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This paper presents a scalable architecture seitfl the implementation of high-speed fuzzy
inference systems on reconfigurable hardware. Téie fieatures of the proposed architecture, based
on the Takagi-Sugeno inference model, are scalghiligh performance, and flexibility. A scalable
Fuzzy Inference System (FIS) must be efficient prattical when applied to complex situations,
such as multidimensional problems with a large nemmdd membership functions and a large rule
base. Several current application areas of fuzzgpetation require such enhanced capabilities to
deal with real-time problems (e.g. robotics, auttweo control, etc.). Scalability and high
performance of the proposed solution have beereaetliby exploiting the inherent parallelism of
the inference model, while flexibility has beenabed by applying Hardware/Software co-design
techniques to reconfigurable hardware. Last geioeratconfigurable technologies, particularly
Field Programmable Gate Arrays (FPGAs), make isides to implement the whole embedded FIS
(e.g., processor core, memory blocks, peripheeald, specific hardware for fuzzy inference) on a
single chip with the consequent savings in sizet emd power consumption. As a prototyping
example, we implemented a complex fuzzy contrdtera vehicle semi-active suspension system
composed of four three-input FIS on a single FP&#he Xilinx's Virtex 5 device family.

Keywords Fuzzy hardware; Scalability; FPGA; Fuzzy cont®é¢mi-active suspension system.

1. Introduction

Great efforts in research were made in the decédleeo1980s and early 1990s to the
development of electronic hardware for fuzzy infee-based computing systems (i.e.
fuzzy hardware. Many of these were developed by means of AppbeatBpecific
Integrated Circuit (ASIC) technology with the aimazhieving high processing speed for
real-time applications. The main drawbacks of teehnology were poor flexibility, long
development cycles, and a complex design methoglologinsuitable for non-ASIC
specialists. Those pioneering works resulted ineasjve solutions that rapidly became
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obsolete. However, they laid the foundation for tlesign of efficient architectures for
fuzzy hardware, providing many ideas and efficigpiutions that can be exploited with
current technologies. The present scenario of flremgware design is very different than
it was ten to fifteen years ago, as is the desigany other complex digital system.
Nowadays, the arrival of high capacity reconfiglealdevices — mainly Field
Programmable Gate Arrays (FPGAs) — and the avétlalnf user-friendly Computer
Aided Design (CAD) tools associated with this tedlogy have resulted in new
challenges for fuzzy computation.

Present FPGAs are powerful enough to accommodbteearesources of a typical
embedded electronic system — processor, dedicabedits, memory, and other
peripherals — on a single chip (System on a Prograte Chip or SoPC). In addition,
hardware/software (HW/SW) co-design techniques)iegpo SoPCs, provide efficient
solutions for heterogeneous functionality, as is tase of most fuzzy systems. The
present challenges of fuzzy computation demand ddexk systems able to deal online
with a large number of signals, and also to adapthanging requirements. These
specifications can be met with reconfigurable tedébgies which allow the functionality
of hardware to be easily adapted to different sitma. The main focus of our approach is
to exploit these capabilities of present reconfidple hardware in order to develop
efficient embedded systems for fuzzy computation.

Moreover, as the scope of application of fuzzy ¢olgas been expanding into more
complex problems that demand intensive data prowpsat high speed, hardware
scalability has gained widespread relevance. Actrlric system is said to be scalable if
the performance of the system improves after addiagiware proportionally to the
resources added; althougte basic notion of scalability is intuitive, it $1@o generally-
accepted definitiofi In the sense given above, a scalable fuzzy systemld be efficient
even when applied to complex situations such asidimkensional problems with a large
number of membership functions and a large rule b&sveral present application areas
of fuzzy computation require such enhanced capisili(e.g. robotics, automotive
control, etc.). Both properties, performance andladility, are closely related to the
fraction of parallelism allowed by fuzzy algorithrasd the availability of resources in
the target platform. Amdahl’s Lava widely used law in computer architecture analysi
and design, has been applied to evaluate the patespeedup (performance
improvement) that can be achieved in the implentemtaof fuzzy algorithms by
exploiting parallel processing (adding new resosixcé\s will be seen, the results
obtained have proven very useful in the desigrffafient fuzzy hardware.

This work presents a scalable architecture for yfuzomputation based on
reconfigurable devices. The proposed architectgrean algorithm-based approach
suitable for the implementation of multi-input siegputput (MISO) fuzzy inference
systems (FIS). In a generic sense, it is scalabeveral dimensions such as the number
of inputs and fuzzy rules, the number of memberéiigtions, and even the number of
FISs; of course the availability of hardware resesris also to be taken into account.
Note that digital FISs allows both algorithm-bassdutions and look-up table (LUT)
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based solutions. However, the latter are not sleitbdy the development of large FISs,
with high precision requirements, because the demafn memory resources grow
exponentially with the resolution. In consequersiace our work deals with scalable
architectures for multidimensional fuzzy systents tlgorithmic approach has been
selected. As an application example, we developedraplex fuzzy controller for a
vehicle semi-active suspension system composedowof three-input FISs for ride
comfort enhancement. The controller has been dpedlon a Xilinx's Virtex 5 device.

The paper is organized as follows: Section 2 byieflerviews the inference model
used in this work and discusses key features of ntloelel such as computational
complexity, scalability, and performance; specidter#ion has been paid to the
discussion of results derived from the applicatidrAmdahl’s Low. Section 3 presents
the system level architecture and addresses impattesign topics such as the partition
of the system into HW and SW blocks, and the HW/Sdvhmunication. Section 4
describes the development of a multidimensionakyueontroller for a vehicle semi-
active suspension and gives details of its FPGAthamplementation. Finally, Section 5
presents some concluding remarks.

