

INTED

2019

13th International Technology, Education and Development Conference

11-13 March, 2019
Valencia (Spain)

CONFERENCE PROCEEDINGS

Exploring New Frontiers in Education

**13th International
Technology, Education and
Development Conference**

11-13 March, 2019
Valencia (Spain)

**CONFERENCE
PROCEEDINGS**

Published by
IATED Academy
iated.org

INTED2019 Proceedings
13th International Technology, Education and Development Conference
March 11th-13th, 2019 — Valencia, Spain

Edited by
L. Gómez Chova, A. López Martínez, I. Candel Torres
IATED Academy

ISBN: 978-84-09-08619-1
ISSN: 2340-1079
Depósito Legal: V-247-2019

Book cover designed by
J.L. Bernat

All rights reserved. Copyright © 2019, IATED

The papers published in these proceedings reflect the views only of the authors. The publisher cannot be held responsible for the validity or use of the information therein contained.

INTED2019 COMMITTEE AND ADVISORY BOARD

<i>Agustín López</i>	SPAIN	<i>M^a Jesús Suesta</i>	SPAIN
<i>Alessandro Brawerman</i>	BRAZIL	<i>Marcelo Gaspar</i>	PORTUGAL
<i>Alessia Bevilacqua</i>	ITALY	<i>Marek Medrek</i>	POLAND
<i>Alexander Ziegler</i>	GERMANY	<i>M^a de Lourdes Machado-Taylor</i>	PORTUGAL
<i>Allison Spring</i>	UNITED STATES	<i>Maria Porcel</i>	SPAIN
<i>Amna Alobeidli</i>	U.A.E.	<i>Marina Encheva</i>	BULGARIA
<i>Amparo Girós</i>	SPAIN	<i>Mary Dempsey</i>	IRELAND
<i>Ana Tomás</i>	SPAIN	<i>Michael Collins</i>	IRELAND
<i>Andrew Cheuck Wing Tang</i>	HONG KONG	<i>Michela Tramonti</i>	ITALY
<i>Andriy Didenko</i>	U.A.E.	<i>Miguel Peiró</i>	SPAIN
<i>Angela O'Donnell</i>	UNITED STATES	<i>Mikhail Bouniaev</i>	UNITED STATES
<i>Antonio García</i>	SPAIN	<i>Mohd Hassan Abdullah</i>	MALAYSIA
<i>Cecilia Bjursell</i>	SWEDEN	<i>Mounir Ben Ghalia</i>	UNITED STATES
<i>Charles Weiss</i>	UNITED STATES	<i>Nerey Mvungi</i>	TANZANIA
<i>Chelo González</i>	SPAIN	<i>Norma Barrachina</i>	SPAIN
<i>David Martí</i>	SPAIN	<i>Peter Haber</i>	AUSTRIA
<i>Eladio Duque</i>	SPAIN	<i>Peter Mozelius</i>	SWEDEN
<i>Elena Grunt</i>	RUSSIAN FED.	<i>Petr Beremiljski</i>	CZECH REPUBLIC
<i>Fadia Nasser-Abu Alhija</i>	ISRAEL	<i>Priscila Berger</i>	GERMANY
<i>Gary Ross</i>	JAPAN	<i>Raja Nor Safinas Raja Harun</i>	MALAYSIA
<i>Glavio Paura</i>	BRAZIL	<i>Remigijus Bubnys</i>	LITHUANIA
<i>Harri Kuusela</i>	FINLAND	<i>Rivka Gadot</i>	ISRAEL
<i>Ignacio Ballester</i>	SPAIN	<i>Sanna Juvonen</i>	FINLAND
<i>Ignacio Candel</i>	SPAIN	<i>Sarah Louisa Birchley</i>	JAPAN
<i>Ilias Batzogiannis</i>	GREECE	<i>Sergio Pérez</i>	SPAIN
<i>Iván Martínez</i>	SPAIN	<i>Sheri Bias</i>	UNITED STATES
<i>Jalal Nouri</i>	SWEDEN	<i>Stephanee Stephens</i>	UNITED STATES
<i>Javier Domenech</i>	SPAIN	<i>Susannah Quinsee</i>	UNITED KINGDOM
<i>Javier Martí</i>	SPAIN	<i>Suzan Girginkaya Akdag</i>	TURKEY
<i>Joanna Lees</i>	FRANCE	<i>Tara Hammar</i>	UNITED STATES
<i>John Gordon</i>	UNITED KINGDOM	<i>Tessai Hayama</i>	JAPAN
<i>Jorge Mendonça</i>	PORTUGAL	<i>Todd Brower</i>	UNITED STATES
<i>Jorge Reyna</i>	AUSTRALIA	<i>Uwe Matthias Richter</i>	UNITED KINGDOM
<i>Jose F. Cabeza</i>	SPAIN	<i>Valentina Gerasimenko</i>	RUSSIAN FED.
<i>Jose Luis Bernat</i>	SPAIN	<i>Victor Fester</i>	NEW ZEALAND
<i>Juanan Herrero</i>	SPAIN	<i>Wendy Gorton</i>	UNITED STATES
<i>Lorayne Robertson</i>	CANADA	<i>Xavier Lefranc</i>	FRANCE
<i>Lorena López</i>	SPAIN	<i>Xema Pedrós</i>	SPAIN
<i>Luis Gómez Chova</i>	SPAIN	<i>Zigrida Vincela</i>	LATVIA

