University of Cantabria / University of Granada

Organizers:

REHABEND 2020 Euro-American Congress

CONSTRUCTION PATHOLOGY, REHABILITATION **TECHNOLOGY AND** HERITAGE MANAGEMENT

Granada (Spain) - March 24th-27th, 2020

Sponsor entities:

ACERINO

CONSEJERÍA DE CULTURA Y PATRIMONIO HISTÓRICO

8TH EURO-AMERICAN CONGRESS ON CONSTRUCTION PATHOLOGY, REHABILITATION TECHNOLOGY AND HERITAGE MANAGEMENT

REHABEND 2020

IGNACIO LOMBILLO HAYDEE BLANCO YOSBEL BOFFILL

INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE:

HUMBERTO VARUM – UNIVERSITY OF AVEIRO (PORTUGAL) PERE ROCA – TECHNICAL UNIVERSITY OF CATALONIA (SPAIN) ANTONIO NANNI – UNIVERSITY OF MIAMI (USA)

The editors does not assume any responsibility for the accuracy, completeness or quality of the information provided by any article published. The information and opinion contained in the publications of are solely those of the individual authors and do not necessarily reflect those of the editors. Therefore, we exclude any claims against the author for the damage caused by use of any kind of the information provided herein, whether incorrect or incomplete.

The appearance of advertisements in this Scientific Publications (Printed Abstracts Proceedings & Digital Book of Articles - REHABEND 2020) is not a warranty, endorsement or approval of any products or services advertised or of their safety. The Editors does not claim any responsibility for any type of injury to persons or property resulting from any ideas or products referred to in the articles or advertisements.

The sole responsibility to obtain the necessary permission to reproduce any copyright material from other sources lies with the authors and the REHABEND 2020 Congress can not be held responsible for any copyright violation by the authors in their article. Any material created and published by REHABEND 2020 Congress is protected by copyright held exclusively by the referred Congress. Any reproduction or utilization of such material and texts in other electronic or printed publications is explicitly subjected to prior approval by REHABEND 2020 Congress.

ISSN: 2386-8198 (printed)

ISBN: 978-84-09-17871-1 (Printed Book of Abstracts) ISBN: 978-84-09-17873-5 (Digital Book of Articles)