2. Fuzzy Inference Model

The fuzzy inference model used in this work is gipalar type of the zero-order Sugeno
inference model, see Refs. 4 and 5. Let us brieflpduce the main aspects of the model
with a view to highlighting the fragments of comatibn which can be performed in
parallel; scalability and performance are closellated to parallelism. Consider an
input single-output FIS witim antecedents per input dimension. Assuming thafuey
rule base is complete (i.e. all possible combimegiof antecedents are considered), then,
the number of rules is" and thg-th rule can be expressed as:
R 1F Xq is Agj(X1) andx; is Ag(xp) and . . X, is Agi(X,) THENYis f(x,%,,...),
where R is the jth rule (Kj<m"), x (I<i<n) are input variablesyy is the
output, f (X, X,,...) is @ crisp function in the consequent, ag¢x) are linguistic labels,
each one being associated with a membership fungtjgx ) .

In a zero-order Sugeno fuzzy model, the functioth@consequent is a constant value
f(x,%,...)= ¢, and the inference procedure used to derive thelesion for a specific
input X = (X, X,,..., %, ) is as follows:

m"

' n
y=Zvvjq/ZV\{,withwj=|_J,L4j(>{). (1)
i=1 i=1 i=
In order to show up the parallelization capabitifythe inference algorithm, Eq. (1)
can be viewed as a four level computation scheosd as the one depicted in Fig. 1:
Level 1: membership function evaluation. Level 1cismposed ofm” groups ofn
membership function units in each one. Every ugitif this level produces outpyt;
by evaluating the corresponding membership function

H(x)=1f(x;8,8 ,...), =isn, 1<, )
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where a,8,,. are the parameters associated with each antecedemntbership
function (e.g. centre, and width of a Gaussian mestip function). Note that since the
partition of each input dimension is the same far whole set of fuzzy rules, there are
only m different membership functions per input dimensibherefore, in practice, only
mnmembership function units are required.

Level 1 Level 2 Level 3 Level 4

1
Rule 1 I | X
Rule 2 [ | X

: i
Rule j X
Rule m"lr /l X

LA

X X% %
Fig. 1. A block scheme of the zero-order Sugeffieréamce model for a-input single-output system; triangular
membership functions have been selected for thecadents. In the particular case of a PWM zerororde

Sugeno inference model, the number of rules —ectiles — is 2instead ofm", and Level 4 is a sum instead of
an averaged sum.

Level 2: rule activation. This level contaimg processing units with outputs; . Unitj in
this level generates the firing strength of jhk rule by computing the algebraic product
of all its inputs,

w, = ” 4 » with 1<j< T, (3)

Level 3: weighted activation. It is an™unit level that performs the computation of the
weighted activation of the rules; the output of jtl processing unif , is the product
of thej-th rule’s activation and the corresponding consatju

=W @
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Level 4: output level. This contains only one psgieg unit. The unit outpuy,, is the
averaged sum of the consequents,
m" '
y=2.P/2w (%)

i=1 i

i

As can be seen in Fig. 1, the above inference mizdslitable for parallel rule
processing by providing a data path for each rual membership function circuits for
each antecedent. This configuration allows fastatpn but is very resource-consuming,
in this sense, the scalability of a pure paralteh#ecture is limited. To overcome this
drawback, without loss in performance, several glesis have proposed simplification
strategies based on a reduction of the computdtmos of the inference algorithm. In
the following the computation cost involved in thero-order Sugeno inference model
will be analyzed, andd hocdesign simplifications will be introduced. Sint¢® tstorage
requirements are closely linked to the computasimategies, some design considerations
concerning memory resources will also be introduced

2.1. Computational Cost of the I nference Model

The computational cost of the inference procedsireoncerned, among others, with the
storage and evaluation of the membership functiorteere are several classes of
parameterized functions commonly used to define bezship functions in a FIS (e.qg.
Gaussian, sigmoid, sinusoid, and triangle, amofmgrs). Two main approaches have
been proposed to compute these membership valubigiial fuzzy hardwaré.The first
approach — pure memory approach — consists in usolgup tables (LUTSs) for storing
the membership function values. In a pure memopr@grh any membership function
shape can be stored, but occupied memory growsnexpially with the resolution, and
hence LUTs are only used with low resolution. Téddution is very flexible, but it is
very memory resource-demanding too. The secondapbr- a circuit based approach —
consists in storing only those parameters thatndethe shape of the membership
function. This alternative saves memory resouragsréquires additional membership
function circuitry to compute the membership degreén practice, antecedent
membership functions are sometimes selected piseeliviear (PWL), like triangles or
trapezes. The operations required to calculate & RM@mbership function are usually a
search of the domain segment the input value bsldagand the computation of the
linear function defined for each domain segniefihis kind of function is popular in
digital implementations of FIS because its evabratnvolves quite simple circuits and a
few memory words for parameter storage (i.e. bremitp and/or slopes). In what follows
we will assume that the membership degrees arénebtaising a circuit-based approach,
in particular, triangular-shaped antecedents valused. As will be seen later, the use of
triangular antecedents with a few additional caists has a great impact on hardware
simplicity without detriment to the approximatioapability of the inference model.
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Let us analyze the computational cost involvedhia tomputation of the zero-order
Sugeno inference model (Egs. (2) to (5)) with tgialar membership functions. Level 1
implies the evaluation omn membership functions. Since antecedents are tdang
(segments of linear functions), their evaluatiovoiresmn sums anann products. Level
2 requiresm” products ofn operands. In terms of single two-input operatitiis means
m'(n-1) products. Level 3 involves only" products, and finally, Level 4 requires one
division and two sums o operands (i.e. 2f' -1) single sums). These results are
summarized in Table | under the column labeled ‘®ienmodel”. As can be seen, an
increase in the dimensionality of the input spacesauses an exponential growth in the
complexity of the algorithm; the larger the numlbérantecedents per input) is, the
faster the growth. To tackle this problem, someigtess have searched for additional
restrictions, mainly on the membership functionimigbn, that allow more efficient
reformulations of the inference algorithm.

