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Abstract

We focus on two aspects of the face recognition: Feature extraction and classification.
We propose a two component system, introducing Lattice Independent Component
Analysis (LICA) for feature extraction and Extreme Learning Machines (ELM) for
classification. In previous works we have proposed LICA for a variety of image pro-
cessing tasks. The first step of LICA is to identify strong lattice independent compo-
nents from the data. In the second step, the set of strong lattice independent vector are
used for linear unmixing of the data, obtaining a vector of abundance coefficients. The
resulting abundance values are used as features for classification, specifically for face
recognition. Extreme Learning Machines are accurate and fast-learning innovative
classification methods based on the random generation of the input-to-hidden-units
weights followed by the resolution of the linear equations to obtain the hidden-to-
output weights. The LICA-ELM system has been tested against state-of-the-art fea-
ture extraction methods and classifiers, outperforming them when performing cross-
validation on four large unbalanced face databases.

1 Introduction

Face recognition [6] is one of the most relevant applications of image analysis.
To build an automated system which equals human ability to recognize faces is
still an open problem. There are many different industrial applications inter-
ested in it, mostly related to security and safety, attracting much attention and
media coverage, such as entertainment systems and driving safety devices. Face
recognition may be stated in two radically different ways. First it may consist in
the authentication of a user, which is a binary decision problem. Second, it may
consist in the search for the identification of a user in a large image database,
which is a (large) multiclass problem. This initial problem can be extended to
gaze, expression or mood recognition [53]. Taken as pattern recognition prob-
lem, face recognition provides a perfect benchmarking framework to test feature
extraction techniques and classifiers.
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In statistical learning approaches, each face image is viewed as a point (vec-
tor) in a d-dimensional space. The face images often belong to a low dimension
manifold. The high dimensionality of the data imposes the need for feature
extraction processes previous to face classification. Therefore, the goal is to
choose and apply the right statistical tool for the extraction and analysis of the
manifold where the face images lie in this high dimensional space. These tools
must define the embedded face space in the image space and extract the basis
functions from the face space. Ideally, patterns belonging to different classes
(identities) will occupy disjoint and compact regions in the feature space, which
will be easy to discriminate by means of statistical or bio-inspired classifier
systems. In the best case a linear discriminant would be enough to obtain
good classification performance results. The earliest approach applied Principal
Component Analysis (PCA) for feature extraction [56], other approaches use
the variations of the Linear Discriminant Analysis (LDA) [61, 45, 60, 46, 4],
or the Locality Preserving Projections (LPP) [19]. Other successful statistic
tools include Bayesian networks [37], bi-dimensional regression [29], generative
models [20], and ensemble based and other boosting methods [33]. Here we
propose Lattice Independent Component Analysis (LICA) [13]. This method
uses a Lattice Computing [12] based Endmember Induction Algorithm (EIA)
[57] to perform feature extraction and dimension reduction. This is a new ap-
proach to face recognition, although Lattice Computing approaches have been
previously applied to fMRI imaging [14, 15], mobile robot localization [58] and
hyperspectral image analysis [13, 48].

The classification system development process involves training a classifier
from a data sample and testing the trained system on independent samples to
guess the correct class. Translated into the face recognition paradigm, it means
to train the system on a set of identified faces and then try to assign each
new unknown face image to the correct identity. Extreme Learning Machine
(ELM) constitute an innovative category of neural-network based classification
and regression techniques [25]. Different kinds of ELM variations have been
recently used in fields as diverse as sales forecasting [54], antiviral therapy [44],
metal temperature prediction [55] or arrhythmia classification [30]. ELMs have
been also applied in biometrics, specifically for on-line face detection [41] and
fingerprint classification [34].

One of the main problems that a classification method must overcome is the
unbalanced class distribution of the data set [26]. However, most face recog-
nition algorithms and classifiers are tested over well balanced databases like
ORL, Yalefaces or Multi-PIE. Under such ideal circumstances, most classifiers
and feature extraction methods mentioned before work successfully [6]. It is rea-
sonable to think that the environments or devices that require face recognition
will not always provide such well balanced databases. Therefore, it is rele-
vant to address the face recognition task in these unfavorable conditions. We
have used Color FERET database [42, 43] to create 4 unbalanced experimental
databases. We have tested LICA and other well known algorithms for feature
extraction altogether with ELM. The performance of ELM has been compared
with other classifiers. The aim of these experiments was to test the proficiency
of both LICA and ELM in the recognition of faces of a complex and unbalanced
database. Experimental results indicate that, among the tested methods, LICA
is the most effective feature extraction algorithm for face recognition under high
subject-per-class variability. Experimental results also reveal that ELM is the
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classifier less sensitive to high class-variation induced noise.
The remainder of the work is organized as follows: Section 2 introduces

the LICA approach and the feature extraction algorithms with which it was
compared. ELM and the rest of classifiers are presented in section 3. Section 4
gives a detailed description of our experimental design. Experimental results
are presented in Section 5. Section 6 gives our empirical conclusions and further
work directions.

