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The double aim of the present article is to give a brief description of our research
group’s main results achieved in recent years and to provide a comprehensive analysis
of light propagation properties in multi-step index (MSI) fibers based on the geometric
optics method. Therefore, in the initial part we present our research team and its main
lines of research on plastic optical fibers (POF). Afterward, the discussion focuses on
a new theory we have developed for the propagation in MSI fibers. First of all, we
derive the ray invariants β̃ and l̃, which allow us to instantly determine the direction
of the ray at any position along its trajectory, and we discuss the characteristics of
the ray path, setting the classification of rays into bound, refracting and tunneling
categories. Then, we calculate the ray-path parameters, namely the path length Lp ,
the ray half period zp and the ray transit time t . Furthermore, we analyze the ray
temporal dispersion. Specifically, we take a practical case in which the width of each
layer is maintained constant, allowing, in contrast, for the respective refractive indices
to take any value, and we derive closed expressions for the ray dispersion. Finally,
we investigate the light power acceptance properties of an MSI fiber, calculating the
effectiveness of both diffuse and collimated light sources in launching bound rays and
the coupling losses with lateral and longitudinal misalignments.
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122 J. Zubia et al.

Introduction

Our Research Team

The world of fiber optics has attracted a lot of attention since its discovery as a transmis-
sion medium in the sixties. Although at the beginning most of the studies were focused
on conventional glass optical fibers, in the eighties plastic optical fibers (POF) were al-
ready transparent enough to be used as a telecommunications medium. Since then, many
researchers have been devoted to the study of properties of POF, although some minor
aspects still require a systematic study.

Our research team came into being in 1993 at the Telecommunications Department
of the University of the Basque Country, with the express initial purpose of optimizing
the transmission distance in communications links through POF. The motivation was that
they presented some great advantages over their glass counterparts, although they were
only used for distances below 100 m because of their much higher attenuation. This first
work led to the interesting conclusion that the use of inexpensive green Light Emitting
Diodes (LEDs) instead of the conventional red ones permitted much longer transmission
distances, as was theoretically and experimentally demonstrated. Since then, our team has
investigated a great variety of topics about POF, and the resultant insight has helped us to
develop theoretical and computational models that can predict their transmission proper-
ties, including the effect of bends, structural imperfections, and possible stresses to which
they may be subjected. Besides, we have designed and tested new active and passive de-
vices based on them, including couplers, modulators, mode scramblers, and several types
of sensors, such as seismographs, wind-speed sensors, refractometers, chemical sensors,
and so forth.

Currently, an important part of our research is focused on computational analysis
of mode mixing, attenuation, bandwidth, and some other parameters that determine the
performance of POF optical links, allowing for bends of any shape in our simulations. In
addition to step-index POF, graded-index and multi-step index POF are also being studied.
On the other hand, we have carried out experimental measurements to check the behavior
of light polarization through POF and the influence of several parameters affecting the
performance of mode scramblers, and we are adjusting our models of light propagation in
real fibers from experimental measurements of the output power distributions with fibers
of different lengths. Currently, our team carries out research projects in collaboration
with several universities and companies. There are five of us in the group in Bilbao,
combining this work with lectures to engineering students, a few of whom become
temporary collaborators with us during their elaboration of the project they have to do
as the final part of the degree.

Plastic Optical Fibers

Plastic optical fibers using a polymethyl methacrylate (PMMA) core were first introduced
in the late sixties, although their initial attenuation was 500 dB/km at 650 nm; that is, too
high to result of interest for telecommunications purposes [1]. Figure 1 shows the structure
of a typical POF. However, their transparency has improved very much since then, owing
to more elaborated manufacturing techniques and, in the case of perfluorinated (PF)
POF, to the significant reduction in the CH vibrational absorption that is achieved by
replacing hydrogen by a more massive atom, such as fluorine [2]. On the other hand, the
transmission rates of POF data links have also been steadily increasing. This is mainly
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Geometric Optics Analysis 123

Figure 1. Structure of a POF. In a typical SI POF the core diameter is 980 µm and the cladding
width 20 µm, the refractive index n being 1.492 in the core and a lower value in the cladding
ranging between 1.40 and 1.42. In a typical perfluorinated GI POF n decreases from about 1.354
to 1.342 in a core of 120 or 130 µm of diameter, yielding an NA of 0.18 at the center of the core.
The refractive index profile exponent is close to 2.

due to the development of novel types of POF, such as graded-index (GI) [3, 4]. Currently,
step-index (SI) POF with low numerical aperture (NA) (0.32) matched to low-NA LEDs
are commercially available with a typical bandwidth length product of about 15 MHz ·
km and an attenuation on the order of 120 dB/km at 650 nm [5]. Much higher bandwidths
and distances have been reported with PF GI POF, such as the presently commercially
available Lucina fiber (1006 m at 1.25 Gbit/s at the wavelength of 1300 nm) [6].

A problem with GI-POF arises when they are curved with very small bend radii,
since then bending losses will be much higher than in the case of SI POF, due to both
their low numerical aperture at the center of the core (0.18) and the decrease of this
value down to zero as we approach the core-cladding interface. This is illustrated in
Figure 2, which shows the dependence of bending losses on both the bend radius and the
refractive index profile exponent for a typical GI-POF. However, a new type of POF that
has already been thought of, namely the multi-step index (MSI) POF [7, 8], can yield
a very high bandwidth and yet present a relatively small radiation losses in bends. A
theory specially adapted to describe light propagation through MSI POF is developed in
this article for the first time. We include a summary of some of the results that we have
obtained during the last few years.

Backward Glance at Our Research in the Last Few Years

Our main lines of research may be classified into three categories: theoretical and compu-
tational modeling of POF, active and passive optical devices for POF, and sensors based
on POF.
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124 J. Zubia et al.

Figure 2. Dependence of bending losses on both the bend radius and the refractive index profile
exponent for a typical GI-POF. This figure corresponds to a core diameter of 130 µm and core
and cladding refractive indices equal to 1.353 and 1.340, respectively, for half a circular turn.

Theoretical and Computational Modeling of POF

In this section we briefly describe the results we have achieved in relation to light propa-
gation in POF. We started with an overall analysis of light source, POF, and photodiode.
Specifically, we analyzed the variations in the photocurrent due to changes in the LED
temperature, output power, spectrum width, and spectrum center, in combination with the
optical fiber spectral attenuation and length and the photodiode responsivity. With this
work, we showed in what way the optimum LED center wavelength varied as a function
of the LED spectrum width and the transmission distance. Maximum distances greater
than 200 m could be achieved with green LEDs [9].