Table 1. Computational cost of the zero-order 8ogeference model.

Operation Generic model PWM model
Sums 2m" + nm- 2 2"+n-1
Products nm' + nm n2"+n
Divisions 1 0

Total m"(n+2)+2nm-1 2"(n+1)+2n-1

2.2. Inference Model with Piecewise Multilinear Behaviour

As has been introduced above, the selection ofticplar type of membership function
can be used to simplify the inference algorithmseh of restrictions specially suited for
digital hardware implementations is based on selga membership function partition
like that depicted in Fig. 2. As can be seen, tltitpon consists in triangular
membership functions, normalized in each input disien, and with single overlapping.

Hi
TN 4 (X7) = ay(x’-by)
NEAGARN 1= 44 ()

»

—F— X

R

Fig. 2. Partition of the universe intotriangular membership functions overlapped bysaird normalized in
thei-th dimension; amtriangle partition determines-1 regionsR, in the universe of discourse.

On one hand, normalized membership functions vegify, =1; this avoids the time-
consuming division operation in Eq. (5) where tlverage operator is replaced with a
sum operator. On the other hand, by limiting thertapping of the antecedents to two,
only two antecedents per input provide non-zero bership values (see Fig. 2).
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Moreover, the pair of active antecedents providempiementary membership values
(i.e. the sum of both membership values gives ofikg above constraints ensure that
given an input vectorx = (x, X,,..., X, ), the pairs of active antecedents define an “active
cell” in the input domain. Once this active cell identified and its corresponding
parameters are loaded (i.e. offdgf, and slopeg;, of the triangle), a single inference
kernel processes the active rules. Since the impctior activates only two antecedents
per input, the number of active rules at each tismmeeduced to 2 and the inference
algorithm can be rewritten as follows:

Level 1: membership function evaluation.

4 (%) =g (x-b), 1<i<n, 1< 2". (6)
Level 2: rule activation.
W, = |‘J 4, with 1<j< 2", (7
Level 3: weighted activation.
P=wg, 1< 2" (8)
Level 4: output level.
2"
y=>.h. 9

=1

As can be seen, the inference algorithm (6) topf@yides a Piecewise Multilinear
(PWM) output. In what follows we will refer to trebove algorithm as the PWM-FIS.
The computational cost of the PWM model is showiidle 1; the logical complement
has been assigned zero cost in the evaluation afb@eship function pairs. As can be
seen, the main advantages of the proposed coristraire a reduction of the
computational cost and a reduction of the arithcnebmplexity. The approximation
capability of the above PWM inference model hasnbaealyzed in Ref. 8, where the
author demonstrates that the model is able to appate to any required degree of
accuracy sufficiently regular functions and thedridatives. In Section 4, where a case
application example is developed, the approximatapabilities of the model will be
shown.

2.3. Parallelization and Scalability

A useful law in designing for scalability is the lenown Amdahl’s Law which gives a

measure of the speedup that can be achieved byitixglparallel processing. It states
that the maximum speedup that can be achieved dipgdew functional modules to the
parallelizable fraction of an algorithm is limitéy the fraction of the calculation that is
sequential. It is often used in parallel computiogpredict the theoretical maximum
speedup of a program using multiple proces3oFhis speedup is limited by the
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sequential fraction of the program, regardless @f many processors are used. The
inference algorithm in a FIS allows a certain degoé parallelism but it necessarily

involves a fraction of serial computation (see sgtjial level organization in Fig. 1). In

the following we will carefully analyze the perfoamce and scalability issues of the
proposed PWM-FIS (Egs. (6) to (9)) prior to makidgcisions about the system

architecture.

Table 2. Estimation of the parallelization propmrtof the PWM-FIS.

Clock cycles (parallel)  Clock cycles (serial)  Sthee

Level 1 2 2n n
Level 2 log,n 2'(n-1) 2"(n-1)/log, n
Level 3 1 2" 2"
Level 4 n 2"-1 (2"-1)/n
Total n+log, n+3 2'n+)+2n-1 2"(n+1)+ 2n—/
n+log, n+3

A serial implementation of the algorithm involvesraany clock cycles as operations
whenever the processing units perform sums anduptedn a single cycle (see Table 2;
n is the number of inputs to the FIS). Thereforesesial implementation of the FIS
involves 2"(n+1)+ 2n-1 clock cycles. Let us analyze the expected speemfup
parallelized implementation of the inference modghtive to the serial one for a given
size of FIS. Amdahl's Law states that the overgleedup,S achievable from the
parallelization of the computation of an algoritisyas follows:

1
S=— ~ |
a-B8)+%

where 5 is the proportion of a computation than can bealglized, (1) is the
proportion that cannot be parallelized, @i the number of processing units. The value
of 3 can be estimated by using the achieved spe&gapa given number of processing
units Py,

(10)

[N

/%
B s

the estimated parallelizatimﬁ, can then be used in Eq. (10) to obtain the sgeéatua
different number of processors.

For 5 estimation purposes, assume that the four levelsiied in the inference
algorithm are computed serially, while each on¢heffour levels performs computation
with the maximum parallelism grade allowed by singlycle processing units. This
particular case, normally referred to as “paratigle processing”, requires as many
processing units as the maximum number of opermatafneach type performed in a
single cycle. The maximum number of parallel pradyer cycle appears in Level 2"(

: (11)

=
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n-input products). Each-input multiplier can be implemented by means ob-input
single-cycle multipliers organized into a binargdrstructure ofog, n layers. The input
layer of the binary tree is composed ré2 two-input multipliers, the second layer is
composed of/4 two-input multipliers, the third layer involve$8 multipliers, etc. It can
be seen that the maximum number of single cycldymts is required in the first layer of
the binary tree for each one of ti28 active rules, that is¥ n2" products. On the other
hand, the maximum number of sums per cycle is imeLd (2" -1 two-input sums),
therefore, the total number of processing unitBjis 2" (1+ % n)— 1. In addition, Table 2
presents the computation time and the achieveddspe&, for this case example. The
above informationg, andP,, has been used to obtaﬁ(n) by means of Eq. (10); it has
been verified that the proportion of parallelizabemputation tends to be one when
increases (e.gB3(2) = 0.7, B(4)=0.916, 5(8) = 0.995, £(16)= 0.995, etc).

