

ACTIVIDADES DE FORMACIÓN DOCTORAL ESPECÍFICA 2018

Título de la actividad

Curso de "Iniciación al paquete estadístico SPSS en Biomedicina"

Programas de doctorado que proponen la actividad

1. "Investigación Biomédica".

2. "Biología Molecular y Biomedicina".

Persona de contacto

Nombre y apellidos: M. Begoña Ruiz Larrea

Teléfono: 946012829

Email: <u>mbego.ruizlarrea@ehu.eus</u> Breve descripción de la actividad

El objetivo de este curso (18 h) es dotar a los/las asistentes de los conocimientos y las habilidades necesarios para la realización de análisis descriptivos e inferencias estadísticas básicas utilizando como herramienta de apoyo el programa SPSS.

PROGRAMA:

<u>Día 1.</u> Taller "Buenas Prácticas para la creación de Bases de Datos de Investigación". Introducción. Recomendaciones para la creación de bases de datos de investigación. Selección de variables a incluir/descartar. LOPD: Disociación vs Anonimización. Disociación del número de historia. Seguridad de las bases de datos. Casos prácticos. Errores comunes. Ejercicio Práctico: creación de una base de datos.

<u>Día 2.</u> Creación de un nuevo fichero de datos en SPSS. Propiedades de las variables. Importación de archivos al SPSS: Excel, Access... Preparación del archivo para el posterior análisis estadístico: creación de variables nuevas, creación de variables a partir de fechas, cómo pasar de una variable continúa a una categórica. Seleccionar casos. Segmentar casos. Ordenar casos. Ejercicios.

<u>Día 3.</u> Análisis estadísticos básicos (I). Datos categóricos: definición estadística básica, estadísticos descriptivos adecuados para datos categóricos, gráficos adecuados para la descripción de datos categóricos. Ejercicios. Análisis estadísticos básicos (II): Datos numéricos, definición estadística básica. Estadísticos descriptivos adecuados para datos numéricos. Datos numéricos (medidas de tendencia central y de posición, medidas de variabilidad, medidas de forma. Gráficos adecuados para el análisis descriptivo de datos numéricos. Tablas de contingencia: definición, características, prueba de χ 2, razón de ventajas (Odds Ratio: OR). Ejercicios.

<u>Día 4.</u> Comparación de medias. Muestras independientes, definición estadística. Muestras relacionadas, definición estadística. Ejercicios. Análisis de la Varianza (ANOVA): objetivos y aspectos teóricos, análisis de varianza entre grupos: homogeneidad/homocedasticidad. Comparaciones múltiples: pruebas post-hoc. Ejercicios.

<u>Día 5.</u> Pruebas no paramétricas y sus usos (I). Prueba Kolmogorov-Smirnov. Teoría y ejemplos. Ejercicios. Pruebas no paramétricas y sus usos (II). Comparación de medias: muestras independientes (U Mann-Whitney, Kruskal Wallis), muestras relacionadas (test de signos de Wilcoxon, McNemar). Ejercicios.

<u>Día 6</u>. Resolución de dudas. Ejercicios recopilatorios. Encuestas de satisfacción.

<u>Profesoras</u>: Lorea Martínez y Águeda Azpeitia. Instituto de Investigación Sanitaria BioCruces.

Calendario

Días: 17, 18, 19, 20, 24 y 25 de septiembre. Horario: 15,30-18,30 h. (18 horas totales).

Lugar de impartición

Biblioteca Central UPV/EHU, aula de informática (6ª planta), Leioa. Campus de Bizkaia.