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Abstract— This paper describes the development of efficient 

hardware/software (HW/SW) neuro-fuzzy systems. The model 
used in this work consists of an adaptive neuro-fuzzy inference 
system (ANFIS) modified for efficient HW/SW implementation. 
The design of two different on-chip approaches are presented: a 
high-performance parallel architecture for off-line training, and 
a pipelined architecture suitable for on-line parameter 
adaptation. Details of important aspects concerning the design of 
HW/SW solutions are given. The proposed architectures have 
been implemented using a system-on-a-programmable-chip 
(SOPC). The device contains an embedded-processor core and a 
large field programmable gate array (FPGA). The processor 
provides flexibility and high precision to implement the learning 
algorithms, while the FPGA allows the development of high-
speed inference architectures for real-time embedded 
applications. 
 

Index Terms— Adaptive systems, embedded systems, field 
programmable gate array (FPGA), neuro-fuzzy model, system-
on-a-programmable-chip (SOPC) 
 

I. INTRODUCTION 
YBRID neuro-fuzzy systems (NFS) combine artificial 

neural networks and fuzzy logic in a synergetic way. 
Fuzzy systems provide a framework to represent imprecise 
information and to reason with this kind of information, while 
neural networks enhance fuzzy systems with the capability of 
learning from input-output samples; learning is used to adapt 
parameters of the fuzzy system as membership functions or 
rules. In the last decade NFSs have become very popular 
mainly due to the powerful capabilities as universal function 
approximators that most of them exhibit, even when simple 
membership functions like trapezes or triangles are used [1]–
[8]. Some example representative application areas of NFSs 
are: automatic control, robotics, adaptive signal processing, 
pattern recognition, and system identification (see, for 
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example, [9]). More recent applications of NFS can be found 
in [10]-[17]. This paper deals with efficient implementations 
of a class of NFS, the adaptive neuro-fuzzy inference system 
(ANFIS) [18], [19], that has been widely used to develop 
NFSs in the above application areas. ANFIS is a network 
representation of different types of fuzzy inference models, 
endowed with the learning capabilities of neural networks. In 
concrete, our work focuses on an ANFIS-like model that is 
functionally equivalent to the Takagi-Sugeno inference system 
[20], [21]. 

In the last two decades, several researchers have developed 
special purpose hardware in the fields of fuzzy systems, neural 
networks, and their combinations (see, for example the special 
issues [22]-[25], and references therein). Restrictive design 
specifications such as high performance, reduced size, or low 
power consumption, which are difficult to fulfil with a 
software approach, have been the main reasons for developing 
these solutions. However, both the research activity and the 
commercial interest in neural/fuzzy hardware have been 
decreasing in the last years due to the important increase in 
speed of software solutions based on general-purpose 
microprocessors or digital signal processors (DSP). 
Nowadays, software approaches traditionally characterized by 
their high versatility, also provide processing speeds that are 
high enough to develop a large number of neural/fuzzy 
applications. In this context, dedicated hardware 
implementations provide a suitable solution only when 
extreme requirements –in terms of speed, power consumption, 
or size– are needed. 

On the other hand, in recent years heterogeneous 
hardware/software (HW/SW) technologies have emerged as 
an optimal solution for many systems where a trade-off 
between versatility and performance is required. This 
approach proposes the partition of the system into hardware 
(HW) and software (SW) parts by exploiting the advantages 
of both HW and SW intrinsic characteristics [26], [27]. In 
[28], a comparative analysis of different approaches to the 
implementation of NFSs suggests that HW/SW solutions can 
often outperform homogeneous solutions based either on HW 
or SW. In particular, to take full advantage of HW/SW 
solutions, it would be desirable for all the parts of the adaptive 
NFS to be integrated in a single chip. In this sense, new Field 
Programmable Gate Arrays (FPGAs) are powerful enough to 
accommodate all the components of a typical embedded 
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system (e.g. processor cores, memory blocks, peripherals, 
specific HW, etc) on a single chip, commonly referred to as 
System-on-a-programmable-chip (SOPC). Therefore, HW/SW 
implementations can also benefit from the well known 
advantages of FPGA technology such as short time-to-market, 
high flexibility, re-usability, and availability of IP (intellectual 
property) cores, among others. 

This work presents the development of an adaptive NFS, 
modified for efficient HW/SW implementations. The system 
has been successfully implemented using a SOPC of Altera´s 
Excalibur family [29]. The device features an ARM 
embedded-processor core together with a large FPGA for 
application-specific HW. Two different on-chip HW/SW 
architectures have been developed. The first one consists of a 
high-speed parallel architecture with fixed parameters (off-
line learning), while the second one is a pipelined architecture 
suitable for on-line learning. The proposed approach is well 
suited for the development of real-time embedded NFSs. In 
particular, as will be seen, the efficiency of our proposals 
increases when dealing with systems with a large number of 
inputs. 

The paper is organized as follows: Section II briefly 
overviews the generic ANFIS architecture and introduces the 
particular class developed in this work, the piecewise 
multilinear (PWM) ANFIS. In Section III the approximation 
capability and the learning performance of the proposed 
model are analyzed. Section IV addresses some practical 
design considerations concerning the development of efficient 
implementations such as the partition of the system into HW 
and SW blocks, the selection of a digital word-length, and the 
problem of HW/SW communication. Section V presents the 
developed architectures and gives details of their SOPC-based 
implementations. Special attention is paid to the analysis of 
the efficiency of the proposed solutions. Finally, Section VI 
summarizes with some concluding remarks.  

 

II. ADAPTIVE NEURO-FUZZY MODEL 
The NFS system developed in this work is an ANFIS-like 

model modified for efficient HW/SW implementations. First, 
for better understanding of the advantages of the proposed 
modifications or constraints, let us introduce the basics of the 
ANFIS model [18], [19], for the case of a zero-order Takagi-
Sugeno inference system [20], [21]. Consider a set of fuzzy 
rules: 

Rj: IF x1 is A1j(x1) and x2 is A2j(x2) and . . . xn is Anj(xn) 
THEN y is cj, 
where Rj is the jth rule (1≤j≤m), xi (1≤i≤n) are input variables, 
y is the output, cj is a constant consequent, and Aij(xi) are 
linguistic labels each one being associated with a membership 
function ( )ij ixμ . In a zero-order Takagi-Sugeno fuzzy model 
the inference procedure used to derive the conclusion for a 
specific input 0 0 0

1 2( , , , )nx x x=x K  consists of two main steps. 
First the firing strength or weight wj of each rule is calculated 
as 

0

1

( )
n

j ij i
i

w xμ
=

= ∏ . (1) 

After that, the overall inference result, y, is obtained by 
means of the weighted average of the consequents 

1 1

( ) /( )
m m

j j j
j j

y w c w
= =

= ∑ ∑ . (2) 

Equations (1) and (2) provide a compact representation of 
the inference model. 

ANFIS consists in a representation of different types of 
fuzzy inference models as adaptive networks. In concrete, the 
above fuzzy model can be viewed as an adaptive network with 
the following layers (see Fig. 1): 

Layer 1 is composed of m groups of n nodes each one. 
Every node (i,j) in this layer is an adaptive node that produces 
output (1)

ijO  by evaluating the corresponding membership 
function 

(1) 0 0
1 2( ) ( ; , , )

ij ijij ij i iO x f x p pμ= = L , 1≤i≤n and 1≤j≤m, (3) 

where 1 2( , , )
ij ij

p p L  are the parameters associated with each 

antecedent membership function (e.g. centre, and width); by 
changing the value of these parameters the membership 
functions can be adjusted.  

Layer 2 contains m nodes with outputs (2)
jO . Node j in this 

layer generates the firing strength of the j-th rule by 
computing the algebraic product of all its inputs, 

(2) (1)

1

n

j ij j
i

O O w
=

= =∏ , with 1≤j≤m. (4) 

Layer 3 is an m-nodes normalization layer. This layer 
performs the normalization of the activation of the rules; the 
output of the j-th node, (3)

jO , is the ratio of the j-th rule’s 
weight to the sum of the weights of all the rules: 

(3)

1

/( )
m

j j j
j

O w w
=

= ∑ . (5) 

Layer 4 contains only one node. The node output, (4)O , is 
the weighted sum of the consequents, 

(4) (3)

1

m

j j
j

O O c y
=

= =∑  (6) 

this node is an adaptive node whose parameters, cj, are the set 
of consequent parameters. 

The layered structure (3) to (6), viewed as a neural network, 
can adapt its antecedent and consequent parameters to 
improve the system performance or to deal with dynamic 
changes. 

