Microprocessors and Microsystems Xxx (2014) XXX—-XXx

journal homepage: www.elsevier.com/locate/micpro

Contents lists available at ScienceDirect

Microprocessors and Microsystems ‘

EMBEDDED
HARDWARE
DESIGN

An FPGA-based multiprocessor-architecture for intelligent

environments

J. Echanobe?, I. del Campo?, K. Basterretxea °, M.V. Martinez ?, Faiyaz Doctor ¢

2 Dept. of Electricity and Electronics, University of the Basque Country, Vizcaya, Spain
b Dept. of Electronics and Telecomm., University of the Basque Country, Vizcaya, Spain
“Dept. of Computing and the Digital Environments, Coventry University, Coventry, UK

ARTICLE INFO

ABSTRACT

Article history:
Available online xxxx

Keywords:

Intelligent environments
NeuroFuzzy

FPGA

SoPC

Multiprocesssor

In this paper we propose a SoPC-based multiprocessor embedded system for controlling ambiental
parameters in an Intelligent Inhabited Environment. The intelligent features are achieved by means of
a Neuro-Fuzzy system which has the ability to learn from samples, reason and adapt itself to changes
in the environment or in user preferences. In particular, a modified version of the well known ANFIS
(Adaptive Neuro-Fuzzy Inference System) scheme is used, which allows the development of very efficient
implementations. The architecture proposed here is based on two soft-core microprocessors: one micro-
processor is dedicated to the learning and adaptive procedures, whereas the other is dedicated to the on-
line response. This second microprocessor is endowed with 4 efficient ad hoc hardware modules intended
to accelerate the neuro-fuzzy algorithms. The implementation has been carried out on a Xilinx Virtex-5

FPGA and obtained results show that a very high performance system is achieved.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ambient Intelligence (Aml) is a relatively new paradigm that
proposes environments - e.g. public or private halls, rooms or
spaces — capable of adapting to the preferences and needs of the
people existing in them in order to make their daily activities
easier and their daily life more comfortable [1-4] (AmI paradigm
is also known as “Intelligent Inhabited Environments”). To reach
this goal in its more general sense, the environments must be
endowed with smart capabilities, such as recognizing the user
and its situational context (i.e., context aware), being tailored to
his/her needs, adapting itself in the changes of his/her preferences
and interacting with him/her [5]. All these features are carried out
by means of an amount of interconnected electronic devices
(sensors, microprocessors, ad hoc hardware, actuators, communi-
cation support) distributed all around the environment, which, in
addition, must be invisible to the user who only perceives the user
interface.

The electronic devices for an Aml scenario must therefore be
small, low-cost, with a low power consumption, and with a fast
response, but also clever enough to cope with the above mentioned
intelligent skills. However, this trade-off is hard to obtain: i.e.,
devices with intelligent capabilities demand high computational
requirements which imply large and more expensive hardware
and higher response times. Nevertheless, the increasing integration

http://dx.doi.org/10.1016/j.micpro.2014.07.005
0141-9331/© 2014 Elsevier B.V. All rights reserved.

of electronic devices makes it possible at present to accommodate
all the components of a typical electronic system on a single chip,
commonly referred to as system-on-a-programmable chip (SoPC).
Thus, it is possible to achieve high performance systems with a
reduced size, cost and power consumption [7,6].

In this paper we propose a FPGA-based SoPC for controlling a
number of ambiental parameters in an Intelligent Environment.
The intelligent capabilities of the system are achieved by means
of Neuro-Fuzzy Systems (NFS) which have the ability to learn
and adapt from incoming samples (the main feature of neural
networks) and also the ability to perform imprecise or vague
reasoning (the main feature of fuzzy systems) [8]. This twofold fea-
ture makes NFS very suitable for Aml environments, as has been
shown by the authors in previous works [10-12].

Bearing in mind this NFS structure, an efficient architecture has
been developed to be implemented in the FPGA. The proposed
architecture is based on 2 microprocessors (soft-cores) and ad
hoc designed hardware modules acting as high performance copro-
cessors to accelerate the neuro-fuzzy algorithms. The training and/
or adapting procedure is addressed by one microprocessor,
whereas the reasoning (i.e. the on-line operating mode) is
performed by the other.

As will be shown in the paper, the proposed architecture
provides important advantages with respect to other existing
Aml implementations. These advantages are related to issues like

(2014), http://dx.doi.org/10.1016/j.micpro.2014.07.005

Please cite this article in press as:]J. Echanobe et al., An FPGA-based multiprocessor-architecture for intelligent environments, Microprocess. Microsyst.

http://dx.doi.org/10.1016/j.micpro.2014.07.005
http://dx.doi.org/10.1016/j.micpro.2014.07.005
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro
http://dx.doi.org/10.1016/j.micpro.2014.07.005

2 J. Echanobe et al./Microprocessors and Microsystems xxx (2014) xXx—xXx

efficiency, cost and size, among others. In addition, to validate our
proposal, the system has been tested with a data set collected at
the intelligent dormitory (iDorm) which is a real ubiquitous com-
puting test bed from Essex University [13].

The rest of the paper is organized as follows: Related works are
presented in Section 2. Taking into account the existing works, we
also explain our proposal. Section 3 presents the NFS used here
which in fact is a modified version of the well known ANFIS model
that has been called PWM-ANFIS by the authors because of its
Piece-Wise Multilinear (PWM) behavior [11]. Both the theoretical
aspects and the modeling performance are analyzed. Particular
learning and modeling examples from real Aml experiments are
also addressed. In Section 4 the proposed FPGA-based multiproces-
sor architecture is described in detail. Also the benefits of using 2
processors in this particular Aml system are discussed. Section 5
presents the particular implementation details: the FPGA used,
the performance achieved, the device resources utilization and
the execution times. Finally the main conclusions of the work as
well as future research are explained in Section 6.

2. Related works and proposed system
2.1. Ambient intelligence

The Aml paradigm has existed for little more than a decade. It is
however a very active field, as is shown by the large number of
publications that can be found in the literature. For example, there
are international journals dedicated almost exclusively to this
subject [14,15], and specialized books [16-19] that analyze care-
fully most of the AmlI aspects. Also, some of the most important
journals have published special issues on this particular area
[20-22]. In addition, different monographic conferences take place
every year [23,24] with a large number of contributions. Among all
existing works, we could point out, for example, [13,25,26] as those
of the most cited by other authors. More recent works which also
address the Aml paradigm in an exhaustive way are [27,28].

However, in most existing works, the aim of the research is to
design and validate different methodologies and algorithms rather
than propose a particular hardware implementation. Even when
these works present any kind of physical implementation [29-
32] the authors hardly touch on aspects such as power efficiency,
size and cost of the implementations. Some of the very few works
where the efficiency of the implementation is addressed are for
example [31,33,34]. Such proposals are limited, however, to the
set of sensors or to the wireless communication issues among
the different nodes, but do not deal with the intelligent hardware
counterpart (i.e., intelligent agent).

2.2. Computational intelligence

Computational Intelligence (CI in the following), also called Soft
Computing [35], is a discipline that comprises a number of bioin-
spired techniques or tools for dealing with problems which are
very hard to solve, due to complexity, non-linearities, high
dimensionality, absence of an analytical model, etc. CI techniques
have in general the capacity of handling information that is impre-
cise, vague, incomplete or ambiguous. The most representative
paradigms are fuzzy systems - able to perform imprecise reason-
ing-[9], neural networks - which can learn from a set of samples
- [36] and the genetic algorithms - which make a search in the
space of solutions - [37]. Furthermore, many systems combine
two or more of these techniques such as, for example, neuro-fuzzy
systems [8,38] or fuzzy-genetic systems [39]. CI techniques
have been used successfully in problems where ordinary tools fail
to provide a solution. One important inconvenience of these

methodologies is, however, that they require a large amount of
computational resources. In consequence, it becomes very difficult
to carry out high performance systems, specially if they have to be
small and low powered, as is the case in embedded systems. This
drawback makes it necessary, in many cases, to design hardware
accelerators to cope with the timing requirements.