Afterward, we studied the influence of bends in the link. First, we investigated the
influence of the shape of bends on the total radiation loss along two of the most common
types of SI POF, as well as the effect produced by variations in the light wavelength.
We showed that a circle arc can cause slightly higher attenuation than an ellipse close to
it, depending on the refractive indices, but that curves with very sharp sections always
introduce higher losses. Even so, we concluded that the easiest curve to achieve, yet
one of the best, is the circular one [10]. Recently, we have also proved that a simple
circular bend of the appropriate radius placed at the receiver end can improve bandwidth
in high-NA POF, depending on the POF length and on the degree of mode mixing
along the fiber, and also on the type of light source employed. For example, our results
so far seem to confirm Maruo et al.’s [11], who showed that, with a 6.4-mm radius,
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Geometric Optics Analysis 125

360◦ bend placed in a 100-m long 0.5-NA POF link at a distance L from a 0.1-NA light
source, the maximum improvement is reached for a bending position of L = 50–75 m.
On the other hand, we have also calculated bending losses in GI POF by developing a
computer program to simulate POF of any refractive index profile in the proximity of
the parabolic one, and also different light wavelengths. We showed that variations in the
light wavelength affect total radiation losses because of the presence of tunneling rays,
although the corrections due to this effect are small, especially when the fiber diameter is
large [12]. We also studied the influence of the cladding thickness on optical losses when
SI POF are bent. The most interesting conclusion was that, for large bend radii, bending
losses are approximately independent of cladding thickness. However, the assumption of
infinite cladding thickness is reached for a cladding thickness of about 4 mm for 1-mm
core POF. This implies a difference of 2 dB between real POF (finite cladding and lower
losses) and an ideal one (infinite cladding). This data corresponds to fiber turns with a
bend radius of 8 mm [13].

We also investigated the photoelastic effects in POF. Specifically, we analyzed the
optical effects induced by three different types of stresses. We saw that a uniaxial stress
makes an isotropic POF uniaxial, with its optic axis parallel to the fiber axis. On the
other hand, bending and torsion stresses convert the fiber into an inhomogeneous medium,
because the refractive index depends on the position as well as on the direction of the
ray path through the POF. However, we showed that these stresses have no noticeable
effect on the modal dispersion in SI POF. The corrections were less than one-hundredth
of its original value in all cases [14, 15].

Besides, we analyzed the relationship between the depolarization of the light along
the POF and the quality of the fiber. We saw that the core-cladding interface quality
is one of the most important parameters that influences the light polarization state of
a wave traveling along a POF, which was successfully tested empirically [16]. To give
a quantitative account of the mode-coupling rate as a consequence of fiber impurities
and inhomogeneities, we developed a new and simple method that only requires the
observation of the far-field output pattern for different launching angles over a fixed
length of fiber [17, 18]. This method is based on Gloge’s flow equation.

Currently, we can simulate the influence of fiber impurities on temporal dispersion
of pulses and other transmission parameters by means of a computer program based on
shifts in the propagation direction of light rays every certain distance, which we have called
“mean free path,” and according to a random Gaussian deviation that has been adjusted
experimentally for a typical SI POF [19]. This software tool is able to model real fibers.

Active and Passive Optical Devices for POF

By means of both computer simulations and experimental measurements we have de-
signed mode scramblers, active and passive couplers, and optical switches for POF. The
procedure for mode scrambling involves curving the POF inward and outward repeat-
edly, with the appropriate bend radii and lengths of the straight and bent sections for
the type of POF considered [20–24]. We have seen that the purpose of approaching the
equilibrium mode distribution in SI and GI POF can be achieved with various different
setups, consisting of two or more cylinders around which the POF is bent. In the case
of the eight-shaped configuration, the appropriate radius of the cylinders can vary from
10 to 21 millimeters. For example, two complete turns with a radius of 10 millimeters
and a separation between the centers of the mandrels of 30 millimeters can work for
standard high-NA PMMA POF, a greater radii up to 21 millimeters can serve as well if
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126 J. Zubia et al.

we increase significantly the number of complete turns. The distance between the centers
of the cylinders can be varied from 30 to 120 millimeters for fine-tuning, but it does not
affect the performance if it is longer. For standard GI POF the main difference is that
larger bend radii are needed (18–20 millimeters). We have also seen that the redistribution
of power along the bends mainly occurs at the initial part of the bend (the first quarter
of circular turn is more influential than the second one), so prolonging the arc lengths is
nearly irrelevant from a certain minimum length (1/2 turn and 1 turn yield very similar
results), although too short a bent section also has little influence on the final result of
the scrambler, as has been checked experimentally by eliminating the first and last short
bent sections in eight-shaped scramblers, such as in the setup mentioned above for a
high-NA PMMA POF. Similarly, the length of the straight sections between consecutive
bends have proved to be influential in the final result, but only when these are not too
long, as can be deduced from our results for different separations between the cylinders.
For example, we have checked for SI POF that there is no significant difference between
the distance of about 120 millimeters and a distance of 240 millimeters.

On the other hand, we have previously pointed out that the shape in which the fiber
is bent determines its attenuation. From this conclusion, we had the idea of designing
POF couplers whose coupling ratio could be controlled by changing the curvature of two
fibers whose cores were partially polished and in contact with each other along a short
section. We found that the most relevant factor that determined the coupling ratio was
the polishing depth. An equal power splitting ratio can be obtained, for instance, with
a null separation between the fiber axes and a coupling length of 35 mm [25]. Active
couplers and switches were achieved by placing a liquid crystal (LC) between the two
fibers [26, 27]. The LC chosen had parallel and perpendicular refractive indices of 1.5342
and 1.4717 respectively, and excess losses were about 3 dB.

Sensors Based on POF

Some of the sensors developed by us and Professor Lopez-Higuera’s group were based
on power variations of the light launched from one fiber to another, both with the fibers
aligned in the same direction and in opposite directions, with a reflecting surface in
front of them. In some cases, a rotating device that interrupted the transmission of light
periodically was placed in the way from one fiber to the other one, thus allowing us to
measure parameters such as wind speed [28]. In other sensors, it was the variations in
the transmitted light due to different refractive indices of the medium that determined the
value of the parameter to be measured; for example, the concentration of an acid [29].
On the other hand, a single fiber was sometimes employed to measure parameters such
as the refractive index of the outer medium or shifts in the position of the end of the
fiber, as in our seismograph. In the former case, the fiber was uncladded and curved in
the shape of several turns. It was able to measure refractive indices in the range between
1.33 and 1.44 [21, 30].

Our research results are graphically summarized in Tables 1 through 3.

Multi-Step Index Fibers

Multi-step index (MSI) fibers constitute a serious alternative to graded index (GI) fibers,
and especially to GI polymer optical fibers (GI-POF) [7, 8]. This is due to the simpler
processes involved in the manufacturing of these types of fibers, as well as to the stability
of their index profiles with aging and with temperature and humidity changes.
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Geometric Optics Analysis 127

Table 1
Theoretical and computational modeling of POF

Characteristics Results

A comprehensive software package ca-
pable of modeling real POF is being
developed. It includes bulk and sur-
face scattering and is based on both
the ray tracing and the WKB methods.
It yields dispersion, attenuation, far
and near fields, connector losses,
and so on. The top figure shows that
the predicted dispersion matches the
experimental one. The lower fig-
ure represents the essential idea in
our model.