A. The PWM ANFIS Model 
In order to reduce the complexity of the above ANFIS 

model, let us introduce the following restrictions on the 
antecedents: (i) the membership functions are overlapped by 
pairs, (ii) they are triangular shaped, and (iii) they are 
normalized in each input dimension. Similar constraints have 
been successfully used by many designers to simplify digital 
and analogue approaches of fuzzy HW and adaptive neuro-
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fuzzy HW [30]-[33]. In the following we will analyze the 
advantages of constraints (i) to (iii) on the simplicity of the 
layered representation of the fuzzy system and also on the 
parameter adaptation procedure. First, let us consider some 
immediate consequences of these restrictions. The first 
restriction forces the overlapping degree of the antecedents to 
be two. Therefore, given an input vector 0 0 0

1 2( , , , )nx x x=x K , 
only two antecedents per input dimension provide 
membership values different from zero (i.e. active 
antecedents). To be exact, due to (ii) and (iii), only one half of 
the triangles concerned becomes active. Fig. 2 depicts typical 
membership functions for a two-input system, with 4 
triangular antecedents per input, verifying the above 
constraints. It can also be seen in this figure that the vertex of 
the 4 triangles delimits 3 intervals per axis that induce a total 
of 9 rectangular cells in the two-dimension input space. As a 
general rule, if NAi is the number of triangles of the i-th input, 
1≤i≤n, then, the overlapping of these triangles delimits NAi-1 
intervals per input, ir , which induces a partition of the input 

space into 
1

( 1)
n

i
i

NA
=

−∏  polyhedral cells or regions. Our 

interest in this geometrical view of the input domain is due to 
the fact that only one of these cells is involved in the calculus 
of the system output at each time. The whole system can, 
therefore, be implemented as a single inference kernel [30], 
[34]-[36]. The parameters of the kernel depend on the 
concrete region where the input vector falls (i.e. active 
region). As will be seen below, the modified ANFIS generates 
a piecewise multilinear (PWM) output. For this reason, in the 
rest of the paper we will refer to this system as the PWM 
ANFIS. This network can be organized into the following 
active layers (see Fig. 3): 

Layer 1. Every node in this layer computes one active 
triangular-shaped membership function. In virtue of (i), each 
input is concerned with two membership functions per 
dimension. Therefore, we have only 2n active nodes in this 
layer, independent of the number of antecedents per input 
dimension. In addition, due to (iii), each pair of active nodes 
( (1)

iO , (1)
iO ) are complementary, that is (1) (1) 1i iO O+ = , where 

the upper bar means fuzzy complement (see Fig. 4). The node 
outputs are as follows: 

0 0 0

0

(1) 0 0

(1) 0

( ) ( )

1 ( )

i i i

i

r r r
i i i i i i

r
i i i

O x a x b

O x

μ

μ

⎧ = = −⎪
⎨

= −⎪⎩
, 1≤i≤n, (7) 

the super-index 0
ir  denotes the active interval of the i-th input, 

0
ir

ia  denotes the positive slope of the active semi-triangles, and 
0

ir
ib  is the offset of the interval with respect to the origin. 
Layer 2. Each node in this layer generates a multilinear 

output which represents the firing strength of a rule; each 
multilinear term consists in the product of n linear terms like 
(7). The rules with non-zero firing strength are only those 
associated with the active neurons in layer 2 (only one pair of 
complementary neurons per input), that is, 2n active rules. If j 

denotes the neuron index (j) of layer 2, but codified as an n-bit 
binary word, 1 1( )n nj j j−=j K , then, 

(2)

1

,
i

n

j j j
i

O w φ
=

= = ∏  with 
(1)

(1)

 if 1

 if 0i

i i
j

i i

O j

O j
φ

⎧ =⎪= ⎨
=⎪⎩

, 0≤j≤2n-1. (8) 

The notation that we propose above is useful for HW 
description purposes because the bits of the neuron index can 
be directly used to construct the set of active rules by selecting 
all possible combinations of neurons (`1´) and their 
complements (`0´). 

Layer 3. Taking into account constraint (iii), it can easily be 

proved [4] that 
2 1

0

1
n

j
j

w
−

=

=∑ , therefore the normalization layer 

(5) disappears because the divide operation is unnecessary. 
Finally, the output layer is reduced to the sum of 2n product 
terms, 

2 1 2 1
(3) (2) 0 0

0 0

n n

j j j j
j j

O O c w c y
− −

= =

= = =∑ ∑  (9) 

where 0
jc denotes the active consequents. It has been seen that 

the main benefits of constraints (i) to (iii) on the general 
ANFIS architecture are a reduction of the number of neurons 
per layer (layers 1 and 2) due to the activation of a reduced 
number of antecedents, the elimination of the normalization 
layer, and a simplification of the network arithmetic. 

B. Learning Algorithm 
As has been seen, the restrictions imposed on the 

antecedent membership functions have a great impact on 
network simplicity. In the same way, it will be shown how the 
learning procedure is also significantly simplified. Although a 
basic back-propagation learning rule can be used to adapt the 
set of network parameters, the learning process generally 
becomes too slow. To avoid this problem, the hybrid learning 
rule proposed in [18], which combines the gradient-descent 
method (GDM) and the least-square estimator (LSE), is used. 
Each epoch of the hybrid procedure is composed of a forward 
pass and a backward pass. In the forward pass the consequent 
parameters are identified by the LSE method and in the 
backward pass the antecedent parameters are updated by the 
GDM. 

The advantages of restrictions (i) to (iii) concerning the 
learning procedure are twofold. Firstly, as has been seen, the 
PWM ANFIS limits the activation of the system each time to a 
single cell or region of the input space. This cellular nature of 
the feed-forward network (fuzzy inferences) also reduces the 
computational complexity of the learning algorithm because 
both LSE and GDM equally require the evaluation of the feed-
forward network. Secondly, the constraints imposed on the 
input partition reduce not only the active set of parameters for 
a concrete input (parameters of the active cell) but also the 
total set of antecedent parameters. That is, (see Fig. 4) the 
partition is completely defined by giving the triangle offsets, 

ir
ib ; the triangle slopes are obtained as 11/( )i i ir r r

i i ia b b+= − . 
Moreover, since the position of the first and the last pairs of 
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triangles is determined by the bounds of the input space, the 
total number of antecedent parameters to be trained in a PWM 
ANFIS with NAi antecedents per input is equal to NAi-2, 
1≤i≤n. For example, a single input system with a partition of 
the input space like that depicted in Fig. 4 (NAi=5), requires 
the adaptation of only 3 antecedent parameters against the 10 
parameters required to define symmetrical functions like 
triangles or Gaussians (5 centres and 5 widths), or even the 15 
parameters required to define unconstrained asymmetrical 
triangles. Concerning the consequent parameters, the number 
of crisp consequents to be adapted is equal to the number of 

rules, 
1

n

i
i

m NA
=

= ∏ , where all possible rules are considered in 

order to guarantee the completeness of the rule set. 
Let us briefly present both -the LSE and the GDM- as 

applied to our system. Note that although only 2n rules 
become active for each training data, the whole set of rules is 
involved in the training procedure. Hence equation (9) can be 
rewritten as 

1 1 2 2( ) ( ) ( )m my w c w c w c= + + +x x xL  (10) 
where x  is the vector of input variables. Since y is linear in 
the consequent parameter, cj, given values of the antecedent 
parameters, and a set of training data pair 

'{( ; ), 1, , }k ky k K=x K , each training pattern can be substituted 
into (10) to obtain a set of K linear equations. Equation (10) 
represents a typical LSE problem that can be solved directly 
or recursively [37]. 

After the consequent parameters have been identified, the 
GDM is used to optimize the shape of the NAi triangles in the 
partition of the i-th input. Consider the error function 

' 2

1

1 ( )
2

K

k k
k

E y y
K =

= −∑  (11) 

where yk is the actual output of the network for the k-th 
training data and ,

ky  is the desired output. In the off-line 
operation mode the parameter update is performed after the 
evaluation of all the training patterns. The learning rule for the 
triangle offsets, ir

ib , with 1≤ri≤NAi-2, is 

( 1) ( )i i

i i

r t r t
i i b r

i

Eb b
b

η+ ⎛ ⎞∂
= − ⎜ ⎟

∂⎝ ⎠
 (12) 

where 
ibη  is the learning rate for the offsets of the i-th input. 

The chain rule has been used to calculate the above derivative 
(see Appendix)  

0
2 1

' 0

1 0

1 ( )
n

i

ii

K
r

k k j j jr
k ji

E y y c w f
Kb

−

= =

∂
= −

∂ ∑ ∑  (13) 

with 
0 0 0 0101/( ) 1/( )i i i i

i

r r r r
j i i i if x b b b+= − − + −  if ji=1, and 

0 0 011/( )i i i

i

r r r
j i if b b+= −  if ji=0, where ji has been defined in (8). 

The learning rule (12)-(13) consists in simple arithmetic 
operations, subtractions and sum of products that can be 
efficiently implemented as SW using a microprocessor or a 
DSP. Note that, in addition to the aforementioned advantages, 

in our system only one kind of parameter is to be trained in 
the backward stage, namely, the triangle offsets, while in the 
general case at least two different types of parameters are 
involved (e.g. centre and width). The above hybrid learning 
rule is suitable for off-line learning and also for on-line 
learning with minor modifications [37].  

