
TFS-2006-0355

1

Abstract— This paper describes the development of efficient

hardware/software (HW/SW) neuro-fuzzy systems. The model
used in this work consists of an adaptive neuro-fuzzy inference
system (ANFIS) modified for efficient HW/SW implementation.
The design of two different on-chip approaches are presented: a
high-performance parallel architecture for off-line training, and
a pipelined architecture suitable for on-line parameter
adaptation. Details of important aspects concerning the design of
HW/SW solutions are given. The proposed architectures have
been implemented using a system-on-a-programmable-chip
(SOPC). The device contains an embedded-processor core and a
large field programmable gate array (FPGA). The processor
provides flexibility and high precision to implement the learning
algorithms, while the FPGA allows the development of high-
speed inference architectures for real-time embedded
applications.

Index Terms— Adaptive systems, embedded systems, field
programmable gate array (FPGA), neuro-fuzzy model, system-
on-a-programmable-chip (SOPC)

I. INTRODUCTION
YBRID neuro-fuzzy systems (NFS) combine artificial

neural networks and fuzzy logic in a synergetic way.
Fuzzy systems provide a framework to represent imprecise
information and to reason with this kind of information, while
neural networks enhance fuzzy systems with the capability of
learning from input-output samples; learning is used to adapt
parameters of the fuzzy system as membership functions or
rules. In the last decade NFSs have become very popular
mainly due to the powerful capabilities as universal function
approximators that most of them exhibit, even when simple
membership functions like trapezes or triangles are used [1]–
[8]. Some example representative application areas of NFSs
are: automatic control, robotics, adaptive signal processing,
pattern recognition, and system identification (see, for

Manuscript received November 3, 2006; revised March 12, 2007. This

work was supported in part by the University of the Basque Country under
Grant UPV224.310-E-15871/2004, and the Basque Country Government
under Grant SA-2006/00015.

I. del Campo, J. Echanobe, and J. M. Tarela are with the Department of
Electricity and Electronics, University of the Basque Country, Leioa, Vizcaya,
48940 Spain (e-mail: ines@we.lc.ehu.es).

G. Bosque is with the Department of Electronics and Telecommunications,
University of the Basque Country, Bilbao, 48012 Spain.

example, [9]). More recent applications of NFS can be found
in [10]-[17]. This paper deals with efficient implementations
of a class of NFS, the adaptive neuro-fuzzy inference system
(ANFIS) [18], [19], that has been widely used to develop
NFSs in the above application areas. ANFIS is a network
representation of different types of fuzzy inference models,
endowed with the learning capabilities of neural networks. In
concrete, our work focuses on an ANFIS-like model that is
functionally equivalent to the Takagi-Sugeno inference system
[20], [21].

In the last two decades, several researchers have developed
special purpose hardware in the fields of fuzzy systems, neural
networks, and their combinations (see, for example the special
issues [22]-[25], and references therein). Restrictive design
specifications such as high performance, reduced size, or low
power consumption, which are difficult to fulfil with a
software approach, have been the main reasons for developing
these solutions. However, both the research activity and the
commercial interest in neural/fuzzy hardware have been
decreasing in the last years due to the important increase in
speed of software solutions based on general-purpose
microprocessors or digital signal processors (DSP).
Nowadays, software approaches traditionally characterized by
their high versatility, also provide processing speeds that are
high enough to develop a large number of neural/fuzzy
applications. In this context, dedicated hardware
implementations provide a suitable solution only when
extreme requirements –in terms of speed, power consumption,
or size– are needed.

On the other hand, in recent years heterogeneous
hardware/software (HW/SW) technologies have emerged as
an optimal solution for many systems where a trade-off
between versatility and performance is required. This
approach proposes the partition of the system into hardware
(HW) and software (SW) parts by exploiting the advantages
of both HW and SW intrinsic characteristics [26], [27]. In
[28], a comparative analysis of different approaches to the
implementation of NFSs suggests that HW/SW solutions can
often outperform homogeneous solutions based either on HW
or SW. In particular, to take full advantage of HW/SW
solutions, it would be desirable for all the parts of the adaptive
NFS to be integrated in a single chip. In this sense, new Field
Programmable Gate Arrays (FPGAs) are powerful enough to
accommodate all the components of a typical embedded

Efficient Hardware/Software Implementation of
an Adaptive Neuro-Fuzzy System

Inés del Campo, Associate Member, IEEE, Javier Echanobe, Member, IEEE, Guillermo Bosque, and
José M. Tarela

H

TFS-2006-0355

2

system (e.g. processor cores, memory blocks, peripherals,
specific HW, etc) on a single chip, commonly referred to as
System-on-a-programmable-chip (SOPC). Therefore, HW/SW
implementations can also benefit from the well known
advantages of FPGA technology such as short time-to-market,
high flexibility, re-usability, and availability of IP (intellectual
property) cores, among others.

This work presents the development of an adaptive NFS,
modified for efficient HW/SW implementations. The system
has been successfully implemented using a SOPC of Altera´s
Excalibur family [29]. The device features an ARM
embedded-processor core together with a large FPGA for
application-specific HW. Two different on-chip HW/SW
architectures have been developed. The first one consists of a
high-speed parallel architecture with fixed parameters (off-
line learning), while the second one is a pipelined architecture
suitable for on-line learning. The proposed approach is well
suited for the development of real-time embedded NFSs. In
particular, as will be seen, the efficiency of our proposals
increases when dealing with systems with a large number of
inputs.

The paper is organized as follows: Section II briefly
overviews the generic ANFIS architecture and introduces the
particular class developed in this work, the piecewise
multilinear (PWM) ANFIS. In Section III the approximation
capability and the learning performance of the proposed
model are analyzed. Section IV addresses some practical
design considerations concerning the development of efficient
implementations such as the partition of the system into HW
and SW blocks, the selection of a digital word-length, and the
problem of HW/SW communication. Section V presents the
developed architectures and gives details of their SOPC-based
implementations. Special attention is paid to the analysis of
the efficiency of the proposed solutions. Finally, Section VI
summarizes with some concluding remarks.

II. ADAPTIVE NEURO-FUZZY MODEL
The NFS system developed in this work is an ANFIS-like

model modified for efficient HW/SW implementations. First,
for better understanding of the advantages of the proposed
modifications or constraints, let us introduce the basics of the
ANFIS model [18], [19], for the case of a zero-order Takagi-
Sugeno inference system [20], [21]. Consider a set of fuzzy
rules:

Rj: IF x1 is A1j(x1) and x2 is A2j(x2) and . . . xn is Anj(xn)
THEN y is cj,
where Rj is the jth rule (1≤j≤m), xi (1≤i≤n) are input variables,
y is the output, cj is a constant consequent, and Aij(xi) are
linguistic labels each one being associated with a membership
function ()ij ixμ . In a zero-order Takagi-Sugeno fuzzy model
the inference procedure used to derive the conclusion for a
specific input 0 0 0

1 2(, , ,)nx x x=x K consists of two main steps.
First the firing strength or weight wj of each rule is calculated
as

0

1

()
n

j ij i
i

w xμ
=

= ∏ . (1)

After that, the overall inference result, y, is obtained by
means of the weighted average of the consequents

1 1

() /()
m m

j j j
j j

y w c w
= =

= ∑ ∑ . (2)

Equations (1) and (2) provide a compact representation of
the inference model.

ANFIS consists in a representation of different types of
fuzzy inference models as adaptive networks. In concrete, the
above fuzzy model can be viewed as an adaptive network with
the following layers (see Fig. 1):

Layer 1 is composed of m groups of n nodes each one.
Every node (i,j) in this layer is an adaptive node that produces
output (1)

ijO by evaluating the corresponding membership
function

(1) 0 0
1 2() (; , ,)

ij ijij ij i iO x f x p pμ= = L , 1≤i≤n and 1≤j≤m, (3)

where 1 2(, ,)
ij ij

p p L are the parameters associated with each

antecedent membership function (e.g. centre, and width); by
changing the value of these parameters the membership
functions can be adjusted.

Layer 2 contains m nodes with outputs (2)
jO . Node j in this

layer generates the firing strength of the j-th rule by
computing the algebraic product of all its inputs,

(2) (1)

1

n

j ij j
i

O O w
=

= =∏ , with 1≤j≤m. (4)

Layer 3 is an m-nodes normalization layer. This layer
performs the normalization of the activation of the rules; the
output of the j-th node, (3)

jO , is the ratio of the j-th rule’s
weight to the sum of the weights of all the rules:

(3)

1

/()
m

j j j
j

O w w
=

= ∑ . (5)

Layer 4 contains only one node. The node output, (4)O , is
the weighted sum of the consequents,

(4) (3)

1

m

j j
j

O O c y
=

= =∑ (6)

this node is an adaptive node whose parameters, cj, are the set
of consequent parameters.

The layered structure (3) to (6), viewed as a neural network,
can adapt its antecedent and consequent parameters to
improve the system performance or to deal with dynamic
changes.

A. The PWM ANFIS Model
In order to reduce the complexity of the above ANFIS

model, let us introduce the following restrictions on the
antecedents: (i) the membership functions are overlapped by
pairs, (ii) they are triangular shaped, and (iii) they are
normalized in each input dimension. Similar constraints have
been successfully used by many designers to simplify digital
and analogue approaches of fuzzy HW and adaptive neuro-

TFS-2006-0355

3

fuzzy HW [30]-[33]. In the following we will analyze the
advantages of constraints (i) to (iii) on the simplicity of the
layered representation of the fuzzy system and also on the
parameter adaptation procedure. First, let us consider some
immediate consequences of these restrictions. The first
restriction forces the overlapping degree of the antecedents to
be two. Therefore, given an input vector 0 0 0

1 2(, , ,)nx x x=x K ,
only two antecedents per input dimension provide
membership values different from zero (i.e. active
antecedents). To be exact, due to (ii) and (iii), only one half of
the triangles concerned becomes active. Fig. 2 depicts typical
membership functions for a two-input system, with 4
triangular antecedents per input, verifying the above
constraints. It can also be seen in this figure that the vertex of
the 4 triangles delimits 3 intervals per axis that induce a total
of 9 rectangular cells in the two-dimension input space. As a
general rule, if NAi is the number of triangles of the i-th input,
1≤i≤n, then, the overlapping of these triangles delimits NAi-1
intervals per input, ir , which induces a partition of the input

space into
1

(1)
n

i
i

NA
=

−∏ polyhedral cells or regions. Our

interest in this geometrical view of the input domain is due to
the fact that only one of these cells is involved in the calculus
of the system output at each time. The whole system can,
therefore, be implemented as a single inference kernel [30],
[34]-[36]. The parameters of the kernel depend on the
concrete region where the input vector falls (i.e. active
region). As will be seen below, the modified ANFIS generates
a piecewise multilinear (PWM) output. For this reason, in the
rest of the paper we will refer to this system as the PWM
ANFIS. This network can be organized into the following
active layers (see Fig. 3):