Bending loss calculations interested us
from the beginning. From ray tracing
models in POF, we can calculate
bending loss as a function of the ratio
of bend radius to fiber core radius,
for any refractive index profile and
including the wavelength dependence
through tunneling rays. Typical bending
losses are exemplified in the figure,
in which we show the results for two
full turns in a 1 mm diameter PMMA
SI POF as a function of the radius
of curvature, both considering (upper
curve) and neglecting (lower curve)
tunneling rays. These results are very
important to design mode scramblers.

A new method for measuring mode
coupling in highly multimode SI POF
was developed. It consists in launch-
ing two collimated beams at two
different angles, as this figure shows.
By measuring the intersection points
of the respective far-field curves, the
mode conversion coefficients can be
easily deduced. The main advantage
of our method is that it is not nec-
essary to cut the fiber, maintaining
unchanged the setup conditions during
the whole experiment.

(continued)
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128 J. Zubia et al.

Table 1
(Continued)

Characteristics Results

One open question is the behavior of
the polarization state as the light
travels along a POF. Different kinds
of studies have been carried out for
short POF sections, including the
effect of wavelength, refractive in-
dices, diameter, and light launching
conditions. For example, we have
found a noticeable dependence of the
output degree of polarization on the
light-launching angle, which has been
presented in the frame of a theoretical
model. These studies are focused
on testing, if possible, the quality of
the core-cladding interface through
polarization measurements.

Table 2
Active and passive optical devices for POF

Characteristics Device

Active coupler and switch. By introducing a
liquid crystal (LC) between two partially
polished POF we can control the amount of
power exiting the output ports. The coupling
rate can be varied in 5 dB by applying a low
voltage to the LC layer inserted between the
fibers. We have designed two prototypes based
on a nematic LC and on a polymer-dispersed
one (PDLC), respectively.

Scramblers. By studying the influence of bends
on the far field it is possible to design scram-
blers for SI and GI POF. This figure shows
one of our approaches, where the distance
between cylinders may vary in order to get
the equilibrium mode distribution. At the
same time it is very important to maintain
low excess losses (less than 1 dB for some
applications).
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Geometric Optics Analysis 129

Table 3
Sensors based on POF

Characteristics POF sensor

POF-based wind speed sensor. It consists
of two fibers and a rotating device at-
tached to an anemometer. By counting
the number of reflected pulses caused by
the rotating cylinder, we can calculate
the wind speed without any drawback
originated by sparks or electric storms.
The signal travels toward the bottom of
the wind generator, where it is analyzed.
In this design we used two SI POF: one
for emitting light, and another one for
detecting the reflected light.

A seismograph and a flow sensor constitute
two of the prototypes of sensors we are
currently working on. The former is
based on the light emitted by a 2 m-high
POF onto a two-dimensional photodiode
array. Any vibration of the ground re-
sults in a variation of the recorded light
intensity. The other sensor, a flow one, is
based on the light modulation generated
by a propeller moved by the liquid flow,
which blocks the light transmission. The
number of transmitted pulses gives us
the flow. It is also possible to roughly
know the turbidity from the magnitude
of the transmitted light.

This intensity sensor measures concen-
trations of HF and HCl acids in water.
Variations of light intensity serve to
deduce acid concentrations. The light
power attenuates as it crosses the path
between the two end faces of the emit-
ting and receiving POF. The acids are
situated between the two fibers.

(continued)
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130 J. Zubia et al.

Table 3
(Continued)

Characteristics POF sensor

We have designed and measured passive
devices based on plastic optical fibers
(POF) to determine the index of refrac-
tion of liquids. The principle behind the
first approach is the light power leakage
along tightly bent POF stripped of their
cladding. Introducing more than half a
turn in the active POF hardly improves
the sensor’s response. The other design
is based on the power lost by a partially
polished POF due to the presence of a
liquid on the polished side, which causes
the appearance of leaky rays.

Furthermore, MSI fibers allow high bandwidths on the order of 250 MHz · 100 m
when considering, for instance, an MSI POF of three layers with a numerical aper-
ture (NA) of 0.25, which complies with the IEEE1394/S400 specification [8, 32], thus
increasing their popularity.

Taking into account that there are many theoretical aspects regarding the performance
of MSI fibers missing, we have carried out an extensive analysis of light propagation
properties in such fibers using geometric optics; the results will be shown in the following
sections.

Bound Rays in Multi-Step Index Fibers

Structure of Multi-Step Index Fibers

Figure 3 shows the refractive index profile in a multi-step index fiber of five layers [7],
whereas the most general refractive index profile in multi-step index fibers is plotted on
Figure 4.

Ray Paths in Multi-Step Index Fibers

The general equation for a ray path, derived from the Eikonal equation, may be written
as follows [31]:

d

ds

(
n

d�R
ds

)
= �∇n. (1)

Figure 5 shows the meaning of the parameters involved in Equation (1): s is the
distance measured along the path, �R is the position vector for a point on the ray path,
and d �R/ds is a unit vector tangent to the ray path and z the fiber axis.
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Geometric Optics Analysis 131

Figure 3. Measured refractive index profile for a multi-step index fiber of five layers. This plot is
taken from Levin et al. [7].

Figure 4. Most general refractive index profile in multi-step index fibers.
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132 J. Zubia et al.

Figure 5. Ray trajectory in multi-step index fibers.

In MSI fibers

n(�R) =




n1 = nco; r < ρ1,

n2; ρ1 ≤ r < ρ2,

...

nN; ρN−1 ≤ r < ρN,

ncl; r ≥ ρN.

(2)

We can simplify the above expressions if we consider only MSI fibers of two layers
(as shown in Figure 6):

n(r) =



n1; r < ρ1,

n2; ρ1 ≤ r < ρ2,

ncl; r ≥ ρ2.

Ray Invariants

From Equation (1) we have

n
dz

ds
= constant,

and name the angle between the ray path and longitudinal axis θz,

dz

ds
= cos θz.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 D
el

 P
ai

s 
V

as
co

] 
at

 0
8:

58
 0

1 
M

ar
ch

 2
01

3 



Geometric Optics Analysis 133

Figure 6. Example of the ray trajectory in an MSI fiber of two layers.

We call the ray invariant β̃:

β̃ = n cos θz = ndz
ds

=




n1 cos θz1; r < ρ1,

n2 cos θz2; ρ1 ≤ r < ρ2,

...

nN cos θzN ; ρN−1 ≤ r < ρN,

ncl cos θt ; r ≥ ρN.

(3)

which is related to the translational invariance of the MSI fiber. In the same way, we
define the invariant l̃ as

l̃ = ρi

ρN
ni sin θzi cos θφi ; i = 1 . . .N, (4)

which accounts for the azimuthal symmetry of the fiber.
Figure 7 shows the definitions of the angles used above when considering an MSI

fiber of two layers: α is the angle of incidence or reflection relative to the normal PN, θz
is the angle that the incident or reflected ray makes with the axial direction PQ, and θφ
is the angle the incident or reflected ray makes in the cross section between the tangent
at P and the path projection. For meridional rays, θφi = 0 ⇒ l̃ = 0.

These two invariants are not independent of each other but they are related by Snell’s
law:

β̃2 + l̃ 2 ρ
2
N

ρ2
i

= constant,

n2
i cos2 θzi + n2

i sin2 θzi cos2 θφi = constant,

n2
i sin2 αi = constant.
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134 J. Zubia et al.