Regarding the intelligent abilities required in an ambient intel-
ligence scenario, there are several authors who have proposed CI
algorithms to cope with the problem. For example, fuzzy systems
have been proposed in the (above mentioned) intelligent dormi-
tory (iDorm) [13] and also in the fuzzy agent of an intelligent class-
room (iClass) [52] which is a testbed for educational ambient
intelligence systems. In [53] a Neuro-Fuzzy system is proposed
for the management of comfort and energy conservation. Another
meaningful example is proposed in [54] where Fuzzy Systems and
Genetic Algorithms are combined to develop an intelligent agent in
commercial buildings.

2.3. FPGA implementations of CI algorithms

Many researchers have proposed FPGA-based implementations
of ClI algorithms when high performance is required in the targeted
applications. The advantages of FPGAs are mainly due to the high
parallelism that can be achieved for performing computations.
Hence, these solutions broadly overcome the computational power
of a microprocessor-based software solution. We can find a lot of
works in the literature about FPGA implementations of different
CI algorithms. Among the most recent and relevant papers we
can find FPGA implementations of fuzzy systems [42,41,43,47],
neural networks [44-46], Genetic algorithms [48-51] or Swarm
Intelligence [40]. In these works, the applications comprise differ-
ent areas such as Robotics, control of real plants (DC motor, boost
converter), electrical power systems or speech recognition. In all
the cases, the viability of the proposal is shown, as well as the
advantages of such an implementation particularly in terms of
velocity, size and power efficiency. In this sense, our group has
proposed in [10,11] an FPGA-based embedded system for an Aml
scenario in which an NFS system with learning/adapting and rea-
soning features is integrated in a single device. The aim of those
proposals was to achieve an electronic system that was small
and efficient, but also smart enough to cope with the requirements
of an Aml scenario. One drawback of that proposed system is how-
ever, that it is forced to stop its on-line activity (i.e. interaction
with the environment) each time it needs to adapt its knowledge
(due mainly to changes in the environment or in the user prefer-
ences). This can be a serious problem in some environments if
the system is acting in a particular situation (i.e: context) in which
it should not be interrupted (e.g., assisting a user to perform a task
or regulating a delicate device).

2.4. Proposed system

In this paper we propose a FPGA-based system on chip (SoC)
with intelligent abilities intended for an Aml scenario. The pro-
posal is based on a Neuro-Fuzzy system as intelligent agent.The
novelty of this proposal is a new efficient architecture in which
the adapting (i.e. learning) and reasoning processes are executed
in different microprocessors as independent tasks which only com-
municate by means of several flags. Although this new design is
proposed to avoid the pitfalls encountered by the group previously
(as explained above), there are also some other additional advanta-
ges which make the proposal yet more valid. For example, inde-
pendent tasks imply that designing and updating the software is
easier, more flexible and more reliable. Also, the architecture of
every microprocessor can be customized for its particular task,
thus increasing performance and efficiency.

(2014), http://dx.doi.org/10.1016/j.micpro.2014.07.005

Please cite this article in press as:]J. Echanobe et al., An FPGA-based multiprocessor-architecture for intelligent environments, Microprocess. Microsyst.

http://dx.doi.org/10.1016/j.micpro.2014.07.005

J. Echanobe et al./Microprocessors and Microsystems xxx (2014) xXx—xXx 3

3. Neuro-fuzzy system
3.1. PWM-ANFIS

As we have stated above, the intelligent behavior of the pro-
posed Aml system is addressed by means of an ANFIS-like system.
An ANFIS system [55] is a Fuzzy Inference System whose parame-
ters - membership functions and consequents - are trained by
means of Neural Network algorithms. In fact, such a system can
be viewed as a particular Neural Network that is functionally
equivalent to a Fuzzy Inference System. Hence, it exhibits both
the linguistic knowledge representation of fuzzy systems and the
learning abilities of Neural Networks. To understand the structure
of an ANFIS system we must pay attention first to the fuzzy system
it represents.

Consider a rule based n-input fuzzy system with m antecedent
functions per dimension. In general, we have a total of m" rules
where the jth rule can be expressed as:

Ri: IFx is M} and ... and x, is M THEN y is ¢, j,

where X = (X1,Xa,...,Xn),X € R" is the input vector, Mjl1Mj"" are
linguistic labels associated with the membership functions
Ky, (i), 1<i<n; 1<j;<m (ie, antecedents of the rules), y is
the output variable and ¢, j,.;, €R is a crisp consequent (ie. a
singleton).

If the center of gravity defuzzification method is adopted, the
output of the system is given by (1)

_ ijznl Wi€j (1)

erinl W
where
wy =M} (%) - M2 (%) .. M (x,).)

The computation of the output of this system - Section 3 - for a
given input (i.e., the inference mechanism) can also be performed
by a Neural Network like the one shown in Fig. 1.

- The first layer computes the membership functions:

M (xi) = (%) (3)

1
\

.
'
.
X '
.
'

m

M

[N

- The second layer computes the values w; (1 <j < m") as the
product

Wy =M () - M2 (%) .- M () 4)

These values are also called the activation of the rules.
- The third layer normalizes these values by dividing each one
by the sum of all of them:

mh
Wj = Wj/ZWi (5)
i=1
-The fourth layer multiplies each term by the consequent:
wig (I<j<m?) (6)

-Finally the output of the network is provided by the fifth layer
which aggregates the overall output as the summation

y=> Wy (7)

As can be shown, this network performs the same function as
the previous fuzzy system.

To train the above network, a hybrid algorithm has been pro-
posed [55]. The algorithm is composed of a Least Squares Estimator
(LSE) process, followed by a back propagation (BP) algorithm. LSE
computes the consequents and BP adjusts the parameters of the
antecedents. Although the BP algorithm could train the network
alone, the training process can be accelerated with the LSE. This
is possible due to the fact that the output of the network is linear
in the consequent parameters. This hybrid algorithm is executed
iteratively from a collection of training data (i.e., input/output
pairs) until all the parameters are adjusted. Later, it can be exe-
cuted again whenever one or more new training pairs are provided
(for example, due to a change in the users’ preferences in the case
of Aml environments). This is known as adaptive learning or on-
line training. In this situation the parameters can be updated with
fewer iterations.

Due to the huge amount of information and the large number of
parameters that are involved in an Intelligent Environment, we
have used a modified model called PWM-ANFIS (PieceWise
Multilinear ANFIS) which has been proposed [10,11] to reduce
the computational requirements in high dimensionality systems.

Fig. 1. ANFIS network structure.

(2014), http://dx.doi.org/10.1016/j.micpro.2014.07.005

Please cite this article in press as:]J. Echanobe et al., An FPGA-based multiprocessor-architecture for intelligent environments, Microprocess. Microsyst.

http://dx.doi.org/10.1016/j.micpro.2014.07.005

4 J. Echanobe et al./Microprocessors and Microsystems xxx (2014) xXx—xXx

In particular, we have shown how, by introducing some restric-
tions on the membership functions (i.e., antecedents), a much
more simplified system can be obtained with hardly any loss of
the learning and approximation capabilities. These restrictions
basically involve the use of normalized triangular membership
functions overlapped by pairs as is shown in Fig. 2. As a result, only
two antecedents per input have non zero values for every new
incoming vector and hence, only 2" rules become active each time
(instead of m" in the unrestricted ANFIS). Also, the divisor in Eq. (1)
becomes now 1 and therefore the division is no longer necessary.
The computation of the output is now given by

o
f=> wq 8)
=

To perform an inference we have now to sum 2" terms wijc;
where each term wj; is computed by multiplying n membership
functions (Eq. (4)). As the antecedents are now triangles, every
membership function evaluation is also simplified because it is
obtained by solely multiplying the slope of the triangle mj‘i’_ by the

offset of the input with respect to the triangle’s left corner a]'?]_.