LR -
10 n=16.-
1000

100

wl A

10 100 1000 1

Fig. 3. Theoretical maximum speed® (sing multiple processing unitB)(to implement the PWM inference
algorithm. Results have been obtained by meangrafahl’'s Law.

Fig. 3 depicts the speedup of the inference algmritusing parallel hardware, as a
function of the number of processing units for @iént sizes of PWM-FIS (i.e. a different
number of inputsn). As Amdahl's Law predicts, the speedup is limiteecause of the
serial fraction of the inference algorithm. Nevef#ss, as has been seen abqZ?(a))
tends to be one whamnincreases, this means that the spee8ufends toP in Eqg. (10)
when n increases. It can thus be said that the perforemafcthe system improves
(speedup) after adding hardware, proportionallthtoresources added (processors) when
FISs with more than two inputs are considered. tleio words, the PWM inference
algorithm is suitable for scalable architecturesnfmltidimensional FISs.

The curves depicted in Fig. 3 provide also impdrtaformation concerning the
trade-off hardware resources/speed. Note thattavahie of the speedu=1, means a
fully serial solution based on a single procesBet,. This is the slowest solution but it is
also the less resource demanding. Different grafigsarallelism are allowed between
this serial approach and the fully parallel implewa¢ion. The latter provides the
maximum speedup, that is to say, the faster salutibwever hardware resources grow
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up in the same way as the achieved speedup. Sedhbltectures are usually more
effective in terms of area (hardware resources) power consumption while parallel
ones provide the faster solutions.

Finally, note that Eq. (10) assumes homogeneity dmdindlessness; these
assumptions are not realistic in the case of siBgleC because of the heterogeneity of
HW/SW architectures and the limitation in chip nes®s. In a broad sense, Amdahl's
Law can fail when applied to multiprocessor arattitees or micro-architectures where a
performance improvement in one of the partitionsthef system can have a negative
impact on the overall system performante.

3. System Architecture

Although resource boundlessness is a limitatiodesigning for scalability, the capacity

of FPGAs has increased according to Moore’s Lawsesitne first families appeared on

the market, so, even large fuzzy systems can bkemgnted on a single FPGA, provided
that the architecture is scalable enough. Let ghlight the main advantages of present
FPGA technology for developing fuzzy hardware.

3.1. Suitability of reconfigurable hardware for FI S development

In the last decade new design methodologies and two/e emerged to deal with the
challenges of new electronic platforms. In thissserthe combination of reconfigurable
hardware with the use of standardized hardware rigion languages (HDL) has
entailed the transference of the task of achiedagirable features such as flexibility,
scalability, reusability, etc, from the hardwaigeif to the description or modeling of this
hardware. Nowadays flexible solutions for high-periance fuzzy computation can be
easily developed and updated by means of usedfyie®AD (Computer Aided Design)
tools.

On the other hand, there are several specific ddgan of reconfigurable technology
that make it specially suited to implementing résae scalable fuzzy algorithms. Some
FPGA families (e.g. Xilinx's Virtex families) incporate internal Random Access
Memory (RAM) blocks. These memory blocks are vesgful for implementing FISs
because of the large amount of information involredhe definition of membership
functions and rules. On the other hand, the awithabof a dense and flexible
interconnection architecture (i.e. configurable timg) fits the requirements of high
performance FISs. As has been seen, the Sugenerinée model can be viewed as a
layered structure (see Fig. 1), where each layesists of several parallel processing
units densely connected with the neighboring layEne interconnection scheme of such
systems requires high flexibility in the segmemtatiof the routing paths to avoid
additional propagation delays. In addition, modeRGA families include higher level
functionalities, such as multipliers or generic D@Mgital Signal Processing) blocks,
embedded into the silicon. These resources are useful for implementing the
inference engine because they are faster and odespyarea compared to if they are
built from primitives.

Finally, a milestone in the evolution of reconfighte hardware has been to combine
the logic blocks and interconnections of traditibnBPGAs with embedded
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microprocessors and related peripherals to forrmRCS Some examples are the Virtex-I
Pro, Virtex-4, and Virtex-5 families manufactureg Xilinx, which include one or more
PowerPCs embedded within the logic blotka. similar approach consists in using soft-
processor cores instead of hard-cores that areemmited within the FPGA logic; two
widely used soft-cores are the Xilinx’s MicroBlazend Altera’s NIOS processors.
These new features of reconfigurable hardware, thegewith HW/SW co-design
techniques, have been exploited to develop a nénareed generation of fuzzy systems,
see Refs. 14-19.

