
Journal of Circuits, Systems, and Computers
 World Scientific Publishing Company

1

SCALABLE ARCHITECTURE FOR HIGH-SPEED MULTIDIMENSION AL
FUZZY INFERENCE SYSTEMS

INÉS DEL CAMPO* and JAVIER ECHANOBE

Department of Electricity and Electronics, University of the Basque Country UPV/EHU, Faculty of Sciences
and Technology, Campus de Leioa, Bº Sarriena s/n,

Leioa, 48940, Spain
ines.delcampo@ehu.es

KOLDO BASTERRETXEA and GUILLERMO BOSQUE

Department of Electronics and Telecommunications, University of the Basque Country UPV/EHU, Industrial
Technical Engineering School of Bilbao,

Bilbao, 48012, Spain
koldo.basterretxea@ehu.es

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

This paper presents a scalable architecture suitable for the implementation of high-speed fuzzy
inference systems on reconfigurable hardware. The main features of the proposed architecture, based
on the Takagi-Sugeno inference model, are scalability, high performance, and flexibility. A scalable
Fuzzy Inference System (FIS) must be efficient and practical when applied to complex situations,
such as multidimensional problems with a large number of membership functions and a large rule
base. Several current application areas of fuzzy computation require such enhanced capabilities to
deal with real-time problems (e.g. robotics, automotive control, etc.). Scalability and high
performance of the proposed solution have been achieved by exploiting the inherent parallelism of
the inference model, while flexibility has been obtained by applying Hardware/Software co-design
techniques to reconfigurable hardware. Last generation reconfigurable technologies, particularly
Field Programmable Gate Arrays (FPGAs), make it possible to implement the whole embedded FIS
(e.g., processor core, memory blocks, peripherals, and specific hardware for fuzzy inference) on a
single chip with the consequent savings in size, cost and power consumption. As a prototyping
example, we implemented a complex fuzzy controller for a vehicle semi-active suspension system
composed of four three-input FIS on a single FPGA of the Xilinx’s Virtex 5 device family.

Keywords: Fuzzy hardware; Scalability; FPGA; Fuzzy control; Semi-active suspension system.

1. Introduction

Great efforts in research were made in the decade of the 1980s and early 1990s to the
development of electronic hardware for fuzzy inference-based computing systems (i.e.
fuzzy hardware).1 Many of these were developed by means of Application Specific
Integrated Circuit (ASIC) technology with the aim of achieving high processing speed for
real-time applications. The main drawbacks of this technology were poor flexibility, long
development cycles, and a complex design methodology – unsuitable for non-ASIC
specialists. Those pioneering works resulted in expensive solutions that rapidly became

2 del Campo et al.

obsolete. However, they laid the foundation for the design of efficient architectures for
fuzzy hardware, providing many ideas and efficient solutions that can be exploited with
current technologies. The present scenario of fuzzy hardware design is very different than
it was ten to fifteen years ago, as is the design of any other complex digital system.
Nowadays, the arrival of high capacity reconfigurable devices – mainly Field
Programmable Gate Arrays (FPGAs) – and the availability of user-friendly Computer
Aided Design (CAD) tools associated with this technology have resulted in new
challenges for fuzzy computation.

Present FPGAs are powerful enough to accommodate all the resources of a typical
embedded electronic system – processor, dedicated circuits, memory, and other
peripherals – on a single chip (System on a Programmable Chip or SoPC). In addition,
hardware/software (HW/SW) co-design techniques, applied to SoPCs, provide efficient
solutions for heterogeneous functionality, as is the case of most fuzzy systems. The
present challenges of fuzzy computation demand embedded systems able to deal online
with a large number of signals, and also to adapt to changing requirements. These
specifications can be met with reconfigurable technologies which allow the functionality
of hardware to be easily adapted to different situations. The main focus of our approach is
to exploit these capabilities of present reconfigurable hardware in order to develop
efficient embedded systems for fuzzy computation.

Moreover, as the scope of application of fuzzy logic has been expanding into more
complex problems that demand intensive data processing at high speed, hardware
scalability has gained widespread relevance. An electronic system is said to be scalable if
the performance of the system improves after adding hardware proportionally to the
resources added; although the basic notion of scalability is intuitive, it has no generally-
accepted definition.2 In the sense given above, a scalable fuzzy system should be efficient
even when applied to complex situations such as multidimensional problems with a large
number of membership functions and a large rule base. Several present application areas
of fuzzy computation require such enhanced capabilities (e.g. robotics, automotive
control, etc.). Both properties, performance and scalability, are closely related to the
fraction of parallelism allowed by fuzzy algorithms and the availability of resources in
the target platform. Amdahl’s Law,3 a widely used law in computer architecture analysis
and design, has been applied to evaluate the potential speedup (performance
improvement) that can be achieved in the implementation of fuzzy algorithms by
exploiting parallel processing (adding new resources). As will be seen, the results
obtained have proven very useful in the design of efficient fuzzy hardware.

This work presents a scalable architecture for fuzzy computation based on
reconfigurable devices. The proposed architecture is an algorithm-based approach
suitable for the implementation of multi-input single-output (MISO) fuzzy inference
systems (FIS). In a generic sense, it is scalable in several dimensions such as the number
of inputs and fuzzy rules, the number of membership functions, and even the number of
FISs; of course the availability of hardware resources is also to be taken into account.
Note that digital FISs allows both algorithm-based solutions and look-up table (LUT)

Scalable Architecture for High-speed Multidimensional Fuzzy Inference Systems 3

based solutions. However, the latter are not suitable for the development of large FISs,
with high precision requirements, because the demand of memory resources grow
exponentially with the resolution. In consequence, since our work deals with scalable
architectures for multidimensional fuzzy systems, the algorithmic approach has been
selected. As an application example, we developed a complex fuzzy controller for a
vehicle semi-active suspension system composed of four three-input FISs for ride
comfort enhancement. The controller has been developed on a Xilinx’s Virtex 5 device.

The paper is organized as follows: Section 2 briefly overviews the inference model
used in this work and discusses key features of the model such as computational
complexity, scalability, and performance; special attention has been paid to the
discussion of results derived from the application of Amdahl’s Low. Section 3 presents
the system level architecture and addresses important design topics such as the partition
of the system into HW and SW blocks, and the HW/SW communication. Section 4
describes the development of a multidimensional fuzzy controller for a vehicle semi-
active suspension and gives details of its FPGA-based implementation. Finally, Section 5
presents some concluding remarks.