Figure 7. Definition of the angles and distances in an MSI fiber of two layers.

Characteristics of the Ray Path

From the definition of the ray invariants, that is to say, from Equations (3) and (4), the
ray path equation yields

g(r) = β̃2
(
dr

dz

)2

= n2 − β̃2 − l̃ 2ρ2
N

r2

∣∣∣∣∣
r=ρi

(5)

A ray propagates when

g(r)|r=ρi = n2 − β̃2 − l̃ 2ρ2
N

ρ2
i

> 0

thus, a ray has a turning point rtp = ρ when 1) n2
i > β̃2 + l̃ 2ρ2

N/ρ
2
i (the ray does

propagate within the ith layer), and 2) n2
i+1 < β̃

2 + l̃ 2ρ2
N/ρ

2
i (the ray does not continue

propagating beyond the ith layer); that is,

n2
i+1 < β̃

2 + l̃ 2ρ2
N

ρ2
i

< n2
i ⇔ rtp = ρi. (6)
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Geometric Optics Analysis 135

Additionally, there is an inner caustic point for skew rays, whose radius ric is given by

g(r)|r=ρic = 0 ⇒ n2
i − β̃2 − l̃ 2ρ2

N

r2
ic

= 0,

r2
ic = l̃ 2ρ2

N

n2
i − β̃2

= ρ2
i cos2 θφi .

(7)

For instance, the inner caustic radius ric for an MSI fiber of two layers is

ric =




ρ1 cos θφ1 when rtp = ρ1(
n2

2 < β̃
2 + l̃ 2 ρ

2
2

ρ2
1

< n2
1

)



ρ1 cos θφ1 if ρ2 cos θφ2 < ρ1,[
0 < l̃ 2 <

ρ2
1

ρ2
2

(n2
2 − β̃2)

]

ρ2 cos θφ2 if ρ2 cos θφ2 > ρ1,[
n2

2 − β̃2 > l̃ 2 >
ρ2

1

ρ2
2

(n2
2 − β̃2)

]




when rtp = ρ2

(n2
cl < β̃

2 + l̃ 2 < n2
2)

Classification of Rays

Taking into account that Equation (5) determines whether rays propagate or not, we can
classify rays as follows:

• Bound rays: These rays are bound to the fiber cores and do not leak into the
cladding. g(r) > 0 ∀r < ρN.

• Refracting rays: These rays reach the core-cladding interface. g(r)|r=ρN > 0; that
is, 0 < β̃2 + l̃ 2ρ2

N/ρ
2
i < n

2
cl.• Tunneling rays: These rays have a turning point (rtp = ρi) satisfying β̃2 < n2

i+1

and n2
i+1 < β̃

2 + l̃ 2ρ2
N/ρ

2
i .

Let us take a practical case in which the width of each layer is maintained constant
(i.e., ρi − ρi−1 = constant ∀i) and the refractive indices of the MSI fiber are fitted using
two different approaches:

1) Linear MSI fiber: The refractive indices of each layer decrease linearly outward.
2) Parabolic MSI fiber: The refractive indices of each layer have been calculated

in such a way that the overall refractive index profile approximates to the clad
parabolic profile.

For a PMMA fiber, the inner layer has a refractive index of n1 = 1.492, whereas
the cladding refractive index has a value of ncl = 1.402. The outermost layer has a
normalized radius of ρN = 1.

Figure 8 shows several schematic distributions of rays according to the value of the
invariants β̃ and l̃ for N = 1, 2, and 6 layers and for the two different fibers considered
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136 J. Zubia et al.

Figure 8. Schematic distribution of rays in MSI fibers: a) One-layer linear MSI fiber; b) two-layer
linear MSI fiber; c) six-layer linear MSI fiber; d) six-layer parabolic MSI fiber

above (please notice that we have zoomed in so as to have a clearer representation in
Figures 8b, 8c, and 8d.

For N = 1 the schematic classification of the rays reduces to that for step-index
fibers. It is noticeable that as the number of layers increases, the proportion of the sum
of tunneling and bound rays to refracting rays decreases. From Figures 8c and 8d, it can
be seen that for the linear MSI fiber, there are less tunneling rays (although the same
happens to bound rays), than for parabolic MSI fiber. As the number of layers increases,
the range of allowed values of l̃ for the parabolic MSI fiber tends to that for a clad
parabolic profile fiber.

Ray Path Parameters

We define the local numerical aperture from the complementary critical angle

NAi =
√
n2
i − n2

cl; ρi−1 ≤ r ≤ ρi (8)

It can be seen that

NAi−1 > NAi .
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Geometric Optics Analysis 137

Next, we obtain the new ray trajectory from

g(r) = β̃2
(
dr

dz

)2

⇒ z− z0 = β̃
∫ r

r0

dr√
g(r)

(9)

The path length Lp is calculated as follows

Lp =
∫ Q

P

ds = 2
∫ rtp

ric

n√
g(r)

dr (10)

We can generalize Equation (10) to the N-layer expression

Lp =




A when




n2
i+1 < β̃

2 + l̃ 2ρ2
N

ρ2
i

< n2
i

ρ2
i−1 <

l̃ 2ρ2
N

n2
i − β̃2

< ρ2
i

i = 1 . . .N,

B when



n2
y+1 < β̃

2 + l̃ 2ρ2
N

ρ2
y

< n2
y

ρ2
x−1 <

l̃ 2ρ2
N

n2
x − β̃2

< ρ2
x

[
y = 2 . . .N,

x = 1 . . . y − 1,

(11)

where

A = 2ni
n2
i − β̃2

ρi

√√√√n2
i − β̃2 − l̃ 2ρ2

N

ρ2
i

B = 2nx
n2
x − β̃2

ρx

√
n2
x − β̃2 − l̃ 2ρ2

N

ρ2
x

+
y∑

i=x+1


 2ni
n2
i − β̃2


ρi

√√√√n2
i − β̃2 − l̃ 2ρ2

N

ρ2
i

− ρi−1

√√√√n2
i − β̃2 − l̃ 2ρ2

N

ρ2
i−1






and {
ρ0 = 0,

nN+1 = ncl.

Next, we will calculate the ray half-period zp, which is defined as the axial distance
between successive turning points

zp = 1

N
= 2β̃

∫ rtp

ric

1√
g(r)

dr. (12)
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138 J. Zubia et al.

Therefore

zp =




C when




n2
i+1 < β̃

2 + l̃ 2ρ2
N

ρ2
i

< n2
i

ρ2
i−1 <

l̃ 2ρ2
N

n2
i − β̃2

< ρ2
i

i = 1 . . .N

D when



n2
y+1 < β̃

2 + l̃ 2ρ2
N

ρ2
y

< n2
y

ρ2
x−1 <

l̃ 2ρ2
N

n2
x − β̃2

< ρ2
x

[
y = 2 . . .N

x = 1 . . . y − 1

(13)

where

C = 2β̃

n2
i − β̃2

ρi

√√√√n2
i − β̃2 − l̃ 2ρ2

N

ρ2
i

,

D = 2β̃

n2
x − β̃2

ρx

√
n2
x − β̃2 − l̃ 2ρ2

N

ρ2
x

+
y∑

i=x+1


 2β̃

n2
i − β̃2


ρi

√√√√n2
i − β̃2 − l̃ 2ρ2

N

ρ2
i

− ρi−1

√√√√n2
i − β̃2 − l̃ 2ρ2

N

ρ2
i−1




 .