2 Feature extraction algorithms

Feature extraction is the process of mapping the original data into a more ef-
fective feature space. The extracted features must preserve the best class sep-
arability possible in addition to dimension reduction. That is, if we have some
data X, we find coefficients Y such that

X = A · Y, (1)

Y = A−1 ·X, (2)

where A is the mixing matrix. The data X is therefore projected by its in-
verse A−1 into a more convenient feature space Y . We have tested some of the
most widely used feature extraction algorithms: Principal Component Analysis
(PCA) [56], Independent Component Analysis (ICA) [2, 39, 40, 9, 38, 35, 17]
and Linear Discriminant Analysis (LDA) [1] along with Lattice Independent
Component Analysis (LICA) [13]. The PCA and LDA both try to find orthog-
onal projection directions with greatest variance of the prejection coefficients.
PCA is an unsupervised approach while LDA is supervised. ICA sources need
not be orthogonal, because it maximizes the source statistical independence Fi-
nally, LICA is a Lattice Computing approach based on lattice independence.
These algorithms are explained in more detail below.

2.1 Principal Component Analysis (PCA)
The PCA finds othogonal projection axes of the data in the order of decreasing
projection variance. These directions are called principal components. There-
fore, A−1 is formed by the principal components of the covariance matrix of
X.

Let be a data-set composed of N images of n pixels, denoted by X =
{xj ; j = 1, . . . , N} ∈ Rn×N , where each xj is an image column vector. We
center the data by subtracting the mean column. We want to find the eigenvec-
tors a solving the eigen-problem:

λa = Xa (3)
The Singular Value Decomposition of X given by X = U · S · V T where

matrix U is the matrix of the eigenvectors of XXT , S is the diagonal matrix
of the eigenvalues. The data matrix X can be projected into a reduced spaced
of dimensionality m by computing Y = UT

mX, where Um denotes the matrix
composed of the first m columns of U .
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2.2 Linear Discriminant Analysis (LDA)
PCA is unsupervised because it doesn’t use the class information of data sample
points. Linear Discriminant Analysis (LDA) searches for optimal class discrim-
ination projections given data-set

X =
{

xk
j ; j = 1, . . . , N ; k = {1, . . . , C}

}
∈ Rn×N (4)

where data data samples are partitioned into C classes, x are n-dimensional
vectors. Each class has mk samples. Assume that the mean has been extracted
from the samples, as in PCA. The objective function for the LDA can be defined
[4] as

aopt = arg max
a

aTSba
aTSta

, (5)

Sb =
c∑

k=1
mkµ

k(µk)T (6)

=
c∑

k=1

(
1
mk

(
mk∑
i=1

xk
i )
)(

1
Nk

(
mk∑
i=1

xk
i )
)
,T (7)

St =
m∑

i=1
xi(xi)T , (8)

where µ is the total sample mean vector, µk is the mean vector of the k-th
class and xk

i is the i-th sample in k-th class. The total scatter matrix St and
between-class scatter matrix Sb can be expressed in matrix form, if the sample
vectors of each class are grouped together:

Sb = XWNxNX
T , (9)

St = XXT , (10)

where WNxN is a diagonal matrix defined as

WNxN =


W 1 0 . . . 0
0 W 2 . . . 0
...

...
. . .

...
0 0 . . . W c

 (11)

and W k is a mk ×mk matrix

W k =


1

mk

1
mk

. . . 1
mk1

mk

1
mk

. . . 1
mk

...
...

. . .
...

1
mk

1
mk

. . . 1
mk

 (12)

Finally, we can state LDA as the following eigenproblem:
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Sba = λSta, (13)
which is equivalent to

XWNxNX
T (XXT )−1a = λa. (14)

The solution of this eigenproblem provides the eigenvectors needed to project
the data in an analogous manner of PCA. When there are many variables,
for instance if samples are images and observations are pixels, some previous
dimensionality reduction must be performed.