2. Fuzzy Inference Model

The fuzzy inference model used in this work is a particular type of the zero-order Sugeno
inference model, see Refs. 4 and 5. Let us briefly introduce the main aspects of the model
with a view to highlighting the fragments of computation which can be performed in
parallel; scalability and performance are closely related to parallelism. Consider an n-
input single-output FIS with m antecedents per input dimension. Assuming that the fuzzy
rule base is complete (i.e. all possible combinations of antecedents are considered), then,
the number of rules is mn and the j-th rule can be expressed as:
Rj: IF x1 is A1j(x1) and x2 is A2j(x2) and . . . xn is Anj(xn) THEN y is 1 2(, ,)f x x … ,
where Rj is the jth rule (1≤j≤mn), xi (1≤i≤n) are input variables, y is the
output, 1 2(, ,)f x x … is a crisp function in the consequent, and Aij(xi) are linguistic labels,
each one being associated with a membership function ()ij ixµ .

In a zero-order Sugeno fuzzy model, the function in the consequent is a constant value

1 2(, ,) jf x x c=… , and the inference procedure used to derive the conclusion for a specific
input ' ' '

1 2(, , ,)nx x x=x … is as follows:

1 1

/
n nm m

j j j
j j

y w c w
= =

=∑ ∑ , with '

1

()
n

j ij i
i

w xµ
=

= ∏ . (1)

In order to show up the parallelization capability of the inference algorithm, Eq. (1)
can be viewed as a four level computation scheme, such as the one depicted in Fig. 1:
Level 1: membership function evaluation. Level 1 is composed of mn groups of n
membership function units in each one. Every unit (i,j) in this level produces output ijµ
by evaluating the corresponding membership function

 ' '
1 2() (; , ,)

ij ijij i ix f x a aµ = … , 1≤i≤n, 1≤j≤ mn, (2)

4 del Campo et al.

where 1 2, ,
ij ij

a a … are the parameters associated with each antecedent membership
function (e.g. centre, and width of a Gaussian membership function). Note that since the
partition of each input dimension is the same for the whole set of fuzzy rules, there are
only m different membership functions per input dimension. Therefore, in practice, only
mn membership function units are required.

Fig. 1. A block scheme of the zero-order Sugeno inference model for a n-input single-output system; triangular
membership functions have been selected for the antecedents. In the particular case of a PWM zero-order
Sugeno inference model, the number of rules – active rules – is 2n instead of mn, and Level 4 is a sum instead of
an averaged sum.

Level 2: rule activation. This level contains mn processing units with outputs jw . Unit j in
this level generates the firing strength of the j-th rule by computing the algebraic product
of all its inputs,

1

n

j ij
i

w µ
=

= ∏ , with 1≤j≤ mn, (3)

Level 3: weighted activation. It is an mn-unit level that performs the computation of the
weighted activation of the rules; the output of the j-th processing unit, jP , is the product
of the j-th rule’s activation and the corresponding consequent,

 j j jP w c= . (4)

Rule 1

Rule 2

Rule mn

X x

Rule j

X

X

X

x

x

x

'
1x

'
2x '

nx

Level 1 Level 2 Level 3 Level 4

y
S
-

w1

w2

wj

wm
n

c1

c2

cj

cm
n

P1

P2

Pj

Pm
n

Scalable Architecture for High-speed Multidimensional Fuzzy Inference Systems 5

Level 4: output level. This contains only one processing unit. The unit output,y , is the
averaged sum of the consequents,

1 1

/
n nm m

j j
j j

y P w
= =

=∑ ∑ (5)

As can be seen in Fig. 1, the above inference model is suitable for parallel rule
processing by providing a data path for each rule and membership function circuits for
each antecedent. This configuration allows fast operation but is very resource-consuming,
in this sense, the scalability of a pure parallel architecture is limited. To overcome this
drawback, without loss in performance, several designers have proposed simplification
strategies based on a reduction of the computational cost of the inference algorithm. In
the following the computation cost involved in the zero-order Sugeno inference model
will be analyzed, and ad hoc design simplifications will be introduced. Since the storage
requirements are closely linked to the computation strategies, some design considerations
concerning memory resources will also be introduced.

2.1. Computational Cost of the Inference Model

The computational cost of the inference procedure is concerned, among others, with the
storage and evaluation of the membership functions. There are several classes of
parameterized functions commonly used to define membership functions in a FIS (e.g.
Gaussian, sigmoid, sinusoid, and triangle, among others). Two main approaches have
been proposed to compute these membership values in digital fuzzy hardware.6 The first
approach – pure memory approach – consists in using look-up tables (LUTs) for storing
the membership function values. In a pure memory approach any membership function
shape can be stored, but occupied memory grows exponentially with the resolution, and
hence LUTs are only used with low resolution. This solution is very flexible, but it is
very memory resource-demanding too. The second approach – a circuit based approach –
consists in storing only those parameters that define the shape of the membership
function. This alternative saves memory resources but requires additional membership
function circuitry to compute the membership degrees. In practice, antecedent
membership functions are sometimes selected piecewise linear (PWL), like triangles or
trapezes. The operations required to calculate a PWL membership function are usually a
search of the domain segment the input value belongs to, and the computation of the
linear function defined for each domain segment.7 This kind of function is popular in
digital implementations of FIS because its evaluation involves quite simple circuits and a
few memory words for parameter storage (i.e. breakpoints and/or slopes). In what follows
we will assume that the membership degrees are obtained using a circuit-based approach,
in particular, triangular-shaped antecedents will be used. As will be seen later, the use of
triangular antecedents with a few additional constraints has a great impact on hardware
simplicity without detriment to the approximation capability of the inference model.

6 del Campo et al.

Let us analyze the computational cost involved in the computation of the zero-order
Sugeno inference model (Eqs. (2) to (5)) with triangular membership functions. Level 1
implies the evaluation of mn membership functions. Since antecedents are triangles
(segments of linear functions), their evaluation involves mn sums and mn products. Level
2 requires mn products of n operands. In terms of single two-input operations this means
mn(n-1) products. Level 3 involves only mn products, and finally, Level 4 requires one
division and two sums of mn operands (i.e. 2(mn -1) single sums). These results are
summarized in Table I under the column labeled “Generic model”. As can be seen, an
increase in the dimensionality of the input space, n, causes an exponential growth in the
complexity of the algorithm; the larger the number of antecedents per input (m) is, the
faster the growth. To tackle this problem, some designers have searched for additional
restrictions, mainly on the membership function definition, that allow more efficient
reformulations of the inference algorithm.

2.2. Inference Model with Piecewise Multilinear Behaviour

As has been introduced above, the selection of a particular type of membership function
can be used to simplify the inference algorithm. A set of restrictions specially suited for
digital hardware implementations is based on selecting a membership function partition
like that depicted in Fig. 2. As can be seen, the partition consists in triangular
membership functions, normalized in each input dimension, and with single overlapping.

Fig. 2. Partition of the universe into m triangular membership functions overlapped by pairs and normalized in
the i-th dimension; an m-triangle partition determines m-1 regions, R, in the universe of discourse.