In Ref. 15 the authors describe the developmeahambedded fuzzy control system
for planning the motion of autonomous mobile robdtse authors propose a complex
hierarchical fuzzy inference module (FIM) compodey six knowledge bases, five
inputs, and four outputs. The whole system was émginted on a Xilinx’s Spartan IIE
device with a MicroBlaze core at 50 MHz. The coléro(with the FIM clock at 12.5
MHz) employs only 2.881s to process a complete inference. The design gdneral
purpose fuzzy logic coprocessor and its implemeéntain a SoPC is reported in Ref. 16.
The proposed architecture has the ability of sujapgpthe dynamic reconfiguration of its
parameters. It was implemented on a Spartan daviddeatures a MicroBlaze processor
core. The fuzzy coprocessor is capable of runntrey@dock frequency of 73 MHz while
the processor core operates at 66 MHz. The nunfbdock cycles required to compute
the whole inference is 338 in a standard case \{iitnout parameter adaptation). This
performance provides an inference time of approtetgat.63us. In Ref. 18 a complete
design methodology and tool chain is presented. froposed design flow combines
standard FPGA implementation tools with a specditvironment Xfuzzy for the
development of fuzzy controllers as IP (IntellettBeoperty) modules. The design flow
was applied to develop a fuzzy controller, on ar@wedevice, for solving the navigation
tasks of an autonomous vehicle. The implementaticludes a MicroBlaze processor
core. Both the processor and the fuzzy core opetate50 MHz clock rate. The fuzzy
core completes one inference in 16 clock cycle® (88). Another approach to SoPC-
based fuzzy computation can be found in Ref. 19raviee implementation of a fuzzy
inference system with learning capabilities is préed. The Excalibur device family,
which embeds an ARM processor core, was used telgj@the prototype. The hardware
partition operates as a slave of the ARM processal performs a single inference in
only five clock cycles. As a simple case example #uthors developed a two-input
system that allowed a maximum clock frequency o7z (i.e. 74 ns per inference).

The analysis of the above mentioned works showsraémain conclusions that will
be taken into account in the following. Firstly, HBW solutions with an adequate
partition can often outperform classical solutiohgsed either on HW or SW, for
designing high-speed and low-consumption fuzzy robreystems. Secondly, to obtain
efficient HW/SW architectures the regular and reent computations have to be
implemented in the hardware partition and the utagor less frequent computations are
better suited to a software development. Anothtar@sting conclusion can be found in
Refs. 19 and 20, where the authors conclude that/SNW implementations of
neuro/fuzzy systems, where the neuro/fuzzy comjmutés performed in hardware with a
high degree of parallelism, are efficient onlyhttsystem parameters are also stored in
the hardware partition.
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3.2. System Level Architecture

Next, we will describe the system level HW/SW atetture for the PWM-FIS
developed in this work. It is a MicroBlaze sofbpessor-based system (see Fig. 4). The
whole embedded system consists of the processelitseif, the fuzzy inference core, the
FSL (Fast Simplex Link) bus system, a PLB (Periphé&iocal Bus) on-chip bus, two
PLB peripherals (UART and PCle), and the on-chipckl RAM (BRAM). The
application program is fully stored in on-chip BRAMut external SDRAM is also
available for further software revisions.

SoPC
SW partition _I_ZI_SFIC_)I’G_S”
_ ™ FIs1
Lve| Microblaze : :
Core : 5
Bus ; FIS 2 :
BRAM -1/O processing |
- Preprocessing : :
- High precision
| FISs :
HW partition
PLB Bus v
] I
SDRAM PCle UART
Module

Fig. 4. System level architecture for multiple pletanference cores, and partition of the systeo hardware
and software blocks.

The software partition comprises 1/0 processingnai pre-processing, and system
monitoring, while the hardware partition implementsltiple fuzzy inference cores (FIS
cores) in parallel. Each FIS core is a multipledingingle-output FIS, with a rule parallel
architecture, that performs Egs. (6) to (9). Th& Ebres are interfaced with the SW
partition by means of FSL buses. A FSL bus is adimmitional FIFO-based
communication channel bus used to perform fast comication between the processor
and the hardware cores running on the FPGA (HWitjwar}. In the above architecture,
FSL interfaces are used to transfer data to and ffe register file on the processor to
the FIS cores; there is one pair of FSL buses pes. Both sides of the FSL, the master
and slave side, have been configured to operatgniohronous mode with the same clock
rate. The main advantages of the proposed architecare scalability and high
performance to implement multiple fuzzy inferenaes on a single reconfigurable
device. Next, a detailed description of the intearahitecture of the PWM-FIS cores is
provided.
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3.3. Fuzzy Inference Cores

The Fuzzy inference cores have been designed wiighadegree of parallelism, in
line with previous discussions about scalabilitgrfprmance, and maximum achievable
speedup (see Amdahl's Law, Eq. (10)). In additimnavoid communication overloads
between the microprocessor (SW partition) and tt® deres (HW block), the system
parameters — membership function parameters argeqaents — have been stored in the
HW partition as a part of the FIS core. The prodoaechitecture has been depicted in
Fig. 5. It consists of four main blocks: the ROMrgraeter memory, the antecedent
multiplexer, the consequent multiplexer, and thezylProcessing Unit (FPU).

From FSLO ab
(Slave) >

Antecedents

Consequents

L1 L2 L3 L4

Parameter

Fuzzy Processing
Clock,  Memory

Unit
Reset
—
y

N

To FSL1 32b
(Master)

Fig. 5. Internal architecture of fuzzy inferenceasy and HW/SW interface (FSL buses). The FIS cares
implemented in the hardware partition of the SoPRe Fuzzy Processing Unit (FPU) implements the four
levels of the PWM inference algorithm (L1, L2, ls8)d L4).

The ROM parameter memory stores the set of paramedguired to generate the
antecedent membership functions and the singletonsegjuents. It consists of
2y (m -)+[],m memory words, where is the number of antecedents for tlh
input, XKi<n, andn is the number of system inputs. The computatiotheftriangular
antecedents involves two parameters per regionréthien offset and the positive slope),
that is, 2)° (m-1parameters. The partition of an input universe imt@angular
membership functions (see Fig. 2) determines asymagions in the universe as the
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number of antecedents minus one; the term “regitarids for each one of the segments
that delimit the vertexes of the triangles over ihput universe. Concerning the
consequents, there is a crisp consequent perthelesfore, the number of consequents is
equal to],m - It is important to note that given an input vectine number of active
rules is 2, however, the total number of consequents thag habe stored in memory is
the one given above. The parameter memory is eqdipgth a flexible interconnection
scheme that allows full parallel access to the nrgroontents.

