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Abstract: We present a method to obtain the frequency response of step
index (SI) plastic optical fibers (POFs) based on the power flow equation
generalized to incorporate the temporal dimension where the fibre diffusion
and attenuation are functions of the propagation angle. To solve this
equation we propose a fast implementation of the finite-difference method
in matrix form. Our method is validated by comparing model predictions to
experimental data. In addition, the model provides the space-time evolution
of the angular power distribution when it is transmitted throughout the fibre
which gives a detailed picture of the POFs capabilities for information
transmission. Model predictions show that angular diffusion has a strong
impact on temporal pulse widening with propagation.
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1. Introduction

Transmission properties in multimode fibers, such as attenuation and bandwidth, show a non-
linear dependence with fibre length whose origin is generally attributed to mode coupling. For
example, the concatenation factor, that describes the dependence of fibre bandwidth with length,
is an empirical parameter widely used when estimating the fiber maximum span for a given data
rate. Plastic optical fibers, with highly multimode transmission and strong mode coupling, show
a complex relationship between bandwidth and length different from ray-theory predictions.
There are several proposals in the literature to obtain bandwidth from other parameters more
easily measured, such as the numerical aperture (NA) [1], but we have shown that these simple
models cannot give a complete description of the changes in bandwidth with length [2].

In another work, we devised a method based on Gloge’s power flow equation and on experi-
mental far field patterns (FFPs) to obtain the angular diffusion and attenuation functions char-
acteristic of a given fiber [3]. These functions provide an account of the fiber spatial behavior
and, along with the power flow equation, can be used to predict output power angular distribu-
tions at any fiber length and for any launching condition [4]. This description was incomplete
because the temporal dependence was not explicit in the equation and frequency response and
bandwidth could not be calculated.

Here, we propose the use of Gloge’s generalization of the differential power flow equation to
obtain the pulse temporal spread with propagation [5]. The temporal dimension is introduced
into the equation which can then be solved in the frequency domain. This approach was used
in [6] to obtain the impulse response solving the differential equation by the Crank-Nicholson
scheme. In this paper we present a fast matrix approach of the finite-difference method to
solve the power flow equation for the given angular diffusion and attenuation functions. Thus,
the frequency responses for a given fibre can be obtained at a range of lengths to derive the
bandwidth dependence with distance. The method is verified by comparing its estimates to
experimental measurements of frequency responses for the same fibers and conditions as the
FFPs used to determine the angular diffusion and attenuation functions.

In this paper, we describe our method, based on Gloge’s differential equation, and the fast
procedure devised to solve it. Then, we briefly describe the experimental set-up and meth-
ods to obtain the frequency responses and the FFPs versus length for the tested POFs. Third,
we present the results, comparing the experimental and predicted frequency responses and the
bandwidth dependence on fibre length. Afterwards, we discuss the model predictions that can
be applied to understand POF behavior in real links, and finally, we summarize the conclusions.

2. Matricial approach proposed to solve the space-time power flow equation

We use Gloge’s power flow equation to describe the evolution of the modal power distribution
as it is transmitted throughout a POF where different modes are characterized by their inner
propagation angle with respect to fiber axis (θ), which can be taken as a continuous variable
[3]. We make no assumptions about the angular diffusion and attenuation which are described
as functions of θ , d(θ) and α(θ) respectively. Following the procedure described in [5] to
introduce the temporal dimension, the partial derivative of the optical power, P(θ ,z, t), with
respect to z produces the two terms on the left hand of the equation, giving:

∂P(θ ,z, t)
∂ z

+
∂ t
∂ z

∂P(θ ,z, t)
∂ t

= −α (θ)P(θ ,z, t)+
1
θ

∂
∂θ

(
θ ·d (θ) · ∂P(θ ,z, t)

∂θ

)
(1)
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and, given that ∂ t
∂ z = n

ccosθ , we get the following equation:

