
Scratch2015AMS, Amsterdam, Netherlands

Olabe, Basogain, Olabe 1

HelloScratchJr.org: Curricular Design and Assessment

Tools to Foster the Integration of ScratchJr and

Computational Thinking into K-2 Classrooms

Juan Carlos Olabe, jolabe@cbu.edu
Electrical and Computer Engineering Department, CBU

Xabier Basogain, xabier.basogain@ehu.es
Department of Engineering Systems and Automatics, University of the Basque Country, EHU

Mikel Olabe, miguelangel.olabe@ehu.es
Department of Engineering Communications, University of the Basque Country, EHU

Abstract

ScratchJr was developed to incorporate programming into the classrooms of K-2 grades. A

successful achievement of this goal requires the creation of age appropriate curriculum and sets

of corresponding assessment tools. This paper presents a set of design criteria and

developmental guidelines for curricular materials and assessment tools and methods. The

website HelloScratchJr.org has been created to disseminate these findings. The site is scheduled

to go online in the summer 2015.

Keywords

ScratchJr, curricular development, programming, assessment tools

1. Introduction

The formal study of computational skills in schools (K-12) has been recognized by many

institutions and administrations. As an example, England, starting in the academic year 2014-15,

formally instituted the study of computational thinking and computer programming as part of the

core curriculum of primary and secondary education as described in the ‘National curriculum in

England: computing programmes of study’ (Department for Education England, 2013).

ScratchJr plays an essential role in this process since it has been designed specially as the

introductory computer programming environment for children ages 5 to 7. ScratchJr is a

graphical programming environment specifically designed for the developmental and learning

needs of children in kindergarten, first, and second grades (Flannery et al., 2013).

MIT and Tufts University released the iPad application ScratchJr to the general public in the

summer of 2014, coinciding with the biannual Scratch@MIT conference (Strawhacker, Lee and

Bonta, 2014).

mailto:jolabe@cbu.edu
mailto:xabier.basogain@ehu.es
mailto:miguelangel.olabe@ehu.es

Scratch2015AMS, Amsterdam, Netherlands

Olabe, Basogain, Olabe 2

It is very likely that many K-2 classroom teachers may have had little or no programming training

during their studies or professional development, and therefore the need for curricular materials

and appropriate assessment tools is critical in these early years of education.

The following sections describe a set of guiding strategies and criteria for the creation of

curricular and assessment tools. These guidelines are intended to help teachers evaluate the

content of current curriculum as well as to develop new, age appropriate materials. The

guidelines will be illustrated with concrete examples to provide conceptual anchors that teachers

will use in their learning and teaching endeavors.

2. Curricular Materials

2.1. The Two Branches of the Tree

ScratchJr, as many other programming environments, including Scratch, allows the creation of

programs that could be described as games, or stories, or combination of interactive stories and

games (Resnick et al., 2009).

In these programs we could classify the building blocks that make up a project into two groups:

1) the blocks that implement the actions of the protagonists, the sprites, (for example: to move

right, to say hello, to disappear); and 2) the blocks that control when those actions occur (for

example: when the sprite is clicked, when the sprite is touched by another character, forever, etc.)

If we think of these sets of blocks as belonging to two branches of a tree, we can start to assess

the cognitive skills required to implement a particular project by looking at the location of the

project blocks in the tree.

Action blocks, such as move to the right or say hello, are cognitively simpler since they are

already part of the daily vocabulary of a 5 year old child.

Control blocks, especially when acting in coordination, such as ‘when A occurs then move to the

right and at the same time move up,’ require higher cognitive skills to process and understand

their operation. If these blocks are used indiscriminately or in poorly designed environments, they

will lead to inscrutable behaviors that not even adults could decipher. (Using ‘send and receive’

messages it is quite easy to create in ScratchJr projects with behaviors that will puzzle the vast

majority of adults. This is a territory to be avoided in the classroom.)

2.2. The First Three Years: K-1-2

Using the metaphor of the Two Branches of the Tree, the curricular content in Kindergarten will

Scratch2015AMS, Amsterdam, Netherlands

Olabe, Basogain, Olabe 3

heavily draw from the branch of Action Blocks, and the content of first and second grades will

gradually add components from the branch of Control Blocks.

The blocks of the Branch of Actions can be grouped in three thematic areas: Motion, Physical

Appearance, and Story Telling (Fig. 1).