Ray Transit Times in Multi-Step Fibers

The ray transit time is defined as the time taken for a ray to propagate a distance z along
a waveguide, which is given by

t = 1

c

∫
n ds = 1

cβ̃

∫ z

0
n2dz. (14)

Noting the periodicity of the ray path, if we name the point where r = ric A and the
point where r = rtp B, then

t

z
= tAB

zp

By definition, the transit time over a ray half-period zp is L0/c; that is,

t = z

c

L0

zp
.
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Geometric Optics Analysis 139

Therefore,

t =




E when




n2
i+1 < β̃

2 + l̃ 2ρ2
N

ρ2
i

< n2
i

ρ2
i−1 <

l̃ 2ρ2
N

n2
i − β̃2

< ρ2
i i = 1 . . .N,

F when



n2
y+1 < β̃

2 + l̃ 2ρ2
N

ρ2
y

< n2
y

ρ2
x−1 <

l̃ 2ρ2
N

n2
x − β̃2

< ρ2
x

[
y = 2 . . .N,

x = 1 . . . y − 1,

(15)

where

E = z

cβ̃
n2
i

F = z

cβ̃

n2
xG+

y∑
i=x+1


 n2

i

n2
i − β̃2


ρi

√√√√n2
i − β̃2 − l̃ 2ρ2

N

ρ2
i

− ρi−1

√√√√n2
i − β̃2 − l̃ 2ρ2

N

ρ2
i−1






G+
y∑

i=x+1


 1

n2
i − β̃2


ρi

√√√√n2
i − β̃2 − l̃ 2ρ2

N

ρ2
i

− ρi−1

√√√√n2
i − β̃2 − l̃ 2ρ2

N

ρ2
i−1






G = ρx

n2
x − β̃2

√
n2
x − β̃2 − l̃ 2ρ2

N

ρ2
x

.

In contrast to graded index optical fibers, the dependence of t on l̃ is very strong, as
the simulations carried out have demonstrated.

Figures 9 and 10 show the ray transit time as a function of the ray invariants β̃ and
l̃ for N = 2, 6, and 10 layers and for the aforementioned two different MSI fibers taking
the practical case in which the width of each layer is maintained constant (see previous
section on ray classification). Specifically, the ray transit time as a function of β̃ and l̃ is
shown at the top, whereas the ray transit time considering only meridional rays (l̃ = 0)
is drawn at the bottom (it turns out to be the rear projection of the ray transit time on
the l̃ = 0 plane).

Let us first analyze the behavior of the ray transit time considering only meridional
rays. Regardless of the type of MSI fiber and the number of layers, the ray transit time
always increases as the ray invariant β̃ decreases whenever rays propagate within a cer-
tain layer. If rays go beyond the first layer, the ray transit time shows a decrease because
rays can now propagate within a less-dense medium in addition to the first layer, which
boosts their speed. In each layer, the tendency of the ray transit time is to increase for
more tilted rays while they do not pass to the next layer, in which case the ray transit
time would decrease again (since ni+1 < ni). Regardless of the refractive index profile
of the MSI fiber, the minimum transit time (tmin) corresponds to rays traveling along the
outermost layer with the minimum axial angle (θzN = 0) or, equivalently, to rays having
β̃ = nN. The maximum transit time (tmax) depends strongly on the fiber refractive index
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140 J. Zubia et al.

Figure 9. Ray transit time for a linear MSI as a function of β̃ and l̃: a) two layers; b) two layers
(only meridional rays); c) six layers; d) six layers (only meridional rays); e) ten layers; f ) ten
layers (only meridional rays).
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Geometric Optics Analysis 141

Figure 10. Ray transit time for a parabolic MSI as a function of β̃ and l̃: a) two layers; b) two
layers (only meridional rays); c) six layers; d) six layers (only meridional rays); e) ten layers; f ) ten
layers (only meridional rays).
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142 J. Zubia et al.

profile. Thus, for a parabolic MSI fiber, the maximum transit time is obtained when rays
are tilted at the maximum value allowed for them to propagate as bound rays when they
reach the outermost layer. For a linear MSI fiber, the maximum transit time corresponds to
rays propagating within the innermost layer and at an angle below the maximum allowed
value before they can reach the next layer. This fact can be explained in terms of the differ-
ence between refractive indices of consecutive layers. This difference is maximum for the
parabolic fit when comparing the refractive indices of the outermost and next to last layers.
However, for the linear fit the differences between consecutive layers are the same, so the
maximum transit time occurs for the densest medium, which is the innermost one. Even
so, the difference between the maximum and minimum transit times tends to decrease as
the number of layers increases. The latest topic will also be discussed in the following section.

Turning to the question of the behavior of the ray transit time according to the
values of β̃ and l̃, it is straightforward to see that it does not depend on l̃ provided that
rays propagate within an only layer, which happens for a ray having a certain β̃ray so
that ni+1 ≤ β̃ray < ni (that is, its turning point is rtp = ρi) and having an l̃ so that
l̃ 2 > (n2

i − β̃2
ray)ρ

2
i−1/ρ

2
N (that is to say, its inner caustic is ric ≥ ρi−1). In contrast, the

dependence of the ray transit time on l̃ is higher as rays propagate within more layers
(β̃ decreases) or the number of layers N increases. Thus, for rays having a certain β̃ray,
t will decrease from a maximum corresponding to l̃ = 0 to a minimum corresponding
to the maximum value of l̃ consistent with Snell’s law. The maximum variation of the
ray transit time as a function of l̃ occurs when β̃ � ncl (rays reaching the cladding
interface). This maximum variation strongly depends on the number of layers and the
fiber refractive index profile.

Although the ray transit time decreases as l̃ grows, the minimum transit time tmin
corresponds to meridional rays (l̃ = 0) reaching the outermost layer of the MSI fiber with
a value of β̃ = nN, irrespective of the refractive index profile of the MSI fiber. Because
the ray transit time decreases with l̃ (when rays propagate within two or more layers),
it is clear that the maximum transit time tmax corresponds to meridional rays, which is
obtained under the conditions already discussed.

Ray Dispersion

Next, we will calculate the pulse spread; that is, the difference between the maximum and
minimum ray transit times. As already seen, these maximum and minimum times only
depend on β̃. This fact allows us to discuss the ray dispersion in terms of the expressions
obtained for meridional rays, which highly simplifies calculations.

Now, we will calculate td for the case in which there are no skew rays (l̃ = 0), that
is to say, for meridional rays.

t (l̃ = 0) =




z

c

n2
1

β̃
when n2

2 < β̃
2 < n2

1

z

cβ̃

n2
1ρ1√
n2

1 − β̃2
+

y∑
i=2

n2
i√

n2
i − β̃2

(ρi − ρi−1)

ρ1√
n2

1 − β̃2
+

y∑
i=2

ρi − ρi−1√
n2
i − β̃2

when

[
n2
y+1 < β̃

2 < n2
y

y = 2 . . .N
.