CONFERENCE SESSIONS

ORAL SESSIONS, 11th March 2019

Gamification
Augmented Reality in Education
Tutoring and Mentoring
Computational Thinking
Educational Management (1)
e-Content & e-Learning
Challenges of a Multicultural Society (1)
Teaching and Learning Mathematics

Serious Games & Game-Based Learning (1)
Collaborative Educational Environments
Adult and Lifelong Learning
Creativity and Design Thinking in Education
Experiences in Special Education (1)
Educating on Interactive Technology, Entrepreneur-ship and Participation
Challenges of a Multicultural Society (2)
New Technologies in Mathematics

Educational Software
Virtual Reality in Education
Next Generation Classroom
Innovation Procurement to Steer User-driven Innovations for Digital Learning
Experiences in Special Education (2)
Project and Problem Based Learning (1)
New Technologies in Health Sciences Education
Skills and Competencies for 21st Century Engineers

Serious Games & Game-Based Learning (2)
Learning Management Systems
Competence Evaluation
Quality Assurance in Education
Teacher Training for Multicultural and Inclusive Education
Flipped, Blended and Online –Digitalisation in HE Language Learning in Finland
Experiences in Health Sciences Education
Experiences in Engineering Education

POSTER SESSIONS, 11th March 2019

New Experiences in Education
New Trends in Education and Research

ORAL SESSIONS, 12th March 2019

Employability Trends and Challenges
e-Learning Experiences
Curriculum Design (1)
Technology Enhanced Learning in Computer Science
Challenges for the Teaching Profession
Blended Learning
Digital Media & Information Literacy
Assessment in Foreign Languages Education
Enhancing the Teaching Experience

Entrepreneur-ship Education
Technology Enhanced Learning
Curriculum Design (2)
Programming and Coding Skills
Pre-Service Teacher Education (1)
Active Learning Experiences
Student Engagement
Language Learning - from ESP to CLIL

Soft Skills Development
MOOCs and e-Learning Experiences
Intelligent Tutoring Systems & Learning Analytics
International Cooperation
Pre-Service Teacher Education (2)
Project and Problem Based Learning (2)
Ethical Issues in Education
Language Learning Innovations
ICT Support for Work-Integrated Learning: Sharing and Learning

University-Industry Collaboration
Social Media in Education
e-Assessment
STEM in Higher Education
Teacher Training (1)
Flipped Learning Experiences
Learning Space Design
New Technologies in Language Learning

International Student Mobility
Digital Literacy
Assessment of Student Learning
STEM in Primary and Secondary Education
Teacher Training (2)
Educational Management (2)
Student Resilience and Wellbeing
Communication Skills

POSTER SESSIONS, 12th March 2019

Emerging Technologies in Education
Pedagogical Innovations and Educational Issues

VIRTUAL SESSIONS

Apps for Education
Augmented Reality
Barriers to Learning
Blended Learning
Collaborative and Problem-based Learning
Competence Evaluation
Computer Supported Collaborative Work
Curriculum Design and Innovation
Digital divide and access to Internet
Diversity issues and women and minorities in science and technology
E-content Management and Development
e-Learning
Education and Globalization
Education in a Multicultural society
Educational Research Experiences
Educational Software and Serious Games
Enhancing learning and the undergraduate experience
Ethical issues in Education
Evaluation and Assessment of Student Learning
Experiences in STEM Education
Flipped Learning
Impact of Crisis on Education
Impact of Education on Development
Inclusive Learning
International Projects
Language Learning Innovations
Learning and Teaching Methodologies
Learning Experiences in Primary and Secondary School
Learning Management Systems (LMS)
Lifelong Learning
Links between Education and Research
Mobile learning
New projects and innovations
New Trends in the Higher Education Area
Online/Virtual Laboratories
Organizational, legal and financial issues
Pre-service Teacher Experiences
Quality assurance in Education
Research Methodologies
Research on Technology in Education
Science popularization and public outreach activities
Student Support in Education
Technological Issues in Education
Technology-Enhanced Learning
Transferring disciplines
Tutoring and Coaching
University-Industry Collaboration
Virtual Universities
Vocational Training

ABOUT INTED2019 Proceedings

HTML Interface: Navigating with the Web browser

This USB Flash drive includes all presented papers at INTED2019 conference. It has been formatted similarly to the conference Web site in order to keep a familiar environment and to provide access to the papers through your default Web browser (open the file named "INTED2019_Proceedings.html").