III. MODEL VALIDATION AND SIMULATION RESULTS 
Before introducing the HW/SW implementation of the 

PWM ANFIS, as we are dealing with a constrained model, the 
problem of its actual modeling capabilities needs to be 
investigated. It is important to analyze both the approximation 
capability of the model and its learning performance when the 
hybrid learning algorithm is used. To perform computer 
simulations the authors developed a set of flexible Matlab m-
functions for multidimensional PWM ANFIS (the PWM-
ANFIS Toolbox). The Toolbox includes also fixed-point 
functions to simulate finite precision computation. 

A. Approximation Capabilities of the PWM ANFIS 
The approximation capability of the PWM ANFIS is that of 

the zero-order Takagi-Sugeno inference model, verifying the 
restrictions (i) to (iii). This model has been analyzed in [4] 
where the author shows that the system is able to approximate, 
to any degree of accuracy, not only sufficiently regular 
functions, but also their derivatives, while keeping the 
linguistic interpretability of their fuzzy rules. In other words, 
the restrictions imposed on the model with the aim of 
benefiting efficient implementations do not hinder its 
approximation capability. Moreover, as has been pointed out 
in the previous Section, a consequence of the restrictions is a 
reduction of the system complexity; in particular, the number 
of neurons of the network does not depend on the number of 
membership functions per input dimension. This means that 
any input-output relationship can be matched well arbitrarily 
by refining the partitions of the input universes, without 
sacrificing the simplicity of the implementations. 

B. Learning Ability 
Concerning the learning abilities of the system, we have 

examined the learning performance of our system using 
several test functions. In each experiment, we have compared 
the performance of the PWM ANFIS with that of the 
unrestricted ANFIS with Gaussian antecedents. We have also 
evaluated our results in comparison with other meaningful 
approaches for NFS modeling [38]-[40]. The experiments start 
with the specification of an initial input partition using 
symmetrical membership functions for the antecedents. In 
each iteration, the singleton consequents are identified by 
means of the LSE method and then the antecedent parameters 
are updated by using the GDM. Two nonlinear functions 
commonly used to test learning approaches have been selected 
as representative case examples from a more comprehensive 
study performed by the authors. The object of our experiments 
is not to improve the results obtained by other methods, but to 
investigate if the learning performance of the PWM ANFIS is 
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satisfactory. The experiments are evaluated in terms of the 
mean squared error (MSE) between the target functions and 
their corresponding approximations.  

1) Experiment 1: The first experiment considers the 
modeling of the nonlinear function  

1 2 2 1sin( ) cos( )y x x x x= + , 0≤ x1,x2≤π. (14) 
A graphical representation of the function is shown in Fig. 

5(a). The training data pairs '{( ; ), 1, , }k ky k K=x K , have been 
generated by sampling the input universes with a sampling 
interval of π/20. As a result, the number of training samples is 
441 (K=441). The PWM ANFIS used in this experiment 
involves four membership functions per input variable (i.e., 16 
rules). Therefore, the total number of parameters to be adapted 
is 20, including 4 antecedent parameters (2 offsets per input) 
and 16 consequent parameters. The Gaussian ANFIS trained 
for comparison involves the same number of antecedents and 
rules, but it requires the adaptation of a larger number of 
parameters, 32 to be exact; 16 antecedent parameters plus 16 
consequent parameters. The evolution of the MSE during the 
learning process for both our system and the Gaussian ANFIS 
is shown in Fig. 6. As can be seen, the main consequence of 
the restrictions imposed on our system is a greater MSE, but 
of the same order of magnitude as for the Gaussian ANFIS 
during the 200 iterations of our study. For example, iteration 4 
gives MSE=0.0016 for the Gaussian ANFIS, and 
MSE=0.0060 for our system. Iteration 6 gives MSE=0.0012 
and MSE=0.0047, and iteration 8 produces MSE=0.0010 and 
MSE=0.0044 respectively. As evidenced in Fig. 6, our system 
does not achieve significant error reduction after iteration 8, 
while the Gaussian ANFIS does continue improving the 
approximation. This behaviour is not surprising taking into 
account that the flexibility of smooth Gaussian membership 
functions is greater than that of restricted triangular-shaped 
membership functions [41]. The approximated function that 
our system provides from the eighth iteration is shown in Fig. 
5(b). 

However, the most important feature required for an 
adaptive network is its generalization ability, that is, the 
ability of the system to provide satisfactory results when it is 
evaluated using a collection of non-training data. The 
computation of the MSE in these kind of data is usually 
referred to as the generalized mean squared error (GMSE). 
Table I presents a comparison of the generalization ability of 
our system and meaningful earlier works, Lee’s system [38], 
Wong’s system [40], and Lin’s system [39]; the results were 
calculated in [38]. Lin’s system uses trapezoidal membership 
functions, while Wong’s and Lee’s systems use Gaussian 
membership functions. All of them implement a structure 
identification step to construct an initial fuzzy model. After 
that Lin and Wong use GDM for parameter identification, 
while Lee uses a hybrid learning algorithm (LSE and GDM). 
As can be seen in Table I, the GMSE of our system is 
comparable to those provided by the other methods. Taking 
into account that the works selected for comparison start the 
learning procedure from better initial models, we consider this 

a meaningful result. Finally, we investigated the GMSE 
reduction by refining the partition of the input universes of 
our system. As was expected, these experiments report better 
approximations. For example, with 5 antecedents per input the 
PWM ANFIS gives GMSE=0.0015 and with 6 antecedents 
per input our system gives GMSE=0.0007. The surface 
obtained by means of 6 antecedents per input has been 
represented in Fig. 5(c). 

2) Experiment 2: The second example concerns the 
modeling of the following nonlinear function 

2 1.5 2
1 2(1 )y x x− −= + + , 1≤x1,x2≤5. (15) 

A set of 50 input-output patterns has been used to train the 
network. The input universes have been partitioned into only 
3 membership functions each, giving as a result 9 fuzzy rules. 
The trainable parameters are 2 offsets (1 per input) and 9 
consequents for our system, while the Gaussian ANFIS 
involves 6 antecedent parameters and 9 consequents. Fig. 7(a) 
shows the target function and Fig. 7(b) shows the PWM 
ANFIS approximation after the 25-th iteration. The MSE in 
this iteration is of 0.0043 while the MSE for the same iteration 
but using ANFIS with Gaussian membership functions is of 
0.1217. As can be seen in Fig. 8, our system approximates 
better than the Gaussian ANFIS up to iteration 60 
approximately, where both systems give similar errors. After 
that, Gaussian functions continue evolving and improving the 
approximation (for example, iteration 200 gives MSE=0.0004 
for the Gaussian ANFIS). 

With respect to the generalization ability of the system, the 
comparisons with other authors using a set of non-training 
data are given in Table I where the GMSE errors are listed. 
The systems considered for comparison are the same as for 
experiment 1. As can be seen, our PWM ANFIS approximates 
the target function at test points almost as well as the other 
systems. Finally, we observed that in this experiment a finer 
partition of the inputs, with a larger number of membership 
functions, does not reduce significantly the GMSE due to the 
reduced set of training data. If better precision is required, a 
greater number of training patterns needs to be used along 
with the partition refinement. 

Our results lead us to conclude that the learning 
performance of PWM ANFIS is satisfactory and comparable 
to those reported by other authors using more elaborate 
schemes. The PWM ANFIS provides fast convergence due to 
the use of a hybrid learning algorithm and due to the reduced 
number of adjustable parameters. This is specially interesting 
in the implementation of applications that require on-line 
parameter adaptation. 

IV. HW/SW DESIGN CONSIDERATION 
Next we will focus on some important design aspects 

concerning the HW/SW implementation of the PWM ANFIS 
on a SOPC. The device used in this work is a SOPC of 
Altera´s Excalibur family [29]. The internal architecture of 
this family consists of two main blocks (see Fig. 9): the 
processor subsystem and a large FPGA. The processor 
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subsystem contains a 32-bit ARM922T hard processor core, a 
memory subsystem, external memory interfaces, and standard 
peripherals, while the FPGA block consists of an APEX 
20KE-like architecture with resources for SOPC integration. 
The bus architecture is based on the advanced microcontroller 
bus architecture (AMBA) high-performance bus (AHB). 
Nowadays, commercial CAD tools provided by FPGA 
vendors include limited user-friendly resources for HW/SW 
co-design, therefore, the development of SOPC-based 
solutions is a more complex task than the design of 
conventional FPGA-based approaches. Some of the problems 
that the designer has to tackle are: 

• The definition of an efficient partition of the system into 
HW and SW blocks. 

• The selection of an optimal word-length for the HW 
subsystem. 

• The design of a high-performance HW architecture 
compatible with the transmission capabilities of the 
HW/SW communication interface. 