Legal deposit: SA - 132 - 2014

Printed in Spain by Círculo Rojo

1.- PREVIOUS STUDIES

1.1]	Multidisciplinary studies (historical, archaeological, etc.).	
21	METHODOLOGY FOR PREVENTIVE CONSERVATION OF LINEAR LANDSCAPE IN CITIES	
32	Ros Torres, Josefa; García-León, Josefina; Vázquez Arenas, Gemma THE EVOLUTION OF CONSTRUCTION TECHNIQUE THROUGH THE HISTORY OF ENTERPRISE: THE FEAL	 2
34	Mornati, Stefania DOCIMENTING CUI TUPAL HEPITAGE THROUGH INVENTORY	 10
52	Prata, Maria Catharina Reis Queiroz; Carneiro, Silvana Monteiro de Castro THE CONSTRUCTION TECHNOLOGY IN SPANISH COLONIES. A CATHEDRAL IN WESTERN COLOMBIA	 18
78	WESTERN COLOMBIA Carvajal, Henry H.; Ochoa, Juan C. THE TRANSFORMATION OF MEDIEVAL CHURCHES DURING THE BAROQUE ERA IN SZEVLERI AND	 26
97	<i>Csenge, Gergely</i> GOTHIC TRACE OF CARAGOL SOBIRANES OF SANTA CATERINA'S TOWER OF	 35
115	TORTOSA'S CATHEDRAL Lluis i Ginovart, Josep; Lluis i Teruel, Cinta THE "PALAZZO DEL GOVERNO" IN TARANTO: AT BEGINNINGS OF A TYPICAL "ITALIAN" STYLE	 43
138	Pagliuca, Antonello; Gallo, Donato; Trausi, Pier Pasquale PROPOSAL AND APPLICATION OF MASSH – A HOUSING HEALTH AND SAFETY ASSESSMENT MODEL FOR PORTUGAL	 51
159	Monteiro, Marisa; Silva, Tiago; Pastorinho, M. Ramiro; Lanzinha, João C.G. VISUAL RELATIONSHIP BETWEEN MONUMENTS FROM THE PAST AND CONTEMPORARY ARCHITECTURE. MASTERPIECES BY ANDREA PALLADIO AND NEW SPATIAL CONNECTIONS	 59
188	<i>Pietrogrande, Enrico; Dalla Caneva, Alessandro</i> FACTORS THAT PREVENT EFFECTIVE ARTICULATION OF THE PROVINCE OF THE UNION WITH THE PROGRESSIVE DEVELOPMENT OF THE AREQUIPA REGION	 67
197	Cusihuamán Sisa, Gregorio Nicolás ANCIENT LIME KILNS: TRADITION, MANUFACTURING AND USE OF LIME IN THE PROVINCE OF GRANADA (ANDALUCIA)	 78
200	Galdó-Ceballos, E.; Arizzi, A.; Sebastián-Pardo, E. CHEMICAL, MINERALOGICAL AND PHYSICAL CHARACTERIZATION OF LIGHTWEIGHT BRICKS WITH THE ADDITION OF SAWDUST FOR USE IN CONSTRUCTION AND PRESERVATION OF ARCHITECTURAL HERITAGE	 86
229	Aurrekoexea, Itziar; Cultrone, Giuseppe FROM HISTORICAL ANALYSIS TO STRUCTURAL STRENGTHENING. THE CASE OF THE FORMER CONVENT OF SAN ROCCO IN SORAGNA (PR)	 94
259	Ottoni, Federica; Celli, Sofia; Mambriani, Carlo TRADITIONAL HOUSING IN LAMBAYEQUE - PERU - REMARKABLE AND HERITAGE VALUE ASPECTS THAT CONTRIBUTE TO ITS SUSTAINABILITY	 102
260	Zárate, Eduardo; Chirinos, Haydeé; Morales, Nicolás VICEREGAL HOUSING FACADES IN LAMBAYEQUE - PERU: STUDIES FOR THEIR ENHANCEMENT	 111
261	<i>Chirinos, Haydeé; Zárate, Eduardo; Morales, Nicolás</i> THE MODERN MOVEMENT HERITAGE: PROTO-BIOCLIMATIC SOLUTIONS AND BUILDING ELEMENTS	 121
268	<i>Franchini, Caterina; Mele, Caterina</i> THE HISTORICAL STUDY IN THE BENIGNO MALO SCHOOL, ITS INCIDENCE IN THE RESTORATION PROJECT AND CONTEMPORARY ARCHITECTURE	 130
285	Cardoso, Fausto; Ullauri, Marlene; Rodas, Tatiana; Jaramillo, Paola SPATIAL ANALYSIS OF FINNISH ARCHITECT JUHA LEIVISKÄ'S CHURCHES AND THEIR LINK WITH DE STIJL DUTCH GROUP CONSTRUCTIONS	 141
287	Díez-Blanco, M. Teresa; Millán-Gómez, Antonio URBAN-BUILDINGS PERMANENCES IN POST-FRENCH SEVILLE (XIX-XX CENTURY): PLANIMETRIC RECOMPOSITION AND SEQUENTIAL HYPOTHESIS	 152
	Navarro-de-Pablos, Javier; Navas-Carrillo, Daniel; Rodríguez-Lora, Juan-Andrés; Pérez-Cano, Teresa	 162