• Motion: The group of motion includes the blocks that allow the sprites to move and turn.

There are eight blocks, and they all are included in the blue motion menu.

• Physical Appearance: This group includes the blocks that can alter the appearance of the

sprites. There are five blocks: three of them allow altering the size of the sprite, and two

allow the control of whether the sprites are visible or not.

• Story Telling: This group allows the expression of ideas through written text or audio, or

special effects through sounds and music. There are three blocks that implement these

actions: Say, and Play Recorded Sound and Play a pop sound.

Figure 1. Blocks of the Branch of Actions

The blocks of the Branch of Control can be grouped in five thematic areas: Start/Stop,

Communication via Messages, Repetition, Change Pages/Projects, and Set Speed (Fig. 2).

• Start/Stop: Three blocks allow to start execution of a script: Green Flag, Tap and Bump. The

Wait block temporarily halts a script. The Stop block stops all the character’s scripts.

• Communication via Messages: Two blocks, Send Message and Start on Message, implement

this communication. A total of six colors allows up to six sets of pairs in a project. If the

Send and Start components of the pair reside in different sprites, and therefore reside in

different scripting areas, there will be a great demand on the short-term working memory of

the child, especially because the color code of the message is void of intrinsic meaning,

unlike Green Flag, Tap or Bump where the meaning is explicit. For these reasons,

communication with messages will require the greatest level of cognitive skills.

• Repetition: Two blocks implement repetition, Forever, and Repeat a number of times.

Scratch2015AMS, Amsterdam, Netherlands

Olabe, Basogain, Olabe 4

• Change Pages/Projects: The Change of Page block is in fact a change of project block since

each page is a separate project that does not necessarily share sprites with the other pages

and where no communication via messages is possible. At the same time, each page, or

project, can issue multiple Change Page commands, within one or many sprites, opening the

door to unwanted complexity and uncontrolled flow of the program.

• Set Speed: A Set Speed block allows the change of the rate of certain actions into slow,

average or fast settings.

 Figure 2. Blocks of the Branch of Control

In the curriculum of Kindergarten it is appropriate to use any of the Branch of Actions blocks in

the creation of a project since they form scripts that are equivalent to actions in the daily

vocabulary of a 5 year old.

In Kindergarten we consider that it is advisable to create projects that are sequential in nature

(avoiding parallel threads), and that do not include physical interaction between sprites (because

it is difficult to visualize interacting scripts that reside in separate scripting areas: a child’s short-

term working memory is still very limited in scope and time.) The communication via messages

and the coordination of multiple projects via the Go to Page block, will be studied in later years.

The three blocks of the Branch of Control that are age appropriate for Kindergarten students are

the Star on Green Flag and Start on Tap because they form scripts linguistically similar to their

language, and the block Repeat Forever, which only repeats the sentence again and again.

Students in First Grade, after having consolidated the concepts and strategies gained during

Kindergarten, are ready to increase their lexicon with some blocks from the Control Branch of the

Tree.

Scratch2015AMS, Amsterdam, Netherlands

Olabe, Basogain, Olabe 5

From the Start/Stop group it is appropriate to include any of the blocks. In particular the block

Bump requires imagining a future event that in general will have to be triggered by some other

scripts. For example, in order for the cat to bump into the rabbit, either or both will have to move,

and the scripts controlling this motion will be the cause of triggering the bump script.

The Repetition and Set Speed blocks are modifiers of concepts already seen in Kindergarten and

therefore will be easily assimilated by first graders.

Finally, the Change of Page block allows the creation of multiphase projects, and as in a multi-

chapter book, the space for creativity is enlarged. But as in a book, the Change of Page should be

used to create a linear narrative.

Students of Second Grade will now be ready to complete their lexicon with the use of

communication via messages, which allows for a great deal of interactivity among scripts and

among sprites. The new ideas for the second graders will need to be introduced systematically

with incremental projects, as well as a set criteria for programming style that will prevent some of

the undesired effects described earlier.

3. Curriculum of Computational Ideas

The design of a computational thinking curriculum is not necessarily the creation of projects

where the emphasis is in the list of the different blocks of the language that are utilized. Rather, it

is the development of activities and projects where the student is exposed to, and allowed to

practice to become familiar with fundamental and powerful computational ideas. The familiarity

with, and knowledge of these ideas will allow the student to combine them into more powerful

ones, and to explore other new ideas following some of the patterns discovered in the first ideas.

