonant peak of the sprung mass quite significantly. It is based on the idea of 
switching the damping force when the sign of the product of the absolute velocity of the 
sprung mass and the relative velocity across the suspension changes. By borrowing this 
idea to reduce the sliding chattering phenomenon, a soft switching control law is 
introduced for the major sliding surface switching activity as described in Eq. (19), where 
c0 is a positive damping ratio for the switching control law, and δ is an assumed positive 
constant which defines the thickness of the sliding mode boundary layer. 

 0 tanh      0

0                         0

s
c ss

u

ss

δ
  − >  =  
 ≤

ɺ

ɺ

 (19) 

 Two feedback signals are used as inputs to design the Skyhook SMC: the car body 
velocity, which is taken as the error signal (e), and the car body acceleration, which is 
taken as the change in the error signal (ce). To implement the controller, the derivative of 
the change in the error signal (cee) has also to be computed to check whether the 
condition given in (19) is satisfied. For simulation, the SA suspension control system is 
excited by a random road disturbance loading which is described by the road profile with 
the parameters of reference space frequency n0 and road roughness coefficient P(n0). To 
generate the road profile of a random base excitation, a spectrum of the geometrical road 
profile with road class roughness-C (average roughness) is considered. The vehicle is 
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travelling with a constant speed v0 and the time histories data of road irregularity are 
described by a power spectral density method.24 The values of all parameters required to 
set the simulation are summarized in Table 3. 

Table 3. Simulation parameter values for the Skyhook sliding surface control system 

Symbol Parameter Value 

mus  Unsprung mass, kg 36  

ms  Sprung mass, kg 240  

cs Suspension damping coefficient, Ns/m 1400  

Ks Tire stiffness coefficient, N/m 160000  

Kus  Suspension stiffness coefficient, N/m 16000  

C0  Skyhook SMC damping coefficient −5000  

δ  Thickness of the sliding mode boundary layer 28.1569  

λ  Slope of the sliding surface 10.6341  

n0  Reference space frequency, m−1 0.1  

P (n0) Road roughness coefficient, m3/cycle 256 × 10−6 

v0  Vehicle speed, km/h 72  

 
There are three widely used performance indexes for vehicle suspension systems, 

which include body acceleration, suspension deformation and tire load. The three indexes 
are used in this simulation to evaluate the performance of the SA suspension system. In 
particular the ride comfort is specified in terms of root mean square (RMS) acceleration 
over the considered frequency range. The Skyhook SMC in Ref. 23 achieves a reported 
RMS = 1.0530 (RMS = 0.9586 according to our simulations) while for the passive 
suspension RMSE = 1.4378, which confirms the validation of the controller on the ride 
comfort enhancement. 

4.2.   PWM-FIS implementation of the Skyhook SMC 

A PWM-FIS can be trained by means of neural networks techniques19 to approximate the 
control surface defined by the Skyhook SC described in Section 4.1. The training process 
can be carried out offline since the Skyhook SM scheme is a time-invariant memory-less 
controller. The learning algorithm employed in the training process was a hybrid least 
squares (LS) plus gradient descent (GD) process. At each iteration of the learning 
algorithm, a LS signal forward-propagation adjusts the linear parameters, while a GD 
back-propagation adjusts the nonlinear parameters. 

Three variables, e, ce, and cce were used as signals for the input vectors, while the 
Skyhook SMC controller output was the reference output value for computing the error 
signals to be minimized by the learning algorithm. Twenty equally spaced input signal 
values were used to excite each of the controller’s three inputs in the involved signal 
ranges for this control problem. With the obtained control input/output pairs, an 8000 
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vector training set was configured. Fig. 8 shows some control surface cuts obtained after 
sampling the Skyhook SMC. 
 

 

 

Fig. 8. Three control surface cuts for the Skyhook sliding mode controller used as a reference to train the PWM-
FIS controller. 

The initial setting of the PWM-FIS parameters (before training) was an equally 
spaced seven membership function partition for the three input universes (grid partition). 
This architecture gives rise to a 343-rule zero-order Sugeno-type PWM inference model 
with 373 adjustable parameters. The membership functions were overlapped by pairs 
with crossing points at 0.5 (see Fig. 9 on the left), while all the consequents were set to 
one. All signals, both inputs and outputs, were normalized to the unitary range [0,1]. 
Normalization improves the performance of training algorithms and, in any case, the FIS 
cores in the SoPC must be fed with normalized 8-bit input signals. After completing the 
training process, both antecedent parameters and consequents were adjusted to minimize 
the training error as much as possible (see Fig. 9 on the right for antecedents). In this case 
the achieved sum of squared error (SSE) for the complete training set (8000 points) was 
SSE = 1.706×10-3. Some cuts of the obtained PWM-FIS approximated control surfaces 
are depicted in Fig. 10 (same views as in Fig. 8). 

  .  
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Fig. 9.  Seven membership function partitions of the input space for the PWM FIS system. Left: before training. 
Right: after training. 

Since when running the PWM-FIS controller the output signal has to be denormalized 
to cover the whole range of the output dumping force, this may give rise to an amplified 
error in the control signal that can be problematic at the more sensitive signal ranges of 
the control system, mainly for those inputs that should produce a zero output. To 
overcome this problem, the near-zero outputs are forced to zero by a dead zone function 
in the PWM-FIS output. In a similar manner, a saturation function has been added to 
assure that minimum and maximum dumping force values are not exceeded. 
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Fig. 10. Three control surface cuts for the PWM-FIS controller trained as approximator system for the Skyhook 
SMC.  