M;I (X)) = K, (x;) = m}i (xi — aj) 9)

In addition, because the membership functions are normalized,
the two active antecedents have complementary values and there-
fore the computation of one of them gives directly the other one
simply by performing a logical complement.

M (%) = 0 (%) = 1= M; (%) (10)

As we can see, the inference process is computed by means of
only a few sums and products so it is greatly simplified. Also the
training procedure is simplified because the parameters of the
antecedents that have to be adjusted are only the init points or off-
sets (a]'ii) of every triangle (i.e., note that the slope can be obtained
from these points thanks to the imposed restrictions).

3.2. Modeling performance

To test the modeling ability in dealing with AmlI environments,
the proposed PWM-ANFIS system has been trained with a data
subset from a real experiment. The data have been collected at
the intelligent dormitory (iDorm) which is a real ubiquitous com-
puting test bed from Essex University [13]. In this experiment, a
normal room is provided with a large number of interconnected
sensors, actuators and processing elements. Inside this room a
user spent several days, performing ordinary tasks and interacting
with an Aml system which gradually learns and adapts to his
behavior.

The data being used here relate to seven input sensors and to
four controlled actuators. The input sensors are as follows: internal
light level, external light level, internal temperature, external tem-
perature, chair pressure, bed pressure and time. The actuators are

! xd) =mi(x L ai
MJ_i(X) mji(x aji)

! iy —mi(gl —xi
MJiH(X)_mji(ajiHX)

Fig. 2. The 2 active antecedents in the ith input, for an incoming value x;. mJ' and aj’ﬁ,
denote respectively the slope and the left corner of the triangles.

four variable-intensity spot lights. This means that we have to deal
with four PWM-ANFIS, each one with seven input variables. In
order to reduce the complexity of the problem and hence to obtain
a more efficient system, a previous dimensionality reduction has
been explored. This reduction, which has been carefully carried
out in order to preserve as much as possible the modeling perfor-
mance, has led to an input space of just four variables for every
PWM-ANFIS. The obtained dependence between outputs and
inputs is depicted in Table 1.

The next step was to train every PWM-ANFIS with the data
collection. Around 400 input/output data pairs for every output
variable are available in the collection provided. Each one of these
data sets was randomized 6 times and split into a training set and a
validation/test set consisting of around 270 and 130 instances
respectively. Yet, to avoid the overfitting effect that neural systems
trained with large amounts of experimental data usually show, we
used the subset comprised of 130 instances as a validation set and
not as a test set. The validation set was then monitored during the
training phase in order to set the final PWM-ANFIS with the
parameters obtained for the minimum root mean squared error
(RMSE) on the validation set and not for the minimum RMSE on
the training set (early stopping). In addition, different numbers of
antecedents and different learning rates (i.e., a parameter of the
BP algorithm) were also tested in the experiments. Finally, the
experiments were repeated with generic ANFIS systems to com-
pare the modeling ability.

After exhaustive experimentation, we can conclude that the
system shows quite good learning and approximation capabilities.
In addition, the results are not far from those obtained with the
ANFIS model without restrictions. Table 2 shows the average RMSE
obtained for each one of the 4 PWM-ANFIS and also the respective
values obtained with a generic ANFIS. As we can see, the error val-
ues obtained with the PWM-ANFIS systems are very small and
comparable (i.e., the same magnitude order) with those obtained
with the generic ANFIS systems.

To illustrate the learning process we also show in Fig. 3 the evo-
lution of the RMSE obtained during the training procedure for the
four PWM-ANFIS systems in some of the multiple experiments. As
we can see, after about 1000 iterations, the system is trained and
small error values are reached.

4. A multiprocessor architecture

In this section an efficient architecture is presented for the
iDorm experiment described above. To be exact, we have devel-
oped an architecture based on two microprocessors and four high
performance hardware cores (one for each PWM-ANFIS module),
to control the intensity of four spot lights. The architecture also
contains memory blocks, buses and 1/O peripherals. Thus, a com-
plete SoPC is obtained. Being able to implement the entire system
into devices as small as FPGAs, makes it much more feasible to
carry out an intelligent environment where, as indicated above,
the devices to be deployed must be small and with a low power
and cost.

Table 1
Dependence between input and output environment parameters in the 4 PWM-ANFIS
subsystems.

Light 1 Light 2 Light 3 Light 4
Int. Light
Ext. Light X X X X
Int. Temp.
Ext. Temp. X
Chair Press. X X X X
Bed Press. X X X X
Hour X X X

(2014), http://dx.doi.org/10.1016/j.micpro.2014.07.005

Please cite this article in press as:]J. Echanobe et al., An FPGA-based multiprocessor-architecture for intelligent environments, Microprocess. Microsyst.

http://dx.doi.org/10.1016/j.micpro.2014.07.005

J. Echanobe et al. / Microprocessors and Microsystems xxx (2014) xxx-Xxx 5

Table 2
Average root mean squared error (RMSE) obtained in the 4 PWM-ANFIS.
Light 1 Light 2 Light 3 Light 4
PWM-ANFIS 0.0787 0.0785 0.0515 0.0502
ANFIS 0.0683 0.0658 0.0376 0.0414

Multiprocessor architecture is a common issue in high perfor-
mance systems. In fact, one of the most evident reasons for a system
to be designed using a multiprocessor architecture is the perfor-
mance requirement: e.g., two processors acting in parallel can exe-
cute a task twice as fast as only one. There are, however, some other
important reasons that also have to be taken into account. One of
them is the presence of tasks with very different execution time
schemes: i.e one processor is intended for computing and providing
a real-time output whereas another one can be in the background
performing a non-critical task. Another reason arises in a scenario
where different-nature algorithms are present, that is, one function
is based on repetitive and simple operations, whereas another one
implies very irregular and conditional execution. In this case, it is
worth using 2 different processors whose architectures are respec-
tively oriented to each algorithm. Some other reasons for using
several processors can be also mentioned, such as reliability, redun-
dancy or data streaming in a pipe-line fashion.

The ANFIS-like system presented in this work - intended for an
Aml scenario - is an example of a system demanding a multiproces-
sor architecture. On the one hand, we have that the inference process
must be performed in real-time; that is, the system must interact
permanently with the environment providing new outputs all the

0.0755

LIGHT-1

0.075

0.0745 |

0.074

RMSE

0.0735

0.073

0.0725 - - - - - - - - -
0 100 200 300 400 500 600 700 800 900 1000

Iterations

0.051

LIGHT-3

0.05

0.049

0.048

RMSE

0.047

0.046

0.045
0

200 400 600 800 1000 1200

Iterations

1400

time. On the other hand, from time to time, the system must learn
from incoming new samples and hence adapt its parameters to the
changing user preferences. However, this is a process that can be
performed in the background without rigid timing constraints.
These two tasks are clearly two different functions, each one with
particular time requirements. Also, the inference process is in fact
the output of the neural network, and as such, is computed by sim-
ilar and repetitive operations (i.e., the computations of intercon-
nected layers of neurons). The learning process, is however, a very
irregular algorithm that contains different functions including
matrix inversions and it requires high precision in the computations.

Taking into account the above issues, we have developed an
architecture based on two microprocessors together with 4 ad
hoc hardware modules (called PWM-Cores) to accelerate the neu-
ral-network computations. Also, several buses, internal memories
(on-chip RAM blocks) and I/O peripherals are present in the archi-
tecture. In particular, each microprocessor is a Xilinx soft-core
called “MicroBlaze” which is a 32-bit RISC Harvard architecture
soft processor core with a rich instruction set optimized for
embedded applications. Also, it can be tuned by the designer to
better fit the requirements of the application to which it is dedi-
cated. The proposed architecture is shown in Fig. 4 and is explained
in detail in the following.