To illustrate the need for a comprehensive portfolio of ideas in the design of a curriculum, this

section analyzes some concrete examples where just creating a functioning program may not

necessarily lead to new and more complex projects.

For this task we selected projects that are available to all ScratchJr users. The ScratchJr iPad app

includes a quick intro to ScratchJr and a set of eight Sample Projects: Under the Sea, Farm, Cat

on Bat, Friends, Jack Be Nimble, Animal Race, Bump and Quick Intro (ScratchJr Itunes, 2015).

Under the Sea: This project is an animation which includes Fish1, Fish2, Seahorse and Starfish.

We will concentrate on the scripts of the two fish. When the project is executed, the two fish

move synchronously, left-right, left-right, left-right, as a well-trained dancing team. Since both

fish move in the same way, the same distance, at the same time, the observer should deduce that

similar scripts control the two fish. That should be the correct assumption, and the scripts should

validate it. Looking at the scripts we find that Fish1 repeats the following pattern: Move-Right(2),

Move-Right(-2); and Fish2 does: Move-Left(-2), Move-Left(2). Notice the double switch: Right-

Right for Left-Left, and (2)(-2) for (-2)(2). These two different scripts are designed to implement

Scratch2015AMS, Amsterdam, Netherlands

Olabe, Basogain, Olabe 6

the very same Left-Right constant dance. A good script should approximate the mental

description that a child would use to describe the action (Fig. 3).

Figure 3. Project Example: Under the Sea

(The concept of negative numbers is introduced in the schools of the United States in Sixth grade

(Common Core State Standards, 2015) (6.NS.C.5). ScratchJr has been designed for K-2 grades,

however the vast majority of the blocks of Motion and Physical Appearance have been designed

to work also with negative numbers. For K-2 students these features should be avoided.)

Tap the Farm: This project includes a Pig, a Horse, and a Chicken. When the Pig is tapped one

script triggers a sound and another makes him move. This simple set of two scripts is repeated for

the Horse and the Chicken. In each sprite the sound is different, and the movement is different.

One good idea (sound and movement when tapped) is reinforced by applying it to all sprites; and

one good idea (sound and movement when tapped) is made even better by showing how flexible

it is when the sounds and the movements are changed (Fig 4).

 Figure 4. Project Example: Tap the Farm

Scratch2015AMS, Amsterdam, Netherlands

Olabe, Basogain, Olabe 7

Friends: In this project there are three pages, and the third one includes the background of a

soccer field where a soccer ball moves into the goal, and when it does, the six children in the field

scream ‘Goal!’ This is an example of synchronization with broadcasting: ‘when the ball enters

the goal, it should command the children in the field to trigger their scripts.’ Instead, the project is

implemented with seven independent scripts, all triggered at the same time. The process of cause

and effect is simulated by adding individual Wait blocks in the children’s scripts. If for some

reason the timing of the ball is changed, all the other scripts will have to be individually changed

as well. The idea of one event triggering many other simultaneous events, synchronization with

broadcasting, is a fundamental computational idea, and it needs to be implemented with the

appropriate structures (Fig. 5).

Figure 5. Project Example: Friends

The design of curricular computational content should have as a goal the gradual introduction of

computational thinking ideas and practices. In describing curricular content, an important

criterion should be to list the specific ideas that the child would have acquired permanently, that

is, a description of his/her computational thinking portfolio. This portfolio should be explicit and

comprehensive, and the child should be familiar with it. It should be similar to when a child is

asked ‘what songs, stories and games do you know,’ and the child lists the songs, stories and

games, and also the child is able to sing the songs, narrate the stories and describe the rules of the

games. In the same way, a goal in curricular design is to enable the student to tell others what

computational ideas he or she has acquired, and to explain to others what these ideas are, and how

they are implemented, in this case with ScratchJr.

4. Assessment Tools

Mastery Learning describes the idea that profound knowledge of a subject is attained when at

each step of the learning process a formal evaluation of the concepts and skills learned is

implemented, and the feedback provided to the learner either requires additional work on the

current topic, or readiness for the next material is acknowledged (Kulik, Kulik & Bangert-

Scratch2015AMS, Amsterdam, Netherlands

Olabe, Basogain, Olabe 8

Drowns,1990).