The multiplexer (MUX) modules select for transmigsthe parameters of the active
region (the region where the input falls). The séba signals of the antecedent MUX are
the system inputs, while the outputs of the moduke the antecedent parameters and a
new selection signal that drives the consequent Mbé consequent MUX selects the
2" active consequents from the parameter memory. Bmhantecedent MUX and the
consequent MUX, are single cycle components.

a) b)
Il —
X \\‘ /7 I, —]
b //' > |3 —
l, — _>O
a —] > |5 —
_/J> |6 —
Clock Membership I —,
function circuit e —1 - 8-input multiplier
—» (binary tree)

Fig. 6. a) Membership function circuit used to comepthe pair of complementary membership valuesived
in the first level of the FPU. b) Scheme of an gdnmultiplier implemented by means of two-inpuigie-
cycle multipliers. The multiplier is structured an& binary tree of three layers. In the genera¢casn-input
multiplier consists of logn layers.

The FPU implements the four levels of the PWM-Hg&thm (Egs. (6) to (9)). Itis
a rule parallel architecture that evaluates thevactiles by means of a single inference
kernel. Level 1 features one two-input subtractet ane two-input multiplier per input
(see Fig. 6 a)). The modules used in this levelige in two clock cycles, active-high
output and active-low output to compute the paicarhplementary membership function
values.

The second level of the FPU is composed of mivgout multiplier per rule, that is,"2
n-input multipliers. As has been explained in sattl the product of signals can be
performed by means of two-input single-cycle miikirs organized into a typical binary
tree. The number of clock cycles required to compheé product of signals is logn. If
n is not a power of two, then, the next power of iato be used. For example, the time
required to evaluate a binary tree is one clockecifcn=2, two clock cycles ih=4 (or
n=3), three clock cycles =8 (or n=5,6,7), and so on (see Fig. 6 b)). Level 3 is
composed of 2two-input single-cycle multipliers.
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Level 4 of the FPU consists of &ipput adder implemented as a binary tree of two-
input adders (similar to the module depicted in. Fdgb) but with adders instead of
multipliers). Therefore, the computation of Levetetjuires log2"=n clock cycles. The
latency of FIS cores, as a function of the numbenputs, can be consulted in Table 2
under the label “Clock cycles (parallel)”.

Finally, note that the scalability property, apdli® electronic systems, is sometimes
used to quantify specific requirements for a patéic dimension such as load, precision,
etc. In this sense, the architecture is scalabteweral dimensions such as the number of
inputs and fuzzy rules, the number of membershigtions, and even the number of
PWM-FISs. In the next section, resource usage gsidim performance will be provided
for a case application example.

4. Application example: a MIMO controller for a vehicle semi-active suspension
system

To illustrate the capabilities of the PWM-FIS asuitable platform to implement fast
response MIMO controllers, we have selected adaitl-semi-active (SA) suspension
control system. Although a proper controller desfgn a full-car suspension system
should be based on a full-car vehicle dynamics madin reflection of accelerating,
braking and steering influences, in what followssitassumed that the four quarter-car
models for each independent SA suspension systawesdiready been decoupled. In this
manner we can focus on the controller implemematiba single SA suspension system
to isolate the car body from wheel vibrations proetliby road irregularities. This means
that we can make use of any of the many publish&dsiBgle suspension controller
designs to analyze the performance of our hardwiatéorm. Once the design process is
completed, the four SA suspension controllers kdllimplemented in a single FPGA as
four parallel PWM-FIS processors, so the four afnthwill show identical processing
performance figures.

SA suspension systems can only change the visapidg coefficient of the shock
absorber and, unlike active suspensions, do notesmggy to the suspension system.
Most  widely-studied, continuously-varying, semitaet dumpers rely on
Magnetorheological (MR) and Electrorheological (Ef)ids which respond to an
applied magnetic/electrical field with a changetle rheological behavidt. Though
limited in their intervention, semi-active susp@ms are less expensive to design and
consume far less energy than their active countesrffaA two degree of freedom quarter
car model for the SA suspension system is depiat&éy. 7.
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Fig. 7. Simplified quarter car model of a two degoé freedom semi-active suspension system.

A simplified SA suspension model can be definedhgyEq. (12), wheren,sandmy
are the unsprung mass and the sprung mass regbgdtivs tire deflection stiffnesdsg
andcg are suspension stiffness and damping coefficimgpeactively, and-is the semi-
active damping coefficient which can generate amamnforce offd as defined in Eq.
(13). zs, zand r are the displacements for unsprung mass, sprung @iad road
disturbance respectively, agds the acceleration of gravity.

{mhs'zus— k(z- z)+( & Q('z 2+ k 7z )+ m.Ho 12)
mz+k(z- z)+( &+ §('z g+ mgo

fd=c, (2.~ z) (13)

As a reference controller to be approximated byRWM-FIS system, we have used
the sliding mode controller with Skyhook surfacé&yl$ook SMC) design described in
Ref. 23. For controller design and testing, the S&pension model was described by
state-space equations using the four  state-spaceriabla  vector
x=[z.,- 1,2~ Z, 7, 7, and the three element output vector[z, z- 7, 7.~ |,
while the input () is the dumping forcefd) applied by the controlled dumper (see Ref.
23 for more details). The main design steps folkbieRef. 23 are reproduced in Section
4.1 for further clarity.

4.1. Skyhook dliding surface controller

The design objective is to consider the nonlinagpension system as the controlled
plant defined by the general state-space Eqg. (#4¢rex/R’is the state vecton is the
order of the nonlinear system, andR" is the input vector, beingh the number of
inputs.

x=f(xut) (14)
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s(e,t)is the sliding surface of the hyper-plane, whiclgiigen in Eq. (15), wherg is a
positive constant that defines the slope of thdirgi surface.

d n-1
s(fet)=| —+A € 15
(e9 ( " j (15)
In the two degree of freedom SA suspension system2, since it is a second-order
system in whichs defines the error in the controlled variable and #rror in its
derivative:

s=éet+tAe (16)

From Egs. (15) and (16), the second-order trackiraplem is replaced by a first-
order stabilization problem in which the scasas to be kept at zero by the controller.
This is obtained from use of the Lyapunov stabittigorem, given in Eq. (17), and it
states that the origin is a globally asymptoticalighle equilibrium point for the control
system. Eq. (17) is positive definite and its tidezivative should satisfy the inequality in
Eqg. (18).