2.3 Independent Component Analysis (ICA)
ICA is a generative model which aims to describe how the data is generated by
mixing non-Gaussian, mutually statistically independent latent variables with
and unknown mixing matrix [27]. Let us denote x the n-dimensional observed
data vector and B the n×M mixing matrix. The mixing model is formulated
for ICA as follows:

x = Bs, (15)

s = V x, (16)
where V = B−1 and s are the independent sources. If we consider the whole

sample, the equation is rewritten as

S = V X (17)
where X = {xj ; j = 1, . . . , N} ∈ Rn×N , each xj being a face image column

vector.
It has been shown that the mixing model is completely identifiable, up to

a permutation and scale of the sources, if the sources are statistically indepen-
dent and at least M − 1 of them are non-Gaussian. In the case of M gaussian
variables, the matrix B is not identifiable. It is also required that the number
of sources is smaller than or equal to the number of available observations, i.e.
M ≤ n. The mixing and unmixing matrices can be estimated following three
approaches: maximizing the nongaussianity, minimizing the mutual informa-
tion and maximizing the likelihood. Quantitative measures of random variable
nongaussianity are kurtosis, negentropy or approximations of negentropy. If the
component are constrained to be uncorrelated, ICA estimation by minimization
of mutual information is equivalent to maximizing the sum of nongaussianities.
The constraint of uncorrelatedness simplifies the computations considerably.
In the maximum likelihood estimation approach, the log-likelihood it’s usually
used, which is equivalent to entropy maximization, or “infomax”.

There are two possible ways of performing face recognition with ICA. We can
treat the images as random variables and pixels as observation. This approach
maximizes the independence of pixels It has been argued that it will produce
better object recognition, since it implements recognition by parts [31]. Other
approach is to treat pixels as variables and images and observations. Treating
the face recognition problem from a wholistic approach, it has been demon-
strated that it performs better [11]. In this work we chose the second option.
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We have used the DTU:ICA toolbox developed by the Technical University of
Denmark [10].

Mean-field ICA

This method estimates sources from the mean of their posterior distribution
and the mixing matrix (and noise level) is estimated by maximum a posteriori
(MAP) [28]. The latter requires the computation of a good approximation to the
correlations between sources. For this purpose, [28] propose three increasingly
advanced mean-field methods: the variational (also known as naive mean field)
approach, linear response corrections, and an adaptive version of the Thouless,
Anderson and Palmer (TAP) mean-field approach [39, 40].

We have empirically searched for the best of those approaches on our prob-
lem. The followed criteria was recognition accuracy, constrained to a feasible
execution time. The selected method uses a constant prior mixing matrix and
noise covariance as well as a non-analytic power law source prior. The Mean-
field method used was linear response correction.

ICA Infomax

The “infomax” framework original purpose was to maximize the output entropy
of a neural network with non-linear outputs [2]. It is closely connected to the
maximum likelihood estimation. For a data matrix X = {xj ; j = 1, . . . , N} ∈
Rn×N , the log-likelihood function has the form [27]

L =
t∑

i=1

n∑
j=1

log fj(vjx(i)) + t · log |detV | (18)

where V = {v1, . . . ,vn} ∈ Rt×n is the inverse of the source mixing matrix
B. In our case, the function used is

L = t · log |detV | −
t∑

i=1

n∑
j=1

log fj(vjx(i)) +N · n · log(π) (19)

where f(x) = cosh(x).

ICA with Molgedey and Schuster decorrelation algorithm

ICA with the Molgedey and Schuster decorrelation algorithm (ICA-MS) uses
the decorrelation algorithm presented in [35] to uncorrelate a some superim-
posed sources X and Xts, where ts stands for time-shifted. The problem was
reduced to solve the eigenproblem of correlation matrices XtsX

T and XXT .
The solution is found by solving the eigenvalue problem of the quotient matrix
Q = XtsX

T (XXT )−1 [18]. The delay time is estimated using autocorrelation
differences.

2.4 Lattice Independent Component Analysis (LICA)
Lattice Independent Component Analysis is based on the Lattice Independence
discovered when dealing with noise robustness in Morphological Associative
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Memories [49]. Works on finding lattice independent sources (aka endmem-
bers) for linear unmixing started on hyperspectral image processing [13, 50].
Since then, it has been also proposed for functional MRI analysis [14, 15] or
mobile robot location [58] among others.