On one hand, normalized membership functions verify 1j jw =∑ ; this avoids the time-
consuming division operation in Eq. (5) where the average operator is replaced with a
sum operator. On the other hand, by limiting the overlapping of the antecedents to two,
only two antecedents per input provide non-zero membership values (see Fig. 2).

Table 1. Computational cost of the zero-order Sugeno inference model.

Operation Generic model PWM model

Sums 2 2nm nm+ − 2 1n n+ −
Products nnm nm+ 2nn n+
Divisions 1 0
Total (2) 2 1nm n nm+ + − 2 (1) 2 1n n n+ + −

µij (xi’) = aij(xi’-b ij)

µij

Xi bij xi’

… …

1 − µij (xi’)

aij

…
R1 R2 Rm-1

Scalable Architecture for High-speed Multidimensional Fuzzy Inference Systems 7

Moreover, the pair of active antecedents provides complementary membership values
(i.e. the sum of both membership values gives one). The above constraints ensure that
given an input vector, ' ' '

1 2(, , ,)nx x x=x … , the pairs of active antecedents define an “active
cell” in the input domain. Once this active cell is identified and its corresponding
parameters are loaded (i.e. offset, bij, and slope, aij, of the triangle), a single inference
kernel processes the active rules. Since the input vector activates only two antecedents
per input, the number of active rules at each time is reduced to 2n, and the inference
algorithm can be rewritten as follows:
Level 1: membership function evaluation.

 ' '() ()ij i ij i ijx a x bµ = − , 1≤i≤n, 1≤j≤ 2n. (6)

Level 2: rule activation.

1

n

j ij
i

w µ
=

= ∏ , with 1≤j≤ 2n. (7)

Level 3: weighted activation.

 j j jP w c= , 1≤j≤ 2n. (8)

Level 4: output level.

2

1

n

j
j

y P
=

=∑ . (9)

As can be seen, the inference algorithm (6) to (9) provides a Piecewise Multilinear
(PWM) output. In what follows we will refer to the above algorithm as the PWM-FIS.
The computational cost of the PWM model is shown in Table 1; the logical complement
has been assigned zero cost in the evaluation of membership function pairs. As can be
seen, the main advantages of the proposed constraints are a reduction of the
computational cost and a reduction of the arithmetic complexity. The approximation
capability of the above PWM inference model has been analyzed in Ref. 8, where the
author demonstrates that the model is able to approximate to any required degree of
accuracy sufficiently regular functions and their derivatives. In Section 4, where a case
application example is developed, the approximation capabilities of the model will be
shown.

2.3. Parallelization and Scalability

A useful law in designing for scalability is the well known Amdahl’s Law3 which gives a
measure of the speedup that can be achieved by exploiting parallel processing. It states
that the maximum speedup that can be achieved by adding new functional modules to the
parallelizable fraction of an algorithm is limited by the fraction of the calculation that is
sequential. It is often used in parallel computing to predict the theoretical maximum
speedup of a program using multiple processors.9 This speedup is limited by the

8 del Campo et al.

sequential fraction of the program, regardless of how many processors are used. The
inference algorithm in a FIS allows a certain degree of parallelism but it necessarily
involves a fraction of serial computation (see sequential level organization in Fig. 1). In
the following we will carefully analyze the performance and scalability issues of the
proposed PWM-FIS (Eqs. (6) to (9)) prior to making decisions about the system
architecture.

A serial implementation of the algorithm involves as many clock cycles as operations
whenever the processing units perform sums and products in a single cycle (see Table 2;

n is the number of inputs to the FIS). Therefore, a serial implementation of the FIS
involves 2 (1) 2 1n n n+ + − clock cycles. Let us analyze the expected speedup of a
parallelized implementation of the inference model relative to the serial one for a given
size of FIS. Amdahl’s Law states that the overall speedup, S, achievable from the
parallelization of the computation of an algorithm is as follows:

1

(1) P

S
ββ

=
− +

, (10)

where β is the proportion of a computation than can be parallelized, (1-β) is the
proportion that cannot be parallelized, and P is the number of processing units. The value
of β can be estimated by using the achieved speedup S0 at a given number of processing
units P0,

 � 0

0

1

1

1

1
S

P

β
−

=
−

, (11)

the estimated parallelization, �β , can then be used in Eq. (10) to obtain the speedup for a
different number of processors.

For β estimation purposes, assume that the four levels involved in the inference
algorithm are computed serially, while each one of the four levels performs computation
with the maximum parallelism grade allowed by single cycle processing units. This
particular case, normally referred to as “parallel rule processing”, requires as many
processing units as the maximum number of operations of each type performed in a
single cycle. The maximum number of parallel products per cycle appears in Level 2 (2n

Table 2. Estimation of the parallelization proportion of the PWM-FIS.

 Clock cycles (parallel) Clock cycles (serial) Speedup

Level 1 2 2n n
Level 2 2log n 2 (1)n n− 22 (1) / logn n n−
Level 3 1 2n 2n
Level 4 n 2 1n − (2 1) /n n−

Total 2log 3n n+ + 2 (1) 2 1n n n+ + −

2

2 (1) 2 1
log 3

n n n
n n

+ + −
+ +

Scalable Architecture for High-speed Multidimensional Fuzzy Inference Systems 9

n-input products). Each n-input multiplier can be implemented by means of two-input
single-cycle multipliers organized into a binary tree structure of 2log n layers. The input
layer of the binary tree is composed of n/2 two-input multipliers, the second layer is
composed of n/4 two-input multipliers, the third layer involves n/8 multipliers, etc. It can
be seen that the maximum number of single cycle products is required in the first layer of
the binary tree for each one of the 2n active rules, that is, 12 2nn products. On the other
hand, the maximum number of sums per cycle is in Level 4 (2 1n − two-input sums),
therefore, the total number of processing units is 1

20 2 (1) 1nP n= + − . In addition, Table 2
presents the computation time and the achieved speedup, S0, for this case example. The
above information, S0 and P0, has been used to obtain �()nβ by means of Eq. (10); it has
been verified that the proportion of parallelizable computation tends to be one when n
increases (e.g. �(2) 0.7β = , �(4) 0.916β = , �(8) 0.995β = , �(16) 0.999β = , etc).

Fig. 3. Theoretical maximum speedup (S) using multiple processing units (P) to implement the PWM inference
algorithm. Results have been obtained by means of Amdahl’s Law.

Fig. 3 depicts the speedup of the inference algorithm, using parallel hardware, as a
function of the number of processing units for different sizes of PWM-FIS (i.e. a different
number of inputs, n). As Amdahl’s Law predicts, the speedup is limited because of the
serial fraction of the inference algorithm. Nevertheless, as has been seen above, �()nβ
tends to be one when n increases, this means that the speedup, S, tends to P in Eq. (10)
when n increases. It can thus be said that the performance of the system improves
(speedup) after adding hardware, proportionally to the resources added (processors) when
FISs with more than two inputs are considered. In other words, the PWM inference
algorithm is suitable for scalable architectures for multidimensional FISs.