An Author Index, a Session Index, and the Technical Program are included in HTML format to aid you in finding conference papers. Using these HTML files as a starting point, you can access other useful information related to the conference.

The links in the Session List jump to the corresponding location in the Technical Program. The links in the Technical Program and the Author Index open the selected paper in a new window. These links are located on the titles of the papers and the Technical Program or Author Index window remains open.

Full Text Search: Searching INTED2019 index file of cataloged PDFs

If you have Adobe Acrobat Reader version 6 or later (www.adobe.com), you can perform a full-text search for terms found in INTED2019 proceedings papers.

Important: To search the PDF index, you must open Acrobat as a stand-alone application, not within your web browser, i.e. you should open directly the file "INTED2019_FrontMatter.pdf" with your Adobe Acrobat or Acrobat Reader application.

This PDF file is attached to an Adobe PDF index that allows text search in all PDF papers by using the Acrobat search tool (not the same as the find tool). The full-text index is an alphabetized list of all the words used in the collection of conference papers. Searching an index is much faster than searching all the text in the documents.

To search the INTED2019 Proceedings index:

1. Open the Search PDF pane through the menu "Edit > Advanced Search" or click in the PDF bookmark titled "SEARCH PAPERS CONTENT".
2. The "INTED2019_index.pdx" should be the currently selected index in the Search window (if the index is not listed, click Add, locate the index file .pdx, and then click Open).
3. Type the search text, click Search button, and then proceed with your query.

For Acrobat 9 and later:

1. In the "Edit" menu, choose "Search". You may receive a message from Acrobat asking if it is safe to load the Catalog Index. Click "Load".
2. A new window will appear with search options. Enter your search terms and proceed with your search as usual.

For Acrobat 8:

1. Open the Search window, type the words you want to find, and then click Use Advanced Search Options (near the bottom of the window).
2. For Look In, choose Select Index.
3. In the Index Selection dialog box, select an index, if the one you want to search is available, or click Add and then locate and select the index to be searched, and click Open. Repeat as needed until all the indexes you want to search are selected.
4. Click OK to close the Index Selection dialog box, and then choose Currently Selected Indexes on the Look In pop-up menu.
5. Proceed with your search as usual, selecting other options you want to apply, and click Search.

For Acrobat 7 and earlier:

1. In the "Edit" menu, choose "Full Text Search".
2. A new window will appear with search options. Enter your search terms and proceed with your search as usual.

AVOIDING DESIGN FIXATION TO IMPROVE THE STUDENTS' CREATIVE CAPABILITIES

R. Sancibrian¹, E. Gonzalez-Sarabia¹, J.M. Blanco², I. Lombillo¹, C. Torre-Ferrero¹

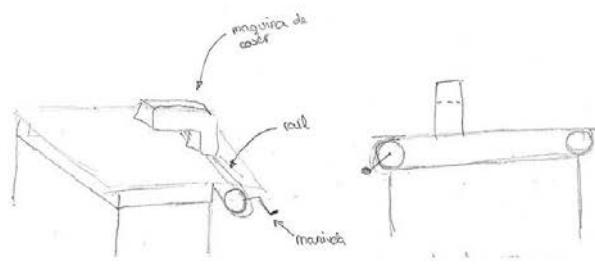
¹University of Cantabria (SPAIN)

²University of the Basque Country (SPAIN)