(16)
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Geometric Optics Analysis 143

The minimum transit time is given by

tmin = z

c
nN (17)

Evaluating tmax is a much more complicated task, since

tmax = max{t1st layer|β̃=n2
, t2nd layer|β̃=n3

, . . . , tNth layer|β̃=ncl
}

= max



z

c

n2
1
n2
,
z

cn3

n2
1ρ1√
n2

1 − n2
3

+ n2
2√

n2
2 − n2

3

(ρ2 − ρ1)

ρ1√
n2

1 − n2
3

+ ρ2 − ρ1√
n2

2 − n2
3

, . . . ,
z

cncl

n2
1ρ1√

n2
1 − n2

cl

+
N∑
i=2

n2
i√

n2
i

− n2
cl

(ρi − ρi−1)

ρ1√
n2

1 − n2
cl

+
N∑
i=2

ρi − ρi−1√
n2
i

− n2
cl



.

(18)

The main advantage of MSI fibers in relation to SI fibers is that now tmax keeps
much lower. However, tmax − tmin is comparable to the value for SI fibers.

Let us take again the practical case in which the width of each layer is maintained
constant (ρi−ρi−1 = constant ∀i), whereas we will allow the respective refractive indices
to take any value. Now we can simplify Equation (16) so as to have

t (l̃ = 0) =




z

c

n2
1

β̃
when n2

2 < β̃
2 < n2

1

z

cβ̃

n2
1 +

(
ρ2

ρ1
− 1

)√
n2

1 − β̃2
y∑
i=2

n2
i√

n2
i − β̃2

1 +
(
ρ2

ρ1
− 1

)√
n2

1 − β̃2
y∑
i=2

1√
n2
i − β̃2

when

[
n2
y+1 < β̃

2 < n2
y

y = 2 . . .N
.

(19)

Now, let us consider the case in which the difference between the refractive indices of
the consecutive (p−1)th and pth layers is the greatest among the remaining possibilities;
that is,

np−1 − np � ni−1 − ni; i = 1 . . .N
p �= i

Due to this difference, a greater variation in β̃ is allowed for rays propagating inside the
pth layer. This means that tmax, evaluated from Equations (18) and (19), is

tmax = z

cnp

n2
1 +

(
ρ2

ρ1
− 1

)√
n2

1 − n2
p

p−1∑
i=2

n2
i√

n2
i − n2

p

1 +
(
ρ2

ρ1
− 1

)√
n2

1 − n2
p

p−1∑
i=2

1√
n2
i − n2

p

(20)
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144 J. Zubia et al.

Hence, !t = tmax − tmin is calculated from Equations (20) and (17) as

!t = z

c




n2
1 +

(
ρ2

ρ1
− 1

)√
n2

1 − n2
p

p−1∑
i=2

n2
i√

n2
i − n2

p

np


1 +

(
ρ2

ρ1
− 1

)√
n2

1 − n2
p

p−1∑
i=2

1√
n2
i − n2

p




− nN



. (21)

Fiber Illumination

Diffuse Illumination

Let us consider a diffuse or Lambertian source. The element of power dP radiated is
given by

dP = I (θ0)d#dA

where

I (θ0) = I0 cos θ0

d# = sin θ0dθ0dθφ; dA = rdrdφ
and the ranges of source-ray directions (θ0 and θφ) and positions on the fiber input
endface (r and φ) satisfy

0 ≤ θ0 ≤ π/2; 0 ≤ r ≤ ρN,

0 ≤ θφ ≤ 2π; 0 ≤ φ ≤ 2π.

The amount of source power carried by bound rays Pbr is found by integrating the
element of power dP radiated over the complete ranges of values of r , φ, and θφ , and
over the range of values of θ0 corresponding to bound rays

Pbr = I0
∫ 2π

0
dφ

∫ ρN

0
rdr

∫ 2π

0
dθφ

∫ θm(r)

0
sin θ0 cos θ0dθ0 (22)

θm(r) is defined as the maximum value of θ0 for which a source ray propagates as a
bound ray.

n0 sin θm(r) = n(r) sin θc(r) =




n1 sin(θc1) =
√
n2

1 − n2
cl; 0 ≤ r ≤ ρ1

n2 sin(θc2) =
√
n2

2 − n2
cl; ρ1 ≤ r ≤ ρ2

...

nN sin(θcN) =
√
n2

N − n2
cl; ρN−1 ≤ r ≤ ρN

so that

sin θm(r) = NAi
n0

=
√
n2
i − n2

cl

n0
; ρi−1 ≤ r ≤ ρi (23)
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Geometric Optics Analysis 145

If we substitute θm(r) for Equation (23) we get the following expression:

Pbr = 2π2 I0

n2
0

∫ ρN

0
rS(r)dr; S(r) = n2

i − n2
cl = NA2

i ; ρi−1 ≤ r ≤ ρi (24)

and this can be expressed as a function of the profile volume (

Pbr = π I0
n2

0

(; ( = 2π
∫ ρN

0
rS(r)dr = 2π

∫ ρN

0
r(n2

i − n2
cl); ρi−1 ≤ r ≤ ρi

(25)

The above equations can be expanded to obtain


Pbr = π2 I0

n2
0

N∑
i=1

(ρ2
i − ρ2

i−1)Si; Si = n2
i − n2

cl

Pbr = π I0
n2

0

(; ( = 2π
N∑
i=1

ρ2
i − ρ2

i−1

2
(n2
i − n2

cl)

(ρ0 = 0)

(26)

Likewise, the total power Ptot radiated by the source is given by

Ptot = I0
∫ 2π

0
dφ

∫ ρN

0
rdr

∫ 2π

0
dθφ

∫ π/2

0
sin θ0 cos θ0dθ0 = π2ρ2

NI0. (27)

Consequently, the source efficiency is

ξ = Pbr

Ptot
= Pbr

π2ρ2
NI0

= (

n2
0πρ

2
N

=

N∑
i=1

(ρ2
i − ρ2

i−1)(n
2
i − n2

cl)

n2
0ρ

2
N

(28)

For N = 1, Equation (28) reduces to the source efficiency for a step-index fiber

ξ |N=1 = ρ2
1 (n

2
1 − n2

cl)

n2
0ρ

2
1

= n2
1 − n2

cl

n2
0

= ξSI

For the sake of comparison, we also provide the source efficiency for a graded-index
fiber, and, more specifically, for a clad power-law profile [31],

ξGI = q

q + 2

n2
1 − n2

cl

n2
0

As is stated in Snyder and Love [31], the efficiency for a clad parabolic profile fiber is
half of that for a step-index fiber.

Considering again the practical case in which the width of each layer is maintained
constant (ρi − ρi−1 = constant ∀i), we will calculate the source efficiency for the two
different MSI fibers already discussed in the section on ray classification. The results are
shown in Figure 11.
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146 J. Zubia et al.