Under the Linear Mixing Model (LMM) the design matrix is composed of
endmembers which define a convex region covering the measured data. The
linear coefficients are known as fractional abundance coefficients that give the
contribution of each endmember to the observed data:

y =
M∑

i=1
aisi + w = Sa + w, (20)

where y is the d-dimension measured vector, S is the d × M matrix whose
columns are the d-dimension endmembers si, i = 1, ..,M, a is the M -dimension
abundance vector, and w is the d-dimension additive observation noise vec-
tor. Under this generative model, two constraints on the abundance coefficients
hold. First, to be physically meaningful, all abundance coefficients must be non-
negative ai ≥ 0, i = 1, ..,M , because the negative contribution is not possible
in the physical sense. Second, to account for the entire composition, they must
be fully additive

∑M
i=1 ai = 1. As a side effect, there is a saturation condition

ai ≤ 1, i = 1, ..,M , because no isolate endmember can account for more than the
observed material. From a geometrical point of view, these restrictions mean
that we expect the endmembers in S to be an Affine Independent set of points,
and that the convex region defined by them covers all the data points.

The Lattice Independent Component Analysis (LICA) approach assumes the
LMM as expressed in equation 20. Moreover, the equivalence between Affine
Independence and Strong Lattice Independence [48] is used to induce from the
data the endmembers that compose the matrix S. Briefly, LICA consists of two
steps:

1. Use an Endmember Induction Algorithm (EIA) to induce from the data
a set of Strongly Lattice Independent vectors. In our works we use the
algorithm described in [13, 14]. These vectors are taken as a set of affine
independent vectors that forms the matrix S of equation 20.

2. Apply the Least Squares estimation to obtain the abundance vector of the
LMM.

The advantages of this approach are (1) that we are not imposing statistical
assumptions to find the sources, (2) that the algorithm is one-pass and very
fast because it only uses lattice operators and addition, (3) that it is unsuper-
vised and incremental, and (4) that it can be tuned to detect the number of
endmembers by adjusting a noise-filtering related parameter. WhenM � d the
computation of the abundance coefficients can be interpreted as a dimension
reduction transformation, or a feature extraction process.

Our input is a matrix of face images in the form of column vectors. In
the linear mixing model (LMM), we represent the a face image as a linear
combination of endmember faces. The weight of each endmember face (abun-
dance) is proportional to its fractional contribution to the construction of the
observed face image. In other words, the induced SLI vectors (endmembers)
are selected face images which define the convex polytope covering the data. A
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Algorithm 1 LICA feature extraction for face recognition. E# denotes the
pseudo-inverse of the matrix E.

1. Build a training face image matrix XT R = {xj ; j = 1, . . . ,m} ∈ RN×m.
The testing image matrix is denoted XT E = {xj ; j = 1, . . . ,m/3} ∈
RN×m/3.

2. Obtain a set of k endmembers using an EIA over XT R: E =
{ej ; j = 1, . . . , k} from XT R. Varying EIA parameters will give differ-
ent E matrices. The algorithm has been tested with α values dependant
on database size.

3. Unmix train and test data: YT R = E#XT
T R and YT E = E#XT

T E .

face image is defined as a Aa×b matrix composed by a · b = N pixels. Images
are stored like row-vectors. Therefore, column-wise the data-set is denoted by
Y = {yj ; j = 1, . . . , N} ∈ Rn×N , where each yj is a pixel vector. Firstly, the
set of SLI X = {x1} ∈ Rn×K is initialized with the maximum norm pixel (vec-
tor) in the input data-set Y . We chose to use the maximum norm vector as
it showed experimentally to be the most successful approach. The method is
summarized in algorithm 1.

The algorithm for endmember induction, the EIA, used is the one in [13]
which has tolerance parameter α controlling the amount of endmembers de-
tected. In the ensuing experiments we have varied this parameter in order to
obtain varying numbers of endmembers on the same data.

3 Classification

One of the goals of this work is to compare the performance of Extreme Learning
Machines (ELM) with other classifiers. We have chosen two competing state of
the art classification algorithms. One is an ensemble classifier based on decision
trees - Random Forest [3]. The other is a Support Vector Machine variant
introduced in [51] called ν−SMV. We have used the implementations of Random
Forest and ν−SMV provided in Weka [16, 5]. In the following subsections, we
describe the classifiers in more detail. Additionally, we have also compared
ELM with Feed-forward Neural Networks (FFNNs) trained with two standard
learning algorithms as provided in Matlab.

3.1 Extreme Learning Machines
Standard Single Layer Feed-forward Neural Network (SLFNs) training is too
slow because of: (1) Usual gradient-based learning algorithms are slow and (2)
all the parameters of the networks are tuned iteratively by using such learning
algorithms. An Extreme Learning Machine (ELM) is a learning method that
aims to overcome these limitations by randomly choosing weights connecting
input vectors to hidden nodes and threshold values of hidden nodes [24, 23].