V(9 =% 5 (17)

V() = ss<0 (18)

The Skyhook control is used in SA suspensions tprowve ride quality, as it can
reduce the resonant peak of the sprung mass qgitiicantly. It is based on the idea of
switching the damping force when the sign of thedprct of the absolute velocity of the
sprung mass and the relative velocity across tepesision changes. By borrowing this
idea to reduce the sliding chattering phenomenorsofa switching control law is
introduced for the major sliding surface switchawgivity as described in Eq. (19), where
Co IS a positive damping ratio for the switching cohtaw, ands is an assumed positive
constant which defines the thickness of the slidimogle boundary layer.

—C, tan S ss> @
u= o (19)

0 sS58<

Two feedback signals are used as inputs to ddébmgskyhook SMC: the car body
velocity, which is taken as the error signe), @nd the car body acceleration, which is
taken as the change in the error signa).(To implement the controller, the derivative of
the change in the error signale@ has also to be computed to check whether the
condition given in (19) is satisfied. For simulatjdhe SA suspension control system is
excited by a random road disturbance loading wtsakescribed by the road profile with
the parameters of reference space frequepeyd road roughness coefficidpfny). To
generate the road profile of a random base exmitai spectrum of the geometrical road
profile with road class roughness-C (average roagénis considered. The vehicle is
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travelling with a constant speed and the time histories data of road irregularitg a
described by a power spectral density metticthe values of all parameters required to
set the simulation are summarized in Table 3.

Table 3. Simulation parameter values for the Skitsdialing surface control system

Symbol Parameter Value
Mys Unsprung mass, kg 36

ms Sprung mass, kg 240

Cs Suspension damping coefficient, Ns/m 1400

Ks Tire stiffness coefficient, N/m 160000
Kus Suspension stiffness coefficient, N/m 16000
Co Skyhook SMC damping coefficient -5000
) Thickness of the sliding mode boundary laye28.1569
A Slope of the sliding surface 10.6341
No Reference space frequency'm 0.1

P () Road roughness coefficient>izycle 256 x 10°
Vo Vehicle speed, km/h 72

There are three widely used performance indexessdbicle suspension systems,
which include body acceleration, suspension deftomand tire load. The three indexes
are used in this simulation to evaluate the peréoree of the SA suspension system. In
particular the ride comfort is specified in ternfs@ot mean square (RMS) acceleration
over the considered frequency range. The Skyhook $MRef. 23 achieves a reported
RMS = 1.0530 (RMS = 0.9586 according to our simatef) while for the passive
suspension RMSE = 1.4378, which confirms the véleaof the controller on the ride
comfort enhancement.

4.2. PWM-FISimplementation of the Skyhook SMC

A PWM-FIS can be trained by means of neural netadekchniqueSto approximate the
control surface defined by the Skyhook SC describeskection 4.1. The training process
can be carried out offline since the Skyhook SMeseh is a time-invariant memory-less
controller. The learning algorithm employed in tih@ining process was a hybrid least
squares (LS) plus gradient descent (GD) processedath iteration of the learning
algorithm, a LS signal forward-propagation adjusts linear parameters, while a GD
back-propagation adjusts the nonlinear parameters.

Three variablese ce andcce were used as signals for the input vectors, wihiée
Skyhook SMC controller output was the referencgoutalue for computing the error
signals to be minimized by the learning algoritifventy equally spaced input signal
values were used to excite each of the controlign'se inputs in the involved signal
ranges for this control problem. With the obtair@htrol input/output pairs, an 8000
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vector training set was configured. Fig. 8 showseaontrol surface cuts obtained after
sampling the Skyhook SMC.

Skyhook SMC surface for cce=0 Skyhook SMC surface for ce=0

5000 5000

SkyhookSMC out
SkyhookSMC out

-5000

var2 (ce) -10

Skyhook SMC surface for e=0

4000

2000

SkyhookSMC out
)

)
=3
=3
1S3

-4000
1000

var2 (ce)

Fig. 8. Three control surface cuts for the Skyhsliing mode controller used as a reference to titeé PWM-
FIS controller.

The initial setting of the PWM-FIS parameters (efdraining) was an equally
spaced seven membership function partition forthinee input universes (grid partition).
This architecture gives rise to a 343-rule zerceor8ugeno-type PWM inference model
with 373 adjustable parameters. The membershiptibime were overlapped by pairs
with crossing points at 0.5 (see Fig. 9 on thé) lefhile all the consequents were set to
one. All signals, both inputs and outputs, weremadized to the unitary range [0,1].
Normalization improves the performance of trainalgorithms and, in any case, the FIS
cores in the SoPC must be fed with normalized 8dpitit signals. After completing the
training process, both antecedent parameters amgbqaents were adjusted to minimize
the training error as much as possible (see Fin the right for antecedents). In this case
the achieved sum of squared error (SSE) for theptatmtraining set (8000 points) was
SSE = 1.70810° Some cuts of the obtained PWM-FIS approximateutrob surfaces
are depicted in Fig. 10 (same views as in Fig. 8).
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Fig. 9. Seven membership function partitions efitiput space for the PWM FIS system. Left: befoa@ing.
Right: after training.

Since when running the PWM-FIS controller the otigignal has to be denormalized

to cover the whole range of the output dumpingdpthis may give rise to an amplified

error in the control signal that can be problematithe more sensitive signal ranges of
the control system, mainly for those inputs thabudth produce a zero output. To

overcome this problem, the near-zero outputs axeetbto zero by a dead zone function
in the PWM-FIS output. In a similar manner, a sation function has been added to
assure that minimum and maximum dumping force \safre not exceeded.