The curves depicted in Fig. 3 provide also important information concerning the
trade-off hardware resources/speed. Note that a unit value of the speedup, S=1, means a
fully serial solution based on a single processor, P=1. This is the slowest solution but it is
also the less resource demanding. Different grades of parallelism are allowed between
this serial approach and the fully parallel implementation. The latter provides the
maximum speedup, that is to say, the faster solution. However hardware resources grow

10 del Campo et al.

up in the same way as the achieved speedup. Serial architectures are usually more
effective in terms of area (hardware resources) and power consumption while parallel
ones provide the faster solutions.

Finally, note that Eq. (10) assumes homogeneity and boundlessness; these
assumptions are not realistic in the case of single SoPC because of the heterogeneity of
HW/SW architectures and the limitation in chip resources. In a broad sense, Amdahl’s
Law can fail when applied to multiprocessor architectures or micro-architectures where a
performance improvement in one of the partitions of the system can have a negative
impact on the overall system performance.10

3. System Architecture

Although resource boundlessness is a limitation in designing for scalability, the capacity
of FPGAs has increased according to Moore’s Law since the first families appeared on
the market, so, even large fuzzy systems can be implemented on a single FPGA, provided
that the architecture is scalable enough. Let us highlight the main advantages of present
FPGA technology for developing fuzzy hardware.

3.1. Suitability of reconfigurable hardware for FIS development

In the last decade new design methodologies and tools have emerged to deal with the
challenges of new electronic platforms. In this sense, the combination of reconfigurable
hardware with the use of standardized hardware description languages (HDL) has
entailed the transference of the task of achieving desirable features such as flexibility,
scalability, reusability, etc, from the hardware itself to the description or modeling of this
hardware. Nowadays flexible solutions for high-performance fuzzy computation can be
easily developed and updated by means of user-friendly CAD (Computer Aided Design)
tools.

On the other hand, there are several specific advantages of reconfigurable technology
that make it specially suited to implementing real-time scalable fuzzy algorithms. Some
FPGA families (e.g. Xilinx’s Virtex families) incorporate internal Random Access
Memory (RAM) blocks. These memory blocks are very useful for implementing FISs
because of the large amount of information involved in the definition of membership
functions and rules. On the other hand, the availability of a dense and flexible
interconnection architecture (i.e. configurable routing) fits the requirements of high
performance FISs. As has been seen, the Sugeno inference model can be viewed as a
layered structure (see Fig. 1), where each layer consists of several parallel processing
units densely connected with the neighboring layers. The interconnection scheme of such
systems requires high flexibility in the segmentation of the routing paths to avoid
additional propagation delays. In addition, modern FPGA families include higher level
functionalities, such as multipliers or generic DSP (Digital Signal Processing) blocks,
embedded into the silicon. These resources are very useful for implementing the
inference engine because they are faster and occupy less area compared to if they are
built from primitives.

Finally, a milestone in the evolution of reconfigurable hardware has been to combine
the logic blocks and interconnections of traditional FPGAs with embedded

Scalable Architecture for High-speed Multidimensional Fuzzy Inference Systems 11

microprocessors and related peripherals to form a SoPC. Some examples are the Virtex-II
Pro, Virtex-4, and Virtex-5 families manufactured by Xilinx, which include one or more
PowerPCs embedded within the logic blocks.11 A similar approach consists in using soft-
processor cores instead of hard-cores that are implemented within the FPGA logic; two
widely used soft-cores are the Xilinx’s MicroBlaze12 and Altera’s NIOS processors.13
These new features of reconfigurable hardware, together with HW/SW co-design
techniques, have been exploited to develop a new enhanced generation of fuzzy systems,
see Refs. 14-19.

In Ref. 15 the authors describe the development of an embedded fuzzy control system
for planning the motion of autonomous mobile robots. The authors propose a complex
hierarchical fuzzy inference module (FIM) composed by six knowledge bases, five
inputs, and four outputs. The whole system was implemented on a Xilinx’s Spartan IIE
device with a MicroBlaze core at 50 MHz. The controller (with the FIM clock at 12.5
MHz) employs only 2.88 µs to process a complete inference. The design of a general
purpose fuzzy logic coprocessor and its implementation on a SoPC is reported in Ref. 16.
The proposed architecture has the ability of supporting the dynamic reconfiguration of its
parameters. It was implemented on a Spartan device and features a MicroBlaze processor
core. The fuzzy coprocessor is capable of running at a clock frequency of 73 MHz while
the processor core operates at 66 MHz. The number of clock cycles required to compute
the whole inference is 338 in a standard case (i.e. without parameter adaptation). This
performance provides an inference time of approximately 4.63 µs. In Ref. 18 a complete
design methodology and tool chain is presented. The proposed design flow combines
standard FPGA implementation tools with a specific environment (Xfuzzy) for the
development of fuzzy controllers as IP (Intellectual Property) modules. The design flow
was applied to develop a fuzzy controller, on a Spartan device, for solving the navigation
tasks of an autonomous vehicle. The implementation includes a MicroBlaze processor
core. Both the processor and the fuzzy core operate at a 50 MHz clock rate. The fuzzy
core completes one inference in 16 clock cycles (320 ns). Another approach to SoPC-
based fuzzy computation can be found in Ref. 19 where the implementation of a fuzzy
inference system with learning capabilities is presented. The Excalibur device family,
which embeds an ARM processor core, was used to develop the prototype. The hardware
partition operates as a slave of the ARM processor and performs a single inference in
only five clock cycles. As a simple case example the authors developed a two-input
system that allowed a maximum clock frequency of 67 MHz (i.e. 74 ns per inference).

The analysis of the above mentioned works shows several main conclusions that will
be taken into account in the following. Firstly, HW/SW solutions with an adequate
partition can often outperform classical solutions, based either on HW or SW, for
designing high-speed and low-consumption fuzzy control systems. Secondly, to obtain
efficient HW/SW architectures the regular and recurrent computations have to be
implemented in the hardware partition and the irregular or less frequent computations are
better suited to a software development. Another interesting conclusion can be found in
Refs. 19 and 20, where the authors conclude that HW/SW implementations of
neuro/fuzzy systems, where the neuro/fuzzy computation is performed in hardware with a
high degree of parallelism, are efficient only if the system parameters are also stored in
the hardware partition.

12 del Campo et al.

3.2. System Level Architecture

Next, we will describe the system level HW/SW architecture for the PWM-FIS
developed in this work. It is a MicroBlaze soft processor-based system (see Fig. 4). The
whole embedded system consists of the processor core itself, the fuzzy inference core, the
FSL (Fast Simplex Link) bus system, a PLB (Peripheral Local Bus) on-chip bus, two
PLB peripherals (UART and PCIe), and the on-chip block RAM (BRAM). The
application program is fully stored in on-chip BRAM, but external SDRAM is also
available for further software revisions.