PAPERS OF THE CONGRESS

Jr. A. REHABEND	

_

110	SUSTAINABLE MASONRY MORTARS BASED ON LADLE FURNACE SLAGS FROM		
113	THE STEEL-MAKING INDUSTRY Santamaria, Amaia; Fiol, Francisco; García, Veronica; Setién, Jesús; González, Javier-Jesús DURABILITY OF ETICS INCORPORATING HIGH REFLECTANCE PIGMENTS IN		1535
136	Ramos, Nuno M. M; Maia, Joana; Almeida, Ricardo M. S. F; Souza, Andrea R. SELF-COMPACTING CONCRETE MANUFACTURED WITH RECYCLED CONCRETE		1543
22.4	AGGREGATE Revilla-Cuesta, Víctor; Fiol, Francisco; Skaf, Marta; Serrano, Roberto; Manso, Juan Manuel; Ortega-López, Vanesa		1551
224	DEVELOPMENT AND CHARACTERIZATION OF EXPANSIVE GROUTS FOR CRACK SEALING García Calvo, José Luis: Pedrosa Filipe: Carballosa Pedro: Revuelta David		1559
242	CONSOLIDATION OF LIME MORTARS WITH Ca(OH) ₂ NANOPARTICLES AND TRADITIONAL COATINGS		1557
300	Martinez-Arredondo, Ana; Garcia-Vera, Victoria E.; Navarro, David; Lanzon, Marcos USE OF BUILDING INFORMATION MODELING IN BUILDING MANAGEMENT RETROFITTING PROJECTS: CASE STUDIES		1567
336	Pinto, Rodrigo; Oliveira, Rui; Lopes, Jorge DESIGN OF NEW MATERIALS FOR THE PROTECTION OF CONSTRUCTION UNITS OF RESIDENTIAL BUILDINGS AGAINST FIRE ACTION		1575
367	Rodríguez Saiz, Angel; Santamaría-Vicario, Isabel; Alonso Díez, Álvaro; Gutiérrez-González, Sara; Calderón Carpintero, Verónica DEVELOPMENT OF SUSTAINABLE MORTARS THROUGH THE VALORIZATION OF CUPOLA SLAG		1583
382	Sosa, Israel; Thomas, Carlos; Polanco, Juan Antonio; Setién, Jesús; Tamayo, Pablo; Gonzalez, Laura TECHNICAL AND ECONOMIC EVALUATION OF A DARK ETICS COATING		1592
390	FORMULATED WITH CONVENTIONAL PIGMENTS VERSUS COOL PIGMENTS Sambento, Filipe; Curado, António AN INNOVATIVE DUCTILE MORTAR TO IMPROVE THE SEISMIC RESPONSE OF		1600
419	MASONRY STRUCTURES Laghi, Vittoria; Palermo, Michele; Incerti, Andrea; Gasparini, Giada; Trombetti, Tomaso PRECAST CONCRETE MODULE FOR STRUCTURAL AND ENERGY REHABILITATION		1609
100	OF REINFORCED CONCRETE BUILDINGS Martiradonna, Silvia; Fatiguso, Fabio; Lombillo, Ignacio		1618
490	BIM METHODOLOGY TO SUPPORT THE FUNCTIONAL REHABILITATION OF A BUILDING Longs Ioão: Falção Silva Maria Ioão: Couto Paula: Pinho Fernando		1627
553	ACCEPTANCE OF BUILDING INTEGRATED PHOTOVOLTAIC (BIPV) IN HERITAGE BUILDINGS AND LANDSCAPES: POTENTIALS, BARRIERS AND ASSESTMENT CRITERIA		102/
	Polo López, Cristina S.; Lucchi, Elena; Franco, Giovanna		1636
2.4 \$	Sustainable design and energy efficiency.		
36	FACING CLIMATE CHANGE OVERHEATING IN CITIES THROUGH MULTIPLE THERMOREGULATORY COURTYARD POTENTIAL CASE STUDIES APPRAISAL Diz-Mellado, Eduardo M.; Galán-Marín, Carmen; Rivera-Gómez, Carlos; López-Cabeza,		
74	Victoria Patricia ACTIVE RENOVATION STRATEGIES WITH BUILDING-INTEGRATED PHOTOVOLTAICS (BIPV). APPLICATION ON AN EARLY 20TH CENTURY MULTI-		1645
88	FAMILY BUILDING Aguacil Moreno, Sergi; Rey, Emmanuel MID-TWENTIETH CENTURY HERITAGE HOUSING'S THERMAL ENVELOPE ASSESSMENT: EL CARMEN NEICHBOURHOOD CASE STUDY		1653
01	Roa-Fernández, Jorge; Galán-Marín, Carmen; López-Martínez, José A.; Rivera-Gómez, Carlos; Ponce, Mercedes; Romero-Odero, José Antonio		1662
91	SOCIAL HOUSING KETKOFTI IN BEIKA INTERIOK FOR PRESENT AND FUTURE CLIMATE SCENARIOS Brandão, Pedro: Lanzinha, João C. G.		1670
103	ENERGY REHABILITATION OF SCHOOLS IN SPAIN. ENERGY STRATEGIES FOR NEARLY ZERO ENERGY BUILDING IN DIFFERENT CLIMATE ZONES		1670
141	A MULTI-LEVEL STRATEGY FOR THE SUSTAINABLE RECOVERY OF HISTORIC CENTRES	•••••	10/0
	Losco, Giuseppe; Pierleoni, Andrea; Roncaccia, Elisa; Gialluca, Silvia	•••••	1686

<u>CODE 110</u>

SUSTAINABLE MASONRY MORTARS BASED ON LADLE FURNACE SLAGS FROM THE STEEL-MAKING INDUSTRY

Santamaría, Amaia¹; Fiol, Francisco²; García, Verónica³; Setién, Jesús⁴; González, Javier-Jesús⁵

1: Department of Mechanical Engineering University of the Basque Country (UPV/EHU) e-mail: <u>Amaia.santamaria@ehu.es</u>, web: <u>https://www.ehu.eus/en/</u>

2: Department of Construction EPS, University of Burgos (UBU) e-mail: <u>ffiol@ubu.es</u>, web: <u>http://www.ubu.es/english-version</u>