Given N arbitrary distinct samples (xi, ti), where xi = [xi1, xi2, ..., xin]T ∈
Rn are the data vectors and ti = [ti1, ti2, ..., tim]T ∈ Rm are the target classes,
a standard SLFN can be mathematically modeled as:



3 Classification 9

Ñ∑
i=1

βigi(wiï¿œxj + bi) = tj , (21)

where wi = [wi1, wi2, ..., win]T is the weight vector connecting the ith hidden
node and the input nodes, βi = [βi1, βi2, ..., βim]T is the weight vector connect-
ing the ith hidden node and the output nodes , bi is the threshold of the ith
node and Ñ is the number of hidden nodes. In matrix form:

Ñ∑
i=1

βigi(wiï¿œxj + bi) = tj −→Hβ = T, (22)

where these matrices are defined as

H =

 g(w1x1 + b1 . . . g(wÑxj + bÑ )
...

. . .
...

g(w1xN + bi . . . g(wÑxN + bÑ )


N×Ñ

, (23)

β =

 βT
i
...
βT

Ñ


Ñ×m

and T =

 tTi
...
tTN


N×m

(24)

H is called the hidden layer output matrix. It’s ith column is the ith hid-
den node output. For any SLFN, H is invertible and ‖Hβ − T = 0‖. There
also exists an error ε < ‖Hβ − T ‖ for a given Ñ ≤ N [24]. The solution
to the traditional SLFN would be: Find β̂, ŵ and b̂ so that

∥∥∥Ĥβ̂ − T̂
∥∥∥ =

min
wi,bi,β

‖Hβ − T ‖.
The ELM learning approach proposes the following: For fixed input weights

wi and the hidden layer biases bi, to train a SLFN is equivalent to finding
least-squares solution β̂ of the linear system

Hβ = T. (25)

The smallest norm least-squares solution of the above system is

β̂ = H†T, (26)

where H† is the Moore–Penrose generalized inverse of H. On a side note, H†

can be calculated using Singular Value Decomposition or doing (HTH)−1HT .
Finally, an ELM algorithm can be summarized as: Given training set of N

(xi, ti) samples, an activation function g(x), and hidden node number Ñ ,

1. Randomly assign wi and bi.

2. Calculate H.

3. Calculate β = H†T .
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The ELM described above is the basic ELM which was first proposed on [23].
Many more have been developed, in [25] - Random hidden layer feature mapping
based ELM, Incremental ELM, etc.

The orthogonal projection method can be used to obtainH†: H† = (HTH)−1HT .
In that case, we can add a ridge parameter 1/λ to the diagonal of (HTH). This
regularization approach, known as ridge regression, stabilizes the solution [21].
Thus, the calculation of the output weights β is:

β =
(
I

λ
+HTH

)−1
HTT (27)

where I is an identity matrix the same size asH. This variation of the basic
ELM is called Random hidden layer feature mapping based ELM [25]. We will
call it ELM-FM for convenience.

In addition to those described above, many more ELMs have been devel-
oped:, [25]: Kernel based ELM, sequential ELMs, incremental ELMs, etc.

3.2 Random Forest
A random forest is a classifier consisting of a collection of tree-structured clas-
sifiers h(x,Θk, k = 1, ... where the Θk are independent identically distributed
random vectors and each tree casts a unit vote for the most popular class at
input x [3]. Random Forest select inputs randomly. This randomness is chosen
so that the correlation between two different members of the forest is minimized.
A Random Tree is formed by selecting at random, at each node, a small group
of input variables to split on. In our case, this number was set to log2a + 1,
where a is the number of attributes. The tree grows using CART methodology
to maximum size. Trees are not pruned.

3.3 Support Vector Machines
Support Vector Machines (SVMs) are linear or non-linear (with a kernel trick)
non-probabilistic binary classifiers [8]. The class of SVM that we have used was
introduced in [51]. When it is a regression method we call it SVR, when it is a
classifier it’s called SVC. The main idea behind SVMs is to build a hyperplane
that best separates members of different classes. Let be (x1,y1) . . . (xl,yl), our
two-class labeled data set. It is said to be linearly separable if there exists a
vector w and scalar b so that for all the elements of the training set

yi(w ·xi +b) ≥ 1. (28)

In the ν − SVM classification algorithm [51, 52], the optimization problem
presented is to minimize

τ(w, ξ, ρ) = 1
2 ‖w‖

2 + νρ

l∑
i=1

ξi (29)

where ‖w‖2 is a term that characterizes the model complexity, the ξ are
some variables and ν and ρ are two constants. This function is subject to the
constraints
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Tab. 1: Summary of the 4 databases used in our experiments.
DB 1 DB 2 DB 3 DB 4