Figure 11. Source efficiency for a diffuse illumination.

The source efficiencies for both MSI fibers match the source efficiency for the step-
index fiber in the limit of one layer (N = 1). As the number of layers N increases, the
source efficiency for a parabolic MSI fiber (that is, a fiber whose refractive indices are
fitted according to the clad parabolic profile) tends to that for a clad parabolic profile
fiber. However, the source efficiency for the linear MSI fiber drops below that for a clad
parabolic profile fiber, so a linear distribution of the refractive indices for each layer on
an MSI fiber leads to a worse power acceptance.

In view of these results, one can compare the source efficiency for an MSI fiber with
the source efficiency for a clad power-law profile

q

q + 2
=

N∑
i=1

(ρ2
i − ρ2

i−1)(n
2
i − n2

cl)

ρ2
N(n

2
1 − n2

cl)

For a certain MSI fiber, its power acceptance would be the same as that for a clad
power-law profile graded-index fiber satisfying

q =
2

N∑
i=1

(ρ2
i − ρ2

i−1)(n
2
i − n2

cl)

ρ2
N(n

2
1 − n2

cl)−
N∑
i=1

(ρ2
i − ρ2

i−1)(n
2
i − n2

cl)

= 2(

πρ2
N(n

2
1 − n2

cl)−(
.
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Geometric Optics Analysis 147

Collimated-Beam Illumination

Let us now consider a collimated-beam illumination emitting at an angle θ0 to the fiber
axis. If the beam carries uniform power Pi per unit area of its cross section, then

Ptot = πρ2
NPi cos θ0 (29)

According to Equation (23), the maximum value of θ0 for a source ray to propagate as
a bound ray decreases from a maximum value for which

sin θm(r)|0≤r≤ρ1 =
√
n2

1 − n2
cl/n0

to a minimum for which

sin θm(ρN) = 0

as ni decreases from n1 to ncl. Therefore, if

θ0 > θm(r)|0≤r≤ρ1

that is to say,

θ0 > arcsin

(√
n2

1 − n2
cl/n0

)

no bound rays are excited, but if

0 ≤ θ0 < θm(r)|0≤r≤ρ1

that is,

0 ≤ θ0 < arcsin

(√
n2

1 − n2
cl/n0

)

bound rays are excited within a circle whose radius rbr is set by the following condition:

rbr = ρi; arcsin

(√
n2
i+1 − n2

cl/n0

)
≤ θ0 < arcsin

(√
n2
i − n2

cl/n0

)
; i = 1 . . .N

taking into account that nN+1 = ncl.
As a consequence, the total bound-ray power and source efficiency are given by

Pbr =



πρ2
i Pi; arcsin

(√
n2
i+1 − n2

cl/n0

)
≤ θ0 < arcsin

(√
n2
i − n2

cl/n0

)

0; arcsin

(√
n2

1 − n2
cl/n0

)
< θ0 ≤ π/2

(30)

5ξ =




ρ2
i

ρ2
N

; arcsin

(√
n2
i+1 − n2

cl/n0

)
≤ θ0 < arcsin

(√
n2
i − n2

cl/n0

)

0; arcsin

(√
n2

1 − n2
cl/n0

)
< θ0 ≤ π/2

(31)
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148 J. Zubia et al.

Again, for N = 1, Equation (31) reduces to the source efficiency for a step-index fiber

ξ |N=1 = ξSI =
{

1; 0 ≤ θ0 < θm,

0; θm < θ0 ≤ π/2

where

θm = arcsin

(√
n2

1 − n2
cl/n0

)
.

Coupling Loss

Mechanical misalignment is a major source of losses when joining two fibers. In this
section we will study the first two of three fundamental types of misalignments between
fibers, which are, namely, axial or lateral displacement, longitudinal separation, and an-
gular misalignment. The angular misalignment and the measurements of the losses due
to these three types of misalignment will be presented in another paper.

Lateral Displacement

From Equation (26), we recall the expression for the amount of source power carried by
bound rays

Pbr = π2 I0

n2
0

N∑
i=1

(ρ2
i − ρ2

i−1)Si =
N∑
i=1

Pi; Si = n2
i − n2

cl,

and taking into account that Si = NA2
i ,

Pi = π2 I0

n2
0

(ρ2
i − ρ2

i−1)NA2
i

We can rewrite the above expression as a function of the amount of source power
carried by bound rays within the innermost layer, P1, so as to have

Pi

P1
= (ρ2

i − ρ2
i−1)NA2

i

ρ2
1 NA2

1

which, in turn, allows us to express the optical power density Wi = Pi/Ai as a function
of the square of the local numerical aperture

Wi

W1
= Pi/Ai

P1/A1
= [(ρ2

i − ρ2
i−1)NA2

i ]/[π(ρ2
i − ρ2

i−1)]
[ρ2

1 NA2
1]/[πρ2

1 ] = NA2
i

NA2
1

(32)

We will calculate the power transmitted across two fibers joint with an axial offset d,
as shown in Figure 12, by taking into account the areas AT1 and AT2 that constitute the
overlap region. The power coupled into the receiving fiber is calculated by integrating the
power density given by Equation (32) separately over the areas AT1 and AT2 . Within AT1

the local numerical aperture of the emitting fiber is always smaller than that of the layers
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Geometric Optics Analysis 149

Figure 12. Overlapping core areas (stripped areas) for two identical MSI fibers with a lateral
misalignment of d .

of the receiving fiber. Therefore, all the power emitted in this region will be accepted by
the receiving fiber, so

P1 = 2
∫ ϕN

0

∫ ρN

rϕ

Wirdrdϕ = 2W1

∫ ϕN

0

∫ ρN

rϕ

NA2
i

NA2
1

rdrdϕ (33)

where the limits of integration are

ϕN = arccos
d

2ρN
; rϕ = d

2 cosϕ

AT1 can be divided into several sections, each of them corresponding to a different
layer. Hence,

P1 = W1

NA2
1




N∑
i=j+1

NA2
i Ai + NA2

j

[
ρ2
j arccos

d

2ρj
− d

2

√
ρ2
j − d2/4

]
 (34)

where

Ai = ρ2
i arccos

d

2ρi
− ρ2

i−1 arccos
d

2ρi−1
+ d

2

{√
ρ2
i−1 − d2/4 −

√
ρ2
i − d2/4

}

and j is an integer value that satisfies

ρj−1 ≤ d/2 < ρj
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150 J. Zubia et al.