∂P(θ ,z, t)
∂ z

= −α (θ)P(θ ,z, t)− n
ccosθ

· ∂P(θ ,z, t)
∂ t

+
1
θ

∂
∂θ

(
θ ·d (θ) · ∂P(θ ,z, t)

∂θ

)
. (2)

Then, we take the Fourier transform at both sides of Eq. (2) and use the Fourier derivation
property to obtain the following simplified equation:

∂ p(θ ,z,ω)
∂ z

= −
(

α (θ)+
n

ccosθ
· jω

)
p(θ ,z,ω)+

1
θ

∂
∂θ

(
θ ·d (θ) · ∂ p(θ ,z,ω)

∂θ

)
, (3)

where p(θ ,z,ω) is the Fourier transform of P(θ ,z, t).
To solve this differential equation we implement a finite-difference method where we use a

forward difference for the first z derivative, and a first and second-order central differences for
the first and second angular derivatives respectively. Thus, the power at angle θ and distance
z+Δz is obtained as the linear combination of the power at the same angle and the two adjacent
angles (θ +Δθ , θ −Δθ) for a distance z as shows the following equation:

p(θ ,z+Δz,ω) =
(

1−
(

α (θ)+
n

ccosθ
· jω

)
Δz

)
p(θ ,z,ω)

+
Δz

2 ·Δθ

(
d (θ)

θ
+d′(θ)

)
(p(θ +Δθ ,z,ω)− p(θ −Δθ ,z,ω))

− 2d(θ)Δz
Δθ 2 p(θ ,z,ω)

+
d(θ)Δz

Δθ 2 (p(θ +Δθ ,z,ω)+ p(θ −Δθ ,z,ω)) .

(4)

Equation (4) can be expressed in a more compact representation in matrix form. In fact, the
differential changes in the angular power distribution at each Δz step are given by a simple
matrix product. Thus, given the angular power at an initial length z1, the power distribution at
a longer length z2 can be calculated with the following matrix equation:

p(z2,ω) = (A(ω)+D)m ·p(z1,ω) , (5)

where p is a vector where each component k is the power at the discretized propagation angle
θ = k · Δθ , and m = z2−z1

Δz is an integer that can be found for any pair of lengths, z2 > z1

providing we choose a small Δz.
A is a diagonal matrix that describes power propagation without diffusion. Its elements are

obtained from Eq. (4) as

Ak,k(ω) ≈ 1−Δz ·α (k ·Δθ)−Δz · n
ccos(k ·Δθ)

· jω (6)

which is the first order approximation of

Ak,k(ω) = exp

(
−Δz ·α (k ·Δθ)−Δz · n

ccos(k ·Δθ)
· jω

)
, (7)

that it is the exact solution of the Eq. (3) in the absence of diffusion. We have used this later ex-
pression to ensure that the matrix elements are always positive which solves stability problems
for large α values and permits the use of greater Δz steps.

Notice that A is the only frequency dependent term in Eq. (5). Iteration over the values of ω
gives the complete spatial and temporal evolution of the optical power in the fiber. The complex
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values of Ak,k(ω) are obtained by sampling the angular frequency ω as required for a precise
calculation of the inverse discrete Fourier transform of p(θ ,z,ω) to obtain P(θ ,z, t).

The matrix D is a tri-diagonal matrix which accounts for diffusion along the fiber. Its ele-
ments for k > 0 are:

Dk,k−1 =
(

d (k ·Δθ)− 1
2

d (k ·Δθ)
k

− 1
2

d′ (k ·Δθ)Δθ
)

Δz
Δθ 2

Dk,k = −2d (k ·Δθ)
Δz

Δθ 2

Dk,k+1 =
(

d (k ·Δθ)+
1
2

d (k ·Δθ)
k

+
1
2

d′ (k ·Δθ)Δθ
)

Δz
Δθ 2 .

(8)

These matrix elements describe power diffusion through a differential length of the fiber indi-
cating the fraction of power that flows out from a given angle and the fraction that drifts to this
angle from the adjacent ones.