Number of samples 5169 3249 832 347
Number of classes 994 635 265 79

Mean (samples per class) 4.3924 3.1396 5.2835 5.2002
Standard deviation (samples per class) 5.8560 3.4498 4.9904 4.5012

Median (samples per class) 2 2 4 4
Mode (samples per class) 2 2 2 2

yi ((xiw) + b) ≥ ρ− ξi (30)

ξi ≥ 0 , ρ ≥ 0. (31)

The decision function, defining αi that are 0 ≤ αi ≤ 1
l , and using a kernel

k, takes the form

f(x) = sgn
(

l∑
i=1

αiyik(x,xi) + b

)
. (32)

SVMs are binary classifiers, so we use one-against-one approach for multi-
class classification. Details on the computation of b and ρ and justification of
the preference of ν − SVM over classic SVM are thoughtfully explained on [51].

4 Experimental design

We have performed two separate but related experiments. The goal was to
obtain answers to two questions about ELMs:

1. Used as a preprocessing step for ELMs, is LICA a better than or compa-
rable to other state-of-the-art feature extraction algorithms when dealing
with big, unbalanced face databases? and

2. Can ELMs outperform state-of-the art classifiers in such experimental
environment?

We based our experimental designs on the Color FERET database [42, 43].
Color FERET contains 10344 face images, varying in scale, rotation and lighting.
There are also occlusions caused by glasses or hair. Some of the images are
grayscale, but the vast majority are RGB. We chose frontal and mildly rotated
images - with a rotation of 15 ,22.5 and 45 degrees. Representative face image
samples can be seen in figure 1. This left us with 5175 facial photo candidates
to build our experimental databases. Classes correspond to subject identities.
These databases have a highly unbalanced class size distribution, as is illustrated
in figure where we plot a histogram of the number of samples per class in the first
selected database. Following the detection process described below, we made
three additional face image subset selections, resulting in four experimental
databases of 5169, 3249, 832 and 347 images respectively. Table 1 shows a
summary of each database’s main features.
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Fig. 1: Example of the rotation that we allowed. Images from Color FERET
database [42].
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Fig. 2: Histogram showing the class distribution of the DB 1 database.
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Fig. 3: Detection example. Orange squares show the first and second candi-
dates. First candidate’s middle row’s RGB values are R=41.95 G=41.97
B=46.60. Second candidate’s are R=133.03 G=106.84 U=79.49.

The faces were not suitable for recognition, because of the noise produced
by different backgrounds and the differences in scale. Therefore, we used the
detection algorithm developed in [59, 32] and available in Scilab SIVP. The
algorithm usually detects several faces in a photography of a single subject.
We added a face selection process based firstly on candidate’s size. A second
step checked if in the middle row’s average color composition the red channel
was predominant. This method works well under average lighting conditions
and regardless of skin color. We did not modify the face area selected by the
algorithm. We allowed a partial occlusion of the faces, up to a 20% of the
face area. There were 18 detection failures. We also removed 6 detected faces
because the provided ground-truth deviated from reality. Overall, this method
achieved a success rate of 99.65%. The process is illustrated in figure 3. The
next step was to scale images to 100x100 pixels using bicubic resampling. Then
we needed to do a conversion from RGB to grayscale prior to feature extraction.
We used a Gr = 0.85 ·R+0.10 ·G+0.05 ·B conversion method which is reported
to be the optimal grayscale conversion formula for face recognition [7].

Feature extraction was performed using the algorithms mentioned on sec-
tion 2. PCA has no parameter whatsoever. LDA usually needs a previous di-
mension reduction phase. We performed Singular Value Decomposition (SVD)
over the data retaining the maximum amount of eigenvectors. Both ICA In-
fomax and ICA-MS also require a the same preprocess. Mean-field ICA has
several parameters, like prior mixing matrix, noise covariance, etc. We found
that constant mixing matrix and noise covariance, as well as power law tail
source prior. This method showed empirically the best results in a reasonable
time.