Let us analyze these problems in the context of neuro-fuzzy 
modeling.  

A. HW/SW Partition 
One of factors that determines the suitability of HW/SW 

technologies to implement NFSs, is the well known distinctive 
characteristics of the main type of algorithms that a NFS 
involves, namely, the learning procedure and the feed-forward 
network. The learning procedure is a typical example of an 
algorithm better suited to SW implementations than to HW 
ones, due to three main factors, its inherent irregularity, its 
high computational demands, and its high precision 
requirements. On the other hand, the feed-forward network is 
a very regular and repetitive structure suitable for parallel HW 
implementation. Therefore, a suitable HW/SW partition 
consists in implementing the feed-forward network (7)-(9) as 
HW on the FPGA while the hybrid learning algorithms (10)-
(13) and the input/output processing are implemented as SW 
on the microprocessor (ARM). The proposed HW/SW 
partition favours high-speed for real-time operation and 
exploits the resources of both the ARM and the FPGA. More 
precisely, the high numerical precision of the ARM processor 
(32 bits) ensures the proper behaviour of the learning 
algorithms, while FPGA allows the development of high 
performance parallel architectures.  

B. Word-length Selection 
The numerical precision of the ARM processor is high 

enough to minimize the effects of finite precision computing 
(or quantization errors) on the learning performance of the 
system. However, the selection of a suitable word-length to 
implement the feed-forward network is to be carefully 
analyzed. On the one hand, as is well known, larger word-
lengths reduce the quantization errors in digital HW. 
However, on the other hand, large word-lengths penalize 
parameters such as speed, complexity, and cost of the circuits. 
Therefore, an optimal trade-off must be made between HW 

precision and the whole system performance. Special attention 
is to be paid to the consequences of the quantization errors on 
the approximation capabilities of the NFS. 

Most of the works reported in the literature concerning the 
approximation capabilities of neural networks and fuzzy 
systems do not refer to the numerical limitations inherent in 
the finite precision computation of digital HW. In fact, the 
property of universal approximation no longer holds if the 
numerical limitations of finite word-length are taken into 
account [42]. In what follows we will consider as “full 
precision” simulations those simulations performed using 
Matlab’s 64-bit floating-point arithmetic. Note that even full 
Matlab precision introduces numerical limitations. However, 
these limitations, as well as those involved in any present SW 
solution, can be considered irrelevant in the context of most 
neuro-fuzzy practical applications.  

Finite precision errors are introduced in digital NFSs due to 
the quantization of both signals and parameters [43]. The first 
type of errors are the A/D (analogue to digital) errors where 
the samples of the analogue input signals are to be represented 
using a finite word-length. The second type of quantization 
errors are the membership function errors that result from the 
transfer and storage of the network parameters. Finally, the 
third type of errors are the arithmetic errors in the finite 
precision implementation of the algorithms. To analyze the 
consequences of the quantization errors on the approximation 
capability of the PWM ANFIS we will use the nonlinear 
functions (14) and (15). In the previous Section, the PWM 
ANFIS was trained to approximate these functions. Now, we 
are going to evaluate the previously trained feed-forward 
networks, but using finite precision computation. The 
experiments will be performed by means of the block scheme 
reported in Fig. 10. The quantization of the network 
parameters of the digitized PWM ANFIS will be performed 
by rounding their full precision values to finite word-length 
ones. To evaluate the network output for different word-
lengths, we feed uniform distributed input samples to the 
network inputs 0 0

1 2( , )x x . Then, we calculate the MSE errors 
between the full precision PWM ANFIS and the digitized 
PWM ANFIS by using different word-lengths. The simulation 
results are shown in Fig. 11. It can be seen that both 
experiment 1 and experiment 2 exhibit the same behaviour, 
the MSE is exponentially reduced as the word-length, B, 
increases. However, note that the errors provided by a word-
length of 8 bits are comparable to the GMSE errors listed in 
Table I. Therefore, the approximation precision will not be 
improved even though greater word-lengths are used. As a 
consequence, the selection of oversized word-lengths (greater 
than 8 or 10 bits) to implement the feed-forward network will 
produce a useless precision excess and, on the other hand, 
word-lengths of less than 6 bits will give poor 
approximations. In view of these results and taking into 
account that the simplicity of digital HW design is greatly 
enhanced by selecting power-of-two word-lengths, an internal 
word-length of 8 bits is a good option. This selection has 
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additional advantages, such as the compatibility with standard 
peripherals. 

C. HW/SW Interaction 
Another factor that affects the HW efficiency in a HW/SW 

approach is the communication overload between the 
microprocessor and the HW block. To avoid this kind of 
problem, let us analyze the transfer rates of input data and 
network parameters that are required to properly take 
advantage of a certain degree of parallelism in the HW 
implementation of the feed-forward PWM ANFIS. The 
analysis of the HW/SW interaction will be performed in terms 
of some useful design rates for neural network 
implementations defined in [44]. First, the data (or 
parameters) transfer rate of layer l, Rl, with 1≤l≤3, is defined 
as follows 

( / )l
l

l

I
R bits s

T
= , (16) 

being Il the number of I/O bits of layer l, and Tl the time 
required to compute layer l. Consider an n-input single-output 
PWM ANFIS and let BI and BP be the number of bits used to 
represent each system input and each parameter respectively. 
Also let BO1, BO2, and BO be the number of bits dedicated to 
represent each node output in layer 1, layer 2, and layer 3 
respectively (refer to Fig. 3). The first layer evaluates n 
membership functions (one per input dimension) and their 
corresponding fuzzy complement. Each node function in this 
layer is 

0 0(1) 0( ; , )i ir r
i i i iO f x a b= , where 0

ix  is represented by 

means of BI bits, and both 
0

ir
ia  and 

0
ir

ib  parameters are BP–bit 
words; although the antecedents are trained by adjusting only 
the triangle offsets ( )ir

ib , after training is completed, the 

slopes of the triangles ( )ir
ia  are also computed to simplify 

further processing. Therefore, layer 1 involves 2I PnB nB+  
input bits and 12 OnB  output bits. As a consequence, a total of 

1( 2 2 )I P On B B B+ +  input/output (I/O) bits must be transferred 
in this layer. Using similar considerations, the number of I/O 
bits in layer 2, which has no parameter entries, is 

1 22 2n
O OnB B+ , where the first term accounts for input bits 

and the second one accounts for the output bits of the 2n nodes 
of this layer. Finally, layer 3 receives 2n signals from the 
previous layer plus 2n consequent parameters, and generates a 
single output, that is a total I/O bits of 22 ( )n

O P OB B B+ + . 
These results have been summarized in Table II. 

The time required to process each layer in (16), Tl, can be 
calculated as follows 

l
l l CLK

l

NN
T n T

P
= , (17) 

where NNl is the number of neurons in layer l, TCLK  is the 
clock period, nl is the number of clock cycles required to 
compute each neuron, and Pl is the number of processing units 
per layer. The number of neurons per layer is 
NN1,2,3=(2n,2n,1), while the rest of the parameters depend on 

the concrete system architecture and on the target technology. 
With the above information, we evaluated the data transfer 
rate and parameter transfer rate (16) for the PWM ANFIS 
(refer to Table II). These results must be taken into account in 
the design of the HW partition. Since the availability of I/O 
bits is limited because of the limited parallelism of the 
HW/SW interface, the parallelism of the HW partition must be 
carefully dimensioned. An excess of parallelism produces a 
communication bottleneck that gives rise to inefficient 
developments. 

Let us analyze the HW/SW interaction in the 
implementation of the SOPC-based PWM ANFIS, where the 
HW/SW interface consists of a finite-width bus (a 32-bit 
AMBA AHB bus). To be more specific, consider the 
suitability of this technology for implementing an architecture 
with intensive HW/SW communication demands as is the case 
of a fully parallel architecture. In this architecture each layer 
features as many processing elements as neurons in that layer 
(P1=2n,P2=2n,P3=1). In addition, assume that each processing 
element performs its operation in a single clock cycle 
(n1=n2=n3=1); note that this requires processing elements that 
process binary words in parallel. The required transfer rates 
for this particular case are shown in Table III. Since the 
complete feed-forward network will be implemented as HW 
on the FPGA, the most critical layers are those that interface 
with the SW partition by means of the 32-bit bus. Layer 2, 
which is an internal layer, is not expected to present 
communication overload because a large amount of 
communication channels between FPGA cells is available. In 
view of the results shown in Table III, it is evident that the 
major communication problems are the transfer of 2I PnB nB+  
input bits per clock cycle that requires the first layer to 
perform parallel computation efficiently, and the 2n