3: Sustainable Construction Division TECNALIA Research and Innovation e-mail: <u>veronica.garcia@tecnalia.com</u>, web: <u>http://www.tecnalia.com/en/</u>

4: LADICIM (Laboratory of the Division of Materials Science and Engineering) University of Cantabria (UC) e-mail: jesus.setien@unican.es, web: <u>https://ladicim.es</u>

5: Department of Mining, Metallurgical and Materials Science University of the Basque Country (UPV/EHU) e-mail: javierjesus.gonzalez@ehu.es, web: https://www.ehu.eus/en/

ABSTRACT

Masonry mortars are applied to concrete and brickwork to form structural bonds. Partial substitution of their natural raw materials by waste products from the steel industry represents a sustainable approach towards the ecological management of those materials in Spain, where iron and steelmaking is a highly developed heavy industrial sector. Additionally, a somewhat more traditional industrial sector, the building industry, also consumes large amounts of natural resources and energy, likewise resulting in high CO_2 emission levels. The present research is focused on solid waste from the steelmaking industry and its addition in significant amounts to masonry mortars. Labelled as "white" slag, the waste (saturated in alumina) is commonly known as ladle furnace slag. To do so, several lab tests are presented, which investigate the partial substitution of fillers and hydraulic binders in regular masonry mortars. Firstly, the study of ladle furnace slag and its overall properties and, secondly, studying the feasibility of producing Ladle Furnace Slag mortars, yielded interesting and positive results.

KEYWORDS: Cement; partial substitution; high in alumina; active addition; aggregate.

1. INTRODUCTION

Masonry mortars are useful solutions for the rehabilitation of both old and new structures made of concrete and brickwork. The partial substitution of their natural raw materials by waste products from the steel industry is a sustainable approach towards those materials in Spain where iron and steel-making is a highly developed heavy industrial sector [1].

The replacement of Portland cement by an LFS co-product appears to be a promising application; nevertheless further investigations will be needed. In conclusion, the use of LFS in masonry mortars for various uses is a feasible option: layering for façades, rendering/plastering for partitioning, and for brickwork. The re-use of LFS in that way will therefore make a positive contribution to global sustainability by reducing greenhouse gas emissions, in proportion to the levels of cement substitution (1 t-CEM over 0.7 t-CO_2).

Apart from these positive conclusions, it should be stressed that some additional aspects need to be studied in a near future, such as, for example: water absorption, adhesion to bricks or stones, etc.

6. ACKNOWLEDGEMENTS

The authors wish to express their gratitude for funding through contracts RTI2018-097079-B-C31 (MCIU/AEI/FEDER, UE) and PPGA19/61 (UPV/EHU), as well as through project BU119P17 (Junta de Castilla y León). In addition, our thanks to Basque Government research group (IT1314-19) and to the suppliers ArcelorMittal Sestao and Morteros y Revocos Bikain.

7. **BIBLIOGRAPHY**

[1] Palacios JM, Arana JL, Larburu JI. La Fabricación del Acero. Madrid, España: Unesid;2002: 231 p.

[2] Worldsteel.org. Steel Statistical Yearbook 2018. Avenue de Tervueren, 270 1150 Brussels, Belgium: World Steel Association; 2018: 126p.

[3] UNESID. Datos series historicas siderurgia internacional. <u>https://unesid.org/index.php</u> (accessed: August 2019).

[4] Setién J, Hernández D, González JJ. Characterization of ladle furnace basic slag for use as a construction material. *Construction and Building Materials* 2009; 23:1788-1794.

[5] Shi C. Characteristics and cementitious properties of ladle slag fines from steel production. *Cement and Concrete Research* 2002; 32:459-462.

[6] Wachsmuth F, Geiseler J, Fix W, Koch K, Schwerdtfeger K. Contribution to the structure of BOF-slags and its influence on their volume stability. *Canadian Metallurgical Quarterly* 1981; 20:279-284.

[7] Wang G, Wang Y, Gao Z. Use of steel slag as a granular material: Volume expansion prediction and usability criteria. *Journal of Hazardous Materials* 2010; 184:555-560.

[8] Ortega-Lopez V, Manso JM, Cuesta II, Gonzalez JJ. The long-term accelerated expansion of various ladle-furnace basic slags and their soil-stabilization applications. *Construction and Building Materials* 2014; 68:455-464.

[9] Herrero T, Vegas IJ, Santamaria A, San-Jose JT, Skaf M. Effect of high-alumina ladle furnace slag as cement substitution in masonry mortars. *Construction and Building Materials* 2016; 123:404-413.