Classifiers were also empirically tuned. The parameter of the ELMs was
the number of hidden nodes, in addition to the ridge parameter λ in the case
of ELM-FM. Random Forest only required to fix the number of trees. In the
case of SVMs, we chose ν−SVM because it showed better recognition rate that
C-SVM. The ν parameter was also set empirically. Both the ν − SVM kernel
function and the ELM activation function were sigmoidal. We also tested two
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Fig. 4: An instance of the first 5 independent components (ICA Infomax and
ICA MS), endmembers (LICA) and eigenvectors (PCA)

FFNNs with Backpropagation algorithm. One uses Resilient Backpropagation
Algorithm (RPROP) [47] and the other Scaled Conjugate Gradient Algorithm
(SCG) [36]. The five classifiers were tested with the four experimental databases
described above, tuning their parameters to obtain the best accuracy possi-
ble. We performed 2-fold cross-validation. The recognition results are obtained
based on 20 repetitions. In other words, in each of the 20 trials we randomly
choose the 50% of the members of each class, having both testing and training
set a similar size (not equal, because some classes contain an odd number of
images).

5 Experimental results

Experiments were run on a Intel i5 2400 processor and 8 GB of RAM memory.
Random Forest is resource greedy, and it’s performance is limited by the amount
of trees that computer’s memory allows to grow. Other classification and feature
extraction processes do not pose any computational resource-related problem.
The following two subsections describe the results obtained, each corresponding
to one of the two questions raised earlier in the section 4.

5.1 Results of LICA using Extreme Learning Machines
The computational experiments covered systematic dimensionality reduction
up to 86, 107, 32 and 21 dimensions for databases DB 1, DB 2, DB 3 and DB
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4, respectively. Working with dimensions above those limits did not show any
increase in the accuracy of the algorithms. For ICA and PCA selecting the target
dimension reduction was immediately accomplished selecting the desired sources
and eigenvectors, respectively. For LICA that exploration implies varying the
value of the α parameter and observing the number of endmembers detected.
All feature extraction methods were evaluated in a wrapper scheme using an
ELM for classification. The average number of hidden nodes was 1290 for DB
1, 870 for DB 2, 275 for DB 3 and 142 for DB 4.

Figure 5 shows the recognition rate for the smallest database DB 4. The
database has high average number of images per class (5.2002) with a standard
deviation of 4.5012. Most classes have 2 samples. The results show that LDA
and PCA converge quickly to their maximum hit-rate. This small database
with high class size variability seems to be unsuitable for some ICA methods,
such as the Mean field ICA and the M&S ICA. Although showing worst results
than LDA in 0 to 5 dimension space, LICA based classification obtains the
best recognition rate for dimensions above 5. Notice that LDA is a supervised
dimension reduction algorithm, so that the remaining algorithms have a strong
handicap against LDA. Figure 6 provides the recognition results for the next
bigger database DB 3. LICA is also the best feature extraction algorithm in
this case, improving PCA and LDA. The ICA algorithms perform badly in this
database. The change from DB 3 to DB 2, as shown in table 1, lies in the
addition of much more classes with few samples. This makes the DB 2 database
even more unbalanced and complex than DB 3 and DB 4. The performance of
all feature extraction algorithms drops heavily. Nevertheless, LICA continues
to offer the best results, followed by LDA, as seen in figure 7. The change
from DB 2 to DB 1 is different. DB 1 has many more subjects with more
than two samples, thus rising both the sample-per-class mean and standard
deviation. The most sensitive algorithm to the cited change is LICA. While the
other methods see a 10-20% drop in their hit-rate at most, LICA drops about
a 40%. The most efficient algorithms when testing DB 1 are LICA and LDA,
as shown on figure 5. We must remind the reader that LDA is a supervised
feature extraction method, while LICA is unsupervised. The main conclusion
of this collection of computational experiments is that LICA-ELM outperforms
the remaining feature extraction algorithms.

5.2 Results of ELM compared to other classifiers
In order to evaluate the resilience of ELMs to unbalanced datasets such as
those in face recognition problems, we extracted the LICA features from all
the databases and tested the five classifiers described in section 4. Other algo-
rithms Naive-Bayes, Multinomial Naive-Bayes, Radial Basis Function Networks
or Multilayer Perceptrons were discarded after pilot experiments on the DB1
database that resulted in very low recognition (below 1%). The recognition
results are summarized in table 2. We report the mean and standard deviation
test accuracy over the databases, for all LICA feature dimensions.

The figure 9 plots the obtained results. The FFNNs, Random Forest and
ν−SVM obtain systematically decrease their accuracy results as the size of the
database increases. When testing the two small databases, ν − SVM improves
Random Forest. The FFNN SCG algorithm reports better results that FFNN
RPROP. It is interesting that ELM obtains the worst accuracy result in the
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Fig. 5: ELM recognition rate on DB 4 (347 subjects).
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Fig. 6: ELM recognition rate on DB 3 (832 subjects).

Tab. 2: Testing accuracy average (variance) for 4 Color FERET database sub-
sets on features computed by the LICA feature extraction algorithm.