Layer 1. Every node in this layer computes one active
triangular-shaped membership function. In virtue of (i), each
input is concerned with two membership functions per
dimension. Therefore, we have only 2n active nodes in this
layer, independent of the number of antecedents per input
dimension. In addition, due to (iii), each pair of active nodes
((1)

iO , (1)
iO) are complementary, that is (1) (1) 1i iO O+ = , where

the upper bar means fuzzy complement (see Fig. 4). The node
outputs are as follows:

0 0 0

0

(1) 0 0

(1) 0

() ()

1 ()

i i i

i

r r r
i i i i i i

r
i i i

O x a x b

O x

μ

μ

⎧ = = −⎪
⎨

= −⎪⎩
, 1≤i≤n, (7)

the super-index 0
ir denotes the active interval of the i-th input,

0
ir

ia denotes the positive slope of the active semi-triangles, and
0

ir
ib is the offset of the interval with respect to the origin.
Layer 2. Each node in this layer generates a multilinear

output which represents the firing strength of a rule; each
multilinear term consists in the product of n linear terms like
(7). The rules with non-zero firing strength are only those
associated with the active neurons in layer 2 (only one pair of
complementary neurons per input), that is, 2n active rules. If j

denotes the neuron index (j) of layer 2, but codified as an n-bit
binary word, 1 1()n nj j j−=j K , then,

(2)

1

,
i

n

j j j
i

O w φ
=

= = ∏ with
(1)

(1)

 if 1

 if 0i

i i
j

i i

O j

O j
φ

⎧ =⎪= ⎨
=⎪⎩

, 0≤j≤2n-1. (8)

The notation that we propose above is useful for HW
description purposes because the bits of the neuron index can
be directly used to construct the set of active rules by selecting
all possible combinations of neurons (`1´) and their
complements (`0´).

Layer 3. Taking into account constraint (iii), it can easily be

proved [4] that
2 1

0

1
n

j
j

w
−

=

=∑ , therefore the normalization layer

(5) disappears because the divide operation is unnecessary.
Finally, the output layer is reduced to the sum of 2n product
terms,

2 1 2 1
(3) (2) 0 0

0 0

n n

j j j j
j j

O O c w c y
− −

= =

= = =∑ ∑ (9)

where 0
jc denotes the active consequents. It has been seen that

the main benefits of constraints (i) to (iii) on the general
ANFIS architecture are a reduction of the number of neurons
per layer (layers 1 and 2) due to the activation of a reduced
number of antecedents, the elimination of the normalization
layer, and a simplification of the network arithmetic.

B. Learning Algorithm
As has been seen, the restrictions imposed on the

antecedent membership functions have a great impact on
network simplicity. In the same way, it will be shown how the
learning procedure is also significantly simplified. Although a
basic back-propagation learning rule can be used to adapt the
set of network parameters, the learning process generally
becomes too slow. To avoid this problem, the hybrid learning
rule proposed in [18], which combines the gradient-descent
method (GDM) and the least-square estimator (LSE), is used.
Each epoch of the hybrid procedure is composed of a forward
pass and a backward pass. In the forward pass the consequent
parameters are identified by the LSE method and in the
backward pass the antecedent parameters are updated by the
GDM.

The advantages of restrictions (i) to (iii) concerning the
learning procedure are twofold. Firstly, as has been seen, the
PWM ANFIS limits the activation of the system each time to a
single cell or region of the input space. This cellular nature of
the feed-forward network (fuzzy inferences) also reduces the
computational complexity of the learning algorithm because
both LSE and GDM equally require the evaluation of the feed-
forward network. Secondly, the constraints imposed on the
input partition reduce not only the active set of parameters for
a concrete input (parameters of the active cell) but also the
total set of antecedent parameters. That is, (see Fig. 4) the
partition is completely defined by giving the triangle offsets,

ir
ib ; the triangle slopes are obtained as 11/()i i ir r r

i i ia b b+= − .
Moreover, since the position of the first and the last pairs of

TFS-2006-0355

4

triangles is determined by the bounds of the input space, the
total number of antecedent parameters to be trained in a PWM
ANFIS with NAi antecedents per input is equal to NAi-2,
1≤i≤n. For example, a single input system with a partition of
the input space like that depicted in Fig. 4 (NAi=5), requires
the adaptation of only 3 antecedent parameters against the 10
parameters required to define symmetrical functions like
triangles or Gaussians (5 centres and 5 widths), or even the 15
parameters required to define unconstrained asymmetrical
triangles. Concerning the consequent parameters, the number
of crisp consequents to be adapted is equal to the number of

rules,
1

n

i
i

m NA
=

= ∏ , where all possible rules are considered in

order to guarantee the completeness of the rule set.
Let us briefly present both -the LSE and the GDM- as

applied to our system. Note that although only 2n rules
become active for each training data, the whole set of rules is
involved in the training procedure. Hence equation (9) can be
rewritten as

1 1 2 2() () ()m my w c w c w c= + + +x x xL (10)
where x is the vector of input variables. Since y is linear in
the consequent parameter, cj, given values of the antecedent
parameters, and a set of training data pair

'{(;), 1, , }k ky k K=x K , each training pattern can be substituted
into (10) to obtain a set of K linear equations. Equation (10)
represents a typical LSE problem that can be solved directly
or recursively [37].

After the consequent parameters have been identified, the
GDM is used to optimize the shape of the NAi triangles in the
partition of the i-th input. Consider the error function

' 2

1

1 ()
2

K

k k
k

E y y
K =

= −∑ (11)

where yk is the actual output of the network for the k-th
training data and ,

ky is the desired output. In the off-line
operation mode the parameter update is performed after the
evaluation of all the training patterns. The learning rule for the
triangle offsets, ir

ib , with 1≤ri≤NAi-2, is

(1) ()i i

i i

r t r t
i i b r

i

Eb b
b

η+ ⎛ ⎞∂
= − ⎜ ⎟

∂⎝ ⎠
 (12)

where
ibη is the learning rate for the offsets of the i-th input.

The chain rule has been used to calculate the above derivative
(see Appendix)

0
2 1

' 0

1 0

1 ()
n

i

ii

K
r

k k j j jr
k ji

E y y c w f
Kb

−

= =

∂
= −

∂ ∑ ∑ (13)

with
0 0 0 0101/() 1/()i i i i

i

r r r r
j i i i if x b b b+= − − + − if ji=1, and

0 0 011/()i i i

i

r r r
j i if b b+= − if ji=0, where ji has been defined in (8).

The learning rule (12)-(13) consists in simple arithmetic
operations, subtractions and sum of products that can be
efficiently implemented as SW using a microprocessor or a
DSP. Note that, in addition to the aforementioned advantages,

in our system only one kind of parameter is to be trained in
the backward stage, namely, the triangle offsets, while in the
general case at least two different types of parameters are
involved (e.g. centre and width). The above hybrid learning
rule is suitable for off-line learning and also for on-line
learning with minor modifications [37].

III. MODEL VALIDATION AND SIMULATION RESULTS
Before introducing the HW/SW implementation of the

PWM ANFIS, as we are dealing with a constrained model, the
problem of its actual modeling capabilities needs to be
investigated. It is important to analyze both the approximation
capability of the model and its learning performance when the
hybrid learning algorithm is used. To perform computer
simulations the authors developed a set of flexible Matlab m-
functions for multidimensional PWM ANFIS (the PWM-
ANFIS Toolbox). The Toolbox includes also fixed-point
functions to simulate finite precision computation.

A. Approximation Capabilities of the PWM ANFIS
The approximation capability of the PWM ANFIS is that of

the zero-order Takagi-Sugeno inference model, verifying the
restrictions (i) to (iii). This model has been analyzed in [4]
where the author shows that the system is able to approximate,
to any degree of accuracy, not only sufficiently regular
functions, but also their derivatives, while keeping the
linguistic interpretability of their fuzzy rules. In other words,
the restrictions imposed on the model with the aim of
benefiting efficient implementations do not hinder its
approximation capability. Moreover, as has been pointed out
in the previous Section, a consequence of the restrictions is a
reduction of the system complexity; in particular, the number
of neurons of the network does not depend on the number of
membership functions per input dimension. This means that
any input-output relationship can be matched well arbitrarily
by refining the partitions of the input universes, without
sacrificing the simplicity of the implementations.

B. Learning Ability
Concerning the learning abilities of the system, we have

examined the learning performance of our system using
several test functions. In each experiment, we have compared
the performance of the PWM ANFIS with that of the
unrestricted ANFIS with Gaussian antecedents. We have also
evaluated our results in comparison with other meaningful
approaches for NFS modeling [38]-[40]. The experiments start
with the specification of an initial input partition using
symmetrical membership functions for the antecedents. In
each iteration, the singleton consequents are identified by
means of the LSE method and then the antecedent parameters
are updated by using the GDM. Two nonlinear functions
commonly used to test learning approaches have been selected
as representative case examples from a more comprehensive
study performed by the authors. The object of our experiments
is not to improve the results obtained by other methods, but to
investigate if the learning performance of the PWM ANFIS is

TFS-2006-0355

5

satisfactory. The experiments are evaluated in terms of the
mean squared error (MSE) between the target functions and
their corresponding approximations.

1) Experiment 1: The first experiment considers the
modeling of the nonlinear function

1 2 2 1sin() cos()y x x x x= + , 0≤ x1,x2≤π. (14)
A graphical representation of the function is shown in Fig.

5(a). The training data pairs '{(;), 1, , }k ky k K=x K , have been
generated by sampling the input universes with a sampling
interval of π/20. As a result, the number of training samples is
441 (K=441). The PWM ANFIS used in this experiment
involves four membership functions per input variable (i.e., 16
rules). Therefore, the total number of parameters to be adapted
is 20, including 4 antecedent parameters (2 offsets per input)
and 16 consequent parameters. The Gaussian ANFIS trained
for comparison involves the same number of antecedents and
rules, but it requires the adaptation of a larger number of
parameters, 32 to be exact; 16 antecedent parameters plus 16
consequent parameters. The evolution of the MSE during the
learning process for both our system and the Gaussian ANFIS
is shown in Fig. 6. As can be seen, the main consequence of
the restrictions imposed on our system is a greater MSE, but
of the same order of magnitude as for the Gaussian ANFIS
during the 200 iterations of our study. For example, iteration 4
gives MSE=0.0016 for the Gaussian ANFIS, and
MSE=0.0060 for our system. Iteration 6 gives MSE=0.0012
and MSE=0.0047, and iteration 8 produces MSE=0.0010 and
MSE=0.0044 respectively. As evidenced in Fig. 6, our system
does not achieve significant error reduction after iteration 8,
while the Gaussian ANFIS does continue improving the
approximation. This behaviour is not surprising taking into
account that the flexibility of smooth Gaussian membership
functions is greater than that of restricted triangular-shaped
membership functions [41]. The approximated function that
our system provides from the eighth iteration is shown in Fig.
5(b).