Fig. 4. System level architecture for multiple parallel inference cores, and partition of the system into hardware
and software blocks.

The software partition comprises I/O processing, signal pre-processing, and system
monitoring, while the hardware partition implements multiple fuzzy inference cores (FIS
cores) in parallel. Each FIS core is a multiple-input single-output FIS, with a rule parallel
architecture, that performs Eqs. (6) to (9). The FIS cores are interfaced with the SW
partition by means of FSL buses. A FSL bus is a unidirectional FIFO-based
communication channel bus used to perform fast communication between the processor
and the hardware cores running on the FPGA (HW partition). In the above architecture,
FSL interfaces are used to transfer data to and from the register file on the processor to
the FIS cores; there is one pair of FSL buses per core. Both sides of the FSL, the master
and slave side, have been configured to operate in synchronous mode with the same clock
rate. The main advantages of the proposed architecture are scalability and high
performance to implement multiple fuzzy inference cores on a single reconfigurable
device. Next, a detailed description of the internal architecture of the PWM-FIS cores is
provided.

BRAM

Microblaze
Core

- I/O processing

- Preprocessing

- High precision

FIS 1

...

...

FIS 2

FIS s

UART

PLB Bus

LMB

Bus

SDRAM
Module

FIS Cores

PCIe

HW partition

SW partition

SoPC

Scalable Architecture for High-speed Multidimensional Fuzzy Inference Systems 13

3.3. Fuzzy Inference Cores

The Fuzzy inference cores have been designed with a high degree of parallelism, in
line with previous discussions about scalability, performance, and maximum achievable
speedup (see Amdahl’s Law, Eq. (10)). In addition, to avoid communication overloads
between the microprocessor (SW partition) and the FIS cores (HW block), the system
parameters – membership function parameters and consequents – have been stored in the
HW partition as a part of the FIS core. The proposed architecture has been depicted in
Fig. 5. It consists of four main blocks: the ROM parameter memory, the antecedent
multiplexer, the consequent multiplexer, and the Fuzzy Processing Unit (FPU).

Fig. 5. Internal architecture of fuzzy inference cores, and HW/SW interface (FSL buses). The FIS cores are
implemented in the hardware partition of the SoPC. The Fuzzy Processing Unit (FPU) implements the four
levels of the PWM inference algorithm (L1, L2, L3, and L4).

The ROM parameter memory stores the set of parameters required to generate the
antecedent membership functions and the singleton consequents. It consists of
2 (1)i ii i

m m− +∑ ∏ memory words, where mi is the number of antecedents for the i-th
input, 1≤i≤n, and n is the number of system inputs. The computation of the triangular
antecedents involves two parameters per region (the region offset and the positive slope),
that is, 2 (1)ii

m −∑ parameters. The partition of an input universe into triangular
membership functions (see Fig. 2) determines as many regions in the universe as the

32b

x

MUX

Parameter
Memory

32b

M
U

X

…

…

8b

Fuzzy Processing
Unit

 …

To FSL1
(Master)

Clock

Reset

…

From FSL0
(Slave)

Antecedents

Consequents

…

µ

µ

µ

L1 L2 L3 L4

y

14 del Campo et al.

number of antecedents minus one; the term “region” stands for each one of the segments
that delimit the vertexes of the triangles over the input universe. Concerning the
consequents, there is a crisp consequent per rule, therefore, the number of consequents is
equal to ii

m∏ . It is important to note that given an input vector, the number of active
rules is 2n, however, the total number of consequents that have to be stored in memory is
the one given above. The parameter memory is equipped with a flexible interconnection
scheme that allows full parallel access to the memory contents.

The multiplexer (MUX) modules select for transmission the parameters of the active
region (the region where the input falls). The selection signals of the antecedent MUX are
the system inputs, while the outputs of the module are the antecedent parameters and a
new selection signal that drives the consequent MUX. The consequent MUX selects the
2n active consequents from the parameter memory. Both the antecedent MUX and the
consequent MUX, are single cycle components.

Fig. 6. a) Membership function circuit used to compute the pair of complementary membership values involved
in the first level of the FPU. b) Scheme of an 8-input multiplier implemented by means of two-input single-
cycle multipliers. The multiplier is structured into a binary tree of three layers. In the general case, an n-input
multiplier consists of log2n layers.

The FPU implements the four levels of the PWM-FIS algorithm (Eqs. (6) to (9)). It is
a rule parallel architecture that evaluates the active rules by means of a single inference
kernel. Level 1 features one two-input subtracter and one two-input multiplier per input
(see Fig. 6 a)). The modules used in this level provide, in two clock cycles, active-high
output and active-low output to compute the pair of complementary membership function
values.

The second level of the FPU is composed of one n-input multiplier per rule, that is, 2n
n-input multipliers. As has been explained in section 2, the product of n signals can be
performed by means of two-input single-cycle multipliers organized into a typical binary
tree. The number of clock cycles required to compute the product of n signals is log2n. If
n is not a power of two, then, the next power of two is to be used. For example, the time
required to evaluate a binary tree is one clock cycle if n=2, two clock cycles if n=4 (or
n=3), three clock cycles if n=8 (or n=5,6,7), and so on (see Fig. 6 b)). Level 3 is
composed of 2n two-input single-cycle multipliers.

a)

8-input multiplier

(binary tree)

I1

I2

I3

I4

I5

I6

I7

I8

O

b)

×
×
×
×

×

×

××
Membership

function circuit

x’

b

a

Clock

µ

µ

Scalable Architecture for High-speed Multidimensional Fuzzy Inference Systems 15

Level 4 of the FPU consists of a 2n-input adder implemented as a binary tree of two-
input adders (similar to the module depicted in Fig. 6 b) but with adders instead of
multipliers). Therefore, the computation of Level 4 requires log22

n=n clock cycles. The
latency of FIS cores, as a function of the number of inputs, can be consulted in Table 2
under the label “Clock cycles (parallel)”.

Finally, note that the scalability property, applied to electronic systems, is sometimes
used to quantify specific requirements for a particular dimension such as load, precision,
etc. In this sense, the architecture is scalable in several dimensions such as the number of
inputs and fuzzy rules, the number of membership functions, and even the number of
PWM-FISs. In the next section, resource usage and system performance will be provided
for a case application example.