4.1. Microprocessor 1

The first MicroBlaze (MB1) (the left one in Fig. 4) is intended for
the training process and hence is implemented with a Floating

0.081

0.0805 LIGHT-2
0.08

0.0795

RMSE

0.079

0.0785

0.078

0.0775 - - - - - - - - -
0 100 200 300 400 500 600 700 800 900 1000

Iterations

0.057
LIGHT- 4

0.056

RMSE

0.055

0.054

0 500 1000 1500

Iterations

Fig. 3. Example of the RMSE evolution during a PWM-ANFIS training for light 1, light 2, light 3 and light 4 respectively.

(2014), http://dx.doi.org/10.1016/j.micpro.2014.07.005

Please cite this article in press as:]J. Echanobe et al., An FPGA-based multiprocessor-architecture for intelligent environments, Microprocess. Microsyst.

http://dx.doi.org/10.1016/j.micpro.2014.07.005

6 J. Echanobe et al./Microprocessors and Microsystems xxx (2014) xXx—xXx

Point Unit (FPU) and also with some other hardware features like
an integer multiplier, a barrel shifter or memory caches in order
to address the required precision and intensive calculations. This
microprocessor takes as input the training data collections, which
are stored in an external memory, and performs the hybrid training
algorithm explained in Section 2. Actually, it performs the training
algorithm four times: one for each PWM-ANFIS system. After the
training process, MB1 stores the results of the algorithm, the off-
sets of the triangles and the consequents — in a RAM memory block
that is shared by the second MicroBlaze (MB2). Also, it stores a flag
(t-flag) to indicate that trained parameters are available. The train-
ing algorithm is carried out once at the beginning of the whole pro-
cess and again whenever a new training pair is received (i.e.
online-training). This last case is notified by MB2 who also stores
a flag (ol-flag) and provides the new data (both stored in the shared
memory). Therefore, when MB1 finishes the initial learning, it
waits until this flag is set, in which case it loads the new data
and performs on-line learning (see Section 2).

The program to perform the training algorithm is stored in a
RAM memory block whose size is adjusted - in the design phase
- to the size of the code. This memory block, and also the shared
memory block are connected to the MicroBlaze with a dedicated
memory bus from Xilinx called LMB (local memory bus). The
LMB is a fast, local bus for connecting the MicroBlaze processor
instruction and data ports to high-speed peripherals, primarily
on-chip block RAM (BRAM).

4.2. Microprocessor 2

MB?2 deals with the following tasks: (1) control the global sys-
tem operation; (2) handle input/output data; (3) provide on-line
data to MB1; (4) write/read inference data to/from PWM-Cores
(described below). Hence, MB2 does not need to execute complex
algorithms and is therefore implemented without extra features.
For this reason, it needs much fewer resources of the FPGA than
MB1. On the other hand, MB2 is connected - like MB1 - to two
RAM memory blocks through another LMB bus. One of the blocks
is shared with MB1 to access the trained parameters (so it can con-
figure the PWM-Cores) and to store the on-line data, and the other
block contains the program to be executed.

To perform the I/O processing, MB2 first takes the five input val-
ues (see Table 1) which are provided by different sensors. Then, it
performs a data conditioning so they can be better processed; e.g.,
scaling, normalization and truncating to a fixed length. In particu-
lar, every input value is fixed to a 8-bit length, and then, the four
values for each system are packed into a single 32-bit word. This
packing allows the four inputs to be sent to every core in just a sin-
gle transaction. The cores receive these inputs, perform the infer-
ences and send back the results to the micro which sends them
out. Note however, that prior to performing any inference, MB2
has to load the trained parameters from the shared memory and
send them to the cores so they can configure the algorithms.

MB2 also checks continuously whether a new training pair is
provided. This occurs for example when the user manually modi-
fies any output (i.e., the light levels). In this case MB2 stores in
the shared memory this modified value, the related four actual
inputs and also a flag (ol-flag) so MB1 can perform an on-line
training.

4.3. PWM Cores

These 4 PWM-Cores - one for each PWM-ANFIS - are ad hoc
hardware cores that actually perform the system inferences. They
have been designed carefully so they can perform the operations
involved in the PWM-ANFIS outputs calculations in a very efficient
way.

Fig. 5 shows the internal architecture of the developed
PWM-Cores. The design of these cores has been carried out by
exploiting the parallel nature of the FPGA resources. In this way,
an efficient and high performance architecture has been achieved.
Each one of these cores is connected to the MB2 by means of the
Fast Simplex Link (FSL) bus from Xilinx, which is a uni-directional
point-to-point communication channel bus used to perform fast
communication. This bus is configured as a 32-bit wide bus and
hence, just a single transference is required to receive the 4-input
data (i.e., 8-bit data) from the MicroBlaze. The core is composed of
the following three main modules or units.

First, we have a local RAM block to store the trained parameters
needed for executing the algorithms. To accelerate the computa-
tions, not only the consequents and the offsets of the triangles

%l

v >
2 RAM 0
g <> Program 1 °o: -
= E Program 2
< =
E -
< RAM S
8 o pwm-core
2 |l > Flags -

N | Trained param. > LIGHT_1

ANFIS

A\
(TMICROBLAZE2 &7 oo

([MICROBLAZE-1]
TRAINING
PROCEDURES
EXT.RAM
TRAINING
DATA
FPU

FSL2 LIGHT_2

ANFIS
- GLOBAL
CONTROL pwm-core
- I/0 HANDLING FSL3
- DATA CONDIT. <> L,IqGIVFII: 753
Fslq pwm-core
) LIGHT 4
A ANFIS

110y

Fig. 4. Architecture of the global system.

Please cite this article in press as:]J. Echanobe et al., An FPGA-based multiprocessor-architecture for intelligent environments, Microprocess. Microsyst.

(2014), http://dx.doi.org/10.1016/j.micpro.2014.07.005

http://dx.doi.org/10.1016/j.micpro.2014.07.005

J. Echanobe et al./Microprocessors and Microsystems xxx (2014) xXx—xXx 7

RAM
FSL PRE- <> Antecedents
PROCESSING and
Consequents
[}
N
‘_“ . 3
m INFERENCE PROCESSING UNIT
=3
]
ax - %)
my “_ &
E =
o= - =w>
==Z =)
é:: éwog
32 < ¢
B
J

Fig. 5. Internal architecture of the PWM-Cores.

are stored but also the slopes of the triangles, which are previously
computed by MB2.

Second, the module called “Preprocessing unit” is designed to
receive the four input data from MB2 and to determine which
are the respective 16 active rules (2%). As a result, it loads the
involved parameters from the local memory (slopes and conse-
quents) and also computes the input offsets.

The third main module is called the “Inference Processing Unit”.
It takes the involved offsets, slopes and the consequents together
with the loaded parameters and computes Eq. (8). It has three parts
or stages.

—First of all, the “MF” units compute the membership values by
multiplying the slopes with the respective offsets (Eq. (9)).
Although 8 membership values must be computed (2 non-zero
antecedents per dimension), only four “MF’ modules are
needed because, as we have explained in Section 2, the two
membership values in every dimension have complementary
values (Eq. (10)). Therefore, we have only to include a logical
complement action in every module. This is indicated in Fig. 5
where two complementary outputs in the modules have been
drawn in.

- The next step is carried out by the “Parallel Multiplier Unit”
which computes the 16 activation values w; by multiplying in
each case four membership values (Eq. (4)).

- Finally, the last unit multiplies every w; by the related conse-
quent and sums the 16 terms, thus providing the output of the
algorithm (Eq. (8)). This output is sent back to the microblaze as
a 32-bit word.

As a result of the high parallelism achieved in the design, each
core is able to perform an inference in just 10 clock cycles plus 2
extra cycles for receiving the inputs and sending the result.

4.4. Global functionality

Let us explain with the aid of Fig. 6 the operation of the whole
system. To better understand how the whole system works, let us
assume that only one PWM-Core system is present. The operation
of the complete system (i.e., with 4 PWM-Cores) can be easily
explained by adding for every PWM-Core - in a sequential way -
the steps here showed.