However, the most important feature required for an
adaptive network is its generalization ability, that is, the
ability of the system to provide satisfactory results when it is
evaluated using a collection of non-training data. The
computation of the MSE in these kind of data is usually
referred to as the generalized mean squared error (GMSE).
Table I presents a comparison of the generalization ability of
our system and meaningful earlier works, Lee’s system [38],
Wong’s system [40], and Lin’s system [39]; the results were
calculated in [38]. Lin’s system uses trapezoidal membership
functions, while Wong’s and Lee’s systems use Gaussian
membership functions. All of them implement a structure
identification step to construct an initial fuzzy model. After
that Lin and Wong use GDM for parameter identification,
while Lee uses a hybrid learning algorithm (LSE and GDM).
As can be seen in Table I, the GMSE of our system is
comparable to those provided by the other methods. Taking
into account that the works selected for comparison start the
learning procedure from better initial models, we consider this

a meaningful result. Finally, we investigated the GMSE
reduction by refining the partition of the input universes of
our system. As was expected, these experiments report better
approximations. For example, with 5 antecedents per input the
PWM ANFIS gives GMSE=0.0015 and with 6 antecedents
per input our system gives GMSE=0.0007. The surface
obtained by means of 6 antecedents per input has been
represented in Fig. 5(c).

2) Experiment 2: The second example concerns the
modeling of the following nonlinear function

2 1.5 2
1 2(1)y x x− −= + + , 1≤x1,x2≤5. (15)

A set of 50 input-output patterns has been used to train the
network. The input universes have been partitioned into only
3 membership functions each, giving as a result 9 fuzzy rules.
The trainable parameters are 2 offsets (1 per input) and 9
consequents for our system, while the Gaussian ANFIS
involves 6 antecedent parameters and 9 consequents. Fig. 7(a)
shows the target function and Fig. 7(b) shows the PWM
ANFIS approximation after the 25-th iteration. The MSE in
this iteration is of 0.0043 while the MSE for the same iteration
but using ANFIS with Gaussian membership functions is of
0.1217. As can be seen in Fig. 8, our system approximates
better than the Gaussian ANFIS up to iteration 60
approximately, where both systems give similar errors. After
that, Gaussian functions continue evolving and improving the
approximation (for example, iteration 200 gives MSE=0.0004
for the Gaussian ANFIS).

With respect to the generalization ability of the system, the
comparisons with other authors using a set of non-training
data are given in Table I where the GMSE errors are listed.
The systems considered for comparison are the same as for
experiment 1. As can be seen, our PWM ANFIS approximates
the target function at test points almost as well as the other
systems. Finally, we observed that in this experiment a finer
partition of the inputs, with a larger number of membership
functions, does not reduce significantly the GMSE due to the
reduced set of training data. If better precision is required, a
greater number of training patterns needs to be used along
with the partition refinement.

Our results lead us to conclude that the learning
performance of PWM ANFIS is satisfactory and comparable
to those reported by other authors using more elaborate
schemes. The PWM ANFIS provides fast convergence due to
the use of a hybrid learning algorithm and due to the reduced
number of adjustable parameters. This is specially interesting
in the implementation of applications that require on-line
parameter adaptation.

IV. HW/SW DESIGN CONSIDERATION
Next we will focus on some important design aspects

concerning the HW/SW implementation of the PWM ANFIS
on a SOPC. The device used in this work is a SOPC of
Altera´s Excalibur family [29]. The internal architecture of
this family consists of two main blocks (see Fig. 9): the
processor subsystem and a large FPGA. The processor

TFS-2006-0355

6

subsystem contains a 32-bit ARM922T hard processor core, a
memory subsystem, external memory interfaces, and standard
peripherals, while the FPGA block consists of an APEX
20KE-like architecture with resources for SOPC integration.
The bus architecture is based on the advanced microcontroller
bus architecture (AMBA) high-performance bus (AHB).
Nowadays, commercial CAD tools provided by FPGA
vendors include limited user-friendly resources for HW/SW
co-design, therefore, the development of SOPC-based
solutions is a more complex task than the design of
conventional FPGA-based approaches. Some of the problems
that the designer has to tackle are:

• The definition of an efficient partition of the system into
HW and SW blocks.

• The selection of an optimal word-length for the HW
subsystem.

• The design of a high-performance HW architecture
compatible with the transmission capabilities of the
HW/SW communication interface.

Let us analyze these problems in the context of neuro-fuzzy
modeling.

A. HW/SW Partition
One of factors that determines the suitability of HW/SW

technologies to implement NFSs, is the well known distinctive
characteristics of the main type of algorithms that a NFS
involves, namely, the learning procedure and the feed-forward
network. The learning procedure is a typical example of an
algorithm better suited to SW implementations than to HW
ones, due to three main factors, its inherent irregularity, its
high computational demands, and its high precision
requirements. On the other hand, the feed-forward network is
a very regular and repetitive structure suitable for parallel HW
implementation. Therefore, a suitable HW/SW partition
consists in implementing the feed-forward network (7)-(9) as
HW on the FPGA while the hybrid learning algorithms (10)-
(13) and the input/output processing are implemented as SW
on the microprocessor (ARM). The proposed HW/SW
partition favours high-speed for real-time operation and
exploits the resources of both the ARM and the FPGA. More
precisely, the high numerical precision of the ARM processor
(32 bits) ensures the proper behaviour of the learning
algorithms, while FPGA allows the development of high
performance parallel architectures.

B. Word-length Selection
The numerical precision of the ARM processor is high

enough to minimize the effects of finite precision computing
(or quantization errors) on the learning performance of the
system. However, the selection of a suitable word-length to
implement the feed-forward network is to be carefully
analyzed. On the one hand, as is well known, larger word-
lengths reduce the quantization errors in digital HW.
However, on the other hand, large word-lengths penalize
parameters such as speed, complexity, and cost of the circuits.
Therefore, an optimal trade-off must be made between HW

precision and the whole system performance. Special attention
is to be paid to the consequences of the quantization errors on
the approximation capabilities of the NFS.

Most of the works reported in the literature concerning the
approximation capabilities of neural networks and fuzzy
systems do not refer to the numerical limitations inherent in
the finite precision computation of digital HW. In fact, the
property of universal approximation no longer holds if the
numerical limitations of finite word-length are taken into
account [42]. In what follows we will consider as “full
precision” simulations those simulations performed using
Matlab’s 64-bit floating-point arithmetic. Note that even full
Matlab precision introduces numerical limitations. However,
these limitations, as well as those involved in any present SW
solution, can be considered irrelevant in the context of most
neuro-fuzzy practical applications.

Finite precision errors are introduced in digital NFSs due to
the quantization of both signals and parameters [43]. The first
type of errors are the A/D (analogue to digital) errors where
the samples of the analogue input signals are to be represented
using a finite word-length. The second type of quantization
errors are the membership function errors that result from the
transfer and storage of the network parameters. Finally, the
third type of errors are the arithmetic errors in the finite
precision implementation of the algorithms. To analyze the
consequences of the quantization errors on the approximation
capability of the PWM ANFIS we will use the nonlinear
functions (14) and (15). In the previous Section, the PWM
ANFIS was trained to approximate these functions. Now, we
are going to evaluate the previously trained feed-forward
networks, but using finite precision computation. The
experiments will be performed by means of the block scheme
reported in Fig. 10. The quantization of the network
parameters of the digitized PWM ANFIS will be performed
by rounding their full precision values to finite word-length
ones. To evaluate the network output for different word-
lengths, we feed uniform distributed input samples to the
network inputs 0 0

1 2(,)x x . Then, we calculate the MSE errors
between the full precision PWM ANFIS and the digitized
PWM ANFIS by using different word-lengths. The simulation
results are shown in Fig. 11. It can be seen that both
experiment 1 and experiment 2 exhibit the same behaviour,
the MSE is exponentially reduced as the word-length, B,
increases. However, note that the errors provided by a word-
length of 8 bits are comparable to the GMSE errors listed in
Table I. Therefore, the approximation precision will not be
improved even though greater word-lengths are used. As a
consequence, the selection of oversized word-lengths (greater
than 8 or 10 bits) to implement the feed-forward network will
produce a useless precision excess and, on the other hand,
word-lengths of less than 6 bits will give poor
approximations. In view of these results and taking into
account that the simplicity of digital HW design is greatly
enhanced by selecting power-of-two word-lengths, an internal
word-length of 8 bits is a good option. This selection has

TFS-2006-0355

7

additional advantages, such as the compatibility with standard
peripherals.

C. HW/SW Interaction
Another factor that affects the HW efficiency in a HW/SW

approach is the communication overload between the
microprocessor and the HW block. To avoid this kind of
problem, let us analyze the transfer rates of input data and
network parameters that are required to properly take
advantage of a certain degree of parallelism in the HW
implementation of the feed-forward PWM ANFIS. The
analysis of the HW/SW interaction will be performed in terms
of some useful design rates for neural network
implementations defined in [44]. First, the data (or
parameters) transfer rate of layer l, Rl, with 1≤l≤3, is defined
as follows

(/)l
l

l

I
R bits s

T
= , (16)

being Il the number of I/O bits of layer l, and Tl the time
required to compute layer l. Consider an n-input single-output
PWM ANFIS and let BI and BP be the number of bits used to
represent each system input and each parameter respectively.
Also let BO1, BO2, and BO be the number of bits dedicated to
represent each node output in layer 1, layer 2, and layer 3
respectively (refer to Fig. 3). The first layer evaluates n
membership functions (one per input dimension) and their
corresponding fuzzy complement. Each node function in this
layer is

0 0(1) 0(; ,)i ir r
i i i iO f x a b= , where 0

ix is represented by

means of BI bits, and both
0

ir
ia and

0
ir

ib parameters are BP–bit
words; although the antecedents are trained by adjusting only
the triangle offsets ()ir

ib , after training is completed, the

slopes of the triangles ()ir
ia are also computed to simplify

further processing. Therefore, layer 1 involves 2I PnB nB+
input bits and 12 OnB output bits. As a consequence, a total of

1(2 2)I P On B B B+ + input/output (I/O) bits must be transferred
in this layer. Using similar considerations, the number of I/O
bits in layer 2, which has no parameter entries, is

1 22 2n
O OnB B+ , where the first term accounts for input bits

and the second one accounts for the output bits of the 2n nodes
of this layer. Finally, layer 3 receives 2n signals from the
previous layer plus 2n consequent parameters, and generates a
single output, that is a total I/O bits of 22 ()n

O P OB B B+ + .
These results have been summarized in Table II.

The time required to process each layer in (16), Tl, can be
calculated as follows

l
l l CLK

l

NN
T n T

P
= , (17)

where NNl is the number of neurons in layer l, TCLK is the
clock period, nl is the number of clock cycles required to
compute each neuron, and Pl is the number of processing units
per layer. The number of neurons per layer is
NN1,2,3=(2n,2n,1), while the rest of the parameters depend on

the concrete system architecture and on the target technology.
With the above information, we evaluated the data transfer
rate and parameter transfer rate (16) for the PWM ANFIS
(refer to Table II). These results must be taken into account in
the design of the HW partition. Since the availability of I/O
bits is limited because of the limited parallelism of the
HW/SW interface, the parallelism of the HW partition must be
carefully dimensioned. An excess of parallelism produces a
communication bottleneck that gives rise to inefficient
developments.