Although within AT2 the local numerical aperture of the emitting fiber can be greater
than the local numerical aperture of the receiving fiber, the power P2 coupled across this
area can be readily found from symmetry considerations. Thus, this power P2 is equal
to the power P1 coupled across the area AT1 [33], so the total power Pac accepted by the
receiving fiber is

Pac = 2P1 (35)

The coupling efficiency ηlateral is calculated by dividing this total accepted power
Pac by the total bound-ray power Pbr

ηlateral = Pac

Pbr
=

2W1

NA2
1




N∑
i=j+1

NA2
i Ai + NA2

j

[
ρ2
j arccos

d

2ρj
− d

2

√
ρ2
j − d2/4

]


π2 I0

n2
0

N∑
i=1

(ρ2
i − ρ2

i−1)NA2
i

(36)

and substituting W1 for Equation (32) we obtain

ηlateral =
2




N∑
i=j+1

NA2
i Ai + NA2

j

[
ρ2
j arccos

d

2ρj
− d

2

√
ρ2
j − d2/4

]


π

N∑
i=1

(ρ2
i − ρ2

i−1)NA2
i

(37)

so the coupling loss for the lateral misalignment LLM is

LLM = −10 log ηlateral

= −10 log

2




N∑
i=j+1

NA2
i Ai + NA2

j

[
ρ2
j arccos

d

2ρj
− d

2

√
ρ2
j − d2/4

]


π

N∑
i=1

(ρ2
i − ρ2

i−1)NA2
i

(38)

It is straightforward to show that for N = 1, Equation (38) reduces to the coupling
loss for a step-index fiber

LLM|N=1 = −10 log
2

{
ρ2

1 arccos
d

2ρ1
− d

2

√
ρ2

1 − d2/4

}
πρ2

1

= −10 log
2

π


arccos

d

2ρ1
− d

2ρ1

√
1 −

(
d

2ρ1

)2



Finally, Figure 13 shows the coupling loss for the different types of MSI fibers already
discussed in the section on ray classification.
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Geometric Optics Analysis 151

Figure 13. Coupling loss for a lateral misalignment d.

Again, the coupling loss for an MSI fiber of 1 layer is the same as that for a
step-index fiber. As the number of layers N increases, the coupling loss for an MSI
fiber (either linear or parabolic) is greater than the coupling loss for a step-index one.
Furthermore, the coupling loss for the parabolic MSI fiber tends to the coupling loss
for a clad parabolic profile fiber (as can be seen for N = 100 layers). In contrast, the
coupling loss for the linear MSI fiber for N = 100 layers increases beyond the coupling
loss for a clad parabolic profile fiber, so a linear distribution of the refractive indices for
each layer on an MSI fiber leads to a worse coupling efficiency.

Longitudinal Separation

We will analyze the effects of separating the two fiber ends longitudinally by a gap. We
name this gap s. The power into the receiving fiber is calculated from the contribution of
each layer of the emitting fiber into each layer of the receiving fiber, taking into account
the power acceptance conditions in both fiber ends. For this purpose, each portion of
accepted power in the receiving fiber is calculated from the optical power density W(r).
Assuming a diffuse illumination, at z = 0 the optical power density associated to the ith
layer of the emitting fiber is

Wi(0) =
π2 I0

n2
0

(ρ2
i − ρ2

i−1)NA2
i

π(ρ2
i − ρ2

i−1)
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152 J. Zubia et al.

whereas at z = s it is

Wi(s) =
π2 I0

n2
0

(ρ2
i − ρ2

i−1)NA2
i

π{(ρi + s tan θi)2 − (ρi−1 − s tan θi)2}
where

θi = arcsin
NAi
n0
.

We can separate the above expression and have




W1(s) =
π
I0

n2
0

ρ2
1 NA2

1

(ρ1 + s tan θ1)2

Wi �=1(s) = πI0

n2
0

NA2
i{

1 + 2s tan θi
ρi − ρi−1

}

Likewise, we can classify the accepted power contributions according to whether it
is emitted from the innermost layer or not.

• Power contributions of the innermost layer (i = 1) of the emitting fiber to the j th
layer of the receiving fiber:

P 1
1 = π2I0

n2
0

NA2
1

(ρ1 + s tan θ1)2
ρ4

1 (39)

P 1
j≥2 = π2I0

n2
0

ρ2
1 NA2

j

(ρ1 + s tan θ1)2
{min[ρ2

j , (ρ1 + s tan θ1)
2] − ρ2

j−1} (40)

• Power contributions of the rest of the layers (i ≥ 2) of the emitting fiber to the
j th layer of the receiving fiber:

P
i≥2
1 = π2I0

n2
0

NA2
i{

1 + 2s tan θi
ρi − ρi−1

} [ρ2
1 − (ρi−1 − s tan θi)

2] (41)

P
i≥2
j≥2 =




π2I0

n2
0

NA2
j{

1 + 2s tan θi
ρi − ρi−1

} {
min[ρ2

j , (ρi + s tan θi)
2]

− max[ρ2
j−1, (ρi−1 − s tan θi)

2]
}

if i < j

π2I0

n2
0

NA2
i{

1 + 2s tan θi
ρi − ρi−1

} {
min[ρ2

j , (ρi + s tan θi)
2]

− max[ρ2
j−1, (ρi−1 − s tan θi)

2]
}

if i ≥ j
(42)
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Geometric Optics Analysis 153

Therefore,

Pac = P 1
1 +

p∑
i=2

P i1 +
q∑
j=2

P 1
j +

N∑
j=2

t∑
i=s
P ij (43)

where the limits of integration p, q, s, and t are integer values satisfying

p = max {all possible values of k} so that ρk−1 − s tan θk < ρ1; p = 2 . . .N

q = max {all possible values of k} so that ρk−1 ≤ ρ1 + s tan θ1 < ρk; q = 2 . . .N

s = min {all possible values of k} so that (ρk + s tan θk ≥ ρj−1) and
(ρk−1 − s tan θk < ρj )

t = max {all possible values of k} so that (ρk + s tan θk ≥ ρj−1) and
(ρk−1 − s tan θk < ρj ); 2 ≤ s ≤ t ≤ N

and Equation (43) is only valid for

s ≤ ρ1

tan θ2

so a uniform optical power density can still be assumed.
We have plotted on Figure 14 the coupling loss for the different types of MSI fibers

considered in the section on ray classification.

Figure 14. Coupling loss for a longitudinal separation s.
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154 J. Zubia et al.

As could be expected, the coupling loss for an MSI fiber of one layer is the same
as that for a step-index fiber. Contrary to what occurred to the coupling loss due to a
lateral displacement, as the number N of layers increases, the coupling loss for an MSI
fiber (either linear or parabolic) is less than the coupling loss for a step-index one. In
addition, the difference between the coupling loss for the parabolic MSI fiber and that
for the linear MSI fiber is not very significant. Even so, the former is slightly smaller
than the latter, so a linear distribution of the refractive indices for each layer on an MSI
fiber leads to a worse coupling efficiency, in the same way as in lateral displacements.

Conclusion

POFs’ characteristics, namely price, ease of connection, and good physical properties,
make them specially suitable for short-haul telecommunication links and sensors, which
has motivated us to work on this field. In this article we have summarized some of the
results obtained, both from measurements and prototypes and from theoretical investiga-
tions. These include propagation studies, simulation of real fibers, and the design of new
components for POFs and sensors based on them.

In the second part of the article we have presented a new theory for MSI-POF
based on geometric optics, which could be a serious alternative to GI-POF, as the results
obtained for ray dispersion seem to confirm. The geometric optics approach will be
completed at a further stage by analyzing bend losses and power redistribution, and by
performing empirical measurements, in order to ensure the validity of the expressions
we have calculated.
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