PB  input 
bits per clock cycle involved in the computation of layer 3. 
Let us suppose that the processor subsystem has to supply all 
these bits to the FPGA block by means of the 32-bit width 
bus. In this case, by selecting an 8-bit word-length for both 
data and parameters (BI=BP=8), the required transfer rate (data 
plus parameters) is of 24n bits/TCLK in the first clock cycle 
(layer 1), and 32n+  bits/TCLK in the third clock cycle (layer 3). 
This data parallelism would be possible only in the case of a 
single-input system (n=1). A two-input system (n=2) requires 
48 bits/TCLK to feed the first layer; this exceeds the 32 bits of 
the bus. Therefore, a fully parallel system is not efficient 
whenever the system parameters and the input data have to be 
transferred by means of the HW/SW interface. In this sense, 
there are two possible alternatives to design efficient HW/SW 
solutions. The first one consists in storing the system 
parameters in the FPGA part of the device (HW partition) in 
order to have full access to them, while the second solution 
consists in designing HW architectures with a degree of 
parallelism tailored to the bit transfer rate that the HW/SW 
interface is able to provide. Both approaches will be 
considered in the next Section. 
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D. Efficiency measure of HW/SW implementation 
Another aspect of the development of HW/SW solutions 

that is to be assessed is the efficiency of the HW/SW partition 
against a purely SW approach. Let us define the following 
efficiency index, 

/

SW

HW SW

τ
η

τ
=  (18) 

where τSW is the time required to compute a certain process 
using a SW approach and τHW/SW accounts for the time 
required to evaluate the same process but using a concrete 
HW/SW implementation whose efficiency we are interested in 
evaluating. We will consider that the proposed HW/SW 
implementation is efficient to implement that process if 
τHW/SW<τSW, that is, if η>1. Equation (18) can be rewritten as 
follows, 

, , , ,( / )
SW SW SW

SW SW HW HW SW SW HW HW

T n n
T n T n n f f n

η = =
+ +

 (19) 

where TSW (fSW) and THW (fHW) are the clock periods 
(frequencies) of the SW and the HW processors respectively, 
nSW is the number of clock cycles required to compute the full 
process using SW, and ,

SWn  and ,
HWn  account respectively for 

the SW clock cycles and the HW clock cycles that are 
involved in a HW/SW implementation of the same process. 

Table IV shows nSW involved in the computation of the 
feed-forward PWM ANFIS using a one cycle per instruction 
processor like the ARM embedded in the Excalibur device. 
For simplicity, it has been assumed that every input space has 
been partitioned into the same number of membership 
functions, NAi=NA, with 1≤i≤n. Although the computation of 
the three layers of the network is independent of this 
parameter, a previous pre-processing step is required to 
localize the active cell and its parameters (offset, slope, and 
consequents), and to subtract the offset from the input to 
represent it in coordinates of the active interval (local 
coordinates). This step requires the comparison of each input 
with the NA-2 offsets for which it is necessary to load each 
offset in a register and to do n differences. Layer 1 then 
performs sequentially the following operations: the product of 
the local input value by the slope, which has also to be 
previously loaded into a register, and the logical complement 
of the product in order to obtain the complementary 
membership value. Layer 2 performs as many as 2n(n-1) 
product operations, that is, n-1 products per each active rule. 
Finally, layer 3 can be efficiently processed by means of 2n 
multiply-accumulate (MLA) operations and the same number 
of consequent loads from RAM to registers. As summarized 
Table IV, the number of clock cycles involved in a SW 
computation of the feed-forward network grows exponentially 
with the number of system inputs. Therefore, it is expected 
that for large multidimensional systems even HW 
architectures with a low degree of parallelism (compatible 
with the transfer rate of the HW/SW interface) are able to 
outperform a SW based solution. In view of these 
considerations and the results discussed in the previous 

Subsections, we propose two efficient HW/SW architectures 
to implement the PWM ANFIS. Firstly, a high speed parallel 
architecture that stores the network parameters in the FPGA 
part of the chip, after the SW training process is completed 
(off-line learning). Secondly, a pipelined architecture tailored 
to the transfer rate provided by the HW/SW interface and 
suitable for on-line parameter update. 

V. HW/SW IMPLEMENTATIONS OF THE PWM ANFIS 

A. Design methodology 
In this work, a semi-automatic design methodology has 

been applied to support the development of the HW/SW-
based PWM-ANFIS. First, the PWM-ANFIS Toolbox for 
Matlab, developed by the authors, has been used for full-
precision and finite-precision computer simulations. The 
system has been divided into four main blocks with a well 
defined functionality: the feed-forward PWM ANFIS, the 
LSE algorithm, the GDM, and the input-output processing. A 
functional C model of each block has been compiled. In the 
next step, according to the HW/SW partition proposed in 
Section IV, both the HW and SW blocks have been gradually 
refined using computer-aided design tools. GNUPro tools for 
ARM have been used to develop the SW blocks, whereas 
Altera´s Quartus II design SW has been used to design the 
FPGA-target blocks, perform the HW/SW integration, 
perform simulations at the bus-transaction level, and configure 
the device. In the following, two efficient HW/SW variants, 
developed by the authors, will be presented. 

B. Fully Parallel Architecture 
In the previous Section we have demonstrated that HW 

architectures with a high degree of parallelism are efficient 
only if the network parameters are stored in the HW partition 
of the SOPC (FPGA block). Otherwise, the limited bandwidth 
of the HW/SW interface reduces the efficiency of parallel 
architectures. Our first proposal consists in a high-speed 
parallel architecture where the network parameters are stored 
in the FPGA part of the device. The proposed architecture 
operates in two stages, the training stage (off-line learning) 
and the feed-forward stage (on-line processing). First, the SW 
partition performs the parameter identification of the network 
using a set of training patterns as has been explained in 
Section II. After that, the adjusted parameters are transferred 
to the FPGA block and stored in a dedicated memory. If NAi is 
the number of antecedents per input, 1≤i≤n, the information 
transferred to the HW partition after training consists of 
2 ( 1)i

i

NA −∑  antecedent parameters (two parameters per 

region), and i
i

NA∏  consequent parameters (one consequent 

per rule). In the second stage, the HW partition performs the 
feed-forward processing of the PWM ANFIS each time a new 
input is presented. Fig. 12 depicts the block scheme of the 
fully parallel architecture for the case of an n-input system. 
The proposed architecture consists of four main blocks: the 



TFS-2006-0355 
 

9

parameter memory, the antecedent multiplexer (AMUX), the 
consequent multiplexer (CMUX), and the neural network unit 
(NNU). 

The parameter memory stores the network parameters. It 
consists of one 8-bit register per parameter and is equipped 
with a very flexible interconnection scheme that allows full 
parallel access to the memory contents. The size of the 
memory depends on the system inputs and also on the number 
of antecedents per input as has been explained above. The 
AMUX multiplexes the contents of the parameter memory and 
selects for transmission the parameters of the active region. 
The selection signals of the AMUX are the system inputs. The 
outputs of the module are the system inputs but expressed in 
coordinates of the active region 

0

( )ir
ix , the region slope 

0

( )ir
ia , 

and a selection signal that drives the CMUX. The CMUX 
selects from the parameter memory those consequents related 
to the active rules 0( )jc . The AMUX consists of n instances 
(one per input) of a VHDL component called 
COMP_SELECT (see Fig. 13). The architecture body of this 
component consists of a single process statement that is 
sensitive to all the input signals of the entity (i.e., the process 
defines combinational logic). A conditional statement (IF 
statement) compares the input 0

ix  with the region offsets ir
ib  

until the condition 0( )ir
i ix b≥  becomes true. In this situation, 

the active region has been found and the entity outputs are: a 
pointer to the active region 0

ir , the slope of the active region 
0

ir
ia , and the difference between the input and the region 

offset, 
0 00i ir r

i i ix x b= − . The active region pointers are combined 
by means of the concatenate operator to construct the Select 
signal, as can be seen in Fig. 13. The CMUX selects the active 
consequents 0( )jc  from the parameter memory. It is a single-
cycle VHDL component. The behaviour of the CMUX is 
given by a single process, activated by the system clock, that 
encloses a conditional statement (CASE statement). The Select 
signal, generated by the AMUX, drives the CASE statement in 
the selection of the active consequents. The NNU implements 
the three layers of the feed-forward network. It consists of a 
parallel architecture organized into three layers, as in Fig. 3. 
Layer 1 features one two-input multiplier per input. The 
multipliers used in this layer provide, in a single clock cycle, 
active-high output and active-low output to implement the 
pairs of complementary neurons. The second layer is 
composed of one n-input multiplier per rule, that is, 2n 
multipliers. The product of n signals can be performed by 
means of 2-input multipliers organized into a typical tree-like 
structure as can be seen in Fig. 14. The number of clock 
cycles required to evaluate the product of n signals is 2log n . 
If n is not a power of two, the next power of two is to be used. 
For example, the evaluation of the tree of products involves 1 
clock cycle if n=2, 2 clock cycles if n=4 (or n=3), 3 clock 
cycles if n=8 (or n=5, 6, 7), and so on. Finally, layer 3 of the 
NNU consists of 2n two-input multipliers and a parallel n-

input adder. This layer performs the sum of products in 2 
clock cycles. Table V summarizes the number of clock cycles 
involved in the computation of this HW partition ( ,