Let us analyze the HW/SW interaction in the
implementation of the SOPC-based PWM ANFIS, where the
HW/SW interface consists of a finite-width bus (a 32-bit
AMBA AHB bus). To be more specific, consider the
suitability of this technology for implementing an architecture
with intensive HW/SW communication demands as is the case
of a fully parallel architecture. In this architecture each layer
features as many processing elements as neurons in that layer
(P1=2n,P2=2n,P3=1). In addition, assume that each processing
element performs its operation in a single clock cycle
(n1=n2=n3=1); note that this requires processing elements that
process binary words in parallel. The required transfer rates
for this particular case are shown in Table III. Since the
complete feed-forward network will be implemented as HW
on the FPGA, the most critical layers are those that interface
with the SW partition by means of the 32-bit bus. Layer 2,
which is an internal layer, is not expected to present
communication overload because a large amount of
communication channels between FPGA cells is available. In
view of the results shown in Table III, it is evident that the
major communication problems are the transfer of 2I PnB nB+
input bits per clock cycle that requires the first layer to
perform parallel computation efficiently, and the 2n

PB input
bits per clock cycle involved in the computation of layer 3.
Let us suppose that the processor subsystem has to supply all
these bits to the FPGA block by means of the 32-bit width
bus. In this case, by selecting an 8-bit word-length for both
data and parameters (BI=BP=8), the required transfer rate (data
plus parameters) is of 24n bits/TCLK in the first clock cycle
(layer 1), and 32n+ bits/TCLK in the third clock cycle (layer 3).
This data parallelism would be possible only in the case of a
single-input system (n=1). A two-input system (n=2) requires
48 bits/TCLK to feed the first layer; this exceeds the 32 bits of
the bus. Therefore, a fully parallel system is not efficient
whenever the system parameters and the input data have to be
transferred by means of the HW/SW interface. In this sense,
there are two possible alternatives to design efficient HW/SW
solutions. The first one consists in storing the system
parameters in the FPGA part of the device (HW partition) in
order to have full access to them, while the second solution
consists in designing HW architectures with a degree of
parallelism tailored to the bit transfer rate that the HW/SW
interface is able to provide. Both approaches will be
considered in the next Section.

TFS-2006-0355

8

D. Efficiency measure of HW/SW implementation
Another aspect of the development of HW/SW solutions

that is to be assessed is the efficiency of the HW/SW partition
against a purely SW approach. Let us define the following
efficiency index,

/

SW

HW SW

τ
η

τ
= (18)

where τSW is the time required to compute a certain process
using a SW approach and τHW/SW accounts for the time
required to evaluate the same process but using a concrete
HW/SW implementation whose efficiency we are interested in
evaluating. We will consider that the proposed HW/SW
implementation is efficient to implement that process if
τHW/SW<τSW, that is, if η>1. Equation (18) can be rewritten as
follows,

, , , ,(/)
SW SW SW

SW SW HW HW SW SW HW HW

T n n
T n T n n f f n

η = =
+ +

 (19)

where TSW (fSW) and THW (fHW) are the clock periods
(frequencies) of the SW and the HW processors respectively,
nSW is the number of clock cycles required to compute the full
process using SW, and ,

SWn and ,
HWn account respectively for

the SW clock cycles and the HW clock cycles that are
involved in a HW/SW implementation of the same process.

Table IV shows nSW involved in the computation of the
feed-forward PWM ANFIS using a one cycle per instruction
processor like the ARM embedded in the Excalibur device.
For simplicity, it has been assumed that every input space has
been partitioned into the same number of membership
functions, NAi=NA, with 1≤i≤n. Although the computation of
the three layers of the network is independent of this
parameter, a previous pre-processing step is required to
localize the active cell and its parameters (offset, slope, and
consequents), and to subtract the offset from the input to
represent it in coordinates of the active interval (local
coordinates). This step requires the comparison of each input
with the NA-2 offsets for which it is necessary to load each
offset in a register and to do n differences. Layer 1 then
performs sequentially the following operations: the product of
the local input value by the slope, which has also to be
previously loaded into a register, and the logical complement
of the product in order to obtain the complementary
membership value. Layer 2 performs as many as 2n(n-1)
product operations, that is, n-1 products per each active rule.
Finally, layer 3 can be efficiently processed by means of 2n
multiply-accumulate (MLA) operations and the same number
of consequent loads from RAM to registers. As summarized
Table IV, the number of clock cycles involved in a SW
computation of the feed-forward network grows exponentially
with the number of system inputs. Therefore, it is expected
that for large multidimensional systems even HW
architectures with a low degree of parallelism (compatible
with the transfer rate of the HW/SW interface) are able to
outperform a SW based solution. In view of these
considerations and the results discussed in the previous

Subsections, we propose two efficient HW/SW architectures
to implement the PWM ANFIS. Firstly, a high speed parallel
architecture that stores the network parameters in the FPGA
part of the chip, after the SW training process is completed
(off-line learning). Secondly, a pipelined architecture tailored
to the transfer rate provided by the HW/SW interface and
suitable for on-line parameter update.

V. HW/SW IMPLEMENTATIONS OF THE PWM ANFIS

A. Design methodology
In this work, a semi-automatic design methodology has

been applied to support the development of the HW/SW-
based PWM-ANFIS. First, the PWM-ANFIS Toolbox for
Matlab, developed by the authors, has been used for full-
precision and finite-precision computer simulations. The
system has been divided into four main blocks with a well
defined functionality: the feed-forward PWM ANFIS, the
LSE algorithm, the GDM, and the input-output processing. A
functional C model of each block has been compiled. In the
next step, according to the HW/SW partition proposed in
Section IV, both the HW and SW blocks have been gradually
refined using computer-aided design tools. GNUPro tools for
ARM have been used to develop the SW blocks, whereas
Altera´s Quartus II design SW has been used to design the
FPGA-target blocks, perform the HW/SW integration,
perform simulations at the bus-transaction level, and configure
the device. In the following, two efficient HW/SW variants,
developed by the authors, will be presented.

B. Fully Parallel Architecture
In the previous Section we have demonstrated that HW

architectures with a high degree of parallelism are efficient
only if the network parameters are stored in the HW partition
of the SOPC (FPGA block). Otherwise, the limited bandwidth
of the HW/SW interface reduces the efficiency of parallel
architectures. Our first proposal consists in a high-speed
parallel architecture where the network parameters are stored
in the FPGA part of the device. The proposed architecture
operates in two stages, the training stage (off-line learning)
and the feed-forward stage (on-line processing). First, the SW
partition performs the parameter identification of the network
using a set of training patterns as has been explained in
Section II. After that, the adjusted parameters are transferred
to the FPGA block and stored in a dedicated memory. If NAi is
the number of antecedents per input, 1≤i≤n, the information
transferred to the HW partition after training consists of
2 (1)i

i

NA −∑ antecedent parameters (two parameters per

region), and i
i

NA∏ consequent parameters (one consequent

per rule). In the second stage, the HW partition performs the
feed-forward processing of the PWM ANFIS each time a new
input is presented. Fig. 12 depicts the block scheme of the
fully parallel architecture for the case of an n-input system.
The proposed architecture consists of four main blocks: the

TFS-2006-0355

9

parameter memory, the antecedent multiplexer (AMUX), the
consequent multiplexer (CMUX), and the neural network unit
(NNU).

The parameter memory stores the network parameters. It
consists of one 8-bit register per parameter and is equipped
with a very flexible interconnection scheme that allows full
parallel access to the memory contents. The size of the
memory depends on the system inputs and also on the number
of antecedents per input as has been explained above. The
AMUX multiplexes the contents of the parameter memory and
selects for transmission the parameters of the active region.
The selection signals of the AMUX are the system inputs. The
outputs of the module are the system inputs but expressed in
coordinates of the active region

0

()ir
ix , the region slope

0

()ir
ia ,

and a selection signal that drives the CMUX. The CMUX
selects from the parameter memory those consequents related
to the active rules 0()jc . The AMUX consists of n instances
(one per input) of a VHDL component called
COMP_SELECT (see Fig. 13). The architecture body of this
component consists of a single process statement that is
sensitive to all the input signals of the entity (i.e., the process
defines combinational logic). A conditional statement (IF
statement) compares the input 0

ix with the region offsets ir
ib

until the condition 0()ir
i ix b≥ becomes true. In this situation,

the active region has been found and the entity outputs are: a
pointer to the active region 0

ir , the slope of the active region
0

ir
ia , and the difference between the input and the region

offset,
0 00i ir r

i i ix x b= − . The active region pointers are combined
by means of the concatenate operator to construct the Select
signal, as can be seen in Fig. 13. The CMUX selects the active
consequents 0()jc from the parameter memory. It is a single-
cycle VHDL component. The behaviour of the CMUX is
given by a single process, activated by the system clock, that
encloses a conditional statement (CASE statement). The Select
signal, generated by the AMUX, drives the CASE statement in
the selection of the active consequents. The NNU implements
the three layers of the feed-forward network. It consists of a
parallel architecture organized into three layers, as in Fig. 3.
Layer 1 features one two-input multiplier per input. The
multipliers used in this layer provide, in a single clock cycle,
active-high output and active-low output to implement the
pairs of complementary neurons. The second layer is
composed of one n-input multiplier per rule, that is, 2n
multipliers. The product of n signals can be performed by
means of 2-input multipliers organized into a typical tree-like
structure as can be seen in Fig. 14. The number of clock
cycles required to evaluate the product of n signals is 2log n .
If n is not a power of two, the next power of two is to be used.
For example, the evaluation of the tree of products involves 1
clock cycle if n=2, 2 clock cycles if n=4 (or n=3), 3 clock
cycles if n=8 (or n=5, 6, 7), and so on. Finally, layer 3 of the
NNU consists of 2n two-input multipliers and a parallel n-

input adder. This layer performs the sum of products in 2
clock cycles. Table V summarizes the number of clock cycles
involved in the computation of this HW partition (,

HWn).
1) Efficiency Evaluation: Let us analyze the efficiency of

the proposed architecture to implement the feed-forward
network, against a purely SW solution in the sense given by
efficiency index (18). Note that the fully parallel architecture
implements the whole feed-forward network as HW on the
FPGA, therefore , 0SWn = . Therefore, the expression of the
efficiency index given in (19), applied to the feed-forward
network, can be rewritten as follows,

,() /()SW HW HW SWn f n fη = , where SWn and ,
HWn can be found

in Table IV and Table V, respectively. Finally, the efficiency
of this implementation is,

2

2 (1) 2 (/)
4 log

n

Parallel HW SW
n nNA f f

n
η + +

=
+

 (20)

Fig. 15 shows the efficiency index (20) as a function of the
number of system inputs for different values of f=fHW/fSW; a
frequency range 40 MHz ≤ fHW ≤ 100 MHz, compatible with
the target FPGA technology has been selected for evaluation.
A mean value for the number of antecedents has been
assumed to be NA=4. Taking into account that the maximum
frequency specified for the embedded ARM processor is
fSW=200MHz, it can be concluded that the proposed parallel
architecture is efficient against a SW implementation for
frequencies fHW greater than 40 MHz (f=0.2), except for the
case of a single input that requires at least fHW=66.6 MHz to be
efficient, however this case is not significant. As was
expected, the efficiency index grows exponentially as the
number of inputs increases. Therefore, systems with a large
number of inputs, which implies a reduction of the operation
frequency or some additional clock cycle in the processing of
the last layer, can also be efficiently implemented.