To derive the undetermined value at k = 0, corresponding to θ = 0, we need to consider only
the last term of Eq. (1) which is the following:

1
θ

∂
∂θ

(
θ ·d (θ) · ∂P(θ ,z, t)

∂θ

)
= d′(θ)

∂P(θ ,z)
∂θ

+
d(θ)

θ
∂

∂θ

(
θ · ∂P(θ ,z)

∂θ

)
(9)

The limit for θ = 0 with the approximation lim
θ→0

1
θ

∂
∂θ

(
θ · ∂P(θ ,z)

∂θ

)
≈ 2 lim

θ→0

∂ 2P(θ ,z)
∂θ∂θ used in

[7], results in:

lim
θ→0

(
1
θ

∂
∂θ

(
θ ·d (θ) · ∂P(θ ,z, t)

∂θ

))
= d′(0)

∂P(θ ,z)
∂θ

∣∣∣∣
θ=0

+2d(0)
∂ 2P(θ ,z)

∂θ∂θ

∣∣∣∣
θ=0

(10)

and expressing the derivatives by the central differences, the following expression is obtained,

lim
θ→0

(
1
θ

∂
∂θ

(
θ ·d (θ) · ∂P(θ ,z, t)

∂θ

))
= d′(0)

P(0+Δθ ,z)−P(0−Δθ ,z)
2 ·Δθ

+2d(0)
P(0+Δθ ,z)−2P(0,z)+P(0−Δθ ,z)

Δθ 2 .

(11)

As P(0−Δθ ,z) = P(0+Δθ ,z) by the even nature of P(θ), Eq. (11) is reduced to

lim
θ→0

(
1
θ

∂
∂θ

(
θ ·d (θ) · ∂P(θ ,z, t)

∂θ

))
= 4d(0)

P(0+Δθ ,z)−P(0,z)
Δθ 2 , (12)

and the boundary condition at θ = 0 for a Δz step is given by

D0,0 = −4d (0)
Δz

Δθ 2 D0,1 = 4d (0)
Δz

Δθ 2 . (13)

The other boundary condition at the maximum k = N is given by Eq. (8), but the value of
DN,N−1 must compensate for the absence of the term DN,N+1 such that the sum of terms is zero,
resulting in

DN,N−1 = 2d (N)
Δz

Δθ 2 DN,N = −2d (N)
Δz

Δθ 2 . (14)

The physical meaning of this condition is that there are no losses due to diffusion and it holds
for all rows of matrix D.
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Matrix (A(ω)+D) carries all space-time information concerning power propagation through
the fiber and thus, gives a complete description of the fiber as a transmission system. In fact, for
ω = 0, the solution of Eq. (1) is the radial profile of the FFP at a given length L, P(θ , z = L).
The key of the method we propose to solve Eq. (3) is to take advantage of the sparse nature of
this matrix. Therefore, calculating multiple matrix powers is more efficient than performing the
same number of iterations, particularly when using MatLab®. Even more, it is not necessary to
re-calculate these matrices when changing the initial condition to obtain the space-time output
power distributions, as they only depend on the fiber diffusion and attenuation. The values of
Δz and Δθ that are critical for convergence have been determined according to the required
precision. In the calculations presented here we have used Δz = 0.001 m and Δθ = 0.005 rad
obtaining accurate results. The execution time for these values and a typical simulation of a
150 m fibre length to obtain the power distribution at 5 m steps is 0.03 s, more than 70 times
faster than the method used in [3] , based on the MatLab® partial derivative equation solver.