HWn ). 
1) Efficiency Evaluation: Let us analyze the efficiency of 

the proposed architecture to implement the feed-forward 
network, against a purely SW solution in the sense given by 
efficiency index (18). Note that the fully parallel architecture 
implements the whole feed-forward network as HW on the 
FPGA, therefore , 0SWn = . Therefore, the expression of the 
efficiency index given in (19), applied to the feed-forward 
network, can be rewritten as follows, 

,( ) /( )SW HW HW SWn f n fη = , where SWn  and ,
HWn  can be found 

in Table IV and Table V, respectively. Finally, the efficiency 
of this implementation is, 

2

2 ( 1) 2 ( / )
4 log

n

Parallel HW SW
n nNA f f

n
η + +

=
+

 (20) 

Fig. 15 shows the efficiency index (20) as a function of the 
number of system inputs for different values of f=fHW/fSW; a 
frequency range 40 MHz ≤ fHW ≤ 100 MHz, compatible with 
the target FPGA technology has been selected for evaluation. 
A mean value for the number of antecedents has been 
assumed to be NA=4. Taking into account that the maximum 
frequency specified for the embedded ARM processor is 
fSW=200MHz, it can be concluded that the proposed parallel 
architecture is efficient against a SW implementation for 
frequencies fHW greater than 40 MHz (f=0.2), except for the 
case of a single input that requires at least fHW=66.6 MHz to be 
efficient, however this case is not significant. As was 
expected, the efficiency index grows exponentially as the 
number of inputs increases. Therefore, systems with a large 
number of inputs, which implies a reduction of the operation 
frequency or some additional clock cycle in the processing of 
the last layer, can also be efficiently implemented. 

2) System Prototyping: As a case example of the proposed 
HW/SW approach, we developed a two-input PWM ANFIS. 
The object code, optimized for ARM922T, is stored in the 
internal single-port SRAM occupying approximately 10 
Kbytes of the 32 Kbytes available in the device. The ARM 
processor executes the SW part (off-line training) of the PWM 
ANFIS operating up to 200 MHz; this performance is 
uncompromised by the FPGA operation. The HW partition, 
implemented in the FPGA, operates as a slave of the ARM 
processor and performs the feed-forward PWM ANFIS in 
only five clock cycles (see Fig. 12). The implementation of 
the HW partition has been carried out using VHDL 
descriptions and Altera´s macrofunctions. After synthesis, the 
HW part uses 2447 of the 4160 logic elements available in the 
FPGA part of the EPXA1F484C1 (58%) and allows a 
maximum clock frequency of 67 MHz. After truncation of the 
least significant bits of layer 3, the system output is given in a 
32-bit two-complement format. The system has been 
successfully implemented and tested using the EPXA1 
development board [45]. 
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C. Pipeline architecture 
The second approach is intended for on-line parameter 

learning. The same main HW/SW partition as for the parallel 
architecture will be used, that is, the learning algorithms will 
be developed in the SW partition and the feed-forward 
network will be implemented in the HW part of the device. 
The feed-forward network consists of a pipelined architecture 
designed to take full advantage of the transfer rate allowed by 
the HW/SW interface. Since the pipeline architecture 
performs on-line parameter adaptation, the parameter memory 
is to be located in the SW partition to avoid HW/SW 
communication delays. 

The pipeline architecture has been designed taking into 
account the transfer rates analyzed in Section IV. It consists of 
a two-pipeline structure designed to increase the performance 
of the circuit. After analyzing carefully the efficiency of 
different solutions compatible with the available bit transfer 
rate, we decided to move the pre-processing step of the feed-
forward network to the SW partition. In the pre-processing 
step the active parameters 

0 0

( , )i ir r
i ia b  are located, and the 

inputs 0( )ix , 1≤i≤n, are represented in coordinates of the active 

region 0( )ir , that is, 
0 00i ir r

i i ix x b= − . After the pre-processing 

step, the triangle offsets 
0

( )ir
ib  are not required to complete the 

computation of the feed-forward network. The advantage of 
implementing the pre-processing step in the SW partition is 
that only one antecedent parameter per input, the triangle 
slope 

0

( )ir
ia , is to be transmitted through the bus, instead of 

the pair 
0 0

( , )i ir r
i ia b  that would be required to implement the 

pre-processing step in the HW partition. The authors also 
investigated the efficiency of different solutions where the 
pre-processing step was implemented in the HW partition, but 
in all the studied cases, the delay in the transmission of data 
through the bus gave rise to non efficient HW/SW solutions. 
Let us now present a detailed description of the pipeline 
architecture. 

1) HW/SW Co-operation and Data Transactions: The 
HW/SW co-operation inside the device is based on the 
AMBA AHB bus architecture and also on its associated 
embedded bridges [46]. The ARM is the bus master in the 
processor subsystem (PS) and has fast access to the FPGA 
slaves (feed-forward network) via the PS-to-FPGA bridge. 
(see Fig. 16). The main data flow across the HW/SW interface 
in the pipeline architecture is the transmission of 2 2nn + bytes 
per inference from the PS to the FPGA (n inputs, n slopes and 
2n  consequents); the opposite data flow is a single 32-bit 
word per inference (system output). The transaction 
throughput and the co-operation performance depends on the 
interface configuration and also on the relative clock speed of 
the master domain and the slave domain. Below in this 
Section we will give concrete results of the transaction 
throughput for a particular case example. 

Since the bus that communicates the PS and the FPGA 

block is 32-bit width, the data transmission can be 
straightforwardly organized into four bytes per transfer, as has 
been depicted in Fig. 17. The data transfer from SW to HW 
starts by sending each local input and its associated active 
slope 

0 0

( , )i ir r
i ix a . Two data pairs occupy 32 bits, therefore, an 

n-input system requires n/2 transfers to perform the 
transmission of all the data involved in the processing of the 
first layer of the feed-forward network (if n is odd, the next 
even number is to be used to compute these transfers). The 
second layer has no additional inputs, while the computation 
of layer 3 involves 2n consequent parameters that have been 
arranged in packets of four consequents each, so that we need 
2n-2 transfers to complete the transmission of the 2n 
consequents. 

2) Pipeline Structure: Fig. 18 depicts a block scheme of the 
pipeline architecture for the case of an n-input PWM ANFIS. 
The proposed architecture performs the same computations as 
the neural network unit (NNU) of the parallel architecture (see 
Fig. 12), previously presented, but limiting the degree of 
parallelism exactly to the availability of data. As can be seen, 
the architecture has been structured into two pipelines. The 
synchronization of the two pipelines is carried out by a simple 
control unit. This unit generates the signals for the pipeline 
control and also generates the signals required to synchronize 
with the SW partition. 

The data path of the first pipeline consists of three single-
cycle stages: the membership function stage, the partial rule 
activation stage, and the register stage. The first stage has to 
be able to process the two inputs provided in each transfer 
concurrently. This is accomplished by two parallel two-input 
multipliers. The multipliers provide both active-high and 
active-low outputs to implement the fuzzy complements in 
(7). The next stage of the pipeline computes four partial rule 
activations concurrently by means of four parallel two-input 
multipliers. We say that the activation is partial because it 
considers only the interaction (product) between pairs of 
inputs in (8). In the last stage of this pipeline, the partial rule 
activations are stored (four each clock cycle) into a battery of 
2n registers. The sequence of register loads is controlled by 
means of n/2 enabling signals, as can be seen in Fig. 18. 

Since each pair of inputs requires two cycles to complete 
the HW/SW data transfer, the above three-stage pipeline 
requires one wait cycle before the next pair of inputs enters 
the pipeline. Therefore, the total number of clock cycles 
required to compute the first pipeline, including data transfers, 
is equal to the pipeline length (3 cycles), plus the number of 
words to be processed (n/2) multiplied by the input delay (2 
clock cycles), that is, 

1 3pipelinen n− = +  (21) 
The second pipeline performs the rest of the feed-forward 

network once the first pipeline finishes. The sequence of 
operations involved in the second pipeline has been organized 
into (3+log2n) stages. In the first stage, the rule activation 
multiplexer (RAMUX) selects four different combinations of 
the 2n partial rule activations computed in the first pipeline. 
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The RAMUX is a single-cycle VHDL component. It consists 
of a single process activated by the system clock. A 
conditional statement (CASE statement) multiplexes the 
partial rule activations; the selection signal is generated by a 
counter in the control unit. The outputs of the RAMUX are 
the inputs to the next layer of the circuit that consists of four 
parallel (n/2)-input multipliers. To avoid excessive signal 
delays, each multiplier has been implemented using two-input 
multipliers interconnected in the form of a binary tree 
structure (see Fig. 14), as in the previous fully parallel 
architecture. The number of clock cycles or stages required to 
evaluate the binary tree is equal to 2log ( / 2)n  or equivalently, 

2log 1n −  (if n is not a power of two, the next power of two is 
to be used). The next stage of the pipeline receives four 
consequents and four rule activations, and performs the four 
products in parallel. After that, a four-input parallel adder 
performs the partial sum of four output terms per clock cycle. 
Finally, in the last stage of the pipeline, the partial sum of 
products is accumulated. A new group of four consequents 
enters the pipeline every two clock cycles, until the 
transmission of the 2n consequents is completed (2n-2 32-bit 
words). Therefore, the total clock cycles required for the 
circuit to evaluate the second pipeline is: the length of the 
pipeline (3+log2n) plus the product of the number of words 
(2n-2-1) per their input delay (2 cycles), where the first word 
transfer has no wait cycles because it is performed while the 
first pipeline is still active,  

1
2 21 log 2n

pipelinen n −
− = + + . (22) 

In summary, the HW part of the feed-forward network 
involves (21) plus (22) HW clock cycles, that is, 

, 1
24 log 2n

HWn n n −= + + +  clock cycles. This information is 
presented in Table VI and will be used to compute the 
efficiency of the pipeline architecture. 