2) System Prototyping: As a case example of the proposed
HW/SW approach, we developed a two-input PWM ANFIS.
The object code, optimized for ARM922T, is stored in the
internal single-port SRAM occupying approximately 10
Kbytes of the 32 Kbytes available in the device. The ARM
processor executes the SW part (off-line training) of the PWM
ANFIS operating up to 200 MHz; this performance is
uncompromised by the FPGA operation. The HW partition,
implemented in the FPGA, operates as a slave of the ARM
processor and performs the feed-forward PWM ANFIS in
only five clock cycles (see Fig. 12). The implementation of
the HW partition has been carried out using VHDL
descriptions and Altera´s macrofunctions. After synthesis, the
HW part uses 2447 of the 4160 logic elements available in the
FPGA part of the EPXA1F484C1 (58%) and allows a
maximum clock frequency of 67 MHz. After truncation of the
least significant bits of layer 3, the system output is given in a
32-bit two-complement format. The system has been
successfully implemented and tested using the EPXA1
development board [45].

TFS-2006-0355

10

C. Pipeline architecture
The second approach is intended for on-line parameter

learning. The same main HW/SW partition as for the parallel
architecture will be used, that is, the learning algorithms will
be developed in the SW partition and the feed-forward
network will be implemented in the HW part of the device.
The feed-forward network consists of a pipelined architecture
designed to take full advantage of the transfer rate allowed by
the HW/SW interface. Since the pipeline architecture
performs on-line parameter adaptation, the parameter memory
is to be located in the SW partition to avoid HW/SW
communication delays.

The pipeline architecture has been designed taking into
account the transfer rates analyzed in Section IV. It consists of
a two-pipeline structure designed to increase the performance
of the circuit. After analyzing carefully the efficiency of
different solutions compatible with the available bit transfer
rate, we decided to move the pre-processing step of the feed-
forward network to the SW partition. In the pre-processing
step the active parameters

0 0

(,)i ir r
i ia b are located, and the

inputs 0()ix , 1≤i≤n, are represented in coordinates of the active

region 0()ir , that is,
0 00i ir r

i i ix x b= − . After the pre-processing

step, the triangle offsets
0

()ir
ib are not required to complete the

computation of the feed-forward network. The advantage of
implementing the pre-processing step in the SW partition is
that only one antecedent parameter per input, the triangle
slope

0

()ir
ia , is to be transmitted through the bus, instead of

the pair
0 0

(,)i ir r
i ia b that would be required to implement the

pre-processing step in the HW partition. The authors also
investigated the efficiency of different solutions where the
pre-processing step was implemented in the HW partition, but
in all the studied cases, the delay in the transmission of data
through the bus gave rise to non efficient HW/SW solutions.
Let us now present a detailed description of the pipeline
architecture.

1) HW/SW Co-operation and Data Transactions: The
HW/SW co-operation inside the device is based on the
AMBA AHB bus architecture and also on its associated
embedded bridges [46]. The ARM is the bus master in the
processor subsystem (PS) and has fast access to the FPGA
slaves (feed-forward network) via the PS-to-FPGA bridge.
(see Fig. 16). The main data flow across the HW/SW interface
in the pipeline architecture is the transmission of 2 2nn + bytes
per inference from the PS to the FPGA (n inputs, n slopes and
2n consequents); the opposite data flow is a single 32-bit
word per inference (system output). The transaction
throughput and the co-operation performance depends on the
interface configuration and also on the relative clock speed of
the master domain and the slave domain. Below in this
Section we will give concrete results of the transaction
throughput for a particular case example.

Since the bus that communicates the PS and the FPGA

block is 32-bit width, the data transmission can be
straightforwardly organized into four bytes per transfer, as has
been depicted in Fig. 17. The data transfer from SW to HW
starts by sending each local input and its associated active
slope

0 0

(,)i ir r
i ix a . Two data pairs occupy 32 bits, therefore, an

n-input system requires n/2 transfers to perform the
transmission of all the data involved in the processing of the
first layer of the feed-forward network (if n is odd, the next
even number is to be used to compute these transfers). The
second layer has no additional inputs, while the computation
of layer 3 involves 2n consequent parameters that have been
arranged in packets of four consequents each, so that we need
2n-2 transfers to complete the transmission of the 2n
consequents.

2) Pipeline Structure: Fig. 18 depicts a block scheme of the
pipeline architecture for the case of an n-input PWM ANFIS.
The proposed architecture performs the same computations as
the neural network unit (NNU) of the parallel architecture (see
Fig. 12), previously presented, but limiting the degree of
parallelism exactly to the availability of data. As can be seen,
the architecture has been structured into two pipelines. The
synchronization of the two pipelines is carried out by a simple
control unit. This unit generates the signals for the pipeline
control and also generates the signals required to synchronize
with the SW partition.

The data path of the first pipeline consists of three single-
cycle stages: the membership function stage, the partial rule
activation stage, and the register stage. The first stage has to
be able to process the two inputs provided in each transfer
concurrently. This is accomplished by two parallel two-input
multipliers. The multipliers provide both active-high and
active-low outputs to implement the fuzzy complements in
(7). The next stage of the pipeline computes four partial rule
activations concurrently by means of four parallel two-input
multipliers. We say that the activation is partial because it
considers only the interaction (product) between pairs of
inputs in (8). In the last stage of this pipeline, the partial rule
activations are stored (four each clock cycle) into a battery of
2n registers. The sequence of register loads is controlled by
means of n/2 enabling signals, as can be seen in Fig. 18.

Since each pair of inputs requires two cycles to complete
the HW/SW data transfer, the above three-stage pipeline
requires one wait cycle before the next pair of inputs enters
the pipeline. Therefore, the total number of clock cycles
required to compute the first pipeline, including data transfers,
is equal to the pipeline length (3 cycles), plus the number of
words to be processed (n/2) multiplied by the input delay (2
clock cycles), that is,

1 3pipelinen n− = + (21)
The second pipeline performs the rest of the feed-forward

network once the first pipeline finishes. The sequence of
operations involved in the second pipeline has been organized
into (3+log2n) stages. In the first stage, the rule activation
multiplexer (RAMUX) selects four different combinations of
the 2n partial rule activations computed in the first pipeline.

TFS-2006-0355

11

The RAMUX is a single-cycle VHDL component. It consists
of a single process activated by the system clock. A
conditional statement (CASE statement) multiplexes the
partial rule activations; the selection signal is generated by a
counter in the control unit. The outputs of the RAMUX are
the inputs to the next layer of the circuit that consists of four
parallel (n/2)-input multipliers. To avoid excessive signal
delays, each multiplier has been implemented using two-input
multipliers interconnected in the form of a binary tree
structure (see Fig. 14), as in the previous fully parallel
architecture. The number of clock cycles or stages required to
evaluate the binary tree is equal to 2log (/ 2)n or equivalently,

2log 1n − (if n is not a power of two, the next power of two is
to be used). The next stage of the pipeline receives four
consequents and four rule activations, and performs the four
products in parallel. After that, a four-input parallel adder
performs the partial sum of four output terms per clock cycle.
Finally, in the last stage of the pipeline, the partial sum of
products is accumulated. A new group of four consequents
enters the pipeline every two clock cycles, until the
transmission of the 2n consequents is completed (2n-2 32-bit
words). Therefore, the total clock cycles required for the
circuit to evaluate the second pipeline is: the length of the
pipeline (3+log2n) plus the product of the number of words
(2n-2-1) per their input delay (2 cycles), where the first word
transfer has no wait cycles because it is performed while the
first pipeline is still active,

1
2 21 log 2n

pipelinen n −
− = + + . (22)

In summary, the HW part of the feed-forward network
involves (21) plus (22) HW clock cycles, that is,

, 1
24 log 2n

HWn n n −= + + + clock cycles. This information is
presented in Table VI and will be used to compute the
efficiency of the pipeline architecture.

3) Efficiency Evaluation and System Prototyping: The
efficiency index (19) applied to the pipeline architecture
results,

1
2

2 (1) 2
(2 3) [4 log 2] /(/)

n

pipeline n
HW SW

n nNA
n NA n n f f

η −

+ +
=

− + + + +
, (23)

where the numerator, SWn , has been obtained from Table IV,

and the terms of the denominator, ,
SWn and ,

HWn , can be found
in Table VI. Fig. 19 shows the efficiency index (23) as a
function of the number of inputs, for different values of
f=fHW/fSW. As for the parallel architecture, a frequency range
40 MHz ≤ fHW ≤ 100 MHz has been used and a mean value for
the number of antecedents NA=4 has been assumed. Taking
into account that the maximum frequency specified for the
embedded ARM processor is fSW=200MHz, it can be
concluded that the pipeline architecture is efficient against a
SW implementation for PWM ANFIS with three or more
inputs. In the case of a 3-input system, frequencies fHW greater
than 60 MHz (f=0.3) are required to develop efficient
implementations. Note that the efficiency index grows as the
number of inputs increases, but slowly than in Fig. 15.

As a prototyping example, we developed the pipeline
architecture of a four-input PWM ANFIS. The design has
been developed using the EPXA4F672C1 device of Altera´s
Excalibur family. The EPXA4 devices are the second in size
(400.000 typical gates) after the EPXA1 devices (100.000
typical gates) used to implement the two-input fully parallel
architecture. After synthesis, our design uses 4.234 of the
16.640 logic elements available in the FPGA part of the SOPC
(25%). Note that the implementation of larger systems, with
more than four inputs, does not imply an important increase of
resources; only the register stage and the RAMUX have to be
modified. The ARM processor executes the SW part of the
system operating up to 200 MHz, while the HW partition,
implemented in the FPGA, performs the feed-forward network
with a maximum clock frequency of 50.3 MHz. This clock
domain distribution leads to a transaction throughput between
the ARM and the FPGA of approximately 100 Mbytes per
second (see Fig. 16). The transmission of 24 bytes from the
processor subsystem (PS) to the FPGA (n inputs, n slopes, 2n
consequents), and 4 bytes back from the FPGA to the PS (32-
bit word that represents the system output) requires only 0.28
μs, while a complete inference takes 0.358 μs (18 cycles with
a 50.3 MHz clock, see Table VI). The above operation
frequencies give an efficiency index of 1.4 in (23). In view of
these results, it can be concluded that the HW/SW interface is
fast enough to guarantee the suitability of the proposed
HW/SW architecture for the four-input PWM ANFIS.