Once the initial condition in vector form is multiplied by the system matrix, it is possible
to obtain the frequency response at a given length z = L for each output angle, p(θ ,z,ω), as
well as the global frequency response by integrating the total power for all angles at a given
frequency:

H(L,ω) =
∫ π/2

0
sin(θ)p(θ ,L,ω)dθ . (15)

Its inverse Fourier transform gives the pulse temporal spreading at this length, h(L, t). An im-
portant aspect revealed by the triple dependence of power with propagation angle, length and
time is that to obtain the frequency response at one given length L, it is not enough to know the
frequency response at any shorter length, H(L0 < L,ω). To compute the total acquired delay at
a given angle and fibre length it is necessary to know the previous path followed by the power
reaching that angle, which implies to know either p(θ ,L0 < L,ω) or p(θ ,L0 < L, t). Thus, to
be able to calculate the frequency response at any given length, it is necessary to know the
angular power distribution right at the fibre input: P(θ ,z = 0, t = 0) or p(θ ,z = 0,ω), where
there is no propagation acquired temporal delay. In fact, previous experimental results suggest
that the input distribution has a strong impact on bandwidth changing the balance of diffusion
and differential attenuation [2].

3. Experimental methods to obtain POF frequency response and FFP

We measured the frequency responses and FFPs versus fiber length for two samples of each of
three PMMA fibers of 1mm diameter from different manufacturers: ESKA-PREMIER GH4001
(GH) from Mitsubishi, HFBR-RUS100 (HFB) from Agilent, and PGU-FB1000 (PGU) from
Toray. The GH and PGU fibers have a NA of 0.5, corresponding to a 19.5º inner critical an-
gle. The HFB fiber has a NA of 0.47 which implies an 18.5º inner critical angle. For each
sample both the FFPs and frequency responses were measured under the same launching con-
ditions, taken sequentially starting from a long fiber (175m-100m) down to 10m. We measured
the frequency response at each fibre length by feeding pure sinusoidal waveforms of differ-
ent frequencies to an AlGaInP laser diode (LD Sanyo DL-3147-021). The laser source emits
a maximum power of 5 mW at 645 nm and has a typical divergence of 30º in the perpendic-
ular plane, and of 7.5º in the parallel plane. Power was launched directly into the fibre using
a connector, which limits the launching NA to near 0.19 (under-filled launch) but is close to
the conditions achieved in real links. The receptor is based on a 1mm diameter photodiode
(FDS010) with a 50Ω load resistance and whose bandwidth is only 200 MHz. The fibre output
is free-space coupled to the receptor using another connector. Most of the power is captured
due to the large area of the detector, avoiding spatial filtering that could modify the measured
frequency responses. The receptor output is amplified using a 40 dB amplifier (Mini-Circuits
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ZKL-1R5) with a band-pass from 10 MHz to 1.5 GHz. A wideband Infinium DCA 86100A
oscilloscope from Agilent is connected to the output of the amplifier and captures the received
signal whose amplitude is directly related with the frequency response of the system at that fre-
quency. Device control and data acquisition are performed by the computer through the GPIB.
Data is processed to make our method more robust and to extend the bandwidth measurements
far above the system bandwidth (up to 1 GHz). The frequency response of a short segment of
fiber (75 cm) is measured to be used as a reference to characterize the effect of the electrical
components. The detailed procedure to obtain the frequency responses is described in [8]. Si-
multaneously, the FFP images were captured and their radial profiles were extracted using the
set-up and procedures described in [3, 9]. The angular attenuation and diffusion functions used
in this paper to characterize each fibre type were obtained from these experimental FFPs in [3].

4. Results

In this section, we demonstrate how our method provides a suitable model for POFs that can be
applied to reproduce experimental data and to predict fibre behaviour for previous findings that
up to now had not been thoroughly explained.