4. Application example: a MIMO controller for a vehicle semi-active suspension
system

To illustrate the capabilities of the PWM-FIS as a suitable platform to implement fast
response MIMO controllers, we have selected a full-car semi-active (SA) suspension
control system. Although a proper controller design for a full-car suspension system
should be based on a full-car vehicle dynamics model with reflection of accelerating,
braking and steering influences, in what follows it is assumed that the four quarter-car
models for each independent SA suspension systems have already been decoupled. In this
manner we can focus on the controller implementation of a single SA suspension system
to isolate the car body from wheel vibrations produced by road irregularities. This means
that we can make use of any of the many published SA single suspension controller
designs to analyze the performance of our hardware platform. Once the design process is
completed, the four SA suspension controllers will be implemented in a single FPGA as
four parallel PWM-FIS processors, so the four of them will show identical processing
performance figures.

SA suspension systems can only change the viscous damping coefficient of the shock
absorber and, unlike active suspensions, do not add energy to the suspension system.
Most widely-studied, continuously-varying, semi-active dumpers rely on
Magnetorheological (MR) and Electrorheological (ER) fluids which respond to an
applied magnetic/electrical field with a change in the rheological behavior.21 Though
limited in their intervention, semi-active suspensions are less expensive to design and
consume far less energy than their active counterparts.22 A two degree of freedom quarter
car model for the SA suspension system is depicted in Fig. 7.

16 del Campo et al.

Fig. 7. Simplified quarter car model of a two degree of freedom semi-active suspension system.

A simplified SA suspension model can be defined by the Eq. (12), where, mus and ms

are the unsprung mass and the sprung mass respectively, kt is tire deflection stiffness, ks

and cs are suspension stiffness and damping coefficients respectively, and ce is the semi-
active damping coefficient which can generate a damping force of fd as defined in Eq.
(13). zus, zs and r are the displacements for unsprung mass, sprung mass and road
disturbance respectively, and g is the acceleration of gravity.

() () () ()

() () ()
0

0

us us s s us s e s us t us us

s s s s us s e s us s

m z k z z c c z z k z r m g

m z k z z c c z z m g

− − + + − + − + =


+ − + + − + =

ɺɺ ɺ ɺ

ɺɺ ɺ ɺ
 (12)

 ()= −ɺ ɺe us sfd c z z (13)

As a reference controller to be approximated by the PWM-FIS system, we have used
the sliding mode controller with Skyhook surface (Skyhook SMC) design described in
Ref. 23. For controller design and testing, the SA suspension model was described by
state-space equations using the four state-space variable vector

[, , ,]us s us us sx z r z z z z= − − ɺ ɺ , and the three element output vector [, ,]= − −ɺɺs s us usy z z z z r T ,
while the input (u) is the dumping force (fd) applied by the controlled dumper (see Ref.
23 for more details). The main design steps followed in Ref. 23 are reproduced in Section
4.1 for further clarity.

4.1. Skyhook sliding surface controller

The design objective is to consider the nonlinear suspension system as the controlled
plant defined by the general state-space Eq. (14), where x∈Rn

 is the state vector, n is the
order of the nonlinear system, and u∈Rm

 is the input vector, being m the number of
inputs.

 (), ,=ɺx f x u t (14)

ms

mus

zs

zus

r

ce cs ks

kt

Scalable Architecture for High-speed Multidimensional Fuzzy Inference Systems 17

s(e,t) is the sliding surface of the hyper-plane, which is given in Eq. (15), where λ is a
positive constant that defines the slope of the sliding surface.

 ()
1

, λ
−

 = + 
 

n
d

s e t e
dt

 (15)

In the two degree of freedom SA suspension system n = 2, since it is a second-order
system in which s defines the error in the controlled variable and the error in its
derivative:

 λ= +ɺs e e (16)

From Eqs. (15) and (16), the second-order tracking problem is replaced by a first-
order stabilization problem in which the scalar s is to be kept at zero by the controller.
This is obtained from use of the Lyapunov stability theorem, given in Eq. (17), and it
states that the origin is a globally asymptotically stable equilibrium point for the control
system. Eq. (17) is positive definite and its time derivative should satisfy the inequality in
Eq. (18).

 21
()

2
=V s s (17)

 () 0= <ɺ ɺV s ss (18)

The Skyhook control is used in SA suspensions to improve ride quality, as it can
reduce the resonant peak of the sprung mass quite significantly. It is based on the idea of
switching the damping force when the sign of the product of the absolute velocity of the
sprung mass and the relative velocity across the suspension changes. By borrowing this
idea to reduce the sliding chattering phenomenon, a soft switching control law is
introduced for the major sliding surface switching activity as described in Eq. (19), where
c0 is a positive damping ratio for the switching control law, and δ is an assumed positive
constant which defines the thickness of the sliding mode boundary layer.

 0 tanh 0

0 0

s
c ss

u

ss

δ
  − >  =  
 ≤

ɺ

ɺ

 (19)

 Two feedback signals are used as inputs to design the Skyhook SMC: the car body
velocity, which is taken as the error signal (e), and the car body acceleration, which is
taken as the change in the error signal (ce). To implement the controller, the derivative of
the change in the error signal (cee) has also to be computed to check whether the
condition given in (19) is satisfied. For simulation, the SA suspension control system is
excited by a random road disturbance loading which is described by the road profile with
the parameters of reference space frequency n0 and road roughness coefficient P(n0). To
generate the road profile of a random base excitation, a spectrum of the geometrical road
profile with road class roughness-C (average roughness) is considered. The vehicle is

18 del Campo et al.

travelling with a constant speed v0 and the time histories data of road irregularity are
described by a power spectral density method.24 The values of all parameters required to
set the simulation are summarized in Table 3.

Table 3. Simulation parameter values for the Skyhook sliding surface control system

Symbol Parameter Value

mus Unsprung mass, kg 36

ms Sprung mass, kg 240

cs Suspension damping coefficient, Ns/m 1400

Ks Tire stiffness coefficient, N/m 160000

Kus Suspension stiffness coefficient, N/m 16000

C0 Skyhook SMC damping coefficient −5000

δ Thickness of the sliding mode boundary layer 28.1569

λ Slope of the sliding surface 10.6341

n0 Reference space frequency, m−1 0.1

P (n0) Road roughness coefficient, m3/cycle 256 × 10−6

v0 Vehicle speed, km/h 72

There are three widely used performance indexes for vehicle suspension systems,

which include body acceleration, suspension deformation and tire load. The three indexes
are used in this simulation to evaluate the performance of the SA suspension system. In
particular the ride comfort is specified in terms of root mean square (RMS) acceleration
over the considered frequency range. The Skyhook SMC in Ref. 23 achieves a reported
RMS = 1.0530 (RMS = 0.9586 according to our simulations) while for the passive
suspension RMSE = 1.4378, which confirms the validation of the controller on the ride
comfort enhancement.

4.2. PWM-FIS implementation of the Skyhook SMC

A PWM-FIS can be trained by means of neural networks techniques19 to approximate the
control surface defined by the Skyhook SC described in Section 4.1. The training process
can be carried out offline since the Skyhook SM scheme is a time-invariant memory-less
controller. The learning algorithm employed in the training process was a hybrid least
squares (LS) plus gradient descent (GD) process. At each iteration of the learning
algorithm, a LS signal forward-propagation adjusts the linear parameters, while a GD
back-propagation adjusts the nonlinear parameters.