VI. CONCLUSION
In this work we have reported the development of two on-

chip HW/SW architectures for a particular case of NFS
suitable for real-time embedded applications. The NFS
consists of an ANFIS-like model modified for efficient
HW/SW implementation. As a consequence of some
constraints imposed on the model, the complexity of the feed-
forward network and the learning algorithms are greatly
reduced. In particular, the feed-forward network becomes a
piecewise multilinear (PWM) function with a simple cellular
structure. It has been verified that the PWM ANFIS, in spite
of the restrictions, exhibits approximation capabilities and
learning abilities comparable to those of generic ANFIS.

To develop efficient architectures for the PWM ANFIS, it is
necessary to consider first some important problems that arise
in the development of HW/SW approaches: a) the selection of
an efficient partition of the system into HW and SW blocks, b)
the selection of an optimal word-length for the HW
subsystem, and c) the design of high-performance HW
architectures compatible with the transmission capabilities of
the HW/SW communication interface. As a consequence of
the previous analysis, two different on-chip HW/SW
architectures have been developed. The first architecture
consists of a high-speed parallel architecture with fixed
parameters (off-line learning), while the second one is a
pipelined architecture, tailored to the available HW/SW bit
transfer rate, suitable for on-line parameter adaptation. Both

TFS-2006-0355

12

solutions have been implemented on a SOPC of Altera’s
Excalibur family.

The main feature of the proposed solutions is a trade-off
between versatility and performance. In this sense, the
embedded processor provides flexibility and high precision to
implement the hybrid learning algorithms, while the FPGA
block provides high-speed to process the feed-forward neural
network. The proposed approach is suitable for developing
efficient implementations for already known application areas
of embedded NFSs such as consumer electronics, robotics, or
automotive control, among others. In addition, potential
applications can be found in the context of pervasive
computing applied to ambient intelligence [47]. Ambient
intelligence needs small embedded systems able to deal on-
line with a large number of inputs, and also able to adapt
themselves to changing conditions and user preferences [48].
These requirements can be met by means of the SOPC-based
PWM ANFIS presented in this work.

In future works we intend to enhance the capabilities of the
neuro-fuzzy SOPC to cope with the problem of abrupt context
changes. In these situations, the adaptation of the NFS to the
new context would require structural changes in the feed-
forward network, in addition to the parameter adaptation. This
kind of structural changes involve the reconfiguration –total
or partial– of the HW partition. In this sense, we will apply
dynamic reconfiguration techniques to reconfigure the FPGA
part of the device.

APPENDIX

The learning rule for ir
ib is

(1) ()i i

i i

r t r t
i i b r

i

Eb b
b

η+ ⎛ ⎞∂
= − ⎜ ⎟

∂⎝ ⎠
, with

1

1
2

K

k
k

E E
K =

= ∑ , where
ibη is

the learning rate and ' 2()k k kE y y= − . Using the chain rule, for
each sample, k:

i i

k k
r r
i i

E E y
yb b

∂ ∂ ∂
=

∂∂ ∂
,

'2()kE
y y

y
∂

= −
∂

.

Referring to (9),
2 1

0

0

n

j j
j

y w c
−

=

= ∑ , therefore,

0

2 1
0

0

n

i i

j
jr r

ji i

wy c
b b

−

=

∂∂
=

∂ ∂
∑ , applying once again the chain rule,

0 0
i

i i
i

jj j

r r
ji i

w w

b b

φ
φ

∂∂ ∂
=

∂∂ ∂
, since

1
i

n

j j
i

w φ
=

= ∏ (see (8)),

0 0
i

i i
i

jj j

r r
ji i

w w

b b

φ
φ

∂∂
=

∂ ∂
.

Using the definition of the triangular membership functions
as a function of the adjustable parameters (offsets) given in
Section II,

0 0 0 0

0 0 0 0

10 0

1 10 0

() () /(), if 1

1 () () /(), if 0

i i i i

i
i i i i

r r r r
i i i i i i i

j r r r r
i i i i i i i

x x b b b j

x x b b b j

μ
φ

μ

+

+ +

⎧ = − − =⎪= ⎨
− = − − − =⎪⎩

, with

0 0 10i ir r
i i ib x b +≤ ≤ . Note that the slope of the active triangles is

0 0 011/()i i ir r r
i i ia b b+= − (see Fig. 4).

0 0 0 0 0

0 0 0 0

1 10 2

1 10 2

[() ()] /() , if 1

() /() , if 0

i i i i i
i

i i i i

r r r r r
j i i i i i i i

r r r r
i i i i i i

b b x b b b j

b x b b b j

φ + +

+ +

⎧∂ − − + − − =⎪= ⎨
∂ − − − =⎪⎩

,

0
2 1

0

0

n

i

ii

r
j j jr

ji

y c w f
b

−

=

∂
=

∂ ∑ , where

0 0 0

0

0 0 0

10

1

1/() 1/(), if 11

1/(), if 0

i i i
ii

i i i i
i

r r r
j i i i i ir

j r r r
j i i i i

x b b b j
f

b b b j

φ
φ

+

+

⎧∂ − − + − =⎪= = ⎨
∂ − =⎪⎩

.

Finally, summing all the training samples,
0

2 1
' 0

1 0

1 ()
n

i

ii

K
r

k k j j jr
k ji

E y y c w f
Kb

−

= =

∂
= −

∂ ∑ ∑ .

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers

for their useful comments and suggestions.

REFERENCES

[1] J. J. Buckley, “Sugeno type controllers are universal controllers,” Fuzzy
Sets Syst., vol. 53, no. 3, pp. 299–303, Feb. 1993.

[2] S. G. Cao, N. W. Rees, and G. Feng, “Mamdani-type fuzzy controllers
are universal fuzzy controllers,” Fuzzy Sets Syst., vol. 123, no. 3, pp.
359–367, Nov. 2001.

[3] B. Kosko, “Fuzzy systems as universal approximators,” IEEE Trans.
Computers, vol. 43, no. 11, pp. 1329–1333, Nov. 1994.

[4] R. Rovatti, “Fuzzy piecewise multilinear and piecewise linear systems as
universal approximators in Sobolev norms,” IEEE Trans. Fuzzy
Systems, vol. 6, no. 2, pp. 235–249, May 1998.

[5] L.-X. Wang, and C. Wei, “Approximation accuracy of some neuro-fuzzy
approaches,” IEEE Trans. Fuzzy Systems, vol. 8, no. 4, pp. 470–478,
Aug. 2000.

[6] X.-J. Zeng, and M. G. Singh, “Approximation theory of fuzzy systems-
SISO case,” IEEE Trans. Fuzzy Systems, vol. 2, no. 2, pp. 162–176,
May 1994.

[7] X.-J. Zeng, and M. G. Singh, “Approximation theory of fuzzy systems-
MIMO case,” IEEE Trans. Fuzzy Systems, vol. 3, no. 2, pp. 219–235,
May 1995.

[8] X.-J. Zeng, and M. G. Singh, “Approximation accuracy analysis of fuzzy
systems as function approximators,” IEEE Trans. Fuzzy Systems, vol. 4,
no. 1, pp. 44–63, Feb. 1996.

[9] J.-S. R. Jang, C.-T Sun and E. Mizutani, Neuro-Fuzzy and Soft
Computing. Upper Saddle River, NJ: Prentice Hall, 1997, part VII.

[10] A. Fanaei, and M. Farrokhi, “Robust adaptive neuro-fuzzy controller for
hybrid position/force control of robot manipulators in contact with
unknown environment,” Journal of Intelligent & Fuzzy Systems, vol. 17,
no. 2, pp. 125-144, 2006.

[11] S.-J. Ho, L.-S. Shu, and S.-Y. Ho, “Optimizing Fuzzy Neural Networks
for Tuning PID Controllers Using an Orthogonal Simulated Annealing
Algorithm OSA,” IEEE Trans. Fuzzy Systems, vol. 14, no. 3, pp. 421-
434, June 2006.

[12] H. B. Kazemian, and L. Meng, “An Adaptive Control for Video
Transmission Over Bluetooth,” IEEE Trans. Fuzzy Systems, vol. 14, no.
2, pp. 263-274, Apr. 2006.

[13] F.-J. Lin, and P.-H. Shen, “Adaptive Fuzzy-Neural-Network Control for
a DSP-Based Permanent Magnet Linear Synchronous Motor Servo

TFS-2006-0355

13

Drive,” IEEE Trans. Fuzzy Systems, vol. 14, no. 4, pp. 481-495, Aug.
2006.

[14] A. Rubaai, A. R. Ofoli, L. Burge, and M. Garuba, “Hardware
Implementation of an Adaptive Network-Based Fuzzy Controller for
DC-DC Converters,” IEEE Trans. Industry Applications, vol. 41, no. 6,
pp. 1557-1565, Nov/Dec. 2005.

[15] J. B. Theocharis, “A high-order recurrent neuro-fuzzy system with
internal dynamics: Application to the adaptive noise cancellation,”
Fuzzy Sets Syst., vol. 157, no. 4, pp. 471-500, Feb. 2006.

[16] R.-J. Wai, and L.-J. Chang, “Stabilizing and Tracking Control of
Nonlinear Dual-Axis Inverted-Pendulum System Using Fuzzy Neural
Network,” IEEE Trans. Fuzzy Systems, vol. 14, no. 1, pp. 145-168, Feb.
2006.

[17] M. E. Yüksel, and E. Besdok, “A Simple Neuro-Fuzzy Impulse Detector
for Efficient Blur Reduction of Impulse Noise Removal Operators for
Digital Images,” IEEE Trans. Fuzzy Systems, vol. 12, no. 6, pp. 854-
865, Dec. 2004.

[18] J. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665-685,
May 1993.

[19] J.-S. R. Jang, and C.-T. Sun, “Neuro-fuzzy modeling and control,”
Proceedings of the IEEE, vol. 83, no. 3, pp. 378-406, Mar.1995.

[20] M. Sugeno, and G. T. Kang, “Structure identification of fuzzy model,”
Fuzzy Sets Syst., vol. 28, no. 1, pp. 15–33, Oct. 1988.

[21] T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Trans. Systems, Man, and
Cybernetics, vol. 15, no. 1, pp. 116-132, 1985.

[22] D. Anguita, I. Baturone, and J. Miller (Guest Editors), Applied Soft
Computing. Special issue on hardware implementations of soft
computing techniques, vol. 4, no. 3, Aug. 2004.

[23] B. Linares-Barranco, A. G. Andreou, G. Indiveri, and T. Shibata (Guest
Editors), IEEE Trans. Neural Networks. Special issue on neural
networks hardware implementation, vol. 14, no. 5, Sep. 2003.

[24] F. M. Salam, and T. Yamakawa (Guest Editors), Computers & Electrical
Engineering. Special issue on micro-electronic hardware implementation
of soft computing: neural and fuzzy networks with learning, vol. 25, no.
5, Sep. 1999.