DB 4 DB 3 DB 2 DB 1
ELM [23] 0.7093 (0.0385) 0.8782 (0.0199) 0.5834 (0.0126) 0.4735 (0.0061)

ELM-FM [22] 0.9035 (0.0237) 0.8721 (0.0153) 0.5834 (0.0143) 0.4830 (0.0056)
Random Forest [3] 0.7719 (0.0100) 0.7506 (0.0489) 0.3457 (0.0135) 0.2431 (0.0126)
ν − SVM [51] 0.8713 (0.0012) 0.8509 (0.0334) 0.3572 (0.0148) 0.2111 (0.0094)

FFNN RPROP [47] 0.8494 (0.0217) 0.7800 (0.0201) 0.1448 (0.0084) 0.3719 (0.0228)
FFNN SCG [36] 0.8692 (0.0198) 0.8166 (0.0244) 0.1205 (0.0024) 0.2110 (0.0338)
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Fig. 7: ELM recognition rate on DB 2 (3249 subjects).
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Fig. 8: ELM recognition rate on DB 1 (5169 subjects).
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Fig. 9: Recognition rate on the 4 databases using ELM, Randon Forest, ν−SVM,
FFNN BPROP and FFNN SCG on features extracted with LICA.

DB 4 case but the best one in the remaining databases. ELM-FM algorithm,
adding a regularization method, overcomes this disadvantage. ELM-FM obtains
the best results in the small database and similar results than those of ELM in
the other databases. ELMs systematically are more robust against introducing
more classes and samples while maintaining the samples per class ratio. The
experiments with DB 2 and DB 1 represent a big rise on complexity and database
size. ELM is the algorithm that best deals under these circumstances. Specially
in the DB 1 scenario, where it doubles the other algorithm’s recognition rate.
It’s also noticeable that standard FFNNs perform poorly in those big complex
databases. Particularly, FFNN SCG seems unable to train properly DB 2 and
DB 1.Besides, we can assert that ELM’s total time of training and testing was
several magnitudes smaller.

6 Discussion

We have applied LICA and five well known feature extraction procedures to
recognize faces on four subsets of a well known face database. We have also
tried ELM and two widely used classifiers. The databases on which the experi-
ments have been performed were unbalanced, large and complex. We draw the
following conclusions from the obtained results:

• LICA is a better feature extraction algorithm for face recognition un-
der the mentioned circumstances. It shows a better recognition rate in
conjunction with ELM classifier than the rest of methods. LICA also is
less likely to drop its effectiveness when we use smaller databases with
high subject to class ratio variability. ICA methods depend highly on
the number of samples of the database. LDA’s results are more consis-
tent, specially when dealing with the biggest database and high subject
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per class standard deviation. Overall, Lattice Computing-based LICA
algorithm its approach to feature extraction is effective, being more com-
petitive with large unbalanced databases, such as those common in face
recognition applications.

• The joint use of LICA and ELM has retrieved the best recognition re-
sults. We can suggest that Lattice-based Endmember Induction Algo-
rithms could be best fitted to work with ELMs than other statistical tools
(PCA, LDA) or independent component extraction algorithms (ICA Info-
max, ICA M&S, Mean-field ICA).

• It is stated in [26] that Naive-Bayes is more robust to higher levels of class
noise then Random Forest and C-SVM. However, we have found that
when dealing with large unbalanced face databases, Naive-Bayes is far
outperformed by ELM, ν − SVM and Random Forest. The same applies
to Multinomial Naive-Bayes, Radial Basis Function Networks or Multi-
layer Perceptrons. Results were so bad that do not deserve publication
here. There is no implementation bias as far as we applied the standard
implementation found in Weka.

• Of all tested classifiers, ELM and ELM-FM are the most robust methods
for large databases with high class-variation induced noise. It shows simi-
lar results than Random Forest or ν−SVM when the databases are small.
When the size is increased, ELM show an improvement of 124% and 95%
over the results of ν−SVM and Random Forest respectively. Furthermore,
FFNNs with standard learning algorithms show worse performance than
the rest of the classifiers. It is noteworthy that the regularization step
added by ELM-FM to the basic ELM greatly increases the recognition
accuracy in the smallest database.

The composition of LICA feature extraction and ELM classification show promis-
ing results in the domain of face recognition. More experiments over highly
unbalanced databases could be performed on future works. It would also be
valuable to test the various ELM algorithms, apart from basic-ELM available in
the literature. We think that it would be interesting to explore further the inter-
play between Lattice Computing-based feature extraction methods and Extreme
Learning Machines.
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