When the system boots, both MB1 and MB2 start to execute
their respective programs. MB1 takes the training data set stored
in an external memory, and performs the learning algorithm.
When it finishes, it stores the trained parameters in the shared
memory and notifies MB2 by setting the t-flag. Then, the micropro-
cessor waits until ol-flag is 1, which means that one or more new
training data are provided by MB2. In this case, MB1 takes the new
data, executes an on-line training and stores the updated parame-
ters and also the flags.

MB2 starts its program and waits until MB1 finishes the learn-
ing process (t-flag = 1). Next, it loads the trained parameters from
the shared memory and sends them to the respective PWM-Cores.
It then proceeds with the inferences cycle, as described above (i.e.
sending and receiving data to/from PWM-Cores). If new training I/
O pair is provided (as explained before), it stores the pair and sets
the ol-flag to indicate MB2 that a new training pair is available.
MB2 remains in this cycle (real-time operation) until MB1 indi-
cates that trained parameters have been updated due to a on-line
learning. If this happens, MB2 stops the inferences, loads the
updated parameters from the shared memory and sends them
again to the PWM-Cores. Finally, it resumes the inferences.

5. Implementation results and discussion

The FPGA used to implement the proposed embedded system is
the XC5VSX50T device of the Xilinx Virtex 5 family [56]. We
selected this family because it is optimized for memory-intensive
applications and digital signal processing (DSP) and hence, it con-
tains a large number of memory blocks and multiplier units (i.e.,
DSP blocks). Nevertheless, this device is one of the smallest of this
family (the second of four available sizes). It has 8.160 Slices (each
Slice contains four 6-input LUTs and four flip-flops), 288 DSPs
(each DSP consists of a multiplier, an adder, and an accumulator),
132 RAM memory blocks of 36 Kbits each, and 6 PLLs.

The development of the whole system has been carried out
using different tools and strategies. The PWM-Cores have been
designed in VHDL language - to optimize their design - and then
synthesized with the “ISE Design Tool” 12.4 from Xilinx [57]. Pre-
viously, the “ModelSim” 6.4 environment [58] has been used to
verify the functionality of the design. We have used the EDK soft-
ware (which belongs to ISE suite) to instantiate the different Xilinx
IP modules (MicroBlazes, buses, memory blocks, ...) and to assem-
ble the whole system. The software has been developed first with
MATLAB, then with the “GNU development tools” and finally inte-
grated into the system with EDK.

FPGA resources: After hardware synthesis, EDK reports the fol-
lowing FPGA resource usage: 13464 Slices flip-flops (41%), 17106
Slices LUTs (52%), 239 DSPs (83%) and 66 RAM Blocks (50%). As
can be seen, although the system is rather complex, the FPGA is
not fully used and therefore, a smaller - and also cheaper - device
could be used. Table 3 shows the resources required by each func-
tional module. We can also see that the modules demanding more
resources are the PWM-Cores. This is due to the fact that these
modules have been designed with a full parallel architecture so
they can provide a very high speed response. The different amount
of resources needed by the two microblazes can be also seen in the
table. Microblaze 1 requires many more resources than Microblaze
2 because, as explained above, it has been endowed with a floating
point unit and additional hardware elements to perform training
algorithms with sufficient precision and velocity. In contrast,
Microblaze 2 does not perform floating point operations so it
requires fewer resources. Another module which demands a con-
siderable amount of resources is the external RAM controller. We
cannot leave it out because the training algorithms need a large
amount of data to train the ANFIS systems, and the internal mem-
ory is not large enough to cope with them.

(2014), http://dx.doi.org/10.1016/j.micpro.2014.07.005

Please cite this article in press as:]J. Echanobe et al., An FPGA-based multiprocessor-architecture for intelligent environments, Microprocess. Microsyst.

http://dx.doi.org/10.1016/j.micpro.2014.07.005

8 J. Echanobe et al./Microprocessors and Microsystems xxx (2014) xXx-xXx

MICROBLAZE-2

RESET

PWM-CORE

GET INPUT DATA
FROM SENSORS

<----£1/0

Preprocessing

Inference
process
unit

Fig. 6. Global functionality.

EXTERNAL
MEMORY
MICROBLAZE-1
TRAINING
DATA
TRAINING
ALGORITHM SHARED
INTERNAL
MEMORY
STORE TRAINED PARAMS.;\. . tlag
A A
TRAINED
PARAMS.
nt-flag =i
R
LOAD NEW 10 PARS; \a--{p- 2139 INe
ol-flag := 0; NEW N
1/0 PAIRS > b
o
STORE TRAINED PARAMS ;
nt-flag :=1;
Table 3
FPGA resources utilization.
FFs LUTs BRAM DSPs
uB1 2433 (7%) 3008 (9%) 21(16%) 6 (2%)
UB2 1487 (5%) 1569 (5%) 0 3 (1%)
4 PWM-Cores 5316 (16%) 8952 (27%) 0 228 (79%)
Ext. RAM Contr. 3338 (10%) 2198 (7%) 7(5%) 2 (0.7%)
Internal RAM. 0 0 38(29%) 0
Buses 546 (1.7%) 1058 (3%) 0 0
1/0 275 (0.8%) 267 (0.8%) 0 0
Clk, Reset 69 (0.2%) 54 (0.2%) 0 0
Total 13,464 (41%) 17,106 (52%) 66 (50%) 239 (83%)

Power Consumption is an essential value to be taken into
account in embedded systems as long as it determines the auton-
omy and/or the operating cost of the system. Total Power Con-
sumption of FPGAs is composed of a static component and a
dynamic component. The first one is due to the transistor leakage
current and the second one is based on the switching frequency of
used FPGA resources. In modern FPGAs the static component is by
far the most important because of the tiny size of the transistors in
the current integration technologies. In the proposed design, the
power has been analyzed with the Xilinx’s Power Analyzer tool
and a value of 3.720 W is calculated for the whole system for a
100 MHz frequency, being the static and dynamic components
3.071 W and 0.649 W respectively. As can be seen, it is a rather rea-
sonable value for such an embedded system.

Software parameters and execution times: The programs to be
executed in MB1 and MB2 occupy 700 K and 15.7 K respectively.
The program for MB1 is clearly larger because it contains not only
the training algorithms but also large data structures to handle

large sets of training data. This code exceeds the size of the internal
RAM so an external RAM is necessary, as we have already
explained. However, to reduce the effect on speed that an external
RAM program has, the code itself (39 K) has been stored in the
internal RAM leaving data structures in the external RAM.
Although a first off-line training could be performed previously
in a standard computer, the data collection is still required when-
ever an on-line training has to be realized. Therefore, external RAM
is mandatory in this design unless a much larger FPGA, endowed
with large internal memory, is used.

The complete system (the 2 MicroBlazes, the PWM-Cores and
the rest of the modules) operates at 100 MHz. With this clock
frequency, each PWM-Core requires only 120 ns to execute an
inference because, as we have described above, only 12 clock-
cycles are necessary for the Core to complete the operation (i.e.:
12/100 MHz). As long as the 4 Cores can operate in parallel, more
than 2 Million inferences per second can be achieved by the system
which is really a very huge number. This is also possible because
MB?2 is dedicated almost exclusively to feeding the Cores with
the incoming data. Note that a modern high-performance CPU
would be able to perform an inference also in a very short time.
For example, we made a comparison with an Intel Core 2 Duo
E7660 CPU running at 3.06 GHz and we measured only 420 ns
for an inference (about four times larger). However, unlike the
CPU, numerous PWM-Cores can be implemented in the FPGA
without increasing the computation time, since they all operate
in parallel (4 cores in the example). Therefore, it would be neces-
sary several high-end CPUs to obtain the same performance that
the FPGA achieves. In addition, some other factors have to be taken
into account such as the high power required for those high-
performance CPUs with clock speeds above several GHz. Thus for
example, the same above Intel Core (which is an expensive chip)

(2014), http://dx.doi.org/10.1016/j.micpro.2014.07.005

Please cite this article in press as:]J. Echanobe et al., An FPGA-based multiprocessor-architecture for intelligent environments, Microprocess. Microsyst.

http://dx.doi.org/10.1016/j.micpro.2014.07.005

J. Echanobe et al./ Microprocessors and Microsystems xxx (2014) xxx-Xxx 9

Table 4

Average time (ms) of a training iteration for different data set sizes.
Points 50 100 150 200 250 300 400
Time 430 776 1116 1457 1798 2139 2819

has a power consumption above 65 W even in idle state, while the
proposed design requires only 3.72W as it has been above
explained.