4.1. On the shape of the frequency response of POFs

The impulse and frequency responses of plastic optical fibres have been usually modelled in
the literature as Gaussian functions [10], but our previous measurements of the frequency re-
sponse never exhibited a Gaussian shape [2, 8]. Thus, we first compare the shape of both our
experimental and predicted frequency responses to Gaussian functions whose bandwidths are
the same as those obtained from our measured frequency responses. Fig. 1 shows the data for
one of the samples of the HFB fibre, as an example, at three different lengths: 15 meters on
the left graph, 50 meters in the middle and 100 meters on the right. The red lines are Gaussian
functions with the same bandwidth as the corresponding experimental frequency responses,
shown as black dots. The green lines show the model predicted frequency responses obtained
introducing directly the angular distribution estimated from the transmitter characteristics as
the input power distribution. The diffusion and attenuation functions, d(θ) and α(θ) used in
the model calculations were those previously estimated for the three different POFs from exper-
imental FFPs [3]. All three graphs in Fig. 1 reveal that the shape of both the experimental and
predicted frequency responses is far from Gaussian. Particularly, the high frequency fall-off is
much steeper for the Gaussian functions than for both the experimental and the model predicted
frequency responses. This discrepancy occurs even for the frequency responses at 100 m where
the measured FFPs were near the steady state distribution. On the other hand, the green lines,
showing the model predictions for 50 and 100 meters, closely tailor our experimental curves
both at high and low frequencies.

For the 15 m fibre shown in the leftmost graph of Fig. 1, however, model prediction and
experimental data, although similar in shape, are shifted by an offset, with the simulated fre-
quency response being higher than the measured one. These model discrepancies from our
measurements were found in all fibre samples at the shorter measured lengths, from 10 meters
and up to 25-30 meters. This result is not unexpected and, in fact, it agrees with our previous
conclusions derived from the analysis of our measurements of FFPs for short fibres [11] . Those
measurements suggested that optical power suffers a strong initial diffusion at the fibre input,
which is higher than the subsequent propagation diffusion, and whose pattern strongly depends
on the fibre type. Thus, we propose to introduce this strong initial diffusion into our present
framework as an independent effect by means of another matrix, which we will call injection
matrix J from now on, and will be different for each fibre type. Thus, to obtain an estimate of
the J matrix, we propose an arrangement of our experimental radial profiles for 1.25 meter fi-
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Fig. 1. Frequency responses for one of the samples of the HFB fiber at three lengths
(15m on the left, 50m in the center, and 100m on the right). Experimental measurements
are shown in black dots. Gaussian functions with the same bandwidths as the corresponding
experimental curve are shown as red lines. Model predictions without the injection matrix
are shown as green lines, while the blue lines show the predictions with injection matrix.

bres obtained launching a He-Ne laser beam at different angles. Thus, the profile for each input
angle is introduced as the corresponding matrix column to describe how the power injected at
one given input angle is spread over other angles at the fibre input. The J matrices for the three
fibre types are shown in Fig. 2 as colour images. Dark red shows the highest power level and
dark blue, the lowest one. Horizontal and vertical axes show the input and output inner propaga-
tion angles in degrees, which are the rows and columns of J respectively. Therefore, the matrix
product of the injection matrix and the transmitter angular power distribution p(z = 0−) gives
the vector describing the angular power distribution just after entering the fibre, p(z = 0+):

p(z = 0+) = J ·p(z = 0−). (16)

With these input power distributions, we obtain new model predictions shown as blue lines
that present a better agreement to the experimental data at short lengths than either with the
Gaussian or with our model without the injection matrix. At the longer presented lengths the
predictions using directly the transmitted input power and those including the injection matrix
practically coincide and therefore, both reproduce the experimental measurements. This finding
is consistent with the fact that the shape of the initial distribution is not critical after the power
has been propagating throughout the fibre for several tens of meters bearing the effects of
diffusion and differential attenuation. The modularity and flexibility of our method allowed
a straightforward inclusion of the injection matrix.