Abstract

Undoubtedly, design is an important part of engineering degrees. In our universities, design pedagogy involves terms such as creativity, innovation and assessment. Educators involved in design engineering courses should emphasize these concepts among the students. Therefore, fostering creativity in engineering education is a fundamental task to improve the capabilities of the students to confront with new designs. Problem Based Learning (PBL) is a well-known methodology that meets the necessary requirements to achieve this goal. In this kind of activities, the instructor proposes a design challenge to the students in order to improve the features of a product that already exists in the market. The students have to analyse the product and study the different alternatives provided by different companies. Thus, it is common to conduct a search of these products to learn about the capabilities, advantages and drawbacks. However, it is clear that reviewing information about other products can affect the design creativity. Indeed, it has been demonstrated that people exposed to an example solution generate fewer ideas than those who were not. This effect is called *Design Fixation* because the person tries to find a solution close to the solution that they know. In other words, the creativity is constrained by the example or examples they have seen before. However, the study of examples is essential to know existing solutions and it could improve the generation of innovative ideas. This paper examines whether reviewing information about the product is negative because it can affect the design creativity. To this aim, students were divided into groups to carry out the design of a product proposed by the instructors. As part of the work, each group develops a portfolio containing the steps taken in the creativity process. This portfolio contains the number of sources consulted. The relationship between the number of sources and the quality of the solution achieved is presented and discussed in the paper. Based on this information actions to avoid *Design Fixation* are proposed.

Keywords: Design Fixation, creativity, idea generation, innovation.


1 INTRODUCTION

During the last decades applications in computers and Artificial Intelligence (AI) has become more and more important in engineering design. In fact, AI has replaced in many cases human work, especially in systematic, repetitive tasks and tedious work. Although the transformation of the world in this domain is clear, creativity is still a human work. In fact, the development of new products requires creative work performed by engineers and technicians. Creativity continues having great importance in design and is a crucial task in generating new, original and innovative products. The importance of creativity has made that universities include this kind of competence in their syllabus. This is done in response to the demand of professionals with skills on recognizing, understanding and applying creativity and critical thinking. However, currently there is no unanimity on how creativity should be implemented in education, and this problem is especially important in engineering studies [1].

Engineers are accustomed to use methods and process to achieve their objectives. Therefore, it would be no difficult for them to be adapted to the methods used in creativity. Indeed, engineering is a profession where scientific principles and methods are applied to obtain useful products and systems. Several methods have been described in the literature about how to implement creativity in the industry [2,3]. However, little has been done about their implementation in education [4]. As a result, learning about how to be more creative is today a challenge in our universities. One of the main issues is the implementation of ideation methods. Ideation methods are the methodologies that help to enhance the capabilities of people to be more creative [5-7]. The effectiveness of ideation methods is measured by using four concepts [1]. They are 1) Fluency, which is defined as the number of ideas generated in the creative process. 2) Flexibility, that is the capability of using different points of view in the generation of ideas, 3) Originality, referring to provide unusual or novel ideas and 4) Elaboration, which is the ability

a)

b)

Figure 2. Example of two of the sketches presented by the teams.

4 CONCLUSIONS

This paper deals with the *Design Fixation* problem in engineering education. The paper shows an example where the main goal is to foster creativity in educational activities. However, *Design Fixation* can reduce the efficiency and effectiveness of the work carried out by students. In fact, when students know other solutions to their problem the capacity for generating new ideas could be reduced. In order to study the influence of such effect the experiment described in this paper divided the groups of students in two Sections. One of them worked without previous information and the other section worked with all information that they could collect.

In our study, the number of ideas generated by the students without information is greater than those generated with information. This fact is in accordance with those expected results in *Design Fixation*. Indeed, when the students know more solutions their generation of ideas is limited by the fear to copy those solutions. This trend is also shown in the originality of the ideas. In this case, Section 1 generates more original ideas because they are not conditioned by previous knowledge. Nevertheless, Section 2 tends to generate ideas related with the solutions they know.

In the case of flexibility, there are not clear conclusions in this work. The results are similar in both Sections. Further investigation is necessary to obtain valuable information. Elaboration is also similar in both cases. However, this could be considered successful since it should not be influenced by the *Design Fixation*.

ACKNOWLEDGEMENTS

The authors acknowledge the funding provided for this research project from the 4th Call for Teaching Innovation Projects of the University of Cantabria (UC), and the participation of the consolidated research groups IT781-13 and IT1314-19 of the UPV/EHU and Basque Government.

REFERENCES

- [1] Z. Liu, D.J. Schonwetter, "Teaching creativity in engineering," vol. 20, no. 5, pp. 801-808, 2004.
- [2] S.P. Besemer "Creative product analysis matrix: testing the model structure and a comparison among products. Three novel chairs," *Creativity Research Journal*, vol. 11, no. 4, pp. 333-346, 1998.
- [3] E.U. Haner, "Spaces for creativity and innovation in two established organizations," *Creativity and Innovation Management*, vol. 14, pp. 288-298, 2005.
- [4] N. Genco, K. Höltä-Otto, and C. C. Seepersad, "An experimental investigation of the innovation capabilities of undergraduate engineering students," *Journal of Engineering Education*, vol. 1, pp. 60-81, 2012.
- [5] A. F. Osborn, "Applied imagination: principles and procedures of creativity problem solving," Charles Scribner's Sons, New York, 1963.
- [6] B. Rohrbach, "Creativity by rules – Method 635, a new technique for solving problems," *Absatzwirtschaft*, vol. 12, 53-73, 1969.
- [7] P. Ngo, C. J. Turner, J. S. Linsey, "Identifying trends in analogy usage for innovation: a cross-sectional product study," *Journal of Mechanical Design*, vol. 136, pp. 111109-1-13, 2014.