[25] M. J. Patyra (Guest Editor), IEEE Trans. Fuzzy Systems. Special issue
on fuzzy logic hardware implementations, vol. 4, no. 4, Nov. 1996.

[26] G. De Micheli (Guest Editor), Proceedings of the IEEE. Special issue on
hardware/software codesign, vol. 85, no. 3, March 1997.

[27] W. Wolf (Guest Editor), “A decade of hardware/software codesign,”
Computer, vol. 36, no. 4, pp. 38-43, Apr. 2003.

[28] L. M. Reyneri, “Implementation issues of neuro-fuzzy hardware: going
toward HW/SW codesign,” IEEE Trans. Neural Networks, vol. 14, no. 1,
pp. 176-194, Jan. 2003.

[29] Datasheet of Excalibur Device, Altera Corporation [Online]. Available:
http://www.altera.com

[30] I. Baturone, S. Sánchez-Solano, A. Barriga, and J. L. Huertas, “Design
issues for the VLSI implementation of universal approximator fuzzy
systems,” in Proc. World MultiConference on Circuits, Systems,
Communications and Computers, Athens, 1999, pp. 6471–6476.

[31] I. Baturone, A. Barriga, S. Sánchez-Solano, C. J. Jiménez-Fernández, D.
R. López. Microelectronic Design of Fuzzy Logic-based Systems. Boca
Raton, Florida: CRC Press, 2000, ch. 9, 12.

[32] J. Echanobe, I. del Campo, and J. M. Tarela, “Issues concerning the
analysis and implementation of a class of fuzzy controllers,” Fuzzy Sets
Syst., vol. 155, no. 2, pp. 252-271, Oct. 2005.

[33] R. Rovatti, C. Fantuzzi, and S. Simani, “High-speed DSP-based
implementation of piecewise-affine and piecewise-quadratic fuzzy
systems,”Signal Processing, vol. 80, no. 6, pp. 951-963, Jun. 2000.

[34] I. Baturone, A. Barriga, S. Sánchez-Solano, and J.L. Huertas, “Mixed-
signal design of a fully parallel fuzzy processor,” Electronics Letters,
vol. 34, no. 5, pp. 437-438, March 1998.

[35] J. Matas, L. García de Vicuña, and M. Castilla, “A Synthesis of Fuzzy
Control Surfaces in CMOS Technology,” in Proc. IEEE Int. Conference
on Fuzzy Systems, Barcelona, 1997, pp. 641–646.

[36] F. Vidal-Verdú, R. Navas-González, and A. Rodríguez-Vázquez,
“Multiplexing architecture for mixed-signal CMOS fuzzy controllers,”
Electronics Letters, vol. 34, no. 14, pp. 1437-1439, Jul. 1998.

[37] J.-S. R. Jang, C.-T. Sun and E. Mizutani, Neuro-Fuzzy and Soft
Computing., Upper Saddle River, NJ: Prentice Hall, 1997, part III, ch. 8.

[38] S.-J. Lee, and C.-S. Ouyang, “A neuro-fuzzy system modeling with self-
constructing rule generation and hybrid SVD-based learning,” IEEE
Trans. Fuzzy Systems, vol. 11, no. 3, pp. 341-353, June. 2003.

[39] Y. H. Lin, G. A. Cunningham, and S. V. Coggeshall, “Using fuzzy
partitions to create fuzzy systems from input-output data and set the
initial weights in a fuzzy neural network,” IEEE Trans. Fuzzy Systems,
vol. 5, no. 4, pp. 614-621, Nov. 1997.

[40] C.-C. Wong, and C.-C. Chen, “A hybrid clustering and gradient descent
approach for fuzzy modeling,” IEEE Trans. Syst., Man, Cybern., B, vol.
29, no. 6, pp. 686-693, Dec. 1999.

[41] K. Basterretxea, J. M. Tarela, I. del Campo, and G. Bosque, “An
experimental study on nonlinear function computation for neural/fuzzy
hardware design,” IEEE Trans. Neural Networks, vol. 18, no. 1, pp. 266-
283, Jan. 2007.

[42] J. Wray, and G. G. Green, “Neural networks, approximation theory, and
finite precision computation,” Neural Networks, vol. 8, no.1, pp. 31-37,
1995.

[43] I. del Campo, and J.M. Tarela, “Consequences of the Discretization on
the performance of a fuzzy logic controller,” IEEE Trans. Fuzzy
Systems, vol. 7, no.1, pp. 85-92, Feb. 1999.

[44] L. M. Reyneri, and F. Renga, “Speeding-up the design of HW/SW
implementations of neuro-fuzzy systems using the CodeSimulink
environment,” Applied Soft Computing, vol. 4, no.3, pp. 227-240, Aug.
2004.

[45] EPXA1 Development Board. Hardware Reference Manual, Altera
Corporation [Online]. Available: http://www.altera.com

[46] Excalibur Solutions-Using the Embedded Stripe Bridges. Application
Note 142, Altera Corporation [Online]. Available:
http://www.altera.com

[47] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.-C.
Burgelman, “Scenarios for ambient intelligence in 2010,” Tech. Rep.,
IST Advisory Group (ISTAG), Institutional Prospective Technology
Studies (IPTS), Seville, Feb. 2001.

[48] F. Doctor, H. Hagras, and V. Callaghan, “A fuzzy embedded agent-
based approach for realizing ambient intelligence in intelligent inhabited
environments,” IEEE Trans. Syst., Man, Cybern., A, vol. 35, no. 1, pp.
55-65, Jan. 2005.

Inés del Campo (M’94–A’96) was born in Buenos
Aires, Argentina, in 1961. She received the Ph.D.
degree in physics from the University of the Basque
Country (UPV/EHU), Spain, in 1993.
Currently she is a Senior Lecturer in the Electricity and
Electronics Department of the Faculty of Sciences and
Technology of the UPV/EHU. Her research interests
mainly concern hardware/software codesign,

reconfigurable hardware, ANNs, fuzzy systems, and genetic algorithms.

Javier Echanobe (M’06) received the Licenciado
degree in physics from the University of the Basque
Country (UPV/EHU), Spain, and the Ph.D. degree
from the University of Navarra, Pamplona, Spain, in
1990 and 1998, respectively.
He was a predoctoral researcher (granted by the
Basque Government) from 1992 to 1996. Since 1999
he has been an Associate Professor in the Department

of Electricity and Electronics of the UPV/EHU. His research interests focus on
embedded systems, reconfigurable FPGAs, and computational intelligence.

José Manuel Tarela received the Licenciado degree in
physics and the Ph.D. degree in physics from the
Valladolid University, Spain, in 1970 and 1974,
respectively.
Since 1976, he has been a Professor in the Faculty of
Sciences and Technology, University of the Basque
Country (UPV/EHU), Spain. He was the Director of
the Electricity and Electronics Department and

TFS-2006-0355

14

Vicerrector of Investigation of the UPV/EHU.
Dr. Tarela is Member of the International Neural Network Society (INNS), the
Real Sociedad Española de Física (RSEF), and the European Society fo Fuzzy
Logic and Technology (EUSFLAT)

Guillermo Bosque received the Licenciado degree in
physics with specialization in electronics and
automatics in 1978 from the University of the Basque
Country (UPV/EHU) , Bilbao, Spain.
From 1978 to 2002, he worked in several electronics
industries, mainly in R&D management. From 2002
to 2003, he worked in a research group of the
Electricity and Electronics Department at the
UPV/EHU. Since 2003, he has been a Lecturer in the

Department of Electronics and Telecommunication at the UPV/EHU.

TFS-2006-0355

15

FIGURE CAPTIONS

Fig. 1. Architecture of a generic n-input adaptive neuro-fuzzy inference system (ANFIS). The system is equivalent to the zero-order Sugeno inference
model.

Fig. 2. Example of a two-input system verifying the constraints imposed on the general ANFIS model: the antecedents are triangles with an overlapping
degree of two and normalized in each input dimension. The input vector 0 0

1 2(,)x x activates the highlighted semi-triangles that delimit the active cell.

Fig. 3. Architecture of the PWM-ANFIS. Grey neurons in layer 1 are complementary neurons with node function
(1) (1)1i iO O= − .

Fig. 4. Node function of the neurons in layer 1 of the PWM ANFIS.

Fig. 5. Experiment 1. (a) Graphical representation of the desired function. (b) Approximation of the desired function with a 16-rule PWM ANFIS. (c)
Approximation of the desired function with a 36-rule PWM ANFIS.

Fig. 6. Experiment 1. Mean squared error (MSE) curves obtained with ANFIS (Gaussian membership functions) and with the PWM ANFIS (triangular
membership functions).

Fig. 7. Experiment 2. (a) Graphical representation of the desired function. (b) Approximation of the desired function with a 9-rule PWM ANFIS.

Fig. 8. Experiment 2. Mean squared error (MSE) curves obtained with ANFIS (Gaussian membership functions) and with the PWM ANFIS (triangular
membership functions).

Fig. 9. Internal architecture of the SOPC of Altera´s Excalibur family used to implement the PWM ANFIS, and partition of the system into hardware and
software blocks.

Fig. 10. Block scheme used to evaluate the approximation capability of the PWM ANFIS when finite-precision computation is used.

Fig. 11. Mean squared error (MSE) between the full precision PWM ANFIS trained for experiments 1 and 2 and their digitized PWM ANFIS models for
different word-lengths.

Fig. 12. Block scheme of the fully parallel architecture of an n-input PWM ANFIS implemented in the FPGA part of the SOPC.

Fig.13. Antecedent multiplexer (AMUX) module. The AMUX selects for transmission the parameters of the active regions and generates a Select signal
that drives the Consequent MUX. The Select signal consists of the concatenation of the active region pointers; 0 0 0

2 1& &nSelect r r r= L , where & is the
concatenate operator.

Fig.14. Scheme of an 8-input multiplier implemented by means of two-input single-cycle multipliers. The multiplier is structured into a binary tree of 3
layers. In the general case, an n-input multiplier consists of log2n layers.

Fig. 15. Efficiency index (η) of the fully parallel architecture as a function of the number of system inputs for different values of f=fHW/fSW.

Fig. 16. Interface between the processor subsystem (PS) and the FPGA. The master port (M) initiates transactions and the slave port (S) responds to
transactions. Clock frequencies in parenthesis correspond to the four-input PWM ANFIS (pipeline architecture).

Fig. 17. Organization of the data and parameter transferences in the pipeline architecture by using the 32-bit HW/SW interface.

Fig. 18. Block scheme of the pipeline architecture of an n-input PWM ANFIS implemented in the FPGA part of the SOPC.

Fig. 19. Efficiency index (η) of the pipeline architecture as a function of the number of system inputs for different values of f=fHW/fSW.