Three variables, e, ce, and cce were used as signals for the input vectors, while the
Skyhook SMC controller output was the reference output value for computing the error
signals to be minimized by the learning algorithm. Twenty equally spaced input signal
values were used to excite each of the controller’s three inputs in the involved signal
ranges for this control problem. With the obtained control input/output pairs, an 8000

Scalable Architecture for High-speed Multidimensional Fuzzy Inference Systems 19

vector training set was configured. Fig. 8 shows some control surface cuts obtained after
sampling the Skyhook SMC.

Fig. 8. Three control surface cuts for the Skyhook sliding mode controller used as a reference to train the PWM-
FIS controller.

The initial setting of the PWM-FIS parameters (before training) was an equally
spaced seven membership function partition for the three input universes (grid partition).
This architecture gives rise to a 343-rule zero-order Sugeno-type PWM inference model
with 373 adjustable parameters. The membership functions were overlapped by pairs
with crossing points at 0.5 (see Fig. 9 on the left), while all the consequents were set to
one. All signals, both inputs and outputs, were normalized to the unitary range [0,1].
Normalization improves the performance of training algorithms and, in any case, the FIS
cores in the SoPC must be fed with normalized 8-bit input signals. After completing the
training process, both antecedent parameters and consequents were adjusted to minimize
the training error as much as possible (see Fig. 9 on the right for antecedents). In this case
the achieved sum of squared error (SSE) for the complete training set (8000 points) was
SSE = 1.706×10-3. Some cuts of the obtained PWM-FIS approximated control surfaces
are depicted in Fig. 10 (same views as in Fig. 8).

 .

20 del Campo et al.

Fig. 9. Seven membership function partitions of the input space for the PWM FIS system. Left: before training.
Right: after training.

Since when running the PWM-FIS controller the output signal has to be denormalized
to cover the whole range of the output dumping force, this may give rise to an amplified
error in the control signal that can be problematic at the more sensitive signal ranges of
the control system, mainly for those inputs that should produce a zero output. To
overcome this problem, the near-zero outputs are forced to zero by a dead zone function
in the PWM-FIS output. In a similar manner, a saturation function has been added to
assure that minimum and maximum dumping force values are not exceeded.

Scalable Architecture for High-speed Multidimensional Fuzzy Inference Systems 21

Fig. 10. Three control surface cuts for the PWM-FIS controller trained as approximator system for the Skyhook
SMC.

 The simulation performed in Ref. 23 was reproduced and later modified by
substituting the original Skyhook SMC by the trained PWM-FIS controller simulator. A
sampling frequency of 1 KHz maximum, i.e. a 1ms sampling period (Ts), was considered
since higher operation rates are hardly achievable by SA suspension systems.22 At this
rate, if the delay introduced by the control signal computation (τs) is negligible in the
controller design (as it was in this case), such delay must be approximately two orders of
magnitude smaller than the sampling period (τs << Ts). In this manner we can be sure that
the sampling and the actuation are performed at the same sampling time, so the so-called
causality rule is fulfilled as long as the analog to digital (AD) and digital to analog (DA)
devices and device I/O pads are fast enough. The fulfillment of this condition implies that
the control output should be computed in approximately τs = 10µs. As will be seen, our
PWM-FIS FPGA implementation is able to compute the control outputs in just nine clock
cycles at a 100MHz clock-rate, i.e. it has a τs = 0.09 µs input-output control signal
latency (I/O pad delays aside). This is true for the computation of the four suspension
control signals since they are computed in parallel, as explained at the beginning of this
section and depicted in Fig. 11. Comparing to the average τs = 3600 µs that takes the
MATLAB software implementation of the PWM-FIS controller or the average τs =
76.699 µs of the original Skyhook SMC running on a Pentium D at 3GHz to produce the
control signal for one suspension system, the control signal delay of the PWM-FIS
hardware seems negligible*.

The outputs obtained from the simulation for car body acceleration, suspension
deflection and tire load, both for the passive suspension and for the PWM-FIS controlled
suspension, are shown in Figs. 12, 13 and 14 respectively. The RMSE value of the body
acceleration signal for the PWM-FIS controlled SA suspension system is RMS = 1.1194,
not as good as that obtained by the original controller but still better than the passive
suspension figures.

* These time measures were made on a general purpose PC running a Windows OS and not on a dedicated
microprocessor with optimized code, so they are only approximate values with comparative purpose.

22 del Campo et al.

Fig. 11. Simplified scheme of the full car semi-active suspension control system. The full controller is
embedded in a single FPGA.

Fig. 12. Semi-active suspension system car body acceleration response with PWM-FIS control vs. passive
suspension response

FPGA

PWM-FIS controller 1

PWM-FIS controller 2

PWM-FIS controller 3

PWM-FIS controller 4

Front Left
Suspension

Front Right
Suspension

Rear Left
Suspension

Rear Right
Suspension

AD/amplif. DA/amplif.

d/dt

d/dt

d/dt

d/dt

Scalable Architecture for High-speed Multidimensional Fuzzy Inference Systems 23

Fig. 13. Semi-active suspension deflection response with PWM-FIS control vs. passive suspension response.

Fig. 14. Semi-active suspension system tire load with PWM-FIS control vs. passive suspension response

4.3. PWM-FIS hardware characterization

We developed the architecture depicted in Fig. 4 – with four FIS cores – for full car semi-
active suspension control; each core implements one of the four PWM-FIS controllers
depicted in Fig. 11. The design has been implemented using the XC5VLX50T device of
Xilinx’s Virtex 5 family; this family is specially suited for high performance logic. The

24 del Campo et al.

selected device has 7200 slices (each Virtex-5 slice contains four LUTs and four flip-
flops), 48 DSP slices (each DSP slice consists of a multiplier, an adder, and an
accumulator), and 60 RAM blocks of 36 Kbit.

After synthesis, our design uses 39 DSP slices (81%), 20962 Slice LUTs (72%),
22566 Slice LUT-Flip Flop pairs (78%), and 1044 Kbits of total memory (48%), among
other resources. The MicroBlaze processor executes the software part of the system
operating at 100 MHz, while the hardware partition, implemented in the logic fabric,
performs the FIS cores with the same frequency. A three-input core requires nine clock
cycles to perform the PWM-FIS computation, that is to say, only 90ns. In view of these
results, it can be concluded that the proposed solution is suitable for high-speed fuzzy
computation. The achieved performance is better than the one obtained in other
hardware/software FPGA-based solutions for fuzzy hardware reported in the
bibliography (see Section 3.1).