- [8] S.M. Smith, *The nature of insight*, The MIT Press, 1995.
- [9] D.G. Jansson, S.M. Smith, "Design fixation," *Design Studies*, vol. 12, no. 1, pp. 3-11, 1991.
- [10] A.T. Purcell, J.S. Gero, "Design and other types of fixation," *Design Studies*, vol. 17, no. 4, pp.363-383, 1996.
- [11] A. Hutchuel, P. LeMasson, B. Weil, "Teaching innovative design reasoning: how concept-knowledge theory can help overcome fixation effects," *Artificial Intelligence for Engineering Design, Analysis and Manufacturing*, vol. 25, no. 1, pp. 77-92, 2009.
- [12] R.J. Youmans, "The effects of physical prototyping and group work on the reduction of design fixation," *Design Studies*, vol. 32, pp. 115-138, 2011.
- [13] E.S. Abdelall, M.C. Frank, R.T. Stone, "Design for manufacturability based feedback to mitigate design fixation," *Journal of Mechanical Design*, vol. 140, pp. 091701-1-9, 2018.
- [14] R.J. Youmans, T. Arciszewski, "Design fixation: classifications and modern methods of prevention," *Artificial Intelligence for Engineers Design, Analysis and Manufacturing*, vol. 28, no. 2, pp. 129-137, 2014.
- [15] E.S. Abdelall, M.C. Frank, R.T. Stone, "A study of design fixation related to additive manufacturing," *Journal of Mechanical Design*, vol. 140, pp. 041702-1-10, 2018.
- [16] O. Atilola, M. Tomko, J.S. Linsey, "The effects of representation on idea generation and design fixation: a study comparing sketches and function trees," *Design Studies*, vol. 42, pp. 110-136, 2016.
- [17] C. Cardoso, P. Badke-Schaub, O. Eris, "Inflection moments in design discourse: How questions drive problem framing during idea generation," *Design Studies*, vol. 46, pp. 59-78, 2016.
- [18] H.H. Choi, M.J. Kim, "Using the digital context to overcome design fixation: a strategy to expand students' design thinking," *International Journal of Architectural Research*, vol. 12, no. 1, pp. 228-240, 2018.
- [19] N. Crilly, "Fixation and creativity in concept development: the attitudes and practices of expert designers," *Design Studies*, vol. 38, pp. 54-31, 2015.
- [20] N. Crilly, C. Cardoso, "Where next for research on fixation, inspiration and creativity in design?," *Design Studies*, vol. 50, pp. 1-38, 2017.
- [21] E.C.Y. Koh, M.P. De Lessio, "Fixation and distraction in creative design: the repercussions of reviewing patent documents to avoid infringement," *Research in Engineering Design*, vol. 29, pp. 351-366, 2018.
- [22] T. McCaffrey, "Innovation relies on the obscure: A key to overcome the classic problem of functional fixedness," *Psychological Science*, vol. 23, no. 3, pp. 215-218, 2012.
- [23] M.A. Neroni, L.A. Vasconcelos, N. Crilly, "Computer-based "mental set" task: an alternative approach to studying design fixation," *Journal of Mechanical Design*, vol. 139, pp. 071102-1-10, 2017.
- [24] C. So, J. Joo, "Does Persona Improve creativity?" *The Design Journal*, vol. 20, no. 4, pp. 459-475, 2017.
- [25] I. Tseng, J. Moss, K. Kotovsky, "The role of timing and analogical similarity in the stimulation of idea generation in design," *Design Studies*, vol. 29, pp. 203-221, 2008.
- [26] L.A. Vasconcelos, N. Crilly, "Inspiration and fixation: questions, methods, findings, and challenges," *Design Studies*, vol. 42, pp. 1-32, 2016.
- [27] L.A. Vasconcelos, M.A. Neroni, C. Cardoso, N. Crilly, "Idea representation and elaboration in design inspiration and fixation experiences," *International Journal of Design Creativity and Innovation*, vol. 6, no. 1, pp. 93-11, 2018.