PWM-FIS out

PWM-FIS surface for cce=0

vart (e)

PWM-FIS out

var3 (cce)

PWM-FIS surface for ce=0

=S
41000 "-10

vart (e)
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PWM-FIS surface for e=0

5000

PWM-FIS out

Fig. 10. Three control surface cuts for the PWM-Ettroller trained as approximator system for$kghook
SMC.

The simulation performed in Ref. 23 was reprodueed later modified by
substituting the original Skyhook SMC by the traif@WM-FIS controller simulator. A
sampling frequency of 1 KHz maximum, i.e. a 1ms @iamg period (), was considered
since higher operation rates are hardly achievaplSA suspension systerffsAt this
rate, if the delay introduced by the control signamputation ) is negligible in the
controller design (as it was in this case), sudhydmust be approximately two orders of
magnitude smaller than the sampling periadg Ty). In this manner we can be sure that
the sampling and the actuation are performed asdih@ee sampling time, so the so-called
causality ruleis fulfilled as long as the analog to digital (AB)d digital to analog (DA)
devices and device I/O pads are fast enough. Tifiénfient of this condition implies that
the control output should be computed in approxétyat; = 1Qus. As will be seen, our
PWM-FIS FPGA implementation is able to computedbetrol outputs in just nine clock
cycles at a 100MHz clock-rate, i.e. it hasraa= 0.09 us input-output control signal
latency (/O pad delays aside). This is true far domputation of the four suspension
control signals since they are computed in paradielexplained at the beginning of this
section and depicted in Fig. 11. Comparing to therager; = 3600ps that takes the
MATLAB software implementation of the PWM-FIS cooller or the averages =
76.699us of the original Skyhook SMC running on a PentiDrat 3GHz to produce the
control signal for one suspension system, the obrdignal delay of the PWM-FIS
hardware seems negligible

The outputs obtained from the simulation for cady@cceleration, suspension
deflection and tire load, both for the passive sasppn and for the PWM-FIS controlled
suspension, are shown in Figs. 12, 13 and 14 réeplgc The RMSE value of the body
acceleration signal for the PWM-FIS controlled Smension system is RMS = 1.1194,
not as good as that obtained by the original cdetrdut still better than the passive
suspension figures.

" These time measures were made on a general puRsenning a Windows OS and not on a dedicated
microprocessor with optimized code, so they arg approximate values with comparative purpose.
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Fig. 11. Simplified scheme of the full car semiraetsuspension control system. The full controiler
embedded in a single FPGA.
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Fig. 12. Semi-active suspension system car bodgl@@tion response with PWM-FIS control vs. passive
suspension response
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Fig. 13. Semi-active suspension deflection respaittePWM-FIS control vs. passive suspension respon
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Fig. 14. Semi-active suspension system tire lodd RIWM-FIS control vs. passive suspension response

4.3. PWM-FIS hardware characterization

We developed the architecture depicted in Figwitk four FIS cores — for full car semi-
active suspension control; each core implementsafrtee four PWM-FIS controllers
depicted in Fig. 11. The design has been implendenséng the XC5VLX50T device of
Xilinx's Virtex 5 family; this family is speciallysuited for high performance logic. The
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selected device has 7200 slices (each Virtex-% slmntains four LUTs and four flip-
flops), 48 DSP slices (each DSP slice consists ahudtiplier, an adder, and an
accumulator), and 60 RAM blocks of 36 Kbit.

After synthesis, our design uses 39 DSP slices J8P¥062 Slice LUTs (72%),
22566 Slice LUT-Flip Flop pairs (78%), and 1044 tshof total memory (48%), among
other resources. The MicroBlaze processor exedhiessoftware part of the system
operating at 100 MHz, while the hardware partitionplemented in the logic fabric,
performs the FIS cores with the same frequencyhrAet-input core requires nine clock
cycles to perform the PWM-FIS computation, thatoisay, only 90ns. In view of these
results, it can be concluded that the proposedtisalis suitable for high-speed fuzzy
computation. The achieved performance is betten ttiee one obtained in other
hardware/software FPGA-based solutions for fuzzyrdivare reported in the
bibliography (see Section 3.1).

The hardware partition has been developed in VHEth whe aid of the ISE Design
Suite 10.3 and the ModelSim 6.4 environment. The @#fition and the whole system
integration have been performed by means of EDKSZDK 10.3 tools.

5. Conclusions

In this work, we have reported the development séaable architecture suitable for the
implementation of high-speed fuzzy inference system reconfigurable hardware. The
main advantages of the proposed architecture aakbslity, high performance, and
flexibility. Therefore, it can be used to develag®y inference systems for real-time
multidimensional problems with a large number ofmbership functions and a large rule
base. The proposed solution has been used to irepteancomplex fuzzy controller for a
particular application in the area of automotiventcol, a fuzzy controller for vehicle
semi-active suspension system. The SoPC-basedtemtche implemented for this
example, which features four three-input singlepautPWM-FISs arranged in parallel,
takes full advantage of the architecture scalgbditd the FPGA-technology capabilities.
Our single chip hardware/software approach is thtmpute a whole inference in only
90 ns, while serial processing of the four PWM-mBuld require more than 1uS to
perform this computation.

On the other hand, with the aim of reducing the potational cost of the zero-order
Sugeno inference algorithm, a few restrictions hl@en introduced in the membership
functions definition. It has been shown that the astriangular antecedents with a few
additional constraints has a great impact on harelwinplicity, without detriment to the
approximation capability of the inference model.isThspect of the model has been
verified by approximating the input/output mappiafya sliding mode controller with
Skyhook surface for a vehicle semi-active suspensistem. The proposed approach is
suitable for developing high-performance implemgate for already known application
areas of embedded fuzzy systems such as automath@tjcs, consumer electronics, and
pervasive computing, among others.
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