The mind operates in two distinct and very different modes: consciously applying a set of rules

(System-2), for example multiplying 27x14; or automatically, effortlessly, and unavoidably

(System-1), for example recognizing a friendly face. Learning ScratchJr, like learning any natural

language, is a process of storing in long-term working memory a set of ideas and procedures.

Long-term working memory resides in what is called System-1 (Kahneman, 2003; Stanovich &

West, 2000) and therefore requires that the assessment tools be designed to address long-term

working memory properties. This structure requires two sets of assessments: recognition and

synthesis.

Using the example of the project Friends described earlier, the task of recognition involves seeing

a soccer field with a ball and six children, where the ball moves, and when it reaches the goal, all

children scream ‘Goal!’ and recognizing that the process is an instance of a synchronization with

broadcast, where the conclusion of one action, the ball entering the goal, triggers all the other

scripts simultaneously.

The task of synthesis is one in which the child is told, for example, the phrase ‘Friends Project’

and he or she is able to reconstruct the sequence of events, and the scripts that implement them in

a way that replicates his/her memory of it. This implies that the project needs to be already in the

child’s long-term working memory.

Because ScratchJr is an iPad application, it offers the computer environment to implement both

aspects of the assessment. An appropriate technique to implement the first assessment is to have

simultaneous access to a video of the action to be recognized, and a set of alternative scripts that

would implement it. The careful selection of alternative scripts can discriminate among several

possible misconceptions on the problem, providing information on the success of the student, or

what the misconception is. Because these assessments are automatic and implemented in the iPad,

a teacher can have fine grain analysis of the progress of each individual student.

A set of paper-based assessments are available for the ScratchJr community (Circle the Box, and

Reverse Engineering, Fig. 6) (ScratchJr.org, 2015). These assessments, however, may provide

biased information and a skewed vision on the complexity of the programming project.

The first assessment set, Circle the Blocks, is based on a group of videos of recorded projects that

the students view three times. Later they circle the blocks they consider were part of the script

among a set of all blocks available in ScratchJr. This is a discrimination task to be implemented

by System-2 (Kahneman, 2003; Stanovich & West, 2000), with interfering subtasks. Imagine

being asked: ‘select among these five pictures the one of the elephant with a pink bow’ (System-

1); versus being told: ‘find and circle in this 10 by 10 box of random letters all the letters in the

phrase “elephant with a pink bow (System-2).”’

In the Circle the Blocks assessment a total of seven tests are presented: two ranked easy, three

ranked medium, and two ranked hard. Analyzing the complexity of the scripts it seems plausible

Scratch2015AMS, Amsterdam, Netherlands

Olabe, Basogain, Olabe 9

that the difficulty ranks are based on the percentage of students that successfully completed the

assessment. However the complexity of an assessment should not be determined by the number

of students able to successfully complete it, but by the complexity of the ideas and structures

underlying it.

Figure 6. ScratchJr.org - Assessments

For example, test2, Hop Twice, Wait, Hop Again, which is ranked Easy, is of the same degree of

difficulty as test3, Turn Right and Left, Go Up and Down, which is ranked Medium. Because

how the test was implemented, it is plausible that the limited short-term working memory of the

children played a major role in the overall performance of the assessment. Testing short-term

working memory does not address the interest of the assessment: long-term working memory. It

could however be a symptom that no long-term working memory is yet available in the child.

When analyzing test6, When Cat Touches Dog, Dog Disappears, which is ranked Difficult, (when

in fact it should be ranked Easy,) a plausible explanation for the ranking is that the child has not

yet acquired the idea of ‘When A touches B, B does something.’ Had this idea been available in

longterm working memory, and had the assessment be addressed to System-1 and not System-2,

the results would have been probably very different.

The second assessment set, Reverse Engineering, asks the students to paste together sticker

images of the blocks in order to create a program that will generate the action seen in the video.