4.2. Bandwidth dependence on fibre length

POF bandwidth as a function of fibre length in logarithmic coordinates has been usually fitted
with straight lines. The slope of these lines is known as the concatenation factor and is related to
mode coupling. In the absence of mode coupling and differential attenuation, the concatenation
factor is one and therefore, a slope higher or lower than one is evidence of diffusive non-linear
effects [2]. Figure 3 shows bandwidth versus length for the three tested fibres in a two-axis
logarithmic scale. Bandwidths obtained from experimental frequency responses are shown as
symbols of different colours for each of the two samples of the same fibre type to illustrate
the slight inter-sample variability. The blue solid line represents the model prediction extended
to fibre lengths longer than our measurements. The three graphs show that the model captures
the general tendency of the experimental data, showing an initial decrease with a slope slightly
higher than one, and a subsequent shallower dependence at longer lengths. We found that the
experimental data for the GH and HFB fibres can be fitted by single straight lines of slopes 1.2
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Fig. 2. Image representation of the injection matrix for the GH, HFB and PGU fibers
(left, center and right graphs) obtained from our previous measurements in [11]. Horizontal
and vertical axis are input and output angles respectively.

and 1.1 respectively. The PGU bandwidths have been measured beyond the transition length
and thus, its data for both samples can be better fitted with two lines intercepting at 60 meters,
with a slope of 1.3 for the first line and 0.8 for the second. These two slopes are consistent to
those found in our previous measurements of different samples of the PGU fibre under similar
launching conditions [2]. The model predictions show that the other two fibres exhibit a similar
behaviour which is not evident from the experimental measurements as they do not reach the
transition length.

We argue that the slope higher than one is caused by our underfilled launch that, combined
with diffusion, degrades performance and thus, provokes a faster decrease in bandwidth. This
effect is even greater for the PGU fibre, with a higher slope for the first segment, suggesting
a very intense diffusion. This finding is consistent with the values of its diffusion function
d(θ), which are higher than for the other fibre types. The shallower segment, with a slope of
0.8, shows that the strong diffusion of the PGU fibre makes it reach the equilibrium at shorter
lengths than for the other fibre types. Using the model, we found the same behaviour for the
other fibre types, but with the change in slope appearing at longer lengths as Fig. 3 shows.
None of our measurements, however, reveal slopes below 0.8 even though we measured up
to fibre lengths where the FFP was near the steady state [3]. However, previous bandwidth
measurements using a scrambler at the emitter end produced slopes down to 0.6 [2]. We can
reproduce these lower slopes using our method to obtain the bandwidths predicted introducing
in the model an overfilled launch.

4.3. Insight on the space-time power distribution

To have further knowledge of fibre behaviour, the model can be used to obtain the output power
distribution as a joint function of output angle and time at any fiber length by taking the inverse
Fourier transform of the calculated frequency responses for each output angle. In Fig. 4, the
upper leftmost graph shows the power at the output of a 150 m PGU fiber as an example to
explain the image representation that we have adopted to help the visualization of the fiber
behavior. Time is shown on the horizontal axis in nanoseconds and output angle in degrees on
the vertical axis. In the image, each row represents the temporal pulse arriving at a given output
angle. The integrated power over the output angle results in the temporal pulse spread which is
shown normalized in the graph below the image (lower leftmost graph). The pulse spread is very
asymmetric with power rising first very steeply to its maximum and then, slowly decreasing
with a long tail extending up to 30 ns. The image columns are the radial profiles of the spatial
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Fig. 3. Bandwidth versus fibre length for the three fibre types: GH on the left, HFB in
the centre and PGU on the right. Symbols of different colours represent data for different
samples of the same fibre.The blue lines show the model predictions extended up to 750 m.

power distribution at fixed times. The integrated power over time gives the radial profile of
the FFP represented on the upper rightmost graph as normalized power on the horizontal axis
versus angle in degrees on the vertical axis. On the image, the superimposed solid blue line
joins the angular positions at which the maximum power reaches the fiber end at each temporal
delay. The dashed magenta line shows the delay, δ (θ), obtained without diffusion which is
given by the ray-theory inverse cosine law:

δ (θ) = L
n
c

(
1

cos(θ)
−1

)
, (17)

where L is the fiber length and n the refraction index of PMMA.
This precise knowledge of how the angular power distribution evolves with time and fibre

length helps to understand the improvement of the frequency response through spatial filtering
that we previously found in [12].