The hardware partition has been developed in VHDL with the aid of the ISE Design
Suite 10.3 and the ModelSim 6.4 environment. The SW partition and the whole system
integration have been performed by means of EDK and SDK 10.3 tools.

5. Conclusions

In this work, we have reported the development of a scalable architecture suitable for the
implementation of high-speed fuzzy inference systems on reconfigurable hardware. The
main advantages of the proposed architecture are scalability, high performance, and
flexibility. Therefore, it can be used to develop fuzzy inference systems for real-time
multidimensional problems with a large number of membership functions and a large rule
base. The proposed solution has been used to implement a complex fuzzy controller for a
particular application in the area of automotive control, a fuzzy controller for vehicle
semi-active suspension system. The SoPC-based architecture implemented for this
example, which features four three-input single-output PWM-FISs arranged in parallel,
takes full advantage of the architecture scalability and the FPGA-technology capabilities.
Our single chip hardware/software approach is able to compute a whole inference in only
90 ns, while serial processing of the four PWM-FIS would require more than 1.5µs to
perform this computation.

On the other hand, with the aim of reducing the computational cost of the zero-order
Sugeno inference algorithm, a few restrictions have been introduced in the membership
functions definition. It has been shown that the use of triangular antecedents with a few
additional constraints has a great impact on hardware simplicity, without detriment to the
approximation capability of the inference model. This aspect of the model has been
verified by approximating the input/output mapping of a sliding mode controller with
Skyhook surface for a vehicle semi-active suspension system. The proposed approach is
suitable for developing high-performance implementations for already known application
areas of embedded fuzzy systems such as automotive, robotics, consumer electronics, and
pervasive computing, among others.

Scalable Architecture for High-speed Multidimensional Fuzzy Inference Systems 25

Acknowledgments

The authors would like to thank the Basque Country Government and Spanish Ministry
of Science and Innovation (MICINN) for supporting this work under Grants S-
PE08UN49 and GIC07/138-IT-353-07, and TEC2009-07415, respectively.

References

1. L. Petters, and, S. Gou, Fuzzy Hardware. Architectures and Applications, eds. A. Kandel, and
G. Langholz (Kluwer Academic Press, Massachusetts, 1998), pp. 27-42.

2. M. D. Hiller, What is scalability?, ACM SIGARCH Computer Architecture News 18 (1990)
18-21.

3. G. M. Amdahl, Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities, Proc. of the AFIPS spring joint computer conference, Vol. 30, 1967,
pp. 483–485.

4. M. Sugeno, and G. T. Kang, Structure identification of fuzzy model, Fuzzy Sets Syst. 28
(1988) 15–33.

5. T. Takagi, and M. Sugeno, Fuzzy identification of systems and its applications to modeling
and control, IEEE Trans. Systems, Man, and Cybernetics 15 (1985) 116-132.

6. K. Basterretxea, and I. del Campo, Electronic Hardware for Fuzzy Computation, Scalable
Fuzzy Algorithms for Data Management and Analysis, eds. A. Laurent and M-J. Lesot (IGI
Global, Hershey-New York, 2009), pp. 1-30.

7. A. Barriga, S. Sánchez-Solano, P. Brox, A. Cabrera, and I. Baturone, Modelling and
implementation of fuzzy systems based on VHDL, International Journal of Approximate
Reasoning, 41 (2006) 164-178.

8. R. Rovatti, Fuzzy piecewise multilinear and piecewise linear systems as universal
approximators in Sobolev norms, IEEE Trans. Fuzzy Systems 6 (1998) 235–249.

9. G. Goth, Entering a Parallel Universe, Communications of the ACM 52 (2009) 15-17,
doi:10.1145/1562164.1562171.

10. J.M. Paul, and B.H. Meyer, Ahmdahl’s Law revisited for Single Chip Systems, International
Journal of Parallel Programming 35 (2007) 101-123, doi:10.1007/S10766-006-0028-8.

11. Xilinx Inc.,Virtex-5 Family Overview (2008), http://www.xilinx.com/support/documentation
/data_sheets/ds100.pdf.

12. Xilinx Inc., Microblaze Processor Reference Guide (2008), http://www.xilinx.com/support
/documentation/sw_manuals/mb_ref_guide.pdf.

13. Altera Corporation, NIOS II Processor Reference Handbook (2008), http://www.altera.com
/literature/lit_nio2.jsp.

14. A. Cabrera, S. Sánchez-Solano, P.S. Brox, A. Barriga, and R. Senhadji, Hardware/software
Codesign of Configurable Fuzzy Control System, Applied Soft Computing 4 (2004) 271-285.

15. A. Cabrera, S. Sánchez-Solano, I. Baturone, F. J. Moreno-Velo, P. S. Brox, and A. Barriga,
Development of Fuzzy Control Systems on Programmable Chips: Application to Mobile
Robot Navigation, Proc. Of the 10th International Symposium on Robotics and Applications,
2004, pp. 167-172.

16. A. Di Stefano, and C. Giaconia, An FPGA-Based Adaptive Fuzzy Coprocessor, Lecture Notes
in Computer Science LNCS 3512 (2005) 590-597.

17. P. Echevarría, M. V. Martínez, J. Echanobe, I. del Campo, and J. M. Tarela, Design and
HW/SW Implementation of a Class of Piecewise-Linear Fuzzy System, Proc. of the XII
Seminario Anual de Automática, Electrónica Industrial e Instrumentación, 2005, pp. 360-364.

26 del Campo et al.

18. S. Sánchez-Solano, A. J. Cabrera, I. Baturone, F. J. Moreno-Velo, and M. Brox, FPGA

Implementation of Embedded Fuzzy Controllers for Robotic Applications, IEEE Transactions
on Industrial Electronics 54 (2007) 1937-1945.

19. I. del Campo, J. Echanobe, G. Bosque, and J. M. Tarela, Efficient Hardware/Software
Implementation of an Adaptive Neuro-Fuzzy System, IEEE Transactions on Fuzzy Systems 16
(2008) 761-778.

20. L. M. Reyneri, Implementation Issues of Neuro-Fuzzy Hardware: Going Toward HW/SW
Codesign, IEEE Transactions on Neural Networks 14 (2003) 176-194.

21. N. Jalili, A comparative study and analysis of semi-active vibration-control systems, Journal
of Vibration and Acoustics 124 (2002) 593-605.

22. D. Fisher and R. Isermann, Mechatronic semi-active and active vehicle suspensions, Control
Engineering Practice 12 (2004) 1353-1367.

23. Y. Chen, Skyhook surface sliding mode control on semi-active vehicle suspension system for
ride comfort enhancement, Engineering 1 (2009) 23-32, doi:10.4236/eng.2009.11004.

24. E. M. ElBeheiry and D. C. Karnopp, Optimal control of vehicle random vibration with
constrained suspension deflection, Journal of Sound and Vibration 189 (1996) 547-564.