On the contrary, MB1 takes much longer to complete a learning
iteration (LSE + BP). Moreover the larger the training data size, the
longer the time required. Table 4 shows the average times required
to complete an iteration for different data set sizes (from 50 to 400
training points). As we can see, the times required for MB1 and
MB2 are vastly different. This big time difference is one of the rea-
sons for the use of 2 processors as was explained in Section 3. This
means that in the case of an architecture with just only 1 micropro-
cessor (for both training and inference), the inferences would have
to be stopped for tens of seconds or even minutes whenever an on-
line training was required (i.e. many iterations are required in a
training stage. See Fig. 3). This can be a serious drawback in some
Intelligent Environments where the system must be interacting
permanently with the users or when the system is performing a
critical task which cannot be stopped for a while. However, this
problem is solved by the two-microprocessor architecture pro-
posed in this work, and this represents one of the main advantages
of our system.

Note also here, that a modern high-performance CPU can per-
form the training process much faster than a Microblaze at
100 MHz. But the learning process is here not as time-critical as
the real-time response (i.e. MB2). Furthermore, the advantage of
the proposed solution is that the two processes (i.e., training and
real-time response) are integrated in a single device which implies
a drastic reduction on power, size and cost. These high restrictions
are required in Intelligent Environments as it is explained in Sec-
tion 1.

6. Conclusions

In this work we have developed an FPGA-based embedded
system for Intelligent Inhabited Environments. The Intelligent
capabilities are addressed by means of an PWM-ANFIS system
which is a simplified ANFIS-like Neuro-Fuzzy system specially
suited for efficient implementations. On the other hand, the
developed architecture is based on two soft-core microprocessors
which perform the learning tasks and the on-line response respec-
tively. In addition, this last microprocessor is attached with high
performance hardware modules to accelerate the Neuro-Fuzzy sys-
tem computations. To achieve this goal, the modules have been
designed carefully taking into account the high parallelism that
FPGAs exhibit.

To validate our proposal, different tests have been carried out
with data from a real experiment: i.e., the “Intelligent Dormitory
(iDorm)” which is a real ubiquitous computing test bed from Essex
University [13]. First, the learning and adapting ability of the
PWM-ANFIS has been proved by means of different training tests.
All these tests show that this low-complexity version of the ANFIS
retains quite good modelling ability even with high dimensionality
systems. This property is essential for developing embedded sys-
tems with intelligent and powerful features but which are small
enough to be attached in an Intelligent Inhabited Environment.

In addition, the system has been implemented using the
XC5VSX50T FPGA of Xilinx’ Virtex 5 family. Obtained values of
resource utilization, power consumption and execution times
confirm the validity of our proposal compared to microprocessor-
based solutions. Moreover, the different execution times to

perform the learning algorithms and the on-line response show
the advantages of using two microprocessors in the proposed
architecture. Furthermore, future works can analyze the utilization
of as many microprocessors as PWM-ANFIS systems in order to
minimize the time delays due to the multiple learning processes.

Acknowledgements

This work was supported in part by the Spanish Ministry of
Science and Innovation and European FEDER funds under Grant
TEC2010-15388, and by the Basque Country Government under
Grants IT419-10, S-PC10UNOQ9 and S-PC11UNO012.

References

[1] European Commission IST Advisory Group, Scenarios for Ambient Intelligence
in 2010, Final Report, February 2001.

[2] European Commission IST Advisory Group, Ambient Intelligence: From Vision
to Reality, 2003.

[3] T. Basten, M. Geilen, H. de Groot (Eds.), Ambient Intelligence: Impact on
Embedded System Design, Kluwer Academic Publishers, Boston, 2003 (Part I).

[4] M. Weiser, Some computer science issues in ubiquitous computing, Commun.
ACM 36 (7) (1993) 74-84.

[5] B. Allen, 1. Bierhoff, C. Bhler, E. Chandler, et al., Ambient Intelligent: Paving the
Way John Gill Ed. COST Office, 2008.

[6] J.A. Kalomiros,]. Lygouras, Design and evaluation of hardware/software FPGA-
based system for fast image processing, Microprocess. Microsyst. 32 (2008)
95-106.

[7] A. Astarloa, U. Bidarte,]. Lzaro, A. Aitzol, J. Arias, Multiprocessor SoPC-core for
FAT volume computation, Microprocess. Microsyst. 29 (2005) 421-434.

[8] C.-T. Lin, C.S.G. Lee, Neural Fuzzy Systems; A Neuro-Fuzzy Synergism to
Intelligent Systems, Prentice-Hall P T R, 1996.

[9] W. Pedrycz, F. Gomide, Fuzzy Systems Engineering: Toward Human-Centric
Computing, John Wiley & Sons Inc., 2007.

[10] I. del Campo,]. Echanobe, G. Bosque, J.M. Tarela, Efficient hardware/software
implementation of an adaptive neuro-fuzzy system, IEEE Trans. Fuzzy Syst. 16
(3) (2008) 761-778.

[11] J. Echanobe, I. del Campo, G. Bosque,].M. Tarela, An adaptive neuro-fuzzy
system for efficient implementations, Inform. Sci. 178 (2008) 2150-2162.

[12] L. del Campo, K. Basterretxea,]. Echanobe, G. Bosque, F. Doctor, A system-on-
chip development of a neuro-fuzzy embedded agent for ambient-intelligent
environments, IEEE Trans. Syst., Man, Cybernet., Part B: Cybernet. 24 (2)
(2012) 501-512.

[13] F. Doctor, H. Hagras, V. Callahan, A fuzzy embedded agent-based approach for
realizing ambient intelligence in intelligent inhabited environments, IEEE
Trans. Syst., Man, Cybernet. — Part A 35 (1) (2005) 55-65.

[14] IEEE Pervasive Computing, IEEE Computer Society, ISSN: 1536-1268.

[15] Journal of Ambient Intelligence and Smart Environments, 10S-Press, ISSN:
1876-1364.

[16] W. Weber, J.M. Rabaey, E. Aarts, Ambient Intelligence, Springer, 2004.

[17]]J.C. Augusto, D. Shapiro, Advance in Ambient Intelligence, I0S-Press, 2007.

[18] S. Poslad, Ubiquitous Computing, John Wiley & Sons Ltd., 2009.

[19] H. Nakashima, H. Aghajan,].C. Augusto, Handbook of Ambient Intelligence and
Smart Environments, John Wiley & Sons Ltd., 2009.

[20] P. Remagnino, G.L. Foresti, Ambient intelligence: a new multidisciplinary
paradigm, IEEE Trans. Syst., Man, Cybernet. - Part A 35 (1) (2005) 55-65.

[21] A.V. Vasilakos, Special issue: ambient intelligence, Inform. Sci. 178 (3) (2008).

[22] C. Ramos,].C. Augusto, D. Shapiro, Ambient intelligence-the next step for
artificial intelligence, IEEE Intell. Syst. 23 (2) (2008).

[23] International ~ Conferences on Intelligent Environments.
www.intenv.org/>.

[24] International Joint Conferences on Ambient Intelligence. <http://www.ami-
conferences.org/>.