Scratch2015AMS, Amsterdam, Netherlands

Olabe, Basogain, Olabe 10

Reverse Engineering is a process of building a working prototype that will emulate the operation

of the target system. For example: building a paper airplane that would fly like the paper airplane

that the students saw in a video. In this example the children do not ‘imagine’ that they build a

paper airplane, and later ‘imagine’ how the plane would fly. Similarly, in Reverse Engineering,

the child needs to write the program in the computer; then execute the program, see the results,

and adjust as necessary. Reverse Engineering is a synthesis process, a process of creating

something. For this, the children need a sandbox where they can start building, explore their

options, have feedback from their prototypes, and adjust as necessary. A sandbox is an important

computational concept. It is the place where one can explore different alternatives, get feedback,

see results, and adjust as necessary. Any programmer would attest that the feedback experienced

when creating a project in a sandbox is essential in the learning process, in the self-evaluation

process, and in the creative process. A system based on sticker images fails in these three areas.

The Reverse Engineering assessment should be implemented not with stickers but rather by

writing a program in the iPad. This is the standard procedure, not only for younger students, but

for college students as well (Coursera, edX) when they are assessed in programming synthesis

tasks using a sandbox.

5. Summary

This paper has presented a set of guidelines in two complementary areas for the successful

integration of ScratchJr into the classroom: 1) curriculum as comprehensive and specific set of

computational ideas that gradually incorporates the functionalities of the language; and 2)

assessment tools as a set of instruments that implement Mastery Learning and provide descriptive

analysis of long-term working memory characteristics of the students. The website

HelloScratchJr.org has been created to disseminate these findings. The site is scheduled to go

online in the summer 2015.

Acknowledgments

The project HelloScratchJr.org is funded by the School of Engineering of Christian Brothers

University and a Grant of Department of Education, Universities and Research – Basque

Government (2010-15-IT863-13).

References

Common Core State Standards. Corestandards.org. [Online]. Available:

http://www.corestandards.org/Math/Content/6/NS/C/5/. [Accessed 29 6 2015].

Department for Education England. (2013). Statutory guidance National curriculum in England:

computing programmes of study. [Online]. Available:

http://www.corestandards.org/Math/Content/6/NS/C/5/

Scratch2015AMS, Amsterdam, Netherlands

Olabe, Basogain, Olabe 11

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-

study/national-curriculum-in-england-computing-programmes-of-study. [Accessed 29 6 2015].

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M. (2013). Designing

scratchjr: Support for early childhood learning through computer programming. In Proceedings of the 12th

International Conference on Interaction Design and Children, (pp.1-10). ACM.

Kahneman, D. (2003). Maps of bounded rationality: Psychology for behavioral economics. American

economic review, 1449-1475.

Kulik, C. L. C., Kulik, J. A., & Bangert-Drowns, R. L. (1990). Effectiveness of mastery learning

programs: A metaanalysis. Review of educational research, 60(2), 265-299.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K. & Kafai, Y.

(2009). Scratch: programming for all. Communications of the ACM, 52(11), 60-67.

ScratchJr. Itunes.com. [Online]. Available: https://itunes.apple.com/es/app/scratchjr/id895485086?mt=8.

[Accessed 29 6 2015].

ScratchJr.org. [Online]. Available: http://www.scratchjr.org/teach.html#assessments. [Accessed 29 6

2015].

Stanovich, K. E., & West, R. F. (2000). Advancing the rationality debate. Behavioral and brain sciences,

23(05), 701-717.

Strawhacker, A., Lee, M., & Bonta, P. (2014). ScratchJr. Scratch@MIT Conference 2014, 23. [Online].

Available:

http://cdn.scratch.mit.edu/scratchr2/static/__34f16bc63e8ada7dfd7ec12c715d0c94__//pdfs/conference201

4/Scratch%20at%20MIT%202014%20Conference%20Schedule.pdf. [Accessed 29 6 2015].

Copyright
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International license (CC BY-NC-ND 4.0). To view a copy of this licence, visit
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://itunes.apple.com/es/app/scratchjr/id895485086?mt=8
https://itunes.apple.com/es/app/scratchjr/id895485086?mt=8
http://www.scratchjr.org/teach.html#assessments
http://cdn.scratch.mit.edu/scratchr2/static/__34f16bc63e8ada7dfd7ec12c715d0c94__/pdfs/conference2014/Scratch%20at%20MIT%202014%20Conference%20Schedule.pdf
http://cdn.scratch.mit.edu/scratchr2/static/__34f16bc63e8ada7dfd7ec12c715d0c94__/pdfs/conference2014/Scratch%20at%20MIT%202014%20Conference%20Schedule.pdf