 The simulation performed in Ref. 23 was reproduced and later modified by 
substituting the original Skyhook SMC by the trained PWM-FIS controller simulator. A 
sampling frequency of 1 KHz maximum, i.e. a 1ms sampling period (Ts), was considered 
since higher operation rates are hardly achievable by SA suspension systems.22 At this 
rate, if the delay introduced by the control signal computation (τs) is negligible in the 
controller design (as it was in this case), such delay must be approximately two orders of 
magnitude smaller than the sampling period (τs << Ts). In this manner we can be sure that 
the sampling and the actuation are performed at the same sampling time, so the so-called 
causality rule is fulfilled as long as the analog to digital (AD) and digital to analog (DA) 
devices and device I/O pads are fast enough. The fulfillment of this condition implies that 
the control output should be computed in approximately τs = 10µs. As will be seen, our 
PWM-FIS FPGA implementation is able to compute the control outputs in just nine clock 
cycles at a 100MHz clock-rate, i.e. it has a τs = 0.09 µs input-output control signal 
latency (I/O pad delays aside). This is true for the computation of the four suspension 
control signals since they are computed in parallel, as explained at the beginning of this 
section and depicted in Fig. 11. Comparing to the average τs = 3600 µs that takes the 
MATLAB software implementation of the PWM-FIS controller or the average τs = 
76.699 µs of the original Skyhook SMC running on a Pentium D at 3GHz to produce the 
control signal for one suspension system, the control signal delay of the PWM-FIS 
hardware seems negligible*. 

The outputs obtained from the simulation for car body acceleration, suspension 
deflection and tire load, both for the passive suspension and for the PWM-FIS controlled 
suspension, are shown in Figs. 12, 13 and 14 respectively. The RMSE value of the body 
acceleration signal for the PWM-FIS controlled SA suspension system is RMS = 1.1194, 
not as good as that obtained by the original controller but still better than the passive 
suspension figures.  

 
* These time measures were made on a general purpose PC running a Windows OS and not on a dedicated 
microprocessor with optimized code, so they are only approximate values with comparative purpose. 
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Fig. 11. Simplified scheme of the full car semi-active suspension control system. The full controller is 
embedded in a single FPGA. 

 

Fig. 12. Semi-active suspension system car body acceleration response with PWM-FIS control vs. passive 
suspension response 
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Fig. 13. Semi-active suspension deflection response with PWM-FIS control vs. passive suspension response. 

 

 

Fig. 14. Semi-active suspension system tire load with PWM-FIS control vs. passive suspension response 

 

4.3.   PWM-FIS hardware characterization 

We developed the architecture depicted in Fig. 4 – with four FIS cores – for full car semi-
active suspension control; each core implements one of the four PWM-FIS controllers 
depicted in Fig. 11. The design has been implemented using the XC5VLX50T device of 
Xilinx’s Virtex 5 family; this family is specially suited for high performance logic. The 
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selected device has 7200 slices (each Virtex-5 slice contains four LUTs and four flip-
flops), 48 DSP slices (each DSP slice consists of a multiplier, an adder, and an 
accumulator), and 60 RAM blocks of 36 Kbit. 

After synthesis, our design uses 39 DSP slices (81%), 20962 Slice LUTs (72%), 
22566 Slice LUT-Flip Flop pairs (78%), and 1044 Kbits of total memory (48%), among 
other resources. The MicroBlaze processor executes the software part of the system 
operating at 100 MHz, while the hardware partition, implemented in the logic fabric, 
performs the FIS cores with the same frequency. A three-input core requires nine clock 
cycles to perform the PWM-FIS computation, that is to say, only 90ns. In view of these 
results, it can be concluded that the proposed solution is suitable for high-speed fuzzy 
computation. The achieved performance is better than the one obtained in other 
hardware/software FPGA-based solutions for fuzzy hardware reported in the 
bibliography (see Section 3.1). 

The hardware partition has been developed in VHDL with the aid of the ISE Design 
Suite 10.3 and the ModelSim 6.4 environment. The SW partition and the whole system 
integration have been performed by means of EDK and SDK 10.3 tools. 

5.   Conclusions 

In this work, we have reported the development of a scalable architecture suitable for the 
implementation of high-speed fuzzy inference systems on reconfigurable hardware. The 
main advantages of the proposed architecture are scalability, high performance, and 
flexibility. Therefore, it can be used to develop fuzzy inference systems for real-time 
multidimensional problems with a large number of membership functions and a large rule 
base. The proposed solution has been used to implement a complex fuzzy controller for a 
particular application in the area of automotive control, a fuzzy controller for vehicle 
semi-active suspension system. The SoPC-based architecture implemented for this 
example, which features four three-input single-output PWM-FISs arranged in parallel, 
takes full advantage of the architecture scalability and the FPGA-technology capabilities. 
Our single chip hardware/software approach is able to compute a whole inference in only 
90 ns, while serial processing of the four PWM-FIS would require more than 1.5µs to 
perform this computation. 

On the other hand, with the aim of reducing the computational cost of the zero-order 
Sugeno inference algorithm, a few restrictions have been introduced in the membership 
functions definition. It has been shown that the use of triangular antecedents with a few 
additional constraints has a great impact on hardware simplicity, without detriment to the 
approximation capability of the inference model. This aspect of the model has been 
verified by approximating the input/output mapping of a sliding mode controller with 
Skyhook surface for a vehicle semi-active suspension system. The proposed approach is 
suitable for developing high-performance implementations for already known application 
areas of embedded fuzzy systems such as automotive, robotics, consumer electronics, and 
pervasive computing, among others. 
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