[25] A. Vainio, M. Valtonen, J. Vanhala, Proactive fuzzy control and adaptation
methods for smart homes, IEEE Intell. Syst. 23 (2) (2008) 42-49.

[26] P. Rashidi, D.J. Cook, Keeping the resident in the loop: adapting the smart
home to the user, IEEE Trans. Syst., Man, Cybernet. — Part A 39 (5) (2009) 949-
959.

[27] F. Sadri, Ambient intelligence: a survey, ACM Comput. Surv. 43 (4) (2011).

[28] Diane J. Cook, Juan C. Augusto, Vikramaditya R. Jakkula, Ambient intelligence:
technologies, applications, and opportunities, Pervasive Mobile Comput. 5
(2009) 277298.

[29] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish, H. Duman,
Creating an ambient-intelligence environment using embedded agents, IEEE
Intell. Syst. 19 (6) (2004) 12-20.

[30] G.M.P. OHare, S. Keegan, M.]. OGrady, Realizing the ambient intelligence vision
through the deployment of mobile, intentional agents, in: Proceedings of 2nd
European Symposium on Ambient Intelligence (EUSAI 2004), Eindhoven
University of Technology, Eindhoven, The Netherlands, November, 2004,
Lecture Notes in Computer Science (LNCS), vol. 3295, Springer-Verlag, pp.
339-350.

<http://

(2014), http://dx.doi.org/10.1016/j.micpro.2014.07.005

Please cite this article in press as:]J. Echanobe et al., An FPGA-based multiprocessor-architecture for intelligent environments, Microprocess. Microsyst.

http://refhub.elsevier.com/S0141-9331(14)00117-3/h0015
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0015
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0015
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0015
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0015
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0020
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0020
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0030
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0030
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0030
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0035
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0035
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0040
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0040
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0040
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0045
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0045
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0045
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0050
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0050
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0050
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0055
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0055
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0060
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0060
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0060
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0060
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0065
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0065
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0065
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0080
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0080
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0085
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0085
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0090
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0090
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0095
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0095
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0095
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0100
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0100
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0105
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0110
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0110
http://www.intenv.org/
http://www.intenv.org/
http://www.ami-conferences.org/
http://www.ami-conferences.org/
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0125
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0125
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0130
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0130
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0130
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0135
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0140
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0140
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0140
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0145
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0145
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0145
http://dx.doi.org/10.1016/j.micpro.2014.07.005

10 J. Echanobe et al./Microprocessors and Microsystems xxx (2014) xXx—xXx

[31] N. Heo, P.K. Varshney, Energy-efficient deployment of intelligent mobile
sensor networks, IEEE Trans. Syst., Man, Cybernet. — Part A 35 (1) (2005) 78-
92.

[32] C. Papatheodorus, G. Antoniu, A. Bikakis, On the deployment of contextual
reasoning in ambients intelligence environments, in: 2010 Sixth International
Conference on Intelligent Environments (IE), Kuala-Lumpur, Malasya, July
2010, pp. 13-18.

[33] T. Nieberg, S. Dulman, P. Havinga, L. van Hoesel, J. Wu, Collaborative
algorithms for communication, in: T. Basten, M. Geilen, H. de Groot (Eds.),
Wireless Sensor Networks, in Ambient Intelligence: Impact on Embedded
System Design, Kluwer Academic Publishers, Boston, 2003, pp. 271-294.

[34] R. Min, A. Chandrakasan, Energy-efficient communication for high density
networks, in: T. Basten, M. Geilen, H. de Groot (Eds.), Ambient Intelligence:
Impact on Embedded System Design, Kluwer Academic Publishers, Boston,
2003, pp. 295-314.

[35] Computational Intelligence (Special Issue), Proceedings of the IEEE, September
1999.

[36] S.Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.

[37] D.B. Fogel, Evolutionary Computation. Toward a New Philosophy of Machine
Intelligence, IEEE Press, Piscataway, NJ, 1995.

[38] L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive
using a hybrid neuro-fuzzy ANFIS approach, Appl. Soft Comput. 3 (3) (2003)
209-219.

[39] O. Cordon, F. Herrera, F. Hoffmann, L. Magdalena, Genetic fuzzy systems.
Evolutionary tuning and learning of fuzzy knowledge bases, in: Advances in
Fuzzy Systems: Applications and Theory. World Scientific, 2001.

[40] Y. Maldonado, O. Castillo, P. Melin, Particle swarm optimization of interval
type-2 fuzzy systems for FPGA applications, Appl. Soft Comput. 13 (1) (2013)
496-508.

[41] F. Taeed, Z. Salam, S.M. Ayob, FPGA implementation of a single-input fuzzy
logic controller for boost converter with the absence of an external analog-to-
digital converter, IEEE Trans. Ind. Electron. 59 (2) (2012) 1208-1217.

[42] R. Sepulveda, O. Montiel, O. Castillo, P. Melin, Embedding a high speed interval
type-2 fuzzy controller for a real plant into an FPGA, Appl. Soft Comput. 12 (3)
(2012) 988-998.

[43] O. Montiel, J. Camacho, R. Seplveda, O. Castillo, Embedding a fuzzy locomotion
pose controller for a wheeled mobile robot into an FPGA, Soft Comput. Intell.
Contr. Mobile Robot. (2011) 465-481.

[44] T. Matsubara, H. Torikai, Asynchronous cellular automaton-based neuron:
theoretical analysis and on-FPGA learning, IEEE Trans. Neural Netw. Learn.
Syst. 24 (5) (2013) 736-748.

[45] Markos Papadonikolakis, Christos-Savvas S. Bouganis, Novel cascade FPGA
accelerator for support vector machines classification, IEEE Trans. Neural
Netw. Learn. Syst. 23 (7) (2012) 1040-1052.

[46] Tesresa Orlowska-Kowalska, Marcin Kaminski, FPGA implementation of the
multilayer neural network for the speed estimation of the two-mass drive
system, IEEE Trans. Ind. Inform. 7 (3) (2011) 436-445.

[47] Cheng-Hao Huang, Wen-June Wang, Chih-Hui Chiu, Design and
implementation of fuzzy control on a two-wheel inverted pendulum, IEEE
Trans. Ind. Electron. 58 (7) (2011) 2988-3001.

[48] Denis Vinicius Coury, Alexandre Cludio Botazzo Delbem, Janison Rodrigues De
Carvalho, Mrio Oleskovicz, Eduardo V. Simes, Daniel Ignacio Barbosa, Tiago V
da Silva, Frequency estimation using a genetic algorithm with regularization
implemented in FPGAs, IEEE Trans. Smart Grid 3 (3) (2012) 1353-1361.

[49] Shing-Tai Pan, Xu-Yu Li, An FPGA-based embedded robust speech recognition
system designed by combining empirical mode decomposition and a genetic
algorithm, IEEE Trans. Instrum. Meas. 61 (9) (2012) 2560-2572.

[50] Ching-Chili Tsai, Hsu-Chih Huang, Shui-Chun Lin, FPGA-based parallel DNA
algorithm for optimal configurations of an omnidirectional mobile service
robot performing fire extinguishment, IEEE Trans. Ind. Electron. 58 (3) (2011)
1016-1026.

[51] Pradeep R. Fernando, Srinivas Katkoori, Didier Keymeulen, Ricardo Salem
Zebulum, Adrian Stoica, Customizable FPGA IP core implementation of a
general-purpose genetic algorithm engine, IEEE Trans. Evol. Comput. 14 (1)
(2010) 133-149.

[52] R.A. Ramadan, H. Hagras, M. Nawito, A. El Faham, B. Eldesouky, The intelligent
classroom: towards an educational ambient intelligence testbed, in: Proc.
2010 Sixth International Conference on Intelligent Environments, Kuala
Lumpur, 2010, pp. 344-349.

[53] A.L Dounis, C. Caraiscos, Advanced control systems engineering for energy and
comfort management in a building environmental review, Renew. Sustain.
Energy Rev. 13 (2009) 12461261.