5. Discussion

We can state that, on the basis of our experimental results, Gaussian functions can be discarded
to fit POF frequency responses. However, the graphs in Fig. 1 show that the shape of the meas-
ured frequency responses is well reproduced by our model predictions. When inspecting the
whole set of data, there are some discontinuities in the experimental data which are not fol-
lowed by the model predictions. These discontinuities arise from localized defects or strains
in the fiber which, when removed by the cut-off procedure, let the remaining fiber recover
its normal predictable behavior. Although these effects are usually unknown and practically
impossible to detect prior the measurements, they can be modelled using the present matrix
framework and included in the method to assess their influence on fibre properties.

In addition, we have shown how the initial angular power distribution is critical to predict the
temporal behaviour for short and middle length fibres. Based on previous and present results,
we argue that optical power suffers strong diffusion when injected into a POF that conditions
its subsequent propagation. Moreover, we have estimated these initial power distributions from
our measurements for very short fibres and obtained a better agreement than when using the
transmitter distribution directly. Although data for short fibres are very sensitive to defects,
curvatures and strains which explain their higher variability and wider deviations from the
model, our method permits to reproduce the variability in the measurements by introducing
these localized effects and evaluating their impact on the results.

Figure 3 shows bandwidth versus length relationship for both our experimental data and
model predictions demonstrating a good model performance in predicting the bandwidth de-
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Fig. 4. The graph on the upper left is the image representation of the space-time power
distribution at the output of 150 m of the PGU fiber. Below, the lower leftmost graph shows
the overall pulse spread obtained as the integral of power over output angle. The power
integral over time renders the radial profile of the FFP shown on the upper rightmost graph.

pendence on length. Bandwidth-length dependence is slightly higher than linear for both the
GH and the HFB fibres up to 100 meters. We argue that the slope higher than one is caused
by underfilled launch combined with diffusion which makes bandwidth decrease steeper with
length. The shallower segment at longer lengths indicates that the fibre has reached its transi-
tion length. None of our measurements, however, reveal slopes below 0.8 and, only in extreme
non-practical conditions, the model simulations present slopes near the theoretical limit of 0.5.

The image representation in Fig. 4 helps to visualize the power distribution over space and
time at the fiber output and to understand the relationship between the angular power distribu-
tion and the pulse spreading through modal diffusion. The image shows that optical power that
exits the fiber over a cone from 0º to 8º is concentrated over a relatively narrow time slot. Above
this angular range, pulses have a wider time spread and their peaks increase with the output an-
gle as shows the blue line in the image. At these angles, the power peaks are reached at lower
times than for the cosine prediction indicating noticeable shorter delays than those that would
be obtained in the absence of diffusion. In other words, diffusion improves fiber transmission
capability. The horizontal time shift at the lowest angles does not affect the fibre behavior as it
is an overall delay. Therefore, the power exiting the fiber at the highest angles is also that with
the longest delays which suggests an easy way to improve fiber capacity by spatial filtering out
of the tail at the higher angles as was shown before [12, 13]. As most power is confined in a
range of lower angles, filtering out the power at the highest angles will imply small power loss
while producing a narrower overall impulse response.
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6. Conclusions

We propose a fast and robust method that reproduces experimental measurements of different
POF parameters and that allows to extend model predictions where it is difficult or unpracti-
cal to measure some fibre propagation properties. The method provides the space-time optical
power distribution with length from which angular power distribution, attenuation, bandwidth
and pulse spreading can be derived. In addition, it offers a flexible tool to study the effects of
using different devices, such as scramblers, tappers, etc, or the impairments occasioned by de-
fects and imperfections as they can be modelled as matrices to be introduced in our framework.
Using the information provided by the space-time power distribution fiber transmission char-
acteristics can be enhanced using an appropriate spatial filter, as we had shown experimentally
before. Therefore, a good fiber characterization can be applied to optimize fiber performance
in POF links.
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