TFS-2006-0355

16

TABLE CAPTIONS

TABLE I
COMPARISON ON THE GENERALIZED MEAN SQUARED ERROR (GMSE) OF EXPERIMENT 1 AND EXPERIMENT 2

TABLE II
EVALUATION OF THE DATA TRANSFER RATE AND THE PARAMETER TRANSFER RATE FOR EACH LAYER OF THE PWM ANFIS

TABLE III
REQUIRED DATA TRANSFER RATE AND PARAMETER TRANSFER RATE FOR EACH LAYER OF A FULLY PARALLEL IMPLEMENTATION OF THE PWM ANFIS

TABLE IV
COMPUTATION OF THE FEED-FORWARD PWM ANFIS BY USING A ONE CYCLE PER INSTRUCTION PROCESSOR

TABLE V
COMPUTATION OF THE FEED-FORWARD PWM ANFIS BY MEANS OF THE FULLY PARALLEL ARCHITECTURE

TABLE VI
COMPUTATION OF THE FEED-FORWARD PWM ANFIS BY MEANS OF THE PIPELINE ARCHITECTURE

TFS-2006-0355

17

FIGURES

Figure 1

Figure 2

1x
0 0
1 2,)(x x

2x

1 1)(j xμ

2 2)(j xμ

Active
cell

1
1

•

.

.

.

(1)
11O

(2)
1O

1c

jc

.

.

mc

0
nx

0
ix

0
1x

()11 111 2, ,p p L

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

()1 2, ,
nm nm

p p L

(2)
mO

(2)
jO

(1)
1iO

(1)
1nO

(1)
ijO

(1)
nmO

(1)
1mO

(3)
1O

(3)
jO

(3)
mO

Π

Π

Π

Σ

Ν

Ν

Ν
(4) yO =

(1)
imO

TFS-2006-0355

18

Figure 3

Figure 4

)(i ixμ
1

ix
0
ix

0
ir

ib

0 0 0(1) 0 0))((i i ir r r
i i i i i ia bO x xμ= = −

0(1) 01)(ir
i i iO xμ= −

0 1ir
ib − 0 1ir

ib +

0
ir

ia

Active region 0
ir

.

.

.

(1)
1O

(2)
0O

0
0c

.

.

1
(2)
2nO

−

11...1

0
1c

.

.

(1)
nO

(1)
1O

(2)
1O

0
2 1nc

−

00...1

00...0

0
nx

0
ix

0
1x

.

.

.
.
.

()0 0

,n nr r
n na b

Π

Π

Π

Σ
(3) yO =

(1)
iO
(1)
iO (2)

jO
1 1...n nj j j−

Π

.

.

()0 0

,i ir r
i ia b

()0 0
1 1

1 1,r ra b

(1)
nO

TFS-2006-0355

19

Figure 5

0
1

2
3

4

0
1

2
3

4

−4

−2

0

2

4

xx

y

12
(a)

0
1

2
3

4

0
1

2
3

44

−4

−2

0

2

4

xx

y

12
(b)

0
1

2
3

4

0
1

2
3

44

−4

−2

0

2

4

xx

y

12
(c)

TFS-2006-0355

20

Figure 6

0 40 80 120 160 200
0

0.002

0.004

0.006

0.008

0.01

Iterations

M
ea

n
Sq

ua
re

d
E

rr
or

 (
M

SE
)

Triangular mf
Gaussian mf

Figure7

1
2

3
4

5

1
2

3
4

5
0

2

4

6

8

10

xx

y

(a)
1 2

1
2

3
4

5

1
2

3
4

5
0

2

4

6

8

10

xx

y

1 2(b)

TFS-2006-0355

21

Figure 8

0 40 80 120 160 200
0

0.1

0.2

0.3

0.4

0.5

Iterations

M
ea

n
Sq

ua
re

d
E

rr
or

 (
M

SE
)

Triangular mf
Gaussian mf

Figure 9

I/O
Peripherals

FPGA block

Feed-forward Network

32
-b

it
A

M
B

A
 A

H
B

 B
us

SRAM
memories

- Program
- Data

...

ARM922T
Processor
(32 bit)

- Training

- I/O
 Processing

.

.

.

Π

Π

Π

Σ

Π

.

Processor subsystem

TFS-2006-0355

22

Figure 10

Figure 11

0 4 8 12 16 20 24 28 32
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Word−length (B)

M
ea

n
Sq

ua
re

d
E

rr
or

 (
M

SE
)

Experiment 1
Experiment 2

0
1x
0
2x

A/D

-+
MSE

measure

PWM ANFIS
(full precision)

Digitized PWM ANFIS
(finite precision)

TFS-2006-0355

23

Figure 12

Figure 13

COMP_
SELECT

(1)

2x

1
1
ra
1

1
rb

0
1

1
rx

0
1

1
ra

0
1r

COMP_
SELECT

(2)
2

2
ra
2

2
rb

0
2

2
rx

0
2r

COMP_
SELECT

(n)

nx
nr

na
nr

nb

0
nr

nx

0
nr

M

0
2

2
ra

AMUX module

1x

0
nr

na

⎫
⎬
⎭

M
Select

Parameter Memory

8-bit register

.

.

.

8b
C

on
se

qu
en

t
M

U
X

Neural Network Unit

Antecedent
MUX

Select

8b

ir
ia

ir
ib

jc

8b

×

×

×

0
jc

0
ir

ix

∑

CLK

y

×

×

×0
ir

ia

x L
M

MM

M

M

×

×

×
L

.

.

.
.
.
.

.

.

.

M

M

M

M

n-input
multipliers

2n input
adder

Off-line
parameter
transfer

TFS-2006-0355

24

Figure 14

Figure 15

1 2 3 4 5 6 7 8 9 10
10

−1

10
0

10
1

10
2

10
3

Number of system inputs (n)

E
ff

ic
ie

nc
y

in
de

x

f=0.2
f=0.3
f=0.4
f=0.5

η=1

8-input multiplier
(binary tree)

×
×

×
×

×
×
×

I1
I2

I8

O

TFS-2006-0355

25

Figure 16

Figure 17

FPGA
slave

ARM

(200 MHz)
M

FPGA

(50.3 MHz)

Processor Subsystem (PS)

S S

PS-to-FPGA
bridge

Bus control

0... 7 8... 15 16... 23 24... 31

0
ir

ix 0
ir

ia
0

1
1

ir
ia +
+

0
1
1

ir
ix +
+

0
jc 0

1jc +
0

3jc +
0

2jc +

TFS-2006-0355

26

Figure 18

Figure 19

2 3 4 5 6 7 8 9 10
10

−1

10
0

10
1

Number of system inputs (n)

E
ff

ic
ie

nc
y

in
de

x

f=0.2
f=0.3
f=0.4
f=0.5

η=1

First pipeline

8b

8b

×

×

×

×

×

×

0
jc

∑

CLK

×

×

×

×

∑
y

Second pipeline

R
ru

le
 A

ct
iv

at
io

n
M

U
X

Membership
functions

Partial rule
activation Rule activation

(4 rules/2 cycles)
Register stage
(2n blocks)

Sum of product
accumulation

(4 terms/2 cycles)

M M

M

M

M

M

M

M

L

Write-enable
signals

} /2n

1e
/ 2ne

} /2n

} /2n

} /2n

Select

M ×

M ×

M ×

M ×

(n/2)-input
multipliers

Accumulate
enable

1(). ()n nx xμ μ−

1 2(). ()x xμ μ

1 2(). ()x xμ μ

1 2(). ()x xμ μ

1 2(). ()x xμ μ

1(). ()n nx xμ μ−

1(). ()n nx xμ μ−

1(). ()n nx xμ μ−

M

M

M

M

0 0

(,)i ir r
i ix a

TFS-2006-0355

27

TABLES

TABLE III
REQUIRED DATA TRANSFER RATE AND PARAMETER TRANSFER RATE FOR

EACH LAYER OF A FULLY PARALLEL IMPLEMENTATION OF THE PWM ANFIS

NFS Layer 1 Layer 2 Layer 3

Data transfer rate
(bits/s)

1(2)I O

CLK

n B B
T
+ 1 22 2n

O O

CLK

nB B
T

+ 2(2)n
O O

CLK

B B
T

+

Parameter transfer
rate (bits/s)

2 P

CLK

nB
T

2n

P

CLK

B
T

TABLE II
EVALUATION OF THE DATA TRANSFER RATE AND THE PARAMETER TRANSFER RATE FOR EACH LAYER

OF THE PWM ANFIS

NFS Layer 1 Layer 2 Layer 3

Input bits 2I PnB nB+ 12 OnB 22 ()n
O PB B+

Output bits
12 OnB

22n
OB OB

Total I/O bits
1(2 2)I P On B B B+ +

1 22 2n
O OnB B+ 22 ()n

O P OB B B+ +
Layer time

1
1

2
CLK

n n T
P

2

2

2n

CLKn T
P

 3
3

1
CLKn T

P

Data transfer rate (bits/s)
1 1

1

(2)
2

I O

CLK

B B P
n T
+ 1 2 2

2

(2 2)
2

n
O O

n
CLK

nB B P
n T
+ 2 3

3

(2)n
O O

CLK

B B P
n T

+

Parameter transfer rate (bits/s)
1

1

P

CLK

B P
n T

-------- 3

3

2n
P

CLK

B P
n T

TABLE I
COMPARISON ON THE GENERALIZED MEAN SQUARED ERROR (GMSE) OF EXPERIMENT 1 AND

EXPERIMENT 2

NFS
Membership
function type

Learning
algorithm

GMSE
Experiment 1

GMSE
Experiment 2

Lin’s System Trapezoidal GDM 0.0088 0.0537
Wong’s System Gaussian GDM 0.0033 0.0472
Lee’s System Gaussian Hybrid (LSE and

GDM)
0.0023 0.0407

Our System Triangular Hybrid (LSE and
GDM)

0.0039 0.0630

The NFSs above use 16 rules to approximate the function of experiment 1, while for experiment 2
our system uses 9 rules and the other three systems use 10 rules.

TFS-2006-0355

28

TABLE VI
COMPUTATION OF THE FEED-FORWARD PWM ANFIS BY MEANS

OF THE PIPELINE ARCHITECTURE

HW clock cycles

,()HWn
SW clock cycles

,()SWn

Preprocessing -------- (2 3)n NA −
Pipeline 1 n+3 --------
Pipeline 2 1

21 log 2nn −+ + --------
Total 1

24 log 2nn n −+ + + (2 3)n NA −

TABLE V
COMPUTATION OF THE FEED-FORWARD PWM ANFIS BY

MEANS OF THE FULLY PARALLEL ARCHITECTURE

 HW clock cycles ,()HWn

Preprocessing 1
Layer 1 1
Layer 2

2log n
Layer 3 2
Total

24 log n+

TABLE IV
COMPUTATION OF THE FEED-FORWARD PWM ANFIS BY

USING A ONE CYCLE PER INSTRUCTION PROCESSOR

 SW clock cycles ()SWn

Preprocessing (2 3)n NA −
Layer 1 3n
Layer 2 2 (1)n n −
Layer 3 12n+
Total 2 (1) 2n n nNA+ +