3) Efficiency Evaluation and System Prototyping: The 
efficiency index (19) applied to the pipeline architecture 
results,  

1
2

2 ( 1) 2
(2 3) [4 log 2 ] /( / )

n

pipeline n
HW SW

n nNA
n NA n n f f

η −

+ +
=

− + + + +
, (23) 

where the numerator, SWn , has been obtained from Table IV, 

and the terms of the denominator, ,
SWn  and ,

HWn , can be found 
in Table VI. Fig. 19 shows the efficiency index (23) as a 
function of the number of inputs, for different values of 
f=fHW/fSW. As for the parallel architecture, a frequency range 
40 MHz ≤ fHW ≤ 100 MHz has been used and a mean value for 
the number of antecedents NA=4 has been assumed. Taking 
into account that the maximum frequency specified for the 
embedded ARM processor is fSW=200MHz, it can be 
concluded that the pipeline architecture is efficient against a 
SW implementation for PWM ANFIS with three or more 
inputs. In the case of a 3-input system, frequencies fHW greater 
than 60 MHz (f=0.3) are required to develop efficient 
implementations. Note that the efficiency index grows as the 
number of inputs increases, but slowly than in Fig. 15. 

As a prototyping example, we developed the pipeline 
architecture of a four-input PWM ANFIS. The design has 
been developed using the EPXA4F672C1 device of Altera´s 
Excalibur family. The EPXA4 devices are the second in size 
(400.000 typical gates) after the EPXA1 devices (100.000 
typical gates) used to implement the two-input fully parallel 
architecture. After synthesis, our design uses 4.234 of the 
16.640 logic elements available in the FPGA part of the SOPC 
(25%). Note that the implementation of larger systems, with 
more than four inputs, does not imply an important increase of 
resources; only the register stage and the RAMUX have to be 
modified. The ARM processor executes the SW part of the 
system operating up to 200 MHz, while the HW partition, 
implemented in the FPGA, performs the feed-forward network 
with a maximum clock frequency of 50.3 MHz. This clock 
domain distribution leads to a transaction throughput between 
the ARM and the FPGA of approximately 100 Mbytes per 
second (see Fig. 16). The transmission of 24 bytes from the 
processor subsystem (PS) to the FPGA (n inputs, n slopes, 2n 
consequents), and 4 bytes back from the FPGA to the PS (32-
bit word that represents the system output) requires only 0.28 
μs, while a complete inference takes 0.358 μs (18 cycles with 
a 50.3 MHz clock, see Table VI). The above operation 
frequencies give an efficiency index of 1.4 in (23). In view of 
these results, it can be concluded that the HW/SW interface is 
fast enough to guarantee the suitability of the proposed 
HW/SW architecture for the four-input PWM ANFIS. 

VI. CONCLUSION 
In this work we have reported the development of two on-

chip HW/SW architectures for a particular case of NFS 
suitable for real-time embedded applications. The NFS 
consists of an ANFIS-like model modified for efficient 
HW/SW implementation. As a consequence of some 
constraints imposed on the model, the complexity of the feed-
forward network and the learning algorithms are greatly 
reduced. In particular, the feed-forward network becomes a 
piecewise multilinear (PWM) function with a simple cellular 
structure. It has been verified that the PWM ANFIS, in spite 
of the restrictions, exhibits approximation capabilities and 
learning abilities comparable to those of generic ANFIS. 

To develop efficient architectures for the PWM ANFIS, it is 
necessary to consider first some important problems that arise 
in the development of HW/SW approaches: a) the selection of 
an efficient partition of the system into HW and SW blocks, b) 
the selection of an optimal word-length for the HW 
subsystem, and c) the design of high-performance HW 
architectures compatible with the transmission capabilities of 
the HW/SW communication interface. As a consequence of 
the previous analysis, two different on-chip HW/SW 
architectures have been developed. The first architecture 
consists of a high-speed parallel architecture with fixed 
parameters (off-line learning), while the second one is a 
pipelined architecture, tailored to the available HW/SW bit 
transfer rate, suitable for on-line parameter adaptation. Both 
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solutions have been implemented on a SOPC of Altera’s 
Excalibur family. 

The main feature of the proposed solutions is a trade-off 
between versatility and performance. In this sense, the 
embedded processor provides flexibility and high precision to 
implement the hybrid learning algorithms, while the FPGA 
block provides high-speed to process the feed-forward neural 
network. The proposed approach is suitable for developing 
efficient implementations for already known application areas 
of embedded NFSs such as consumer electronics, robotics, or 
automotive control, among others. In addition, potential 
applications can be found in the context of pervasive 
computing applied to ambient intelligence [47]. Ambient 
intelligence needs small embedded systems able to deal on-
line with a large number of inputs, and also able to adapt 
themselves to changing conditions and user preferences [48]. 
These requirements can be met by means of the SOPC-based 
PWM ANFIS presented in this work. 

In future works we intend to enhance the capabilities of the 
neuro-fuzzy SOPC to cope with the problem of abrupt context 
changes. In these situations, the adaptation of the NFS to the 
new context would require structural changes in the feed-
forward network, in addition to the parameter adaptation. This 
kind of structural changes involve the reconfiguration –total 
or partial– of the HW partition. In this sense, we will apply 
dynamic reconfiguration techniques to reconfigure the FPGA 
part of the device. 

APPENDIX 

The learning rule for ir
ib  is 

( 1) ( )i i

i i

r t r t
i i b r

i

Eb b
b

η+ ⎛ ⎞∂
= − ⎜ ⎟

∂⎝ ⎠
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1
2

K

k
k

E E
K =

= ∑ , where 
ibη  is 

the learning rate and ' 2( )k k kE y y= − . Using the chain rule, for 
each sample, k: 
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= ∏  (see (8)), 
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Using the definition of the triangular membership functions 
as a function of the adjustable parameters (offsets) given in 
Section II, 

0 0 0 0

0 0 0 0
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, with 

0 0 10i ir r
i i ib x b +≤ ≤ . Note that the slope of the active triangles is 

0 0 011/( )i i ir r r
i i ia b b+= −  (see Fig. 4). 
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Finally, summing all the training samples, 
0
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FIGURE CAPTIONS 
 

 
Fig. 1. Architecture of a generic n-input adaptive neuro-fuzzy inference system (ANFIS). The system is equivalent to the zero-order Sugeno inference 
model. 

 
Fig. 2. Example of a two-input system verifying the constraints imposed on the general ANFIS model: the antecedents are triangles with an overlapping 
degree of two and normalized in each input dimension. The input vector 0 0

1 2( , )x x  activates the highlighted semi-triangles that delimit the active cell. 

 

Fig. 3. Architecture of the PWM-ANFIS. Grey neurons in layer 1 are complementary neurons with node function 
(1) (1)1i iO O= − . 

 
Fig. 4. Node function of the neurons in layer 1 of the PWM ANFIS. 

 
Fig. 5. Experiment 1. (a) Graphical representation of the desired function. (b) Approximation of the desired function with a 16-rule PWM ANFIS. (c) 
Approximation of the desired function with a 36-rule PWM ANFIS. 

 
Fig. 6. Experiment 1. Mean squared error (MSE) curves obtained with ANFIS (Gaussian membership functions) and with the PWM ANFIS (triangular 
membership functions). 

 
Fig. 7. Experiment 2. (a) Graphical representation of the desired function. (b) Approximation of the desired function with a 9-rule PWM ANFIS.  

 
Fig. 8. Experiment 2. Mean squared error (MSE) curves obtained with ANFIS (Gaussian membership functions) and with the PWM ANFIS (triangular 
membership functions). 