[54] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A hierarchical fuzzygenetic multi-
agent architecture for intelligent buildings online learning, adaptation and
control, Inform. Sci. 150 (12) (2003) 3357.

[55] J.-S. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans.
Syst., Man Cybernet. 23 (1993) 665-685.

[56] Virtex 5 Family Overview, Xilinx Inc., San Jose, CA, 2009. <http://
www.xilinx.com/support/documentation/datasheets/ds100.pdf>.

[57] ISE Design Suite, Xilinx Inc., San Jose, CA, 2009. <http://www.xilinx.com/tools/
designtools.htm>.

[58] ModelSim, Advanced Simulation and Design, Mentor Graphics Corporation,
Wilsonville, OR. <http://model.com/>.

Javier Echanobe (M’'06) received the Licenciado degree
in physics from the University of the Basque Country
(UPV/EHU), Spain, and the Ph.D. degree from the Uni-
versity of Navarra, Pamplona, Spain, in 1990 and 1998,
respectively.
He was a Predoctoral Researcher (granted by the Basque
Government) from 1992 to 1996. He has been an
Associate Professor in the Department of Electricity and
Electronics, UPV/EHU, from 1999 to 2009. Since 2009 he
§ is a Senior Lecturer in that department. His research
\ // interests focus on (1) digital electronics: embedded
systems, reconfigurable FPGAs, DSPs, SoPC; (2) compu-
tational intelligence: artificial neural networks, fuzzy systems, and neuro-fuzzy
systems; (3) ubiquitous computing: ambient intelligence, intelligent environments.
Dr. Echanobe has published many papers in international journals and conferences
in most of those areas.

Inés del Campo (A’96-M’'11) was born in Buenos Aires,
Argentina, in 1961. She received the Licenciado degree
in physics with specialization in electronics and auto-
matics in 1987 and the Ph.D. degree in physics, in 1993,
both from the University of the Basque Country (UPV/
EHU), Bilbao, Spain.
Currently she is a Senior Lecturer in the Electricity and
Electronics Department of the Faculty of Sciences and
Technology of the UPV/EHU. She has published articles
in international journals and conferences in the areas of
electronics, computational intelligence, intelligent con-
< trol, ambient intelligence, and pattern recognition,
among others Her research interests mainly concern system-on-chip (SOC) design,
hardware/software codesign, reconfigurable hardware, pervasive computing, arti-
ficial neural networks (ANNs), fuzzy systems, and genetic algorithms. She is also
interested in the internet of things and its application in the context of ubiquitous
computing and ambient intelligence.

Koldo Basterretxea (M'02) was born in Bilbao, Basque
Country, Spain, in 1970. He received the Licenciado
degree in physics with specialization (M.Sc.) in elec-
tronics and control in 1994 and the Ph.D. degree in
physics in 2002, both from the Universidad del Pais
Vasco/Euskal Herriko Unbertsitatea (UPV/EHU), Bilbao,
Basque Country, Spain.
He was a Lecturer at the Electronics and Telecommu-
nications Department at the Escuela Universitaria de
Ingenieria Técnica Industrial (EUITI) of Eibar (UPV/EHU),
I 1S from 1995 to 1998, and at the EUITI of Bilbao (UPV/
EHU) since 1998, where he currently is a Senior Lec-
turer. His research interests include digital design of adaptive systems on FPGAs,
hardware design for high-speed real-time controllers, neural/fuzzy hardware,
hardware/software co-design, and applied soft computing.

Maria Victoria Martinez was born in Bilbao, Spain in
1964. She received the Licenciado degree in physics
with specialization in electronics and automatics in
1987 and the Ph.D. degree in physics, in 2002, both from
the University of the Basque Country (UPV/EHU), Bilbao,
Spain.

She was a Predoctoral Researcher (granted by the Bas-
que Government) from 1987 to 1998. She has been
since 1995 an Associate Professor in the Department of
Electricity and Electronics, UPV/EHU. She has published
articles in international journals and conferences in the
areas of electronics, computational intelligence, device
modeling, ambient intelligence, among others. Her research interests mainly con-
cern the synthesis and electronic implementation of piecewise linear (PWL) sys-
tems with emphasis on efficient realizations for highly complex systems.

Please cite this article in press as:]J. Echanobe et al., An FPGA-based multiprocessor-architecture for intelligent environments, Microprocess. Microsyst.

(2014), http://dx.doi.org/10.1016/j.micpro.2014.07.005

http://refhub.elsevier.com/S0141-9331(14)00117-3/h0155
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0155
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0155
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0165
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0165
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0165
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0165
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0165
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0165
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0165
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0165
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0170
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0170
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0170
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0170
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0170
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0170
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0170
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0170
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0180
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0180
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0185
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0185
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0185
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0190
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0190
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0190
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0200
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0200
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0200
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0205
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0205
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0205
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0210
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0210
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0210
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0215
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0215
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0215
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0220
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0220
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0220
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0225
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0225
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0225
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0230
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0230
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0230
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0235
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0235
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0235
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0240
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0240
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0240
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0240
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0245
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0245
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0245
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0250
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0250
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0250
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0250
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0255
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0255
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0255
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0255
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0265
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0265
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0265
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0270
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0270
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0270
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0275
http://refhub.elsevier.com/S0141-9331(14)00117-3/h0275
http://www.xilinx.com/support/documentation/datasheets/ds100.pdf
http://www.xilinx.com/support/documentation/datasheets/ds100.pdf
http://www.xilinx.com/tools/designtools.htm
http://www.xilinx.com/tools/designtools.htm
http://model.com/
http://dx.doi.org/10.1016/j.micpro.2014.07.005

J. Echanobe et al. / Microprocessors and Microsystems xxx (2014) xxx-Xxx 11

Faiyaz Doctor received the B.Sc. degree in computer
science and artificial intelligence from the School of
Computer Science, University of Birmingham, Birming-
ham, UK, in 1998 and the M.Sc. degree in computer
science and artificial intelligent agents in 2002 and PhD
in computer science in 2006 from the School of Com-
puter Science and Electronic Engineering, University of
Essex, Colchester, UK.

After completing his PhD he has worked in both
industry and within the academic community to
develop novel artificial intelligence solutions for
addressing real world problems related to smart envi-
ronments, energy optimization, predictive analytics and decision support. His work
has resulted in high profile innovation awards and an international patient for

improved approaches for data analysis and decision-making using hybrid neuro-
fuzzy and type-2 fuzzy systems. He is currently a lecturer in Computing with the
faculty of Engineering and Computing, Coventry University, UK. His research
interests include computational intelligence, fuzzy logic, applications of type-2
fuzzy logic, hybrid systems using fuzzy logic with genetic algorithms and neural
networks, ambient intelligence, pervasive computing and intelligent buildings.
Other areas of interest also include embedded agents, intelligent machines and
applications of computational intelligence in business, commerce and healthcare.
Dr. Doctor has published a number of papers in international journals and confer-
ences in the field of pervasive computing and computational intelligence.

(2014), http://dx.doi.org/10.1016/j.micpro.2014.07.005

Please cite this article in press as:]J. Echanobe et al., An FPGA-based multiprocessor-architecture for intelligent environments, Microprocess. Microsyst.

http://dx.doi.org/10.1016/j.micpro.2014.07.005

	An FPGA-based multiprocessor-architecture for intelligent environments
	1 Introduction
	2 Related works and proposed system
	2.1 Ambient intelligence
	2.2 Computational intelligence
	2.3 FPGA implementations of CI algorithms
	2.4 Proposed system

	3 Neuro-fuzzy system
	3.1 PWM-ANFIS
	3.2 Modeling performance

	4 A multiprocessor architecture
	4.1 Microprocessor 1
	4.2 Microprocessor 2
	4.3 PWM Cores
	4.4 Global functionality

	5 Implementation results and discussion
	6 Conclusions
	Acknowledgements
	References