 
Fig. 9. Internal architecture of the SOPC of Altera´s Excalibur family used to implement the PWM ANFIS, and partition of the system into hardware and 
software blocks. 

 
Fig. 10. Block scheme used to evaluate the approximation capability of the PWM ANFIS when finite-precision computation is used. 

 
Fig. 11. Mean squared error (MSE) between the full precision PWM ANFIS trained for experiments 1 and 2 and their digitized PWM ANFIS models for 
different word-lengths. 

 
Fig. 12. Block scheme of the fully parallel architecture of an n-input PWM ANFIS implemented in the FPGA part of the SOPC. 

 
Fig.13. Antecedent multiplexer (AMUX) module. The AMUX selects for transmission the parameters of the active regions and generates a Select signal 
that drives the Consequent MUX. The Select signal consists of the concatenation of the active region pointers; 0 0 0

2 1& &nSelect r r r= L , where & is the 
concatenate operator. 

 
Fig.14. Scheme of an 8-input multiplier implemented by means of two-input single-cycle multipliers. The multiplier is structured into a binary tree of 3 
layers. In the general case, an n-input multiplier consists of log2n layers. 

 
Fig. 15. Efficiency index (η) of the fully parallel architecture as a function of the number of system inputs for different values of f=fHW/fSW. 

 
Fig. 16. Interface between the processor subsystem (PS) and the FPGA. The master port (M) initiates transactions and the slave port (S) responds to 
transactions. Clock frequencies in parenthesis correspond to the four-input PWM ANFIS (pipeline architecture). 

 
Fig. 17. Organization of the data and parameter  transferences in the pipeline architecture by using the 32-bit HW/SW interface. 

 
Fig. 18. Block scheme of the pipeline architecture of an n-input PWM ANFIS implemented in the FPGA part of the SOPC. 

 
 

Fig. 19. Efficiency index (η) of the pipeline architecture as a function of the number of system inputs for different values of f=fHW/fSW. 
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TABLE CAPTIONS 
 

 
 

TABLE I 
COMPARISON ON THE GENERALIZED MEAN SQUARED ERROR (GMSE) OF EXPERIMENT 1 AND EXPERIMENT 2 

 
 

TABLE II 
EVALUATION OF THE DATA TRANSFER RATE AND THE PARAMETER TRANSFER RATE FOR EACH LAYER OF THE PWM ANFIS 

 
 

TABLE III 
REQUIRED DATA TRANSFER RATE AND PARAMETER TRANSFER RATE FOR EACH LAYER OF A FULLY PARALLEL IMPLEMENTATION OF THE PWM ANFIS 

 
 

TABLE IV 
COMPUTATION OF THE FEED-FORWARD PWM ANFIS BY USING A ONE CYCLE PER INSTRUCTION PROCESSOR 

 
 

TABLE V 
COMPUTATION OF THE FEED-FORWARD PWM ANFIS BY MEANS OF THE FULLY PARALLEL ARCHITECTURE 

 
 

TABLE VI 
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Figure 5 
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Figure 6 
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Figure 10 
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Figure 12 
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Figure 14 
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Figure 16 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 17 
 
 
 

 
 
 
 

FPGA 
slave 

ARM 
 

(200 MHz) 
M

FPGA 

(50.3 MHz) 

Processor Subsystem (PS) 

S S

PS-to-FPGA 
bridge 

Bus control 

0...    7   8...  15  16...   23  24...    31 

0
ir

ix 0
ir

ia
0

1
1

ir
ia +
+

0
1
1

ir
ix +
+

0
jc 0

1jc +
0

3jc +
0

2jc +



TFS-2006-0355 
 

26

Figure 18 
 
 
 

 
 
 
 
 
 
Figure 19 
 
 
 

2 3 4 5 6 7 8 9 10
10

−1

10
0

10
1

Number of system inputs (n)

E
ff

ic
ie

nc
y 

in
de

x

f=0.2
f=0.3
f=0.4
f=0.5

η=1

 
 
 

First pipeline 

8b 

8b 

×

×

×

×

×

×

0
jc

∑

CLK 

×

×

×

×

∑
y 

Second pipeline 

R
ru

le
 A

ct
iv

at
io

n 
M

U
X

 

Membership 
functions 

Partial rule 
activation Rule activation 

(4 rules/2 cycles)
Register stage 
(2n blocks) 

Sum of product 
accumulation 

(4 terms/2 cycles) 

M M

M

M

M

M

M

M

L

Write-enable 
signals 

} /2n

1e
/ 2ne

} /2n

} /2n

} /2n

Select

M ×

M ×

M ×

M ×

(n/2)-input
multipliers

Accumulate 
enable 

1( ). ( )n nx xμ μ−

1 2( ). ( )x xμ μ

1 2( ). ( )x xμ μ

1 2( ). ( )x xμ μ

1 2( ). ( )x xμ μ

1( ). ( )n nx xμ μ−

1( ). ( )n nx xμ μ−

1( ). ( )n nx xμ μ−

M

M

M

M

0 0

( , )i ir r
i ix a



TFS-2006-0355 
 

27

TABLES 
 
 
 

 
 
 

 
 
 

 
 
 

TABLE III 
REQUIRED DATA TRANSFER RATE AND PARAMETER TRANSFER RATE FOR 

EACH LAYER OF A FULLY PARALLEL IMPLEMENTATION OF THE PWM ANFIS 

NFS Layer 1 Layer 2 Layer 3 

Data transfer rate 
(bits/s) 

1( 2 )I O

CLK

n B B
T
+  1 22 2n

O O

CLK

nB B
T

+  2(2 )n
O O

CLK

B B
T

+  

Parameter transfer 
rate (bits/s) 

2 P

CLK

nB
T

 
 

-------- 
2n

P

CLK

B
T

 

 

TABLE II 
EVALUATION OF THE DATA TRANSFER RATE AND THE PARAMETER TRANSFER RATE FOR EACH LAYER 

OF THE PWM ANFIS 

NFS Layer 1 Layer 2 Layer 3 

Input bits 2I PnB nB+  12 OnB  22 ( )n
O PB B+  

Output bits 
12 OnB  

22n
OB  OB  

Total I/O bits 
1( 2 2 )I P On B B B+ +  

1 22 2n
O OnB B+  22 ( )n

O P OB B B+ +  
Layer time 

1
1

2
CLK

n n T
P

 
2

2

2n

CLKn T
P

 3
3

1
CLKn T

P
 

Data transfer rate (bits/s) 
1 1

1

( 2 )
2

I O

CLK

B B P
n T
+  1 2 2

2

(2 2 )
2

n
O O

n
CLK

nB B P
n T
+  2 3

3

(2 )n
O O

CLK

B B P
n T

+  

Parameter transfer rate (bits/s) 
1

1

P

CLK

B P
n T

 
 

-------- 3

3

2n
P

CLK

B P
n T

 

 

TABLE I 
COMPARISON ON THE GENERALIZED MEAN SQUARED ERROR (GMSE) OF EXPERIMENT 1 AND 

EXPERIMENT 2 

NFS 
Membership 
function type 

Learning 
algorithm 

GMSE 
Experiment 1 

GMSE 
Experiment 2 

Lin’s System Trapezoidal GDM 0.0088 0.0537 
Wong’s System Gaussian GDM 0.0033 0.0472 
Lee’s System Gaussian Hybrid (LSE and 

GDM) 
0.0023 0.0407 

Our System Triangular Hybrid (LSE and 
GDM) 

0.0039 0.0630 

The NFSs above use 16 rules to approximate the function of experiment 1, while for experiment 2 
our system uses 9 rules and the other three systems use 10 rules. 



TFS-2006-0355 
 

28

 
 
 

 
 
 

 
 

 

TABLE VI 
COMPUTATION OF THE FEED-FORWARD PWM ANFIS BY MEANS 

OF THE PIPELINE ARCHITECTURE 

 
HW clock cycles 

,( )HWn  
SW clock cycles 

,( )SWn  

Preprocessing -------- (2 3)n NA −  
Pipeline 1 n+3 -------- 
Pipeline 2 1

21 log 2nn −+ +  -------- 
Total 1

24 log 2nn n −+ + +  (2 3)n NA −  

 
 

TABLE V 
COMPUTATION OF THE FEED-FORWARD PWM ANFIS BY 

MEANS OF THE FULLY PARALLEL ARCHITECTURE 

 HW clock cycles ,( )HWn  

Preprocessing 1 
Layer 1 1 
Layer 2 

2log n  
Layer 3 2 
Total 

24 log n+  

 

TABLE IV 
COMPUTATION OF THE FEED-FORWARD PWM ANFIS BY 

USING A ONE CYCLE PER INSTRUCTION PROCESSOR 

 SW clock cycles ( )SWn  

Preprocessing (2 3)n NA −  
Layer 1 3n  
Layer 2 2 ( 1)n n −  
Layer 3 12n+  
Total 2 ( 1) 2n n nNA